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Abstract

Even pruned by the state-of-the-art network compression methods, recent research
shows that deep learning model training still suffers from the demand of mas-
sive data usage. In particular, Graph Neural Networks (GNNs) trained upon
non-Euclidean graph data often encounter relatively higher time costs, due to its
irregular and nasty density properties, compared with data in the regular Euclidean
space (e.g., image or text). Another natural property accompanied with graphs
is class-imbalance which cannot be alleviated even with massive data, therefore
hinders GNNs’ ability in generalization. To fully tackle these unpleasant properties,
(i) theoretically, we introduce a hypothesis about to what extent a subset of the
training data can approximate the full dataset’s learning effectiveness. The effective-
ness is further guaranteed and proved by the gradients’ distance between the subset
and the full set; (ii) empirically, we discover that during the learning process of a
GNN, some samples in the training dataset are informative in providing gradients
to update model parameters. Moreover, the informative subset evolves dynamically
during the training process, for samples that are informative in the current training
epoch may not be so in the next one. We refer this observation as dynamic data
sparsity. We also notice that sparse subnets pruned from a well-trained GNN some-
times forget the information provided by the informative subset, reflected in their
poor performance upon the subset. Based on these findings, we develop a unified
data-model dynamic sparsity framework named Graph Decantation (GraphDec)
to address challenges brought by training upon a massive class-imbalanced graph
dataset. The key idea of GraphDec is to identify the informative subset dynamically
during the training process by adopting sparse graph contrastive learning. Extensive
experiments on multiple benchmark datasets demonstrate that GraphDec outper-
forms state-of-the-art baselines for the class-imbalanced graph classification and
class-imbalanced node classification tasks, with respect to classification accuracy
and data usage efficiency.

1 Introduction

Graph representation learning (GRL) [24] has shown remarkable power in dealing with non-Euclidean
structure data (e.g., social networks, biochemical molecules, knowledge graphs). Graph neural
networks (GNNs) [24, 12, 40], as the current state-of-the-art of GRL, have become essential in various
graph mining applications. To learn the representation of each node reflecting its local structure
pattern, GNNs gather the information from its neighborhoods, and pass the aggregated message
along edges. This topology-aware mechanism enables GNNs to achieve superior performance over
different tasks.
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However, in many real-world scenarios, graph data often preserves two properties: massive-
ness [37, 19] and class-imbalance [31]. Firstly, message-passing over nodes of high degrees brings
about heavy computation burdens. Some calculations are redundant in that not all neighbors are
informative regarding learning task-related embeddings. Unlike regular data such as images or texts,
the connectivity of irregular graph data invokes random memory access, which further slows down
the efficiency of data readout. Secondly, class-imbalance naturally exists in datasets from diverse
practical domains, such as bioinformatics and social networks. GNNs are sensitive to this property
and can be biased toward the dominant classes. This bias may mislead GNNs’ learning process,
resulting in underfitting samples that are of real importance to the downstream tasks, and poor test
performance at last.

Figure 1: The principle of graph decantation. It decants
data samples based on rankings of their gradient scores,
and then uses them as the training set in the next epoch.

Accordingly, recent studies [3, 47, 31]
arise to address the issues of massiveness
or class-imbalanced in graph data. To
tackle the massiveness issue, [8, 2] ex-
plore efficient data sampling policies to
reduce the computational cost from the
data perspective. From the model im-
provement perspective, some approaches
design the quantization-aware training and
low-precision inference method to reduce
GNNs’ operating costs. For example,
GLT [3] applies the lottery ticket tech-
nique [10] to simplify graph data and GNN
model simultaneously. To deal with the
imbalance issue in node classification on
graphs, GraphSMOTE [47] tries to gener-
ate new nodes for the minority classes to
balance the training data. Improved upon GraphSMOTE, GraphENS [31] further proposes a new
augmentation method by constructing an ego network to learn the representations of the minority
classes. Despite progresses made so far, existing methods fail to tackle the two issues altogether.
Furthermore, while one of the issues is being handled, extra computation costs are introduced at the
same time. For example, the rewind steps in GLT [3] which search for lottery subnets and subsets
heavily increase the computation cost, although the final lotteries are lightweight. The newly synthetic
nodes in GraphSMOTE [47, 1] and GraphENS [31], although help alleviate the data imbalance, bring
extra computational burdens for the next-coming training process.

Regarding the above issues, we observe that, compared with the original GNN model trained with
class-imbalanced graph data, the one pruned upon it easily “forgets” the minorities as it yields worse
performance than the original GNN model. To investigate the cause of the observation, we study how
each graph sample affects the parameter updating process by taking a closer look at the gradients each
of them brings about. Specifically, at early training stages, we identify a small subset of the samples
providing the most informative supervisory signals reflected by the magnitudes of the gradient norms.
We hypothesize that the training effectiveness of the full training set can be approximated, to some
extent, by that of the subset. Furthermore, we believe that the effectiveness of the approximation is
guaranteed by the distance between the gradients of the subset and the full dataset.

Based on the above, we propose a novel method called Graph Decantation (GraphDec) to guide a
dynamic sparsity training from both the model and data aspects. The principle behind GraphDec is
shown in Figure 1. Since informative samples tend to bring about higher gradient magnitudes, our
method relies on contrastive self-supervised learning to dynamically direct the model in identifying
the disadvantaged but informative samples during the training process, coupled with our designed
contrastive backbone with a sparse GNN. In comparison, other learning processes (e.g., graph
auto-encoder, supervised learning) are either unable to identify informative samples or incapable of
learning in a self-supervised manner. In a nutshell, our proposed framework scores samples in the
current training set and keep only k most informative samples as training set for the next epoch. The
framework also incorporate a data recycling process to randomly recycle prior discarded samples
(i.e., samples that are considered unimportant in the previous training epochs) by re-involving them
in the current training process. The dynamically updated subset supports the sparse GNN to learn
relatively unbiased representations. To summarize, our contributions in this work are:
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• We develop a novel framework, Graph Decantation, which leverages dynamical sparse graph
contrastive learning on class-imbalanced graph data for efficient data usage. To our best knowledge,
this is the first study to explore the dynamic sparsity property for class-imbalanced graphs.

• We introduce cosine annealing to dynamically control the sizes of the sparse GNN model and the
graph data subset to smooth the training process. Meanwhile, we introduce data recycling to refresh
the current data subset and avoid overfitting.

• Comprehensive experiments on multiple benchmark datasets demonstrate that GraphDec out-
performs state-of-the-art methods for both the class-imbalanced graph classification and class-
imbalanced node classification tasks. Additional results show that GraphDec dynamically finds an
informative subset across the training epochs effectively.

2 Related Work

Graph Contrastive Learning. Contrastive learning is first established for image tasks and then
receives considerable attention in the field of graph representation learning [5]. Contrastive learning is
based on utilizing instance-level identity as supervision and maximizing agreement between positive
pairs in hidden space by contrast mode [39, 16, 46]. Recent research in this area seeks to improve
the efficacy of graph contrastive learning by uncovering more difficult views [43, 45]. However, the
majority of available approaches utilize a great deal of data. By identifying important subset from the
entire dataset, our model avoids this issue.

