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ABSTRACT

The advent of real-time large multimodal models (LMMs) like GPT-4o has
sparked considerable interest in efficient LMMs. LMM frameworks typically en-
code visual inputs into vision tokens (continuous representations) and integrate
them and textual instructions into the context of large language models (LLMs),
where large-scale parameters and numerous context tokens (predominantly vision
tokens) result in substantial computational overhead. Previous efforts towards ef-
ficient LMMs always focus on replacing the LLM backbone with smaller models,
while neglecting the crucial issue of token quantity. In this paper, we introduce
LLaVA-Mini, an efficient LMM with minimal vision tokens. To achieve a high
compression ratio of vision tokens while preserving visual information, we first
analyze how LMMs understand vision tokens and find that most vision tokens
only play a crucial role in the early layers, where they fuse visual information into
text tokens. Building on this finding, LLaVA-Mini introduces modality pre-fusion
to fuse visual information into text tokens in advance, thereby facilitating the ex-
treme compression of vision tokens fed to LLM backbone into one token. LLaVA-
Mini can support the understanding of images, high-resolution images, and videos
in an efficient manner. Experiments across 11 image-based and 7 video-based
benchmarks demonstrate that LLaVA-Mini outperforms LLaVA-v1.5 with just 1
vision token instead of 576. Efficiency analyses reveal that LLaVA-Mini can re-
duce FLOPs by 77%, deliver low-latency responses within 40 milliseconds, and
process over 10,000 frames of video on GPU hardware with 24GB of memory.1

1 INTRODUCTION

Large multimodal models (LMMs), such as GPT-4o (OpenAI, 2024a), equip large language models
(LLMs) (OpenAI, 2022; 2023) with the ability to understand visual information, exhibiting a com-
mon trend toward low-latency responses to enable real-time multimodal interactions. Recently, the
most widely adopted LMMs (Liu et al., 2023b; 2024a; Zhu et al., 2024), exemplified by the LLaVA
series (Liu et al., 2023b), involves embedding image patches into vision tokens through a vision
encoder (Radford et al., 2021) and incorporating them into the LLM’s context to facilitate visual
information comprehension, leading to strong performance in image and video understanding.

However, the substantial computational costs of LMMs present ongoing challenges. Unlike LLMs
(Touvron et al., 2023a;b; Dubey et al., 2024), which only process textual inputs, LMMs must in-
corporate a large number of additional vision tokens into the LLM’s context to represent visual
information (Liu et al., 2023b), significantly increasing computational complexity. For instance, in
the widely used vision encoder CLIP ViT-L/336px, a single image is encoded into 24 × 24 = 576
vision tokens (Radford et al., 2021), where integrating such a large number of vision tokens into the
context of parameter-heavy LLM results in significant computational overhead and higher inference
latency. This issue becomes even more pronounced in high-resolution image modeling (which re-
quires more vision tokens per image) (Liu et al., 2024b; Gen Luo, 2024) or video processing (which
involves processing more images) (Maaz et al., 2024; Lin et al., 2023a). Therefore, developing
efficient LLMs is essential for achieving GPT-4o-like low-latency multimodal interactions.

The computational demands of LMMs are primarily driven by model scale and the number of tokens
in the input context. Existing approaches to improving LMM efficiency typically focus on model

1Code is provided in supplementary materials. The model will be released after being de-anonymized.
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downsizing (Chu et al., 2023; 2024; Yuan et al., 2024a; Zhou et al., 2024a) or quantization techniques
(Yuan et al., 2024b), but often overlook another critical avenue: reducing the number of vision tokens
to shorten the input context. Some token reduction methods rely on predefined rules to reduce the
number of tokens output by the vision encoder (Bolya et al., 2023; Shang et al., 2024; Li et al.,
2024e; Ye et al., 2024c; Hu et al., 2024), which leads to the loss of visual information and inevitably
results in performance degradation (Wang et al., 2024; Fan et al., 2024).
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Figure 1: LLaVA-Mini achieves comparable
performance to LLaVA-v1.5 using only 1 vision
token instead of 576, yielding efficient computa-
tion, lower latency, and reduced VRAM usage.

In this paper, we aim to develop efficient LMMs
by minimizing the number of vision tokens
while maintaining comparable performance. To
this end, we begin by exploring a foundational
question: How does the LMM (particularly the
LLaVA architecture) understand vision tokens?
Through layer-wise analysis (refer to Sec.3), we
observe that the importance of vision tokens
changes across different layers of LLM. In the
early layers, vision tokens play a crucial role,
receiving considerable attention from the fol-
lowing text tokens (e.g., user input instructions
and responses). However, as the layers deepen,
the attention devoted to vision tokens decreases
sharply, with most attention shifting towards the
input instructions. Notably, even when we en-
tirely remove vision tokens in some later layers,
LMM keeps certain visual understanding capa-
bilities. This finding suggests that vision tokens
are more critical in early layers, where text to-
kens fuse visual information from vision tokens.

Based on this finding, if the fusion process can be shifted from the early layers of LLM to perform
before LLM, we can significantly reduce the number of vision tokens fed into the LLM without
sacrificing performance. Along with this idea, we propose LLaVA-Mini, an efficient and high-quality
LMM with minimal vision tokens. LLaVA-Mini introduces a modality pre-fusion module before
LLM to fuse visual information into the instruction text in advance, and employs a compression
module to highly compress the vision tokens before inputting them into LLM, thereby enhancing
efficiency while preserving high-quality visual understanding. Under extreme settings, LLaVA-Mini
requires only one vision token per image fed into LLM backbone, offering significant advantages in
inference time and memory consumption for high-resolution image and long video processing.

Experiments across a wide range of 11 image-based and 7 video-based understanding benchmarks
show that LLaVA-Mini achieves performance comparable to LLaVA-v1.5 (Liu et al., 2023b) while
using only 1 vision token instead of 576 (compression rate of 0.17%). With minimal vision tokens,
LLaVA-Mini offers substantial benefits in terms of computational efficiency (77% FLOPs reduction)
and lowering GPU memory usage (360 MB → 0.6 MB per image), as shown in Figure 1. As a result,
LLaVA-Mini decreases inference latency of image understanding from 100 ms to 40 ms and also
enables the processing of long videos exceeding 10,000 frames (over 3 hours) on an NVIDIA RTX
3090 with 24GB of memory, paving the way for low-latency multimodal interactions.

2 RELATED WORK

Large multimodal models (LMMs) (OpenAI, 2024b; Liu et al., 2023b; 2024a; Zhu et al., 2024) use
vision encoder to convert the image into vision tokens, which are then processed by large language
models (LLMs) (OpenAI, 2023; Chiang et al., 2023; Touvron et al., 2023a;b) to facilitate visual
understanding. As LMMs are increasingly deployed in real-time applications (OpenAI, 2024a),
enhancing their efficiency has become a critical concern. Recent efforts focus on either reducing the
model size or the number of tokens that fed into LMM.

To reduce LMM’s model size, previous methods directly replace the LLM backbone with a smaller
one (Chu et al., 2023; 2024; Yuan et al., 2024a; Zhou et al., 2024a), thereby lowering the total
parameters. Quantization techniques (Yuan et al., 2024b) can also be applied to improve LMM
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efficiency. However, reducing the scale and precision of parameters can impact the LLM backbone’s
capabilities, resulting in performance declines in visual tasks (Shang et al., 2024).

Another efficiency determinant for LMMs is the context length provided to the LLM backbone,
which includes both vision and text tokens. In practice, the number of vision tokens can be sub-
stantial, particularly when processing high-resolution images and videos. For image-based LMMs,
token merging (Bolya et al., 2023), PruMerge (Shang et al., 2024), and TokenPacker (Li et al.,
2024e) aggregate vision tokens based on similarity, achieving compression rates of 20% to 50%.
Qwen-VL (Bai et al., 2023) and MQT-LLaVA (Hu et al., 2024) utilize Q-former (Li et al., 2023a)
or resampler to compress vision tokens into a fixed length. However, these methods directly reduce
vision tokens, and inevitably result in the loss of visual information (Fan et al., 2024).

For video-based LMMs, Video-ChatGPT (Maaz et al., 2024), VideoChat (Li et al., 2024c), Video-
LLaVA (Lin et al., 2023a), and Video-LLaMA (Zhang et al., 2023), select a fixed number of frames
from videos of varying lengths. MovieChat (Song et al., 2024a) applies memory techniques to
condense videos into a fixed-length representation. VideoLLM-online (Chen et al., 2024) process
long video with extracting11 1 token per frame. Such frame selection or merging methods may lose
some key frames or misunderstand the temporal information of the video (Zhou et al., 2024b).

Previous methods have primarily focused on token reduction on the vision encoder. LLaVA-Mini
takes this a step further by exploring how vision tokens and text tokens interact within the LLM
backbone, and accordingly introduces a modality pre-fusion module, enabling an extreme compres-
sion of vision tokens (1 vision token fed into LLM) while achieving comparable performance.