Training deep model with sparsity. Parameter pruning aiming at decreasing computational cost has
been a popular topic and many parameter-pruning strategies are proposed to balance the trade-off
between model performance and learning efficiency [6, 25]. Some of them belong to the static
pruning category and deep neural networks are pruned either by neurons [15, 14] or architectures
(layer and filter) [17, 7]. In contrast, recent works propose dynamic pruning strategies where different
compact subnets will be dynamically activated at each training iteration [27, 29, 33]. The other line of
computation cost reduction lies in the dataset sparsity [22, 26, 32]. Recently, the property of sparsity
is also used to improve model robustness [4, 11]. In this work, we attempt to accomplish dynamic
sparsity from both the GNN model and the graph dataset simultaneously.

Class-imbalanced learning on graphs. Excepting conventional node re-balanced methods, like
reweighting samples [47, 31] and oversampling [47, 31], an early work [48] characterizes rare classes
through a curriculum strategy, while other previous works [35, 47, 31] tackles the class-imbalanced
issue by generating synthetic samples to re-balance the dataset. Compared to the node-level task,
graph-level re-balancing is under-explored. A recent work [41] proposes to utilize neighboring signals
to alleviate graph-level class-imbalance. To the best of our knowledge, our proposed GraphDec is the
first work to solve the class-imbalanced for both the node-level and graph-level tasks.

3 Methodology

In this section, we first theoretically illustrate our sparse subset approximation hypothesis, which
states that if the gradients of a data subset approximate well to those of the full data set, the model
trained on subset performs closely well to the one trained with the full set. Guided by this hypothesis,
we design GraphDec to continuously refine a compact training subset with the dynamic graph
contrastive learning methodology. In detail, we describe procedures about how to rank the importance
of each sample, smooth the refining procedure, and avoid overfitting. The relevant preliminaries of
GNNs, graph contrastive learning, and network pruning are provided in Appendix B.

3.1 Sparse Subset Approximation Hypothesis

Firstly, we propose the sparse subset approximation hypothesis to show how a model trained with
a subset data DS can approximate the effect of a model trained with full data D. This hypothesis
explains why the performance of a model trained with a subset data selected by specific methods
(e.g., data diet [32]) achieves performance close to the one’s trained on the full dataset.

Theorem 1 For a data selection algorithm, we assume the model is optimized via full gradient
descent. At epoch t where t P r1, T s, denote the model’s parameters as θptq where

›

›θptq
›

›

2
ď d2 and

d is constant, the optimal model’s parameters as θ˚, subset data as Dptq
S , and learning rate as α.
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Figure 2: The overall framework of GraphDec: (i) The dynamic sparse graph contrastive learning
model computes gradients for graph/node samples; (ii) The input samples are sorted according to
their gradients; (iii) Part of samples with the smallest gradients are thrown into the recycling bin; (iv)
Part of samples with the largest gradients in the current epoch and some sampled randomly from the
recycling bin are jointly used as training input in the next epoch.

Define gradient error ErrpD
ptq
S ,L,Ltrain, θ

ptqq “

›

›

›

ř

iPD
ptq

S

∇θL
i
trainpθptqq ´ ∇θLpθptqq

›

›

›
, where L

denotes training loss Ltrain over the full training data or validation loss Lval over the full validation
data. L is a convex function. Then we have the following guarantee:

If Ltrain is Lipschitz continuous with parameter σT and α “ d
σT

?
T

, then mint“1:T Lpθptqq ´

Lpθ˚q ď dσT?
T

` d
T

řT´1
t“1 ErrpD

ptq
S ,L,Ltrain, θ

ptqq.

The detailed proof is provided in Appendix A. According to the above hypothesis, one intuitive
illumination is that reducing the distance between gradients of the subset and the full set, formulated
as

›

›

›

ř

iPD
ptq

S

∇θL
i
trainpθptqq ´ ∇θLpθptqq

›

›

›
, is the key to minimize the gap between the performance

of the model trained with the subset and the optimal model, denoted as Lpθq ´ Lpθ˚q. From the
perspective of minimizing

›

›

›

ř

iPD
ptq

S

∇θL
i
trainpθptqq ´ ∇θLpθptqq

›

›

›
, the success of data diet [32] (a

prior coreset algorithm) is understandable: data diet computes each sample’s error/gradient norm
based on a slightly-trained model, then deletes a small portion of the full set, which can be represented
as D̄S

ptq
“ D ´ DS

ptq. The gradients
ř

jPD̄S
ptq ∇θL

j
trainpθptqq of the removed data samples are

much smaller than that of the remaining data samples
ř

iPD
ptq

S

∇θL
i
trainpθptqq. As we will show

in the experiments (Section 4.5), the static data diet cannot always capture the most important
samples across all epochs during training [32]. Although the rankings of all elements in DS are
seemly kept static and unchangeable, the rankings of the elements in full training dataset D change
much more actively than the diet subset DS’s, which implies the gradients of the one-shot subset
ř

iPD
ptq

S

∇θL
i
trainpθptqq cannot well approximate the full set’s (∇θLpθptqq).

3.2 Graph Decantation

We follow the above Theorem 1 to design GraphDec to achieve competitive performance and efficient
data usage simultaneously by filtering out the most influential data subset. The overall framework
of GraphDec is illustrated in Figure 2. The training processes are summarized into four steps: (i)
First, compute gradients of all M ptq graph/node samples in t-th epoch from contrastive learning
loss; (ii) The gradients are then normalized and the corresponding graph/node samples are ranked in
a descending order by their magnitudes; (iii) We then decay the number of samples from M ptq to
M pt`1q with cosine annealing and only keep the top p1 ´ ϵqM pt`1q samples (ϵ is the exploration rate
which controls the ratio of the randomly re-sampled samples from the recycle bin. The rest samples
will be thrown into the recycle bin temporarily; (iv) Finally, randomly re-sample ϵM pt`1q samples
from the recycled bin, and these samples union the ones selected in step (iii) will be used for model
training in the t ` 1 epoch. We describe each of these four steps in details in the followings.
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Compute gradients by dynamic sparse graph contrastive learning model. Given a graph training
set D “ tGiu

N
i“1 as input, our dynamic sparse graph contrastive learning model (DS-GCL) takes

two augmented views G1 and G2 of the original graph G P D as inputs. In detail, for each graph
sample, DS-GCL has two GNN branches fθ1p¨q and fθ2p¨q, which are pruned on-the-fly from an
original GCN fθp¨q by a dynamic sparse pruner. For example, at lth graph convolutional layer of
fθp¨q, a fraction of connections with the largest weight magnitudes are kept, which are chosen by the
following formulation:

θlthpruned “ TopKpθlth , kq, k “ αptq ˆ |θlth |, (1)

where TopKp¨, kq refers to the operation to choose the top-k largest elements of θlth and αptq is the
fraction of remaining neural connections, controlled by the cosine annealing:

αptq “
αp0q

2

"

1 ` cosp
πt

T
q

*

, t P r1, T s , (2)

where αp0q is initialized as 1. In addition, some new connections are activated using the current
gradient information. Every few epochs, the pruned neural connections are all re-involved in loss
backward by the following formulation:

Iθlth “ ArgTopKp∇θlthL, kq, k “ αptq ˆ |θlth |, (3)
where ArgTopK returns indices of top-k largest elements and I

θ
lth
pruned

denotes elements’ indices in

lth layer weights θlth . These reactivated weights are then combined with other remaining connections
for model pruning in the next iteration. We save the gradient values of all samples and use them in
the next step. The benefits brought from DS-GCL reflects in two perspectives: (a) it scores the graph
samples without any labeling effort from humans, compared with graph active learning; (b) it is more
sensitive in selecting informative samples, verified in Appendix D.