3 HOW DOES LLAVA UNDERSTAND VISION TOKENS?

To compress visual tokens while preserving visual understanding, we sought to figure out how
LMMs understand visual tokens. Given the complexity of this issue, our preliminary analysis
concentrated on the LLaVA architecture (Liu et al., 2023b), focusing on the role of visual tokens
(particularly their quantity) in LMMs from an attention-based perspective (Xiao et al., 2024).

3.1 LLAVA ARCHITECTURE

LLaVA (Large Language and Vision Assistant) (Liu et al., 2023b) is an advanced multimodal ar-
chitecture that integrates vision and language processing capabilities. Building upon vision Trans-
formers (ViT) (Dosovitskiy et al., 2021) for visual inputs and LLMs for text, LLaVA can generate
language response Xa based on the given language instruction Xq and visual inputs Xv.

Typically, a pre-trained CLIP ViT-L/14 (Radford et al., 2021) and a projection layer are employed
to encode the visual inputs Xv into vision tokens (i.e., continuous representations) Hv. Then, vision
tokens Hv and language instruction’s embedding Hq are fed into an LLM, such as Vicuna (Chiang
et al., 2023) or Mistral, to generate the response Xa. In practice, vision tokens are often inserted
into the middle of the language instruction, so the inputs of LLM can be formally represented as:〈

Hq
1, · · · , H

q
k, H

v
1, · · · , Hv

lv , H
q
k+1, · · · , H

q
lq

〉
, (1)

where lv and lq denote the lengths of the vision tokens and language instruction, respectively. For
instance, in LLaVA-v1.5, the system prompts are positioned before the image (i.e., Hq

1, · · · , H
q
k),

while the user inputs follow the image (i.e., Hq
k+1, · · · , H

q
lq

) (Liu et al., 2023b).

3.2 PRELIMINARY ANALYSES

We begin by analyzing the significance of visual tokens in LMMs to guide the strategies for com-
pressing vision tokens. Specifically, we evaluate the importance of visual tokens at each layer of
LMMs from an attention-based perspective. Our analysis encompasses several LMMs, including
LLaVA-v1.5-Vicuna-7B, LLaVA-v1.5-Vicuna-13B, LLaVA-v1.6-Mistral-7B, and LLaVA-NeXT-
Vicuna-7B (Liu et al., 2023b; 2024b), to identify common characteristics across models of varying
sizes and training datasets. Appendix A gives the formal expression of the preliminary analyses.

Vision Tokens are More Important in Early Layers To find out which layers in LMM the vision
tokens play a more important role, we measure the attention weights assigned to different token
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(a) LLaVA-v1.5-Vicuna-7B
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(b) LLaVA-v1.5-Vicuna-13B
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(c) LLaVA-v1.6-Mistral-7B
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(d) LLaVA-NeXT-Vicuna-7B

Figure 2: Layer-wise variation of attention weights assigned to different types of tokens (including
instruction, vision, and response) in LMMs. “A→B” means the attention weights from A to B.
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Figure 3: Attention entropy assigned to different types of tokens across different layers in LMMs.

types (including instruction, vision, and response) at each layer. As shown in Figure 2, the attention
assigned to vision tokens varies significantly across layers. Visual tokens receive more attention in
the earlier layers, but this attention sharply decreases in the deeper layers, with over 80% of the
attention being directed towards instruction tokens. This change in attention suggests that vision
tokens play a central role in the early layers, with the instruction tokens seeking relevant visual
information from vision tokens through attention mechanisms. In the later layers, the model relies
more on instructions that have already fused the visual data to generate responses.

Most Vision Tokens are Focused in Early Layers To further assess the importance of individual
visual tokens, we calculate the entropy of the attention distribution at each layer. As shown in
Figure 3, we find that the entropy of attention toward visual tokens is much higher in the earlier
layers, indicating that most visual tokens are evenly attended to in the early layers.
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Figure 4: Attention visualization at different layers in LLaVA-v1.5 (color bar: logarithmic scale).
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Figure 5: Performance of
LLaVA-v1.5 when remov-
ing all vision tokens in var-
ious layers of LMM.

To intuitively illustrate the layer-wise variations in the importance of
visual tokens, Figure 4 visualizes the attention distribution across each
layer of LLaVA-v1.5. Almost all visual tokens receive broader atten-
tion in the early layers, while only some visual tokens are focused
in the later layers. These observations suggest that all visual tokens
are crucial in the early layers, and reducing their quantity inevitably
results in a loss of visual information. This explains why previous
methods of direct token reduction will compromise visual understand-
ing capabilities (Shang et al., 2024; Ye et al., 2024c; Hu et al., 2024).

To further substantiate our finding that visual tokens are particularly
critical in the early layers, we evaluated the visual understanding abil-
ity of LMMs when visual tokens were dropped at different layers.
Specifically, we measured the performance of LLaVA-v1.5 on the
GQA (Hudson & Manning, 2019) and MMBench (Liu et al., 2024c), with visual tokens being
dropped at layers 1-4, 5-8, ... , 29-32, respectively. As shown in Figure 5, removing visual to-
kens in the early layers leads to a complete loss of visual understanding ability, while removing
tokens in the higher layers has a minimal effect, with the model retaining much of its original per-
formance. In conclusion, our analyses and ablation study reveal that vision tokens play a crucial
role in the early layers of LLaVA, where text tokens fuse visual information from the vision tokens
at this stage. This insight can inform our strategies for compressing vision tokens.
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Figure 6: Architecture of LLaVA-Mini. Left: LLaVA-Mini represents each image with one vision
token. Right: Detailed view of the proposed query-based compression and modality pre-fusion.

4 LLAVA-MINI

We introduce LLaVA-Mini, an efficient LMM with minimal vision tokens. Like previous work,
LLaVA-Mini uses a vision encoder to encode an image into several vision tokens. To enhance
the efficiency of LMMs, LLaVA-Mini significantly reduces the number of vision tokens fed into
LLM backbone through a compression module. To retain visual information during compression,
based on previous findings that vision tokens play a crucial role in the early layers for fusing visual
information, LLaVA-Mini introduces a modality pre-fusion module before the LLM backbone to
fuses the visual information into the text tokens. The detail of LLaVA-Mini is as follows.

4.1 ARCHITECTURE

The architecture of LLaVA-Mini is illustrated in Figure 6. For the visual inputs Xv, a pre-trained
CLIP vision encoder (Radford et al., 2021) is employed to extract visual features from each image.
These features are then mapped into the word embedding space via a projection layer, producing
vision tokens Hv ∈ RN2×dh , where N2 is the number of vision tokens and dh is the LLM’s embed-
ding dimension. For the language instruction Xq, LLM’s embedding layer is used to generate text
token representations Hq ∈ Rlq×dh , where lq is the number of text tokens.

Vision Token Compression To enhance the efficiency of LMMs, LLaVA-Mini reduces the num-
ber of vision tokens fed into the LLM backbone by utilizing a query-based compression module.
To learn compression of the vision tokens, LLaVA-Mini introduces C × C learnable compression
queries Qv. These queries interact with all vision tokens Hv through cross-attention (Li et al.,
2023a), selectively extracting the important visual information to produce C×C compressed vision
tokens Ĥv ∈ RC2×dh . To preserve the spatial information in the image during compression, we
introduce a 2D sinusoidal positional encoding PE(·) (He et al., 2021) on the learnable queries and
original vision tokens. Formally, the compression can be expressed as:

Ĥv = A ·Hv, where A = Softmax
(
(Qv + PE(Qv)) · (Hv + PE(Hv))

⊤
)
, (2)

where A ∈ RC2×N2

is the similarity and Ĥv are C × C compressed vision tokens.

Modality Pre-fusion The compression of vision tokens inevitably results in some loss of visual
information. To retain as much visual information during compression as possible, LLaVA-Mini
introduces a modality pre-fusion before the LLM backbone, enabling text tokens to fuse relevant
visual information from all vision tokens in advance. Based on our previous observations, where this
fusion stage occurs implicitly within the early layers of the LLM, the modality pre-fusion module
f(·) consists of Nfusion Transformer blocks (Vaswani et al., 2017), where each Transformer block
share the same structure and hyperparameters with LLM backbone. Vision tokens Hv and text

5
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tokens Hq are concatenated and fed into the pre-fusion module, and the outputs corresponding to
the text tokens are then extracted as fusion tokens, expressed as:

Ĥq = f (Concat (Hv,Hq)) [−lq : ] , (3)

where Ĥq ∈ Rlq×dh are fusion tokens of text representations with related visual information.

Finally, the compressed vision tokens Ĥv and fusion tokens Ĥq of text representations with related
visual information (C2 + lq tokens in total) are fed to LLM together to generate the response.

4.2 HIGH-RESOLUTION IMAGE AND VIDEO MODELING

LLaVA-Mini uses minimal vision tokens to represent visual information, making it possible to han-
dle high-resolution images and videos much more efficiently.

High-Resolution Image The resolution of LMM is typically determined by the vision encoder,
such as CLIP’s ViT-L, which encodes at a resolution of 336*336 pixels. To perceive images at a
higher resolution, we divide each image into four sub-images by splitting it horizontally and verti-
cally into two parts (Liu et al., 2024b). Each of these sub-images is processed by the vision encoder
and projection individually, yielding N2× 4 vision tokens with a high resolution of 672*672 pixels.
The proposed compression module is then employed to reduce these N2 × 4 vision tokens into C2

compressed vision tokens Ĥv. The modality pre-fusion module takes the 4 sub-images (N2 × 4
vision tokens), the original image (N2 vision tokens), and the language instruction (lq text tokens)
as inputs, and then generates lq fusion tokens Ĥq with richer global and local visual information.
Finally, the number of tokens input to the LLM is C2 + lq . Note that when handling high-resolution
images, C is set slightly higher than in standard-resolution settings to preserve more details.

Video When handling videos, LMMs often extract multiple frames from the video (Li et al.,
2023b), which incurs significant computational costs. For instance, in the case of LLaVA-v1.5, ex-
tracting frames at a rate of 1 frame per second (fps) from an 8-second video results in 576×8 = 4608
vision tokens, leading to substantial VRAM usage. LLaVA-Mini can represent each image with min-
imal vision tokens, providing a significant advantage in processing long videos. For a video consist-
ing of M frames, LLaVA-Mini processes each frame individually, generating C2 vision tokens and
lq fusion tokens per frame. C2 vision tokens from each of M frames are sequentially concatenated
to yield a total of M×C2 vision tokens, i.e., Ĥv. Then, lq fusion tokens corresponding to M frames
are aggregated through pooling operation to generate the video’s fusion tokens Ĥq. As a result, the
number of tokens fed to the LLM is reduced from MN2+ lq to MC2+ lq for a video of M frames.

4.3 TRAINING

LLaVA-Mini follows the same training process as LLaVA, consisting of two stages.

Stage 1: Vision-Language Pretraining In this stage, compression and modality pre-fusion mod-
ules are not yet applied (i.e., the N2 vision tokens remain unchanged). LLaVA-Mini learns to align
vision and language representations using visual caption data. The training focuses solely on the
projection module while the vision encoder and LLM remain frozen (Liu et al., 2023b).

Stage 2: Instruction Tuning In this stage, LLaVA-Mini is trained to perform various visual tasks
based on minimal vision tokens, using instruction data. Compression and modality pre-fusion are
introduced to LLaVA-Mini, and all modules except the frozen vision encoder (i.e., the projection,
compression, modality pre-fusion, and LLM backbone) are trained in an end-to-end manner.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTING

Benchmarks We evaluate LLaVA-Mini on image and video understanding tasks. Experiments are
conducted on 11 image benchmarks and 7 video benchmarks. Refer to Appendix C for details.

Baselines LLaVA-Mini is an image/video LMM, so we compare it with several advanced image-
based and video-based LMMs. Detailed description of baselines refer to Appendix D.
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Table 1: Performance on 11 image-based benchmarks. ‘Res.’ is resolution and ‘#Vision Tokens’ is
the number of vision tokens fed to LLM backbone. ‘*’ indicates that involving extra training data.

Methods LLM Res. #Vision
Tokens VQAv2 GQA VisWiz SciQA VQAT POPE MME MMB SEED LLaVAW MM-

Vet
Avg.
(%)

BLIP-2 Vicuna-13B 224 32 65.0 41.0 19.6 61.0 42.5 85.3 1293.8 – 46.4 38.1 22.4 -
InstructBLIP Vicuna-7B 224 32 – 49.2 34.5 60.5 50.1 – – 36.0 53.4 60.9 26.2 –
IDEFICS-9B LLaMA-7B 224 64 50.9 38.4 35.5 – 25.9 – – 48.2 – – – –
IDEFICS-80B LLaMA-65B 224 64 60.0 45.2 36.0 – 30.9 – – 54.5 – – – –
Qwen-VL Qwen-7B 448 256 78.8 59.3 35.2 67.1 63.8 – – 38.2 56.3 – – –
Qwen-VL-Chat Qwen-7B 448 256 78.2 57.5 38.9 68.2 61.5 – 1487.5 60.6 58.2 – – -
SPHINX LLaMA-13B 224 289 78.1 62.6 39.9 69.3 51.6 80.7 1476.1 66.9 56.2 73.5 36.0 56.0
SPHINX-2k LLaMA-13B 762 2890 80.7 63.1 44.9 70.6 61.2 87.2 1470.6 65.9 57.9 76.9 40.2 59.0
mPLUG-Owl2 LLaMA-7B 448 1024 79.4 56.1 54.5 68.7 54.3 - 1450.2 64.5 57.8 - 36.2 -
Video-LLaVA Vicuna-7B 224 256 74.7 60.3 48.1 66.4 51.8 84.4 - 60.9 - 73.1 32.0 -
LLaVA-v1.5 Vicuna-7B 336 576 78.5 62.0 50.0 66.8 58.2 85.9 1510.7 64.3 58.6 63.4 30.5 56.3

LMMs with fewer vision tokens
MQT-LLaVA Vicuna-7B 336 2 61.0 50.8 48.5 65.0 – 74.5 1144.0 54.4 – 41.7 19.5 –
MQT-LLaVA Vicuna-7B 336 36 73.7 58.8 51.0 66.8 – 81.9 1416.3 63.4 – 59.6 27.8 –
MQT-LLaVA Vicuna-7B 336 256 76.8 61.6 53.1 67.6 – 84.4 1434.5 64.3 – 64.6 29.8 –
PruMerge Vicuna-7B 336 32 72.0 – – 68.5 56.0 76.3 1350.3 60.9 – – – –
PruMerge++ Vicuna-7B 336 144 76.8 – – 68.3 57.1 84.0 1462.4 64.9 – – – –
LLaMA-VID Vicuna-7B 336 2 – 55.5 – 68.8 49.0 83.1 – – – – – –
VoCo-LLaMA Vicuna-7B 336 1 72.3 57.0 – 65.4 – 81.4 1323.3 58.8 53.7 – – –
TokenPacker Vicuna-7B 336 36 75.0 59.6 50.2 – – 86.2 – 62.8 – – 29.6 –

Ours
LLaVA-Mini Vicuna-7B 336 1 77.6 60.9 56.2 70.4 57.0 84.4 1466.0 65.6 58.5 68.9 36.6 57.9

∆ compare to LLaVA-v1.5 0.17% -0.9 -1.1 +6.1 +3.6 -1.3 -1.5 -44.7 +1.3 -0.1 +5.5 +6.1 +1.6
LLaVA-Mini-HD Vicuna-7B 672 64 78.9 61.8 58.5 69.7 59.1 85.3 1476.8 67.5 60.2 69.3 33.9 58.6

∆ compare to LLaVA-v1.5 11.1% +0.4 -0.2 +8.5 +2.9 +0.9 -0.6 -33.9 +3.2 +1.6 +5.9 +3.4 +2.4
LLaVA-Mini*
(Image & Video)

LLaMA-3.1-
8B-Instruct 336 1 79.0 61.3 57.4 83.1 58.5 85.3 1522.7 71.6 63.0 70.2 37.2 60.7

Table 2: Performance on video-based open-ended generative benchmarks. We report accuracy (%)
for question-answer, and scores (1-5, higher is better) for question-answer and generative perfor-
mance. Results marked with bold and underlined indicate the best and second best, respectively.

Methods #Frames
#Vision
Tokens

per Frame

Video-based Question-Answer Video-based Generative Performance
MSVD-QA MSRVTT-QA ActivityNet-QA Correctness Detail Contextual Temporal Consistency Avg.Acc. Score Acc. Score Acc. Score

LLaMA Adapter 5 256 54.9 3.1 43.8 2.7 34.2 2.7 2.03 2.32 2.30 1.98 2.15 2.19
VideoChat 16 32 56.3 2.8 45.0 2.5 26.5 2.2 2.23 2.50 2.53 1.94 2.24 2.30
Video-LLaMA 16 64 51.6 2.5 29.6 1.8 12.4 1.1 1.96 2.18 2.16 1.82 1.79 1.99
Video-ChatGPT 100 ∼3.6 64.9 3.3 49.3 2.8 35.2 2.7 2.40 2.52 2.62 1.98 2.37 2.37
BT-Adapter 100 ∼2.6 67.5 3.7 57.0 3.2 45.7 3.2 2.68 2.69 3.27 2.34 2.46 2.69
MovieChat 2048 32 75.2 3.8 52.7 2.6 45.7 3.4 2.76 2.93 3.01 2.24 2.42 2.65
LLaMA-VID 1fps 2 69.7 3.7 57.7 3.2 47.4 3.3 2.96 3.00 3.53 2.46 2.51 2.88
Video-LLaVA 8 256 70.7 3.9 59.2 3.5 45.3 3.3 2.87 2.94 3.44 2.45 2.51 2.84

LLaVA-Mini 1fps 1 70.9 4.0 59.5 3.6 53.5 3.5 2.97 2.99 3.61 2.48 2.67 2.94

Configuration For a fair comparison, LLaVA-Mini employs the same configurations as LLaVA-
v1.5 (Liu et al., 2023b), using the CLIP ViT-L/336px (Radford et al., 2021) as the vision encoder
and Vicuna-v1.5-7B (Chiang et al., 2023) as the LLM backbone. The compressed hyperparameter
C is set to 1, meaning vision tokens are compressed to one token. The number of modality pre-
fusion layers Nfusion is set to 4. LLaVA-Mini uses the same training data as LLaVA-v1.5 (Liu
et al., 2023b), using 558K caption data for pretraining and 665K instruction data for instruction
tuning. The high-resolution version with 672*672 pixels (refer to Sec.4.2) is denoted as LLaVA-
Mini-HD. To capture more visual details, the compressed hyperparameter C of LLaVA-Mini-HD is
set to 8, i.e., compressing to 64 vision tokens. For video processing, LLaVA-Mini extracts 1 frame
per second (1 fps) from the video and sets C = 1 to represent each frame with one vision token.