Rank graph samples according to their gradients’ L2 norms. Since gradients of all graph
samples in D

ptq
S (Dptq

S “ D when t = 0) at t-th epoch are already saved, we can calculate their
gradients’ L2 norms. For example, a graph input Gi P D

ptq
S will be scored by its gradient norm:

gpxptqq “

›

›

›
∇fθpruned

LpfPθprunedpG1 q, fθpruned
pG2qq

›

›

›

2
. (4)

In this work, we adopt the popular contrastive loss InfoNCE [38], and the gradient of G is computed
as:

∇fθpruned
Lpfθpruned

pG1q, fθprunedpG2 qq “ ppθpruned, G
1q ´ ppθpruned, G

2q, (5)

where ppθpruned, G
1q and ppθpruned, G

2q denote model’s predictions of G1 and G2 with pruned
parameters θpruned, respectively. All the graph samples in D

ptq
S are ranked according to their scores,

which are of later use.

Decay the size of DS by cosine annealing. In this step, we aim to prune the size of the subset
for the next t ` 1 training epoch. To smooth this pruning procedure, we apply cosine annealing to
control the decay rate. Specifically, the size M pt`1q is computed as follows:

M pt`1q “
M p0q

2

"

1 ` cosp
πpt ` 1q

T
q

*

, t P r1, T s . (6)

It smoothly refines DS and avoids manually choosing the training epoch for one-shot selection as in
data diet [32]. M pt`1q sets the number of graph samples in D

pt`1q

S for the next t ` 1 epoch.

As we will show in Figure 3 for the experiments, at early training, some graph samples have low
scores/importance. However, in the later training epochs, these graph samples yield much higher
scores once given more patience in training. Upon this observation, we believe that it is worthwhile to
not permanently discard samples with low scores at the current training epoch, since some samples in
removal set D̄S “ D ´ D

ptq
S might be re-identified as high-scored samples if they can be re-involved

into the training process. From the opposite direction, if a model is only trained with a subset of
graph samples that are highly scored in the early training stage, the training effect of such a model
cannot approximate the full training set’s gradient effects well. Based on this analysis, this step ease
the dilemma by applying cosine annealing to control the removal rate of Dptq

S during training, instead
of hastily scoring out a subset in one-shot mode like data diet.
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Recycle removed graph samples for next training epoch. In the last step, we already have the
ranked D

ptq
S and the subset size M pt`1q for t ` 1 epoch. Our next goal is to update the elements in

D
pt`1q

S for the next epoch. When updating elements in D
pt`1q

S , since we think currently low-scored
samples may still have the potential to be highly-scored, removed samples are randomly recovered.
We use an exploration rate ϵ to remove ϵM pt`1q lowest-scores graph samples in D

ptq
S and recycles

ϵM pt`1q samples from D̄S
pt´1q. At the same time, we keep p1 ´ ϵqM pt`1q graph samples with

highest scores from D
ptq
S to D

pt`1q

S . The overall Dpt`1q

S ’s update is formulated as follows:

D
pt`1q

S “ TopKpD
ptq
S , p1 ´ ϵqM pt`1qq

ď

SampleKpD̄S
pt´1q

, ϵM pt`1qq, (7)

where SampleKpD̄S
pt´1q

, ϵM pt`1qq returns randomly sampled ϵM pt`1q samples from D̄S
pt´1q.

Given the compact sparse subset Dpt`1q

S , we use it for model training in the next epoch and repeatedly
execute this pipeline until T epoch.

4 Experiments

In this section, we conduct extensive experiments to validate the effectiveness of our proposed model
for both the graph and node classification tasks under imbalanced datasets. We also conduct ablation
study and informative subset evolution analysis to further prove the effectiveness. Due to space limit,
more analysis validating GraphDec’s properties and resource cost are provided in Appendix D and E.

4.1 Experimental Setup

Datasets. We validate our model on various graph benchmark datasets for the two classification
tasks under the class-imbalnced data scenario. For the class-imbalanced graph classification task, we
choose the seven validation datasets in G2GNN paper [41], i.e., MUTAG, PROTEINS, D&D, NCI1,
PTC-MR, DHFR, and REDDIT-B in [28]. For the class-imbalanced node classification task, we
choose the five datasets in the GraphENS paper [31], i.e., Cora-LT, CiteSeer-LT, PubMed-LT [34],
Amazon-Photo, and Amazon-Computers. Detailed descriptions of these datasets are provided in the
Appendix C.1.

Baselines. We compare our model with a variety of baselines methods with different rebalance
methods. For class-imbalanced graph classification, we consider three rebalance methods, i.e., vanilla
(without re-balancing when training), up-sampling [41], and re-weight [41]. For each rebalance
method, we run three baseline methods including GIN [44], InfoGraph [36], and GraphCL [46].
In addition, we adopt two versions of G2GNN (i.e., remove-edge and mask-node) [41] for in-
depth comparison. For class-imbalanced node classification, we consider nine baseline methods
including vanilla, re-weight [20], oversampling [31], cRT [21], PC Softmax [18], DR-GCN [35],
GraphSMOTE [47], and GraphENS [31]. We adopt Graph Convolutional Network (GCN) [24] as the
default architecture for all rebalance methods. Further details about the baselines are illustrated in
Appendix C.2.

Evaluation Metrics. To evaluate model performance, we choose F1-micro (F1-mi.) and F1-macro
(F1-ma.) scores as the metrics for the class-imbalanced graph classification task, and accuracy (Acc.),
balanced accuracy (bAcc.), and F1-macro (F1-ma.) score for the node classification task.

Experimental Settings. We adopt GCN [24] as the GNN backbone of GraphDec for both the
tasks. In particular, we concatenate a two-layers GCN and a one-layer fully-connected layer for
node classification, and add one extra average pooling operator as the readout layer for graph
classification. We follow [41] and [31] varying the imbalance ratios for graph and node classification
tasks, respectively. In addition, we take GraphCL [46] as the graph contrastive learning framework,
and cosine annealing to dynamically control the sparsity rate in the GNN model and the dataset.
The initial sparsity rate for the model αp0q is set to 0.8, and the one for the dataset βp0q is set to 1.0.
After the contrastive pre-training, we take the GCN output logits as the input to the Support Vector
Machine for fine-tuning. GraphDec is implemented in PyTorch and trained on NVIDIA V100 GPU.

4.2 Class-imbalanced Graph Classification Performance

The evaluated results for the graph classification task on class-imbalanced graph datasets are reported
in Table 1, with the best performance and runner-ups bold and underlined, respectively. From the
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Table 1: Class-imbalanced graph classification results. Numbers after each dataset name indicate
imbalance ratios of minority to majority categories. Best/second-best results are in bold/underline.