To further explore the potential of LLaVA-Mini, we introduce a variant that uses the CLIP ViT-
L/336px (Radford et al., 2021) as vision encoder and the advanced LLaMA-3.1-8B-Instruct (Dubey
et al., 2024) as LLM backbone. During instruction tuning, we combine 665K image instruction
data from LLaVA (Liu et al., 2023b), 100K video instruction data from Video-ChatGPT (Maaz
et al., 2024), and part of open-source data (Li et al., 2024a), resulting in 3 million training samples.
LLaVA-Mini is trained using 8 NVIDIA A800 GPUs. Training details are provided in Appendix B.

5.2 MAIN RESULTS

Image-based Evaluation We compare LLaVA-Mini with LLaVA-v1.5 across 11 benchmarks to
thoroughly assess the performance of LLaVA-Mini with minimal vision tokens. The results are
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Table 3: Performance on MVBench (accuracy). Detailed scores are reported in Appendix I.

Methods Action Object Position Scene Count Attribute Pose Character Cognition Avg.

mPLUG-Owl 28.4 33.0 25.0 29.0 29.3 42.0 24.0 31.0 25.3 29.7
Video-ChatGPT 32.1 40.7 21.5 31.0 28.0 44.0 29.0 33.0 30.3 32.7
Video-LLaMA 34.4 42.2 22.5 43.0 28.3 39.0 32.5 40.0 29.3 34.1
VideoChat 38.0 41.2 26.3 48.5 27.8 44.3 26.5 41.0 27.7 35.5
LLaMA-VID 43.4 36.7 39.8 22.0 36.5 37.3 37.5 34.0 60.5 41.4
Video-LLaVA 48.0 46.5 27.8 84.5 35.5 45.8 34.0 42.5 34.2 43.1

LLaVA-Mini 52.1 43.2 31.8 85.5 37.5 44.5 29.5 52.0 35.0 44.5

Table 4: Results on MLVU (accuracy) of long video under-
standing. Evaluation includes Topic Reasoning (TR), Anomaly
Recognition (AR), Needle QA (NQA), Ego Reasoning (ER),
Plot QA (PQA), Action Order (AO), and Action Count (AC).

Methods #Frames Holistic Single Detail Multi Detail Avg.
TR AR NQA ER PQA AO AC

Avg. Video Duration (minute) 7 10 14 10 8 16 13 11
Max Video Duration (minute) 20 543 139 20 13 137 130 143

Video-ChatGPT 100 26.9 24.0 40.3 42.0 29.9 25.1 31.1 31.3
MovieChat 2048 29.5 25.0 24.2 24.7 25.8 28.6 22.8 25.8
Movie-LLM 1fps 30.0 29.0 29.6 24.7 24.1 20.5 24.8 26.1
TimeChat 96 23.1 27.0 24.5 28.4 25.8 24.7 32.0 30.9
LLaMA-VID 1fps 50.8 34.5 30.1 32.7 32.5 23.9 27.8 33.2
MA-LMM 1000 51.9 35.5 43.1 38.9 35.8 25.1 24.3 36.4

LLaVA-Mini 1fps 76.0 50.0 44.5 37.5 49.0 24.3 18.4 42.8

Table 5: Results on
EgoSchema (accuracy),
a long-form video benchmark
(∼ 3 minutes) for first-person
view temporal reasoning.

Methods #Frames EgoSchema

Random - 20

mPLUG-Owl 16 31.1
InternVideo 16 32.1
Video-ChatGPT 100 36.2
VideoChat 16 42.2
TimeChat 96 33.0
LLaMA-VID 1fps 38.5
Video-LLaVA 8 38.4

LLaVA-Mini 1fps 51.2

reported in Table 1, where LLaVA-Mini achieves performance comparable to LLaVA-v1.5 while
using only 1 vision token instead of 576. Previous efficient LMMs with fewer vision tokens often
merged similar tokens directly after the vision encoder (Shang et al., 2024; Ye et al., 2024c), re-
sulting in a significant loss of visual information and negatively impacting visual understanding of
LMMs. For instance, LLaMA-VID, VoCo-LLaVA, and MQT-LLaVA, which reduce vision tokens
to 1-2 tokens, lead to 5% performance drop on average. In contrast, LLaVA-Mini employs modal-
ity pre-fusion to integrate visual information into text tokens before compressing the vision tokens,
achieving performance comparable to LLaVA-v1.5 at a token compression rate of 0.17%. Further-
more, LLaVA-Mini-HD shows an average performance improvement of 2.4% over LLaVA-v1.5 due
to high-resolution image modeling. Note that LLaVA-Mini-HD has a computational load of 8.13
TFLOPs, which remains lower than LLaVA-v1.5’s 8.55 TFLOPs. More efficiency analyses refer to
Sec.5.3. Overall, LLaVA-Mini preserves strong visual understanding capabilities while compressing
vision tokens, enhancing the usability of efficient LMMs in visual scenarios.

Video-based Evaluation We compare LLaVA-Mini with advanced video LMMs on 5 widely used
video-based benchmarks. The results are reported in Table 2 and 3, where LLaVA-Mini demon-
strates superior overall performance. Video LMMs such as VideoChat (Li et al., 2024c), Video-
LLaVA (Lin et al., 2023a), and Video-LLaMA (Maaz et al., 2024) use much more vision tokens to
represent each frame, and thereby can extract only 8-16 frames from a video due to the limited con-
text length of LLMs, which may result in the loss of visual information in some frames. In contrast,
LLaVA-Mini uses one vision token to represent each image and accordingly can extract frames from
the video at a rate of 1 frame per second, thus performing better on video understanding.

Extrapolation to Long Videos Furthermore, we compare LLaVA-Mini with advanced long-video
LMMs (can process video over 100 frames) on long-form video benchmarks, MLVU (Zhou et al.,
2024b) and EgoSchema (Mangalam et al., 2023). Note that LLaVA-Mini is trained only on Video-
ChatGPT instruction data and has not been exposed to any long video data, so its performance on
long videos is entirely derived from the length extrapolation capabilities of its framework (Press
et al., 2022). As shown in Table 4 and 5, LLaVA-Mini exhibits significant advantages in long video
understanding. By representing each frame as one token, LLaVA-Mini facilitates straightforward
extension to longer videos during inference. In particular, LLaVA-Mini is only trained on videos
shorter than 1 minute (< 60 frames), and performs well on MLVU’s long-form video, which encom-
passes videos over 2 hours (> 7200 frames) during inference. Overall, with one vision token per
frame, LLaVA-Mini demonstrates high-quality video understanding in a more efficient manner.
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Figure 7: FLOPs and latency
of LLaVA-Mini.
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Table 6: Performance of LLaVA-Mini with different
numbers of modality pre-fusion layers Nfusion.

Methods Pre-fusion
#Layers

#Vision
Tokens

FLOPs
(T)

Performance

VQAv2 GQA MMB

LLaVA-v1.5 - 576 8.55 78.5 62.0 64.3

LLaVA-Mini
(w/o
pre-fusion)

0 1 0.96 72.4 54.2 57.7
0 16 1.16 74.1 55.4 59.2
0 64 1.79 75.3 56.7 62.1
0 144 2.85 76.9 58.9 64.9

LLaVA-Mini
(w/
pre-fusion)

1 1 1.21 74.8 55.5 60.4
2 1 1.46 76.0 57.6 63.1
3 1 1.81 76.9 59.1 64.9
4 1 1.96 77.6 60.9 65.6

Table 7: Performance of LLaVA-Mini
with various vision tokens.

Methods Res. #Vision
Tokens

Performance

VQAv2 GQA MMB

LLaVA-v1.5 336 576 78.5 62.0 64.3

LLaVA-Mini

336 1 77.6 60.9 65.6
336 4 77.7 60.9 66.7
336 16 78.1 61.3 66.6
336 64 78.5 61.6 67.5

672 16 78.5 61.5 67.4
672 64 78.9 61.8 67.5
672 144 79.3 62.3 67.9
672 576 80.0 62.9 68.1

5.3 EFFICIENCY

With the performance comparable to LLaVA-v1.5, we further explore the computational efficiency
offered by LLaVA-Mini. Figures 7, 8, 9 illustrate the advantages of LLaVA-Mini in terms of com-
putational load, inference latency, and memory usage, where FLOPs are calculated by calflops
(Ye, 2023), and latency is tested on the A100 without any engineering acceleration techniques.

FLOPs and Inference Latency As shown in Figure 7, LLaVA-Mini significantly reduces com-
putational load by 77% compared to LLaVA-v1.5, achieving a speedup of 2.9 times. LLaVA-Mini
achieves response latency lower than 40 ms, which is crucial for developing low-latency real-time
LMMs. As shown in Figure 8, when modeling at high resolutions, the efficiency advantages of
LLaVA-Mini are even more pronounced, yielding 82% FLOPs reduction and 3.76 times speedup.

Memory Usage Memory consumption poses another challenge for LMMs, particularly in video
processing. Figure 9 demonstrates the memory requirements of LMMs when processing videos of
varying lengths. In previous methods, each image requires approximately 200-358 MB memory
(Liu et al., 2023b; Lin et al., 2023a), limiting them to handle only about 100 frames on a 40GB
GPU. In contrast, LLaVA-Mini with one vision token requires just 0.6 MB per image, enabling it to
theoretically support video processing of over 10,000 frames on RTX 3090 with 24 GB of memory.

6 ANALYSES

6.1 SUPERIORITY OF MODALITY PRE-FUSION

The proposed modality pre-fusion is central to LLaVA-Mini, as it integrates visual information into
text tokens in advance, facilitating extreme compression of vision tokens. To investigate the ef-
fects of modality pre-fusion, we conduct an ablation study in Table 6. Without pre-fusion, token
compression results in a performance drop of around 5%, even with 144 vision tokens retained, the
performance of LMMs falls short of LLaVA-v1.5. This also explains why previous token merging
methods often exhibit poor performance (Ye et al., 2024c) or can only achieve a compression rate of
over 40% (Shang et al., 2024). Notably, under the same FLOPs, increasing the number of pre-fusion
layers yields greater benefits than increasing the number of compression vision tokens. This sup-
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Video-LLaVA: The video shows a group of men playing
soccer on a field. They are seen celebrating with one another
and holding up a trophy.

Instruction: What activity does the video show?

LLaVA-Mini: The video shows a group of men in suits and
sports uniforms standing on a stage, holding up a trophy, and
celebrating their victory.

60s video

Latency: 1.4s, Vision tokens: 1×60=60

Latency: 3.6s, Vision tokens: 256×8=2048

Video-LLaVA: The price of the Ray-Ban Meta
Wayfarer is $129.99.

How much is Ray-Ban 
Meta Wayfarer?

LLaVA-Mini:  The Ray-Ban Meta Wayfarer is
priced at $299 USD. Latency: 38ms, Vision token: 1

Image: Instruction:

LLaVA-v1.5:  The Ray-Ban Meta Wayfarer is
priced at $199.🌋

Latency: 80ms, Vision tokens: 256

Latency: 110ms, Vision tokens: 576

GPT-4o: The price of the Ray-Ban Meta Wayfarer
sunglasses shown in the image is $299.00.

Video-ChatGPT: The video shows a group of men holding a 
trophy and celebrating on a stage.Latency: 1.7s, Vision tokens: 256+100=356

Figure 10: Case of image understanding.

Video-LLaVA: The video shows a group of men playing
soccer on a field. They are seen celebrating with one another
and holding up a trophy.

Instruction: What activity does the video show?

LLaVA-Mini: The video shows a group of men in suits and
sports uniforms standing on a stage, holding up a trophy, and
celebrating their victory.

60s video

Latency: 1.4s, Vision tokens: 1×60=60

Latency: 3.6s, Vision tokens: 256×8=2048

Video-LLaVA: The price of the Ray-Ban Meta
Wayfarer is $129.99.

How much is Ray-Ban 
Meta Wayfarer?

LLaVA-Mini:  The Ray-Ban Meta Wayfarer is
priced at $299 USD. Latency: 38ms, Vision token: 1

Image: Instruction:

LLaVA-v1.5:  The Ray-Ban Meta Wayfarer is
priced at $199.🌋

Latency: 80ms, Vision tokens: 256

Latency: 110ms, Vision tokens: 576

GPT-4o: The price of the Ray-Ban Meta Wayfarer
sunglasses shown in the image is $299.00.

Video-ChatGPT: The video shows a group of men holding a 
trophy and celebrating on a stage.Latency: 1.7s, Vision tokens: 256+100=356

Figure 11: Case of video understanding.

ports our preliminary analysis, which indicated that vision tokens exhibit varying importance across
different layers and vision tokens are more critical in early layers. Investing more computational
overhead in earlier stages where vision tokens are more important results in better performance.

6.2 EFFECT OF COMPRESSION Table 8: Effect of query-based compression.

Compression #Vision
Tokens FLOPs Performance

VQAv2 GQA MMB

Average Pooling 1 1.96T 76.1 59.8 64.0
Query-based +2.42G 77.6 60.9 65.6

Average Pooling 4 2.01T 76.9 60.3 65.1
Query-based +2.44G 77.7 60.9 66.7

LLaVA-Mini employs query-based compression to
achieve a high compression ratio for vision tokens. We
compare the performance of query-based compression
with direct average pooling in Table 8. Query-based
compression can adaptively capture important features
in the image while requiring only a minimal additional
computational cost, demonstrating a significant advan-
tage. Appendix F gives a visualization of the compression process and a more detailed analysis.

6.3 PERFORMANCE WITH VARIOUS VISION TOKENS

LLaVA-Mini uses 1 vision token for standard images and 64 for high-resolution images. We explore
the potential of LLaVA-Mini when further increasing the number of vision tokens (larger C) in
Table 7. The results indicate that as the number of vision tokens increases, LLaVA-Mini continues
to improve in performance. In particular, LLaVA-Mini outperforms LLaVA-v1.5 when both using
576 vision tokens, demonstrating its effectiveness when computational resources are plentiful.

6.4 CASE STUDY

Figures 10 and 11 present examples of LLaVA-Mini in image and video understanding tasks (refer
to Appendix G for more cases). Despite using only one vision token, LLaVA-Mini performs effec-
tively in capturing visual details, such as accurately identifying price information (OCR) in website
screenshots. For video understanding, Video-LLaVA extracts 8 frames per video, regardless of video
duration (Lin et al., 2023a). Training on only 8 frames (sometimes missing key frames) can cause
hallucinations (Khattak et al., 2024), encouraging LMM to forge information beyond the extracted
frames. For instance, given a celebration scene, Video-LLaVA mistakenly imagines “a group of men
playing soccer on a field” before the celebration. This fixed-length frame extraction is a forced com-
promise due to the large number of vision tokens required per image while LLM’s context length
is limited. In contrast, LLaVA-Mini, utilizing just one vision token per frame, can process videos
at 1 fps, resulting in more robust video understanding. Overall, LLaVA-Mini ensures strong visual
understanding while enhancing efficiency, making it a practical solution for multimodal interaction.

7 CONCLUSION

We introduce LLaVA-Mini, an efficient LMM with minimal vision tokens. LLaVA-Mini excels in
image and video understanding while exhibiting superiority in computational efficiency, inference
latency, and memory usage, facilitating the real-time multimodal interaction with efficient LMMs.
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A DETAILED SETTING OF PRELIMINARY ANALYSES

In Sec.3.2, we analyze the importance of visual tokens in LMMs from an attention-based perspective
to inform strategies for compressing vision tokens. Here, we give the detailed introduction of the
experimental setup for the attention analysis.

We focus on the LLaVA series architecture, where the input tokens to the LLM are composed of
instruction tokens, vision tokens, and response tokens, as shown in Eq.(1). We compute the average
attention received by each type of token to reveal how the importance of different token categories
changes across layers.

Calculation of Attention Weights Formally, we denote the attention of the ith token hi to the
jth token hj as aij , where aij is the average attention across all attention heads. All tokens fed
to the LLM are divided into instruction tokens, vision tokens, and response tokens according to
inputs type, denoted as sets Tinstruction, Tvision, and Tresponse respectively. Finally, denoted the
target and source token types as tgt type, src type ∈ {instruction, vision, response}, the average
attention weights from tgt type type tokens to src type type tokens in our analyses are calculated
as:

Attn(tgt type → src type) =

∑
hi∈Ttgt type

∑
hj∈Tsrc type

aij∑
hi∈Ttgt type

1
∑

hj∈Tsrc type
aij>0

, (4)

where 1
∑

hj∈Tsrc type
aij>0 =

{
1 if

∑
hj∈Tsrc type

aij > 0

0 otherwise
(5)

Specifically,
∑

hi∈Ttgt type

∑
hj∈Tsrc type

aij calculates the sum of attention weights from all
tgt type type tokens to all src type type tokens,

∑
hi∈Ttgt type

1
∑

hj∈Tsrc type
aij>0 counts the

number of tgt type type tokens, thus Attn(tgt type → src type) represents the average attention
weight from tgt type type tokens to src type type tokens. Attn(tgt type → src type) is consistent
with the legend in Figure 2.