Rebalance Basis MUTAG (5:45) PROTEINS (30:270) D&D (30:270) NCI1 (100:900) Sparsity (%)

Method F1-ma. F1-mi. F1-ma. F1-mi. F1-ma. F1-mi. F1-ma. F1-mi. data model

vanilla
GIN 52.50 56.77 25.33 28.50 9.99 11.88 18.24 18.94 100 100

InfoGraph 69.11 69.68 35.91 36.81 21.41 27.68 33.09 34.03 100 100
GraphCL 66.82 67.77 40.86 41.24 21.02 26.80 31.02 31.62 100 100

up-sampling
GIN 78.03 78.77 65.64 71.55 41.15 70.56 59.19 71.80 ą100 100

InfoGraph 78.62 79.09 62.68 66.02 41.55 71.34 53.38 62.20 ą100 100
GraphCL 80.06 80.45 64.21 65.76 38.96 64.23 49.92 58.29 ą100 100

re-weight
GIN 77.00 77.68 54.54 55.77 28.49 40.79 36.84 39.19 100 100

InfoGraph 80.85 81.68 65.73 69.60 41.92 72.43 53.05 62.45 100 100
GraphCL 80.20 80.84 63.46 64.97 40.29 67.96 50.05 58.18 100 100

G2GNN remove edge 80.37 81.25 67.70 73.10 43.25 77.03 63.60 72.97 100 100
mask node 83.01 83.59 67.39 73.30 43.93 79.03 64.78 74.91 100 100

GraphDec dynamic sparsity 85.71 85.71 68.32 75.84 44.01 77.02 65.73 76.02 50 50

Rebalance Basis PTC-MR (9:81) DHFR (12:108) REDDIT-B (50:450) Avg. Rank Sparsity (%)

Method F1-ma. F1-mi. F1-ma. F1-mi. F1-ma. F1-mi. F1-ma. F1-mi. data model

vanilla
GIN 17.74 20.30 35.96 49.46 33.19 36.02 12.00 12.00 100 100

InfoGraph 25.85 26.71 50.62 56.28 57.67 67.10 11.00 11.14 100 100
GraphCL 24.22 25.16 50.55 56.31 53.40 62.19 10.71 10.57 100 100

up-sampling
GIN 44.78 55.43 55.96 59.39 66.71 83.00 6.00 5.43 ą100 100

InfoGraph 44.29 48.91 59.49 61.62 67.01 78.68 6.00 6.00 ą100 100
GraphCL 45.12 53.50 60.29 61.71 62.01 75.84 6.29 6.43 ą100 100

re-weight
GIN 36.96 43.09 55.16 57.78 45.17 51.92 9.86 9.86 100 100

InfoGraph 44.09 49.17 58.67 60.24 65.79 77.35 5.43 5.29 100 100
GraphCL 44.75 52.22 60.87 61.93 62.79 76.15 6.00 6.29 100 100

G2GNN remove edge 46.40 56.61 61.63 63.61 68.39 86.35 2.71 2.86 100 100
mask node 46.61 56.70 59.72 61.27 67.52 85.43 2.71 2.71 100 100

GraphDec dynamic sparsity 47.07 58.15 62.25 63.61 69.70 87.00 1.00 1.14 50 50

table, we find that GraphDec outperforms baseline methods on both the metrics across different
datasets, while only uses an average of 50% data and 50% model weights per round. Although a
slight F1-micro difference has been detected on D&D when comparing GraphDec to the best baseline
G2GNN, it is understandable due to the fact that the graphs in D&D are significantly larger than
those in other datasets, necessitating specialized designs for graph augmentations (e.g., the average
graph size in terms of node number is 284.32 for D&D, but 39.02 and 17.93 for PROTEINS and
MUTAG, respectively). However, in the same dataset, G2GNN only achieves 43.93 on F1-macro
while GraphDec reaches to 44.01, which complements the 2% difference on F1-micro and further
demonstrates GraphDec’s ability to learn effectively even on large graph datasets. Specifically,
models trained under the vanilla setting perform the worst due to the ignorance of the class-imbalance.
Up-sampling strategy improves the performance, but it introduces additional unnecessary data usage
by sampling the minorities multiple times. Similarly, re-weight strategy tries to address the class-
imbalanced issue by assigning different weights to different samples. However, it requires the labels
for weight calculation and thus may not generalize well when labels are missing. G2GNN, as the best
baseline, obtains decent performance by considering the usage of rich supervisory signals from both
globally and locally neighboring graphs. Finally, the proposed model, GraphDec, achieves the best
performance due to its ability in capturing dynamic data sparsity on from both the model and data
perspectives. In addition, we rank the performance of GraphDec with regard to baseline methods on
each dataset. GraphDec ranks 1.00 and 1.14 on average, which further demonstrates the superiority
of GraphDec. Notice that all existing methods utilize the entire datasets and the model weights while
GraphDec only uses half of the data and weights to achieve superior performance.

4.3 Class-imbalanced Node Classification Performance

For the class-imbalanced node classification task, we first evaluate GraphDec on three long-tailed
citation graphs (i.e., Cora-LT, CiteSeer-LT, PubMed-LT) and report the results on Table 2. We find
that GraphDec obtains the best performance compared to baseline methods for different metrics.
GraphSMOTE and GraphENS achieve satisfactory performance by generating virtual nodes to enrich
the involvement of the minorities. In comparison, GraphDec does not rely on synthetic virtual nodes
to learn balanced representations, thereby avoiding the unnecessary computational costs. Similarly to
the class-imbalanced graph classification task in Section 4.2, GraphDec leverages only half of the
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Table 2: Class-imbalanced node classification results. Best/second-best results are in bold/underline.

Method Cora-LT CiteSeer-LT PubMed-LT A.P. (ρ “82) A.C. (ρ “244) Sparsity (%)

Acc. bAcc. F1-ma. Acc. bAcc. F1-ma. Acc. bAcc. F1-ma. (b)Acc. F1-ma. (b)Acc. F1-ma. data model

vanilla 73.66 62.72 63.70 53.90 47.32 43.00 70.76 57.56 51.88 82.86 78.72 68.47 64.01 100 100
Re-Weight 75.20 68.79 69.27 62.56 55.80 53.74 77.44 72.80 73.66 92.94 92.95 90.04 90.11 100 100
Oversampling 77.44 70.73 72.40 62.78 56.01 53.99 76.70 68.49 69.50 92.46 92.47 89.79 89.85 ą100 100
cRT 76.54 69.26 70.95 60.60 54.05 52.36 75.10 67.52 68.08 91.24 91.17 86.02 86.00 100 100
PC Softmax 76.42 71.30 71.24 65.70 61.54 61.49 76.92 75.82 74.19 93.32 93.32 86.59 86.62 100 100
DR-GCN 73.90 64.30 63.10 56.18 49.57 44.98 72.38 58.86 53.05 N/A N/A N/A N/A 100 100
GraphSmote 76.76 69.31 70.21 62.58 55.94 54.09 75.98 70.96 71.85 92.65 92.61 89.31 89.39 ą100 100
GraphENS 77.76 72.94 73.13 66.92 60.19 58.67 78.12 74.13 74.58 93.82 93.81 91.94 91.94 ą100 100

GraphDec 78.29 73.94 74.25 66.90 61.56 61.85 78.20 76.05 76.32 93.85 94.02 92.19 92.16 50 50

Table 3: Ablation study results for both tasks. Four rows of red represent removing four individual
components from data sparsity perspective. Four rows of blue represent removing four individual
components from model sparsity perspective. Best results are in bold.

Class-imbalanced Graph Classification (F1-ma.) Class-imbalanced Node Classification (Acc.)

Variant MUTAG PROTEINS D&D NCI1 PTC-MR DHFR REDDIT-B Cora-LT CiteSeer-LT PubMed-LT A. Photos A. Computer

GraphDec 85.71 68.32 44.01 65.73 47.07 62.25 69.70 78.29 66.90 78.20 93.85 92.19
w/o GS 80.10 63.42 36.61 61.80 42.12 48.57 61.40 68.96 60.33 56.22 73.22 67.84
w/o SS 80.95 63.55 42.19 62.30 45.21 61.99 70.61 77.15 64.67 76.15 79.09 91.33
w/o CAD 78.41 57.99 40.23 60.61 44.96 50.00 67.15 74.87 62.62 75.35 90.71 83.23
w/o RS 83.21 59.32 41.65 60.51 35.21 60.99 67.61 73.27 61.32 72.02 87.11 90.38

w/o RM 44.37 40.42 38.45 34.39 32.14 43.75 64.82 70.97 54.58 70.16 79.01 65.38
w/o SG 82.63 65.96 42.50 69.10 35.19 61.42 69.16 77.54 67.43 72.43 91.25 90.05
w/o CAG 83.50 54.04 40.21 51.82 34.20 62.41 64.14 75.78 63.43 73.07 92.77 87.40
w/o RW 79.25 56.33 38.34 63.00 38.00 61.53 63.16 76.46 65.36 75.54 90.54 89.10

w/o S.S. 80.07 63.90 39.77 57.22 38.60 62.30 65.67 74.82 65.28 74.00 86.14 86.40

data and weights to achieve the best performance, whereas all baselines perform worse even with
the complete dataset and weights. To validate the efficacy of the proposed model on the real-world
data, we evaluate GraphDec on naturally class-imbalanced benchmark datasets (i.e., Amazon-Photo
and Amazon-Computers). We see that GraphDec has the best performance on both datasets, which
demonstrates our model’s effectiveness with data sourced from different practical scenes.

4.4 Ablation Study

Since GraphDec is a unified learning framework relying on multiple components (steps) to employ
dynamic sparsity training from both the model and dataset perspectives, we conduct ablation study to
prove the validity of each component. Specifically, GraphDec relies on four components to address
data sparsity and imbalance, including pruning samples by ranking gradients (GS), training with
sparse dataset (SS), using cosine annealing to reduce dataset size (CAD), and recycling removed
samples (RS), and the other four to address model sparsity and data imbalance, including pruning
weights by ranking magnitudes (RM), using sparse GNN (SG), using cosine annealing to progressively
reduce sparse GNN’s size (CAG), and reactivate removed weights (RW). In addition, GraphDec
employs self-supervision to calculate the gradient score. The details of model variants are provided
in Appendix C.3. We analyze the contributions of different components by removing each of them
independently. Experiments for both tasks are conducted comprehensively for effective inspection.
The results are shown in Table 3.

From the table, we find that the performance drops after removing any component, demonstrating
the effectiveness of each component. In general, both mechanisms for addressing data and model
sparsity contribute significantly to the overall performance, demonstrating the necessity of these
two mechanisms in solving sparsity problem. Self-supervision contributes similarly to the dynamic
sparsity mechanisms, in that it enables the identification of informative data samples without label
supervision. In the dataset dynamic sparsity mechanism, GS and CAD contribute the most as sparse
GNN’s discriminability identifies hidden dynamic sparse subsets accurately and efficiently. Regarding
the model dynamic sparsity mechanism, removing RM and SG leads to a significant performance
drop, which demonstrates that they are the key components in training the dynamic sparse GNN
from the full GNN model. In particular, CAG enables the performance stability after the model
pruning and helps capture informative samples during decantation by assigning greater gradient
norms. Among these variants, the full model GraphDec achieves the best result in most cases.
indicating the importance of the combination of the dynamic sparsity mechanisms from the two
perspectives, and the self-supervision strategy.
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Figure 3: Evolution of data samples’ gradients computed by data diet [32] (upper figures) and our
GraphDec (lower figures) on NCI1 data.

4.5 Analyzing Evolution of Sparse Subset by Scoring All Samples

To show GraphDec’s capability in dynamically identifying informative samples, we show the visual-
ization of sparse subset evolution of data diet and GraphDec on class-imbalanced NCI1 dataset in
Figure 3. Specifically, we compute 1000 graph samples with their importance scores. These samples
are then ranked according to their scores and marked with sample indexes. From the upper figures
in Figure 3, we find that data diet is unable to accurately identify the dynamic informative nodes.
Once a data sample has been removed from the training list due to the low score, the model forever
disregards it. However, the fact that a sample is currently unimportant does not imply that it will
remain unimportant indefinitely, especially in the early training stage when the model cannot detect
the true importance of each sample, resulting in premature elimination of vital nodes. Similarly, if
a data sample is considered important at early epochs (i.e., marked with higher sample index), it
cannot be removed during subsequent epochs. Therefore, we observe that data diet can only increase
the scores of samples within the high index range (i.e., 500–1000), while ignoring samples within
the low index range (i.e., <500). However, GraphDec (Figure 3 (bottom)) can capture the dynamic
importance of each sample regardless of the initial importance score. We see that samples with
different indexes all have the opportunities to be considered important and therefore be included in
the training list. Correspondingly, GraphDec takes into account a broader range of data samples when
shrinking the training list, meanwhile maintaining flexibility towards the previous importance scores.

5 Conclusion
In this paper, to take up the graph data imbalance challenge, we propose an efficient and effective
method named Graph Decantation (GraphDec), by leveraging the dynamic sparse graph contrastive
learning to dynamically identified a sparse-but-informative subset for model training, in which the
sparse GNN encoder is dynamically sampled from a dense GNN, and its capability of identifying
informative samples is used to rank and update the training data in each epoch. Extensive experiments
demonstrate that GraphDec outperforms state-of-the-art baseline methods for both node classification
and graph classification tasks in the class-imbalanced scenario. The analysis of the sparse informative
samples’ evolution further explains the superiority of GraphDec in identifying the informative subset
among the training periods effectively.

Limitations: Our method has not been validated on very large scale data due to the lack of very
large-scale (e.g., OGB level) class-imbalanced graph datasets. In the future, we plan to create new
larger-scale class-imbalanced graph benchmarks and extend our work to them.

Ethics Statement We do not find that this work is directly related to any ethical risks to society. In
general, we would like to see that imbalanced learning algorithms (including this work) are able to
perform better on minority groups in real-world applications.

Reproducibility Statement For the reproducibility of this study, we provide the source code for
GraphDec in the supplementary materials. The datasets and other baselines in our experiments are
described in Appendix C.1 and C.2.
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A Proof of Theorem 1

Theorem 1. For a data selection algorithm [23, 32], we assume model training is optimized
with full gradient descent. At t P r1, T s epoch, we denote the model’s parameter as θptq (sat-
isfying

›

›θptq
›

›

2
ď d2, d is constant), the optimal model’s parameter as θ˚, subset data as D

ptq
S ,

learning rate as α. We also introduce the gradient error term as ErrpD
ptq
S ,L,Ltrain, θ

ptqq “
›

›

›

ř

iPD
ptq

S

∇θL
i
trainpθptqq ´ ∇θLpθptqq

›

›

›
, where L denotes training loss Ltrain over full training data

or validation loss Lval over full validation data and L is a convex function. Then we have following
guarantee:

If Ltrain is Lipschitz continuous with parameter σT and α “ d
σT

?
T

, then mint“1:T Lpθptqq ´

Lpθ˚q ď dσT?
T

` d
T

řT´1
t“1 ErrpD

ptq
S ,L,Ltrain, θ

ptqq.