Calculation of Attention Entropy The calculation of attention entropy is similar to that of atten-
tion weights, with the key difference being the addition of a normalization step. When computing
the entropy of a specific type of token (e.g., vision tokens), the sum of attention weights for this
token type may not equal 1. Thus, we perform a normalization on the attention of these tokens (e.g.,
vision tokens) to ensure the definition of entropy is satisfied.

In practice, for LLaVA-v1.5 (pad) (Liu et al., 2023b) and LLaVA-NeXT (anyres) (Liu et al., 2024b),
which may involve different resolution vision inputs, we use their original settings. In our analysis,
we do not further distinguish between different types of vision tokens (e.g., global or local), but treat
them collectively as vision tokens.

B TRAINING DETAILS

Implementation Details The compression method of LLaVA-Mini can be easily plugged into ex-
isting multi-modal pipelines, as it only requires the addition of two extra modules (the compression
module and the modality pre-fusion module) before the LLM, while the other components (such
as the vision encoder, the LLM, and the training loss) remain unchanged. The pre-fusion module
applies the same decoder-only architecture as the LLM, including both the structure and hyper-
parameters. The motivation behind this setting is to ensure flexible adaptation to existing LLM
frameworks and other acceleration techniques.

Training The overall training process follows a two-stage paradigm similar to LLaVA, consisting
of vision-language pretraining followed by instruction tuning. Table 9 reports the two-stage training
details of LLaVA-Mini.

C BENCHMARKS

We conduct a comprehensive evaluation of LLaVA-Mini, including both image and video under-
standing benchmarks.
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Table 9: Training details of LLaVA-Mini.

Settings Stage1 Stage2
Vision-Language Pretraining Instruction Turning

Modules

Vision Encoder Frozen Frozen
Projection Trainable Trainable
Large Language Model Frozen Trainable
Compression N/A Trainable
Modality Pre-fusion N/A Trainable

Hyperparameters

Batch Size 256 256
Learning Rate - 1e-4
MM Learning Rate 1e-3 1e-5
Schedule Cosine decay
Warmup Ratio 0.03
Optimizer AdamW
Epoch 1 2

C.1 IMAGE-BASED BENCHMARKS

Following the LLaVA framework (Liu et al., 2023b), we conduct experiments on 11 widely adopted
benchmarks, including VQA-v2 (VQAv2) (Goyal et al., 2017), GQA (Hudson & Manning, 2019),
VisWiz (Gurari et al., 2018), ScienceQA-IMG (SciQA) (Lu et al., 2022), TextVQA (VQAT) (Singh
et al., 2019), POPE (Li et al., 2023c), MME (Fu et al., 2024), MMBench (MMB) (Liu et al., 2024c),
SEED-Bench (SEED) (Li et al., 2024b), LLaVA-Bench-in-the-Wild (LLaVAW) (Liu et al., 2023a),
and MM-Vet (Yu et al., 2023), which cover a diverse range of visual tasks. The evaluation pipelines
for all benchmarks are consistent with those used in LLaVA.

C.2 VIDEO-BASED BENCHMARKS

Video-based Generative Performance Benchmark For video-based evaluation, we conduct ex-
periments on video open-ended question-answering benchmarks, including MSVD-QA (Chen &
Dolan, 2011), MSRVTT-QA (Xu et al., 2016), and ActivityNet-QA (Caba Heilbron et al., 2015).
Furthermore, we use the video-based generative performance benchmark (Maaz et al., 2024) to
assess the performance of LLaVA-Mini across five dimensions: correctness, detail orientation, con-
textual understanding, temporal understanding, and consistency. The evaluation pipelines for both
the open-ended question-answering and the generative performance benchmarks adhere to Video-
ChatGPT (Maaz et al., 2024), employing the GPT model (gpt-3.5-turbo version) to evaluate the
accuracy of responses (True or False) and to assign a score ranging from 1 to 5 for response, where
higher scores indicate superior performance.

MVBench (Li et al., 2024d) MVBench is a comprehensive benchmark for multimodal video un-
derstanding that encompasses 20 challenging tasks. The evaluation aspects of MVBench include Ac-
tion (such as Action Sequence, Action Prediction, Action Antonym, Fine-grained Action, and Un-
expected Action), Object (Object Existence, Object Interaction, Object Shuffle), Position (Moving
Direction, Action Localization), Scene (Scene Transition), Count (Action Count, Moving Count),
Attribute (Moving Attribute, State Change), Pose (Fine-grained Pose), Character (Character Order),
and Cognition (Egocentric Navigation, Episodic Reasoning, Counterfactual Inference). The evalua-
tion of MVBench employs a multiple-choice format, using accuracy as the metric.

MLVU (Zhou et al., 2024b) MLVU is a comprehensive benchmark for multi-task long video un-
derstanding. The evaluation aspects of MLVU include Topic Reasoning (TR), Anomaly Recognition
(AR), Needle QA (NQA), Ego Reasoning (ER), Plot QA (PQA), Action Order (AO), and Action
Count (AC). The evaluation of MLVU also employs a multiple-choice format, using accuracy as the
metric.

EgoSchema (Mangalam et al., 2023) EgoSchema is a long-form video question-answering
dataset, which serves as a benchmark for assessing the long video understanding capabilities of
first-person videos. The evaluation of EgoSchema also employs a multiple-choice format, using
accuracy as the metric.
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D INTRODUCTION TO BASELINES

LLaVA-Mini is an image and video LMM, so we compare it with several advanced image-based and
video-based LMMs.

D.1 IMAGE-BASED LMMS

We compare LLaVA-Mini with LLaVA-v1.5 (Liu et al., 2023b) and other advanced LMMs of sim-
ilar data and model scales, including BLIP-2 (Li et al., 2023a), InstructBLIP (Liu et al., 2024a),
IDEFICS (Laurençon et al., 2023), Qwen-VL (Bai et al., 2023), Qwen-VL-Chat (Bai et al., 2023),
SPHINX (Lin et al., 2023b), mPLUG-Owl2 (Ye et al., 2024b).

LMMs with Fewer Vision Tokens Additionally, we assess LLaVA-Mini against various efficient
LMMs that utilize fewer vision tokens, showing advantages in compression rate and performance.
Most of these models share the same architecture and training data as LLaVA, primarily focusing on
the merging of vision tokens in the vision encoder. These efficient LMMs are introduced as follows.

MQT-LLaVA (Hu et al., 2024) introduces a flexible query transformer that allows encoding an
image into a variable number of visual tokens (up to a predefined maximum) to adapt to different
tasks and computational resources.

PruMerge (Shang et al., 2024) reduces visual tokens in LMMs by identifying and merging im-
portant tokens based on the attention sparsity in vision encoder. PruMerge has a variant, named
PruMerge++, which enhances the original PruMerge method by evenly adding more vision tokens
(about 144 vision tokens) to further improve performance.

LLaMA-VID (Li et al., 2023b) LLaMA-VID compresses the instruction and image into one token
respectively, with a total of two tokens representing each image, thus facilitating the understanding
of longer videos.

VoCo-LLaMA (Ye et al., 2024c) compresses all vision tokens using language models, significantly
improving computational efficiency.

TokenPacker (Li et al., 2024e) is a visual projector that efficiently reduces visual tokens by 80%
using a coarse-to-fine approach.

Previous methods have often focused on reducing the number of vision tokens output by the vision
encoder. LLaVA-Mini takes this a step further by shifting attention to how vision tokens and text
tokens interact within the LLM backbone. Based on this insight, we propose modality pre-fusion,
which enables better performance even under the extreme compression of reducing vision tokens to
just one token.

D.2 VIDEO-BASED LMMS

LLaVA-Mini can also perform high-quality video understanding, so we compare LLaVA-Mini with
the current advanced video LMMs, including LLaMA-Adaptor (Zhang et al., 2024), InternVideo
(Wang et al., 2022), VideoChat (Li et al., 2024c), Video-LLaMA (Zhang et al., 2023), mPLUG-Owl
(Ye et al., 2024a), Video-ChatGPT (Maaz et al., 2024), BT-Adapor (Liu et al., 2023c), LLaMA-VID
(Li et al., 2023b), and Video-LLaVA (Lin et al., 2023a).

We also compare LLaVA-Mini with several video LMMs specifically designed for long videos,
including MovieChat (Song et al., 2024a), Movie-LLM (Song et al., 2024b), TimeChat (Ren et al.,
2023), MA-LMM (He et al., 2024). Note that among these video LMMs, LLaVA-Mini and Video-
LLaVA can complete image and video understanding with a unified model.

E EXTENDED EXPERIMENTAL RESULTS

E.1 RESULTS ON VISION-CENTRIC BENCHMARK

To further demonstrate its understanding capabilities of visual information, we evaluate LLaVA-
Mini on vision-centric benchmarks CV-Bench, which is an widely-used benchmark for assessing

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 10: Performance of LLaVA-Mini on CV-Bench, a vision-centric benchmarks of both 2D and
3D visual understanding.