Proof 1 The gradients of Lval and Ltrain are supposed to be σ-bounded by σV and σT respectively.
According to gradient descent, we have:

∇θLtrainpθptqq
T

pθptq ´ θ˚q “
1

αptq
pθptq ´ θpt`1qq

T
pθptq ´ θ˚q, (8)

∇θLtrainpθptqq
T

pθptq ´ θ˚q “
1

2αptq

ˆ
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›

›
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›

›

2

` }θt ´ θ˚}
2

´

›

›

›
θpt`1q ´ θ˚

›

›

›

2
˙

. (9)

Since one update step θptq ´ θpt`1q can be optimized by gradient multiplying with learning rate
αptq∇θLtrainpθptqq, we have:

∇θLtrainpθptqq
T

pθptq ´ θ˚q “
1

2αptq

ˆ

›

›

›
αptq∇θLtrainpθptqq
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›

›

2

` }θt ´ θ˚}
2

´

›

›

›
θpt`1q ´ θ˚
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›

›

2
˙

.

(10)

Since ∇θLtrainpθptqq
T

pθptq ´ θ˚q can be represented as follows:

∇θLtrainpθptqq
T

pθptq ´ θ˚q “ ∇θLtrainpθptqq
T

pθptq ´ θ˚q

´∇θLpθptqq
T

pθptq ´ θ˚q ` ∇θLpθptqq
T

pθptq ´ θ˚q,
(11)

then based on the combination of the Equation (10) and Equation (11), we have:
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We assume learning rate αptq, t P r0, T ´ 1s is a constant value, then we have:
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Since we assume }θT ´ θ˚}
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ě 0, then we have:
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We assume L is convex and Ltrain is lipschitz continuous with parameter σT . Then for convex
function Lpθq, we have Lpθptqq ´ Lpθ˚q ď ∇θLpθptqq

T
pθptq ´ θ˚q. By combining this result with

Equation 14, we get:
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Since }LT pθq} ď σT ,
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› ď σT , and we assume }θ ´ θ˚} ď d, then we have:
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Since min pLpθptqq ´ Lpθ˚qq ď 1
T

řT´1
t“0 Lpθptqq ´ Lpθ˚q, based on Equation 17, we have:
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We set learning rate α “ d
σT

?
T

and then have:
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B Preliminaries: GNNs, Graph Contrastive Learning, Network Pruning

In this work, we denote graph as G “ pV,E,Xq, where V is the set of nodes, E is the set of edges,
and X P Rd represents the node (and edge) attributes of dimension d. In addition, we represent the
neighbor set of node v P V as Nv .

Graph Neural Networks. GNNs [42] learn node representations from the graph structure and node
attributes. This process can be formulated as:

hplq
v “ COMBINEplq

´

hpl´1q
v ,AGGREGATEplq

´!

hpl´1q
u ,@u P Nv

)¯¯

, (20)

where hplq
v denotes representation of node v at l-th GNN layer; AGGREGATEp¨q and COMBINEp¨q

are neighbor aggregation and combination functions, respectively; h
p0q
v is initialized with node

attribute Xv . We obtain the output representation of each node after repeating the process in Equation
(20) for L rounds. The representation of the whole graph, denoted as hG P Rd, can be obtained by
using a READOUT function to combine the final node representations learned above:

hG “ READOUT
!

hpLq
v | @v P V

)

, (21)
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Table 4: Original dataset details for imbalanced graph classification and imbalanced node classifica-
tion tasks.

Task Dataset # Graphs # Nodes # Edges # Features # Classes

Graph

MUTAG 188 „17.93 „19.79 - 2
PROTEINS 1,113 „39.06 „72.82 - 2
D&D 1,178 „284.32 „715.66 - 2
NCI1 4,110 „29.87 „32.30 - 2
PTC-MR 344 „14.29 „14.69 - 2
DHFR 756 „42.43 „44.54 - 2
REDDIT-B 2,000 „429.63 „497.75 - 2

Node

Cora - 2,485 5,069 1,433 7
Citeseer - 2,110 3,668 3,703 6
Pubmed - 19,717 44,324 500 3
A-photo - 7,650 238,162 745 8
A-computers - 13,381 245,778 767 10

where the READOUT function can be any permutation invariant, like summation, averaging, etc.
Graph Contrastive Learning. Given a graph dataset D “ tGiu

N
i“1, Graph Contrastive Learning

(GCL) methods firstly implement proper transformations on each graph Gi to generate two views G1
i

and G2
i . The goal of GCL is to map samples within positive pairs closer in the hidden space, while

those of the negative pairs are further. GCL methods are usually optimized by a contrastive loss.
Taking the most popular InfoNCE loss [30] as an example, the contrastive loss is defined as:

LCLpG1
i, G

2
i q “ ´ log

exp psim pzi,1, zi,2qq
řN

j“1,j‰i exp psim pzi,1, zj,2qq
, (22)

where zi,1 “ fθ pG1
iq, zi,2 “ fθ pG2

i q, and sim denotes the similarity function.
Network Pruning. Given an over-parameterized deep neural network fθp¨q with weights θ, the
network pruning is usually performed layer-by-layer. The pruning process of the lth layer in fθp¨q

can be formulated as follows:

θlthpruned “ TopKpθlth , kq, k “ α ˆ |θlth |, (23)

where θlth is the parameters in the lth layer of fθp¨q and TopKp¨, kq refers to the operation to choose
the top-k largest elements of θlth . We use a pre-defined sparse rate α to control the fraction of
parameters kept in the pruned network θlthpruned. Finally, only the top k “ α ˆ |θlth | largest weights
will be kept in the pruned layer. The pruning process will be implemented iteratively to prune the
parameters in each layer of deep neural network [13].

C Experimental Details

C.1 Datasets Details

In this work, seven graph classification datasets and five node classification datasets are used to
evaluate the effectiveness of our proposed model, we provided their detailed statistics in Table 4.
For graph classification datasets, we follow the imbalance setting of [41] to set the train-validation
split as 25%/25% and change the imbalance ratio from 5:5 (balanced) to 1:9 (imbalanced). The rest
of the dataset is used as the test set. The specified imbalance ratio of each dataset is clarified after
its name in Table 5. For node classification datasets, we follow [34] to set the imbalance ratio of
Cora, CiteSeer and PubMed as 10. Besides, the setting of Amazon-Photo and Amazon-Computers
are borrowed from [31], where the imbalance ratio ρ is set as 82 and 244, respectively.

C.2 Baseline Details

We compare our model with a variety of baseline methods using different rebalance methods:

I. For imbalanced graph classification [41], four models are included as baselines in our work, we
list these baselines as follow:
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(1) GIN [44], a popular supervised GNN backbone for graph tasks due to its powerful expressiveness
on graph structure;

(2) InfoGraph [36], an unsupervised graph learning framework by maximizing the mutual informa-
tion between the whole graph and its local topology of different levels;

(3) GraphCL [46], learning unsupervised graph representations via maximizing the mutual informa-
tion between the original graph and corresponding augmented views;

(4) G2GNN [41], a re-balanced GNN proposed to utilize additional supervisory signals from both
neighboring graphs and graphs themselves to alleviate the imbalance issue of graph.