Methods #Vision Tokens CVBench-2D CVBench-3D Avg.

LLaVA-v1.5 576 61.96 58.58 60.27

LLaVA-Mini 1 62.31 69.33 65.82
LLaVA-Mini 4 63.42 72.00 67.71
LLaVA-Mini 16 65.58 73.75 69.66

vision-centric capabilities, encompassing both 2D and 3D visual understanding (Tong et al., 2024).
The results are shown in Table 10, where LLaVA-Mini demonstrates superior vision-centric under-
standing with fewer vision tokens on vision-centric understanding.

E.2 EFFECT OF COMPRESSION MODULE

Table 11: Comparison of LLaVA-Mini with previous token merging methods.

Methods #Vision Tokens Performance
VQAv2 GQA MMB

MQT-LLaVA 2 61.0 50.8 54.4
MQT-LLaVA 36 73.7 58.8 63.4
MQT-LLaVA 256 76.8 61.6 64.3
PruMerge 32 72.0 - 60.9
PruMerge++ 144 76.8 - 64.9

LLaVA-Mini 1 72.4 54.2 57.7
LLaVA-Mini 16 74.1 55.4 59.2
LLaVA-Mini 64 75.3 56.7 62.1
LLaVA-Mini 144 76.9 58.9 64.9

To verify the effectiveness of the compression module, we compared the compression module in
LLaVA-Mini with previous advanced token merging methods. To ensure a fair comparison of to-
ken compression performance, we have removed the modality pre-fusion module from LLaVA-Mini
for the comparison with SOTA token merging methods, including PruMerge (Shang et al., 2024),
PruMerge++ (Shang et al., 2024), and MQT-LLaVA (Hu et al., 2024). Specifically, PruMerge ap-
plies the widely-used token merge (ToMe) technique (Bolya et al., 2023) on ViT, PruMerge++ im-
proves upon PruMerge by uniformly sampling additional vision tokens, and MQT-LLaVA employs
Matryoshka representation learning to compress vision tokens.

As shown in the Table 11, LLaVA-Mini’s compression module outperforms PruMerge, PruMerge++,
and MQT-LLaVA at the same compression rate, showing the advantages of query-based compres-
sion.

E.3 EFFECT OF MODALITY PRE-FUSION

Table 12: Performance of LLaVA-Mini when using only pre-fusion module without compression.

Methods #Vision Tokens Performance
VQAv2 GQA MMB

LLaVA-v1.5 576 78.5 62.0 64.3

LLaVA-Mini (w/o compression) 576 80.0 62.9 66.2

To validate the effect of the pre-fusion module, we remove the compression module and retained
only the modality pre-fusion module, thereby comparing with LLaVA-v1.5 while both using 576
vision tokens. As shown in Table, when using only the pre-fusion module without compression,
LLaVA-Mini achieves superior performance compared to LLaVA-v1.5 with both using 576 vision
tokens, demonstrating the effectiveness of the pre-fusion module.
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E.4 WHY PREFORMING COMPRESSION AND PRE-FUSION OUTSIDE LLM BACKBONE?

LLaVA-Mini performs compression and modality pre-fusion before to the LLM backbone. The
motivation for conducting these processes outside the LLM backbone, rather than conducting at the
Lth layer within the LLM, stems from two key considerations:

• Vision representations after the Lth layers contain contextual information, which hinders
the compression module: After the vision tokens are fed into the LLM, the early layers
cause the visual representations to carry contextual information. Applying query-based
compression on top of these representations makes it difficult for the compression module
to distinguish between different vision tokens.

• The inter-layer operations within the LLM may not be compatible with existing accelera-
tion frameworks: One of the main motivations for placing the compression and pre-fusion
modules outside the LLM backbone in LLaVA-Mini is to keep the LLM backbone un-
changed. This design allows for compatibility with nearly all existing LLM acceleration
technologies and frameworks, further enhancing efficiency.

Table 13: Comparison of performing compression and pre-fusion outside or within LLM backbone.

Methods #Vision Tokens FLOPs (T) Performance
VQAv2 GQA MMB

LLaVA-Mini 1 1.96 77.6 60.9 65.6

LLaVA-Mini (perform compression
and pre-fusion within LLM) 1 1.84 76.3 60.1 64.5

We also conduct a comparison between LLaVA-Mini and LLaVA-Mini (compression and pre-fusion
within LLM) in Table 13. The results demonstrate that the configuration of LLaVA-Mini is more
advantageous. We will incorporate this result and the architectural motivation into the manuscript
as per your recommendation.

E.5 EFFICIENCY ACROSS VARIOUS HARDWARE

Table 14: Inference latency (millisecond) of LLaVA-Mini on various hardware platforms.

Methods #Vision Tokens RTX 3090 (24G) A100 (40G) A800 (80G)

LLaVA-v1.5 576 198.75 113.04 87.43

LLaVA-Mini

1 64.52 38.64 27.43
4 65.52 38.84 27.71

16 68.97 39.28 28.92
64 80.10 46.23 34.65

The efficiency improvements brought by LLaVA-Mini stem from reduced computational load
(FLOPs), which is consistent across different hardware platforms. To demonstrate the scalabil-
ity of model efficiency across different hardware platforms, we compute the inference latency of
LLaVA-Mini on three hardware platforms: RTX 3090, A100, and A800. As shown in Table ??, the
efficiency improvements brought by LLaVA-Mini are scalable across these hardware platforms.

E.6 COMPUTATIONAL OVERHEAD OF EACH COMPONENT

LLaVA-Mini significantly reduces the computational load of LMMs by decreasing the number of
vision tokens. To further study the proportion of computational load contributed by each component
in LLaVA-Mini, we compute the FLOPs of each module, as shown in the Table 15. The proposed
compression module and pre-fusion module incur minimal computational cost, while the computa-
tion required by the LLM backbone is significantly reduced.
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Compression (cross-attention) 
in LLaVA-Mini

(a) (b)

(c) (d)

(f) (g)

(h) (i)

(l) (m)

(k)

(j)

(e)

Figure 12: Visualization of the cross-attention in the compression module introduced in LLaVA-
Mini. The left side is the original image, and the right side is the cross-attention distribution heat
map, where brighter areas are more heavily weighted during compression. The example images are
all from the LLaVA-Bench-in-the-Wild benchmark.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table 15: Computational overhead (FLOPs) of each component in LLaVA-Mini.

Methods Res. FLOPs(T)
Vision Encoder Projection Compression Pre-fusion LLM Total

LLaVA-v1.5 336 0.349 0.024 - - 8.177 8.55
LLaVA-Mini 336 0.349 0.024 0.001 0.125 1.460 1.96

LLaVA-v1.5 672 1.745 0.121 - - 38.623 40.49
LLaVA-Mini 672 1.745 0.121 0.009 1.183 4.131 7.19

F VISUALIZATION OF COMPRESSION

LLaVA-Mini introduces query-based compression to adaptively compress vision tokens while pre-
serving essential information. The learnable queries in compression module interact with all vi-
sion tokens through cross-attention to capture key visual information. To verify the effectiveness
of the proposed compression, Figure 12 visualizes the cross-attention during the compression pro-
cess. Across various image types and styles (e.g., photographs, text, screenshots, and cartoons),
LLaVA-Mini’s compression exhibits strong interpretability, effectively extracting key visual infor-
mation from images. In cases where critical information is concentrated (such as (b), (d), (h), (i) in
Figure 12), LLaVA-Mini focuses on these key locations. Conversely, in cases where the main object
is unclear. (such as (f), (j), (i), (m) in Figure 12), LLaVA-Mini exhibits a more dispersed attention
pattern during the compression process, thereby preserving a broader range of visual information.

In particular, for complex image like Figure 12(k), which contain multiple sub-figures with logi-
cal relationships, the proposed compression module adaptively pay attention to the VGA-shaped
charger, the product name on the charger packaging, and the charging port of the charger, demon-
strating the superiority of the proposed compression. Overall, compared to compression based on
average pooling, query-based compression allows LLaVA-Mini to adaptively assign greater weight
to key information, effectively retaining important visual details after compression.

G MORE CASES

Image Understanding Figure 13 illustrates an example of LLaVA-Mini’s capabilities in more
complex image reasoning. The image in Figure 13 incorporates features such as metaphor and
counterfactual reasoning, requiring LMMs to accurately interpret the visual information and reason
about the humorous aspects based on the entities present in the scene. The results demonstrate that
only LLaVA-Mini and GPT-4o successfully capture the phrases “the musicians are performing on
a giant violin” and “The violin, being a large and buoyant object, is placed on the water”, while
both Video-LLaVA and LLaVA-v1.5 fail to understand this image. In terms of the perception of
entities in the picture, both Video-LLaVA and LLaVA-v1.5 exhibit hallucinations in their descrip-
tions. Specifically, Video-LLaVA erroneously interprets the image as “The image is a panel of four
pictures” and “the man is playing a guitar”, while LLaVA-v1.5 fails to recognize the presence of
the violin entirely.