II. For imbalanced node classification, we consider nine baseline methods in our work, including

(1) vanilla, denoting that we train GCN normally without any extra rebalancing tricks;

(2) re-weight [20], denoting we use cost-sensitive loss and re-weight the penalty of nodes in different
classes;

(3) oversampling [31], denoting that we sample nodes of each class to make the data’s number of
each class reach the maximum number of corresponding class’s data;

(4) cRT [21], a post-hoc correction method for decoupling output representations;

(5) PC Softmax [18], a post-hoc correction method for decoupling output representations, too;

(6) DR-GCN [35], building virtual minority nodes and forces their features to be close to the
neighbors of a source minority node;

(7) GraphSMOTE [47], a pre-processing method that focuses on the input data and investigates the
possibility of re-creating new nodes with minority features to balance the training data.

(8) GraphENS [31], proposing a new augmentation method to construct an ego network from all
nodes for learning minority representation.

We use Graph Convolutional Network (GCN) [24] as the default architecture for all rebalance
methods.

C.3 Details of GraphDec Variants

The details of model variants are provided as follows:

I. Specifically, GraphDec contains four components to address data sparsity and imbalance: (1) GS is
sampling informative subset data according to ranking gradients; (2) SS is training model with the
sparse dataset, correspondingly; (3) CAD is using cosine annealing to reduce dataset size; (4) RS is
recycling removed samples, correspondingly. To investigate their corresponding effectiveness, we
remove them correspondingly as:

(1) w/o GS is that we randomly sample subset from the full set;

(2) w/o SS is that we train GNN with the full set;

(3) w/o CAD is that we directly reduce dataset size to target dataset size and it is same as data diet;

(4) w/o RS is not recycling any removed samples.

II. Another four components to address model sparsity and data imbalance: (1) RM samples model
weights according to ranking magnitudes; (2) SG is using sparse GNN, correspondingly; (3) CAG is
using cosine annealing to progressively reduce sparse GNN’s size; (4) RW is reactivating removed
weights. To investigate their effectiveness, we remove them correspondingly as:

(1) w/o RM is that we randomly sample activated weights from full GNN model;

(2) w/o SG is that we train full GNN during forward and backward;

(3) w/o CAG is that we directly reduce the model size to target sparsity rate;

(4) w/o RW is not reactivating any removed weights during sparse training.
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Table 5: Imbalanced graph classification results. The numbers after each dataset name indicate the
imbalance ratios of minority to majority categories. We report the macro F1-score and micro F1-score
with the standard errors as Results are reported as mean ˘ std for 3 repetitions on each dataset. We
bold the best performance.

Rebalance Basis MUTAG (5:45) PROTEINS (30:270) D&D (30:270) NCI1 (100:900)

Method F1-ma. F1-mi. F1-ma. F1-mi. F1-ma. F1-mi. F1-ma. F1-mi.

vanilla
GIN [44] 52.50 ˘ 18.70 56.77 ˘ 14.14 25.33 ˘ 7.53 28.50 ˘ 5.82 9.99 ˘ 7.44 11.88 ˘ 9.49 18.24 ˘ 7.58 18.94 ˘ 7.12

InfoGraph [36] 69.11 ˘ 9.03 69.68 ˘ 7.77 35.91 ˘ 7.58 36.81 ˘ 6.51 21.41 ˘ 4.51 27.68 ˘ 7.52 33.09 ˘ 3.30 34.03 ˘ 3.68
GraphCL [46] 66.82 ˘ 11.56 67.77 ˘ 9.78 40.86 ˘ 6.94 41.24 ˘ 6.38 21.02 ˘ 3.05 26.80 ˘ 4.95 31.02 ˘ 2.69 31.62 ˘ 3.05

up-sampling
GIN [44] 78.03 ˘ 7.62 78.77 ˘ 7.67 65.64 ˘ 2.67 71.55 ˘ 3.19 41.15 ˘ 3.74 70.56 ˘ 10.28 59.19 ˘ 4.39 71.80 ˘ 7.02

InfoGraph [36] 78.62 ˘ 6.84 79.09 ˘ 6.86 62.68 ˘ 2.70 66.02 ˘ 3.18 41.55 ˘ 2.32 71.34 ˘ 6.76 53.38 ˘ 1.88 62.20 ˘ 2.63
GraphCL [46] 80.06 ˘ 7.79 80.45 ˘ 7.86 64.21 ˘ 2.53 65.76 ˘ 2.61 38.96 ˘ 3.01 64.23 ˘ 8.10 49.92 ˘ 2.15 58.29 ˘ 3.30

re-weight
GIN [44] 77.00 ˘ 9.59 77.68 ˘ 9.30 54.54 ˘ 6.29 55.77 ˘ 7.11 28.49 ˘ 5.92 40.79 ˘ 11.84 36.84 ˘ 8.46 39.19 ˘ 10.05

InfoGraph [36] 80.85 ˘ 7.75 81.68 ˘ 7.83 65.73 ˘ 3.10 69.60 ˘ 3.68 41.92 ˘ 2.28 72.43 ˘ 6.63 53.05 ˘ 1.12 62.45 ˘ 1.89
GraphCL [46] 80.20 ˘ 7.27 80.84 ˘ 7.43 63.46 ˘ 2.42 64.97 ˘ 2.41 40.29 ˘ 3.31 67.96 ˘ 8.98 50.05 ˘ 2.09 58.18 ˘ 3.08

G2GNN [41] remove edge 80.37 ˘ 6.73 81.25 ˘ 6.87 67.70 ˘ 2.96 73.10 ˘ 4.05 43.25 ˘ 3.91 77.03 ˘ 9.98 63.60 ˘ 1.57 72.97 ˘ 1.81
mask node 83.01 ˘ 7.01 83.59 ˘ 7.14 67.39 ˘ 2.99 73.30 ˘ 4.19 43.93 ˘ 3.46 79.03 ˘ 10.78 64.78 ˘ 2.86 74.91 ˘ 2.14

GraphDec dynamic sparsity 85.71˘10.20 85.71˘11.10 68.31˘4.23 75.84˘6.80 44.01˘5.01 77.02˘6.26 65.73˘4.7 76.02˘6.27

Rebalance Basis PTC-MR (9:81) DHFR (12:108) REDDIT-B (50:450)

Method F1-ma. F1-mi. F1-ma. F1-mi. F1-ma. F1-mi.

vanilla
GIN [44] 17.74 ˘ 6.49 20.30 ˘ 6.06 35.96 ˘ 8.87 49.46 ˘ 4.90 33.19 ˘ 14.26 36.02 ˘ 17.38

InfoGraph [36] 25.85 ˘ 6.14 26.71 ˘ 6.50 50.62 ˘ 8.33 56.28 ˘ 4.58 57.67 ˘ 3.80 67.10 ˘ 4.91
GraphCL [46] 24.22 ˘ 6.21 25.16 ˘ 5.25 50.55 ˘ 10.01 56.31 ˘ 6.12 53.40 ˘ 4.06 62.19 ˘ 5.68

up-sampling
GIN [44] 44.78 ˘ 8.01 55.43 ˘ 14.25 55.96 ˘ 10.06 59.39 ˘ 6.52 66.71 ˘ 3.92 83.00 ˘ 5.18