Figure 14 illustrates an example of LLaVA-Mini’s capabilities in a more challenging OCR task. The
text in the image is presented in an unusual cursive handwriting style, which can significantly hinder
the recognition quality of LMMs. For this challenging OCR case, both LLaVA-Mini and GPT-
4o accurately identify the text in the image, particularly with LLaVA-Mini using only one vision
token. In contrast, Video-LLaVA and LLaVA-v1.5 incorrectly recognize “Duke” and “wedding”, and
erroneously add an exclamation mark “!” at the end. Overall, LLaVA-Mini demonstrates superior
performance in perceiving and reasoning about visual information.

Video Understanding Figure 15 illustrates an example of LLaVA-Mini’s capabilities in process-
ing longer first-person video. The results show that LLaVA-Mini exhibits a more comprehensive
and detailed understanding of the video, effectively capturing entities in the room, such as the yoga
mat. In contrast, Video-LLaVA mistakenly imagines “he takes a shower” due to its limitation of
extracting only 8 frames from the video. Video-ChatGPT provides much shorter responses, lacking
some detailed information. Overall, LLaVA-Mini exhibits a superior understanding of the video.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Video-LLaVA: The image is a panel of four pictures that showcase a humorous scene of a boat
with a man playing a musical instrument on it. The boat is floating in a body of water, and the man
is playing a guitar. The funny aspect of the scene is that the boat is shaped like a guitar, making it a
unique and amusing sight. The four pictures capture different moments of the man playing the
guitar on the boat, showcasing the creativity and humor of the scene.

What is funny about this image? Describe 
it panel by panel.

LLaVA-Mini: The image is a creative and humorous take on a traditional concert setting, where
the musicians are performing on a giant violin, which is a whimsical and unexpected sight. The
violin, being a large and buoyant object, is placed on the water, and the musicians are seated on it
as if it were a stage. The presence of the gondolas and the water setting adds to the humor, as it's
not a typical environment for a concert. The musicians' serious expressions and the formal attire of
the performers contrast with the absurdity of the situation, which is likely intended to be a playful
and entertaining spectacle. The image plays on the concept of a concert in a unique and
imaginative way, using the visual pun of the violin's shape and the water setting to create a
humorous and memorable scene.

Image: Instruction:

LLaVA-v1.5: The image is a panel of a comic strip featuring a man in a boat, paddling with a
paddle. The boat is surrounded by other boats, and the man is wearing a tie. The funny aspect of
this image is that the man is wearing a tie while paddling, which is an unusual combination of
attire for a boat ride. The scene is set in a river, and there are several people in the boats around
him. The man's attire and the presence of multiple boats create a humorous and unexpected visual.

🌋

GPT-4o: This image shows a humorous and creative scene of a boat shaped like a giant violin
floating on a canal, surrounded by traditional gondolas. Here's a panel-by-panel description:
Central Focus: The Violin Boat – The main object of humor is the boat designed to look like a
massive violin or stringed instrument. On top of it, there are people standing or possibly playing
music. This design turns an ordinary boat into a whimsical, oversized musical instrument.
Surrounding Gondolas – Around the violin-shaped boat, regular gondolas can be seen with people
rowing and sitting in them. These gondolas look tiny compared to the giant violin boat, adding to
the comedic contrast. The gondoliers and passengers in these smaller boats seem to be watching or
escorting the violin boat, enhancing the spectacle.
Water and Context – The canal is typical of places like Venice, known for its waterways and
gondolas. The idea of transforming a boat into a musical instrument on such a canal adds to the
absurdity and charm of the scene.
The humor comes from the unusual sight of a giant floating violin on a canal, combining the
elegance of music with a quirky, oversized version of an everyday object in a whimsical, real-
world setting.

Figure 13: Example demonstrating LLaVA-Mini’s image understanding capability on more complex
image reasoning. Output marked in red indicates factual errors.

H LIMITATIONS

The limitation of LLaVA-Mini lies in the trade-off between the number of vision tokens (efficiency)
and performance. As LLaVA-Mini uses a single vision token, it compresses visual information,
which may leave room for improvement in image understanding tasks that involve complex visual
content. A potential solution is to slightly increase the number of vision tokens, such as using
16 vision tokens, to achieve a better balance between efficiency and performance. Query-based
compression offers flexibility in adjusting the number of vision tokens, as we can simply modify
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Video-LLaVA: The text on the cake reads "Congratulations Kate & Duke on your upcoming
arrival!"

What's the text on the cake?

LLaVA-Mini: Congratulations Kate & Luke on your upcoming arrival

Image: Instruction:

LLaVA-v1.5: The text on the cake reads "Congratulations Kate & Luke on your upcoming
wedding!"🌋

GPT-4o: The text on the cake says: "Congratulations Kate & Luke on your upcoming arrival"

Figure 14: Example demonstrating LLaVA-Mini’s image understanding capability on more chal-
lenging OCR task. Output marked in red indicates recognition errors.

Video-LLaVA: In this video, a man is seen sitting on a chair and reading a book. He then 
stands up and walks towards the bathroom where he takes a shower. After that, he is seen 
sitting on the floor and reading the book again. The video seems to be a simple yet peaceful 
depiction of a man's daily routine. The man appears to be calm and relaxed throughout the 
video, and the setting is minimalistic, with no other characters or objects present. The 
video's focus is solely on the man and his actions, and the viewer is left to interpret the 
meaning behind the scenes. Overall, the video is a simple yet intriguing portrayal of a man's 
daily routine, and it is sure to leave the viewer with a sense of calm and relaxation.

Instruction: Describe what happen in this first person video?

LLaVA-Mini: The first-person video captures a moment of solitude and relaxation, likely
in a private space such as a bedroom or a hotel room. The individual is seated comfortably
on a chair, engrossed in reading a book, which suggests a moment of leisure or study. The
presence of the yoga mat indicates that the person may have been or plans to engage in
physical activity, possibly as part of a routine or for relaxation. The room's minimalistic
decor and the person's casual attire suggest a setting that is informal and personal. The
video does not provide any explicit narrative or context beyond these observations, so any
further interpretation would be speculative.

3min video

Video-ChatGPT: In the video, a man is seen sitting on a chair and reading a book. He then 
puts the book down and stands up. The video then shows him walking down a hallway and 
entering a room.

Figure 15: Example demonstrating LLaVA-Mini’s video understanding capability on first-person
view video. Output marked in red indicates factual errors.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

the parameter C to control the number of tokens. In practice, the number of vision tokens can be
adjusted based on the specific efficiency requirements of different scenarios, allowing for a trade-
off between efficiency and performance. We appreciate your feedback, and will incorporate the
limitation and possible solutions in the next version.

I DETAILED RESULTS ON MVBENCH

Table 16 reports the detailed results on each subset of MVBench, corresponding to Table 3.

Table 16: Detailed results on 20 subsets of MVBench.

Spatial Temporal mPLUG-
Owl

Video-
ChatGPT

Video-
LLaMA

VideoChat LLaMA-
VID

Video-
LLaVA

LLaVA-
Mini

Average 29.7 32.7 34.1 35.5 41.4 43.1 44.5

Action

Action Sequence 22.0 23.5 27.5 33.5 63.5 44.5 44.5
Action Prediction 28.0 26.0 25.5 26.5 42.0 50.0 44.5
Action Antonym 34.0 62.0 51.0 56.0 26.5 49.0 76.0
Fine-grained Action 29.0 22.5 29.0 33.5 43.0 42.0 37.0
Unexpected Action 29.0 26.5 39.0 40.5 42.0 54.5 58.5

Object
Object Existence 40.5 54.0 48.0 53.0 39.0 52.5 50.0
Object Interaction 27.0 28.0 40.5 40.5 34.5 46.5 50.0
Object Shuffle 31.5 40.0 38.0 30.0 36.5 40.5 29.5

Position Moving Direction 27.0 23.0 22.5 25.5 44.0 27.0 31.0
Action Localization 23.0 20.0 22.5 27.0 35.5 28.5 32.5

Scene Scene Transition 29.0 31.0 43.0 48.5 22.0 84.5 85.5

Count Action Count 31.5 30.5 34.0 35.0 44.5 44.5 35.0
Moving Count 27.0 25.5 22.5 20.5 28.5 26.5 40.0

Attribute Moving Attribute 40.0 39.5 32.5 42.5 19.0 53.0 48.0

Pose State Change 44.0 48.5 45.5 46.0 55.6 38.5 41.0
Fine-grained Pose 24.0 29.0 32.5 26.5 37.5 34.0 29.5

Character Character Order 31.0 33.0 40.0 41.0 34.0 42.5 52.0

Cognition
Egocentric Navigation 26.0 29.5 30.0 23.5 84.5 32.5 31.0
Episodic Reasoning 20.5 26.0 21.0 23.5 40.5 38.0 38.0
Counterfactual Inference 29.5 35.5 37.0 36.0 56.5 32.0 36.0
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