InfoGraph [36] 44.29 ˘ 4.69 48.91 ˘ 7.49 59.49 ˘ 5.20 61.62 ˘ 4.18 67.01 ˘ 3.34 78.68 ˘ 3.71
GraphCL [46] 45.12 ˘ 7.33 53.50 ˘ 13.31 60.29 ˘ 9.04 61.71 ˘ 6.75 62.01 ˘ 3.97 75.84 ˘ 3.98

re-weight
GIN [44] 36.96 ˘ 14.08 43.09 ˘ 20.01 55.16 ˘ 9.47 57.78 ˘ 6.69 45.17 ˘ 8.46 51.92 ˘ 12.29

InfoGraph [36] 44.09 ˘ 5.62 49.17 ˘ 8.78 58.67 ˘ 5.82 60.24 ˘ 4.80 65.79 ˘ 3.38 77.35 ˘ 3.96
GraphCL [46] 44.75 ˘ 7.62 52.22 ˘ 13.24 60.87 ˘ 6.33 61.93 ˘ 5.15 62.79 ˘ 6.93 76.15 ˘ 9.15

G2GNN [41] remove edge 46.40 ˘ 7.73 56.61 ˘ 13.72 61.63 ˘ 10.02 63.61 ˘ 6.05 68.39 ˘ 2.97 86.35 ˘ 2.27
mask node 46.61 ˘ 8.27 56.70 ˘ 14.81 59.72 ˘ 6.83 61.27 ˘ 5.40 67.52 ˘ 2.60 85.43 ˘ 1.80

GraphDec dynamic sparsity 47.07˘8.22 58.15˘10.24 62.25˘9.54 63.61˘7.10 69.70˘7.20 87.00˘9.36

Table 6: Imbalanced node classification results. We report the accuracy, balanced accuracy and macro
F1-score with the standard errors as mean ˘ std for 3 repetitions on each dataset. We bold the best
performance.

Method Cora-LT CiteSeer-LT PubMed-LT A.P. (ρ “82) A.C. (ρ “244)

Acc. bAcc. F1-ma. Acc. bAcc. F1-ma. Acc. bAcc. F1-ma. (b)Acc. F1-ma. (b)Acc. F1-ma.

vanilla 73.66˘0.28 62.72˘0.39 63.70˘0.43 53.90˘0.70 47.32˘0.61 43.00˘0.70 70.76˘0.74 57.56˘0.59 51.88˘0.53 82.86˘0.30 78.72˘0.52 68.47˘2.19 64.01˘3.18
Re-Weight [31] 75.20˘0.19 68.79˘0.18 69.27˘0.26 62.56˘0.32 55.80˘0.28 53.74˘0.28 77.44˘0.21 72.80˘0.38 73.66˘0.27 92.94˘0.13 92.95˘0.13 90.04˘0.29 90.11˘0.28
Oversampling [31] 77.44˘0.09 70.73˘0.10 72.40˘0.11 62.78˘0.37 56.01˘0.35 53.99˘0.37 76.70˘0.48 68.49˘0.28 69.50˘0.38 92.46˘0.47 92.47˘0.48 89.79˘0.16 89.85˘0.17
cRT [21] 76.54˘0.22 69.26˘0.48 70.95˘0.50 60.60˘0.25 54.05˘0.22 52.36˘0.22 75.10˘0.23 67.52˘0.72 68.08˘0.85 91.24˘0.28 91.17˘0.29 86.02˘0.55 86.00˘0.56
PC Softmax [18] 76.42˘0.34 71.30˘0.45 71.24˘0.52 65.70˘0.42 61.54˘0.45 61.49˘0.49 76.92˘0.26 75.82˘0.25 74.19˘0.25 93.32˘0.25 93.32˘0.25 86.59˘0.92 86.62˘0.91
DR-GCN [35] 73.90˘0.29 64.30˘0.39 63.10˘0.57 56.18˘1.10 49.57˘1.08 44.98˘1.29 72.38˘0.19 58.86˘0.15 53.05˘0.13 N/A N/A N/A N/A
GraphSmote [47] 76.76˘0.31 69.31˘0.37 70.21˘0.64 62.58˘0.30 55.94˘0.34 54.09˘0.37 75.98˘0.22 70.96˘0.36 71.85˘0.32 92.65˘0.31 92.61˘0.32 89.31˘0.34 89.39˘0.35
GraphENS [31] 77.76˘0.09 72.94˘0.15 73.13˘0.11 66.92˘0.21 60.19˘0.21 58.67˘0.25 78.12˘0.06 74.13˘0.22 74.58˘0.13 93.82˘0.13 93.81˘0.12 91.94˘0.17 91.94˘0.17

GraphDec 78.29˘0.40 73.94˘0.67 74.25˘0.83 66.90˘0.65 61.56˘0.72 61.85˘0.96 78.20˘0.45 76.05˘0.66 76.32˘0.66 93.85˘0.72 94.02˘0.67 92.19˘0.73 92.16˘0.75

C.4 Full Results with Error Bars

We provide the F1-macro and F1-micro scores along with their standard deviation for our model and
other baselines across both graph classification and node classification tasks in Table 5 and Table 6.
We report their results as mean ˘ std for 3 repetitions on each metric for each dataset.

D Finding Informative Samples by Sparse GNN

Compared with the full GNN model, our dynamic sparse GNN model is more sensitive in recognizing
informative data samples which can be empirically verified by Figure 4. As we can see in the figure,
our dynamical pruned model assigns larger gradients to the minorities than the majories during the
contrastive training, while the full model generally assigns relatively uniform gradients for both of
them. Thus, the proposed dynamically pruned model demonstrates its discriminatory ability on the
minority class.

E Resource Cost

To evaluate the proposed GraphDec’s computational cost on a wide range of datasets, results in
Table 7 that include three different class-imbalanced node classification datasets (PubMed-LT, Cora-
LT, CiteSeer-LT), three different class-imbalanced graph classification datasets (MUTAG, PROTEINS,
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Figure 4: Results of data samples’ gradients computed by full GNN model and our dynamic sparse
GNN model on NCI1 data. Red dashed line: on the left side, points on the x-axis [0, 900] are majority
class; on the right side, points on the x-axis [900, 1000] are minority class.

PTC_MR), and four baselines (vanilla GCN, re-weight, re(/over)-sample, GraphCL). We run 200
epochs for each method to measure their computational time (second) for training. On NVIDIA
GeForce RTX 3090 GPU device, we obtain the running time as reported in Table 7. All models are
implemented in PyTorch Geometric [9].

Table 7: Computational time comparisons.
Model Method PubMed-LT Cora-LT CiteSeer-LT PROTEINS PTC_MR MUTAG

GCN

vanilla 2.436 2.154 2.129 12.798 4.295 2.989
re-weight 2.330 2.282 2.150 12.903 4.410 3.125
re(/over)-sample 3.241 2.860 2.794 15.996 5.734 4.022
GraphCL 3.747 3.412 3.399 14.981 5.049 3.215
GraphDec 2.243 1.995 1.952 10.614 4.212 2.090

According to the results, our GraphDec encounters less computation cost than prior methods. The
following explains why augmentation doubles the input graph without increasing overall computation
costs: (i) The augmentations we adopt (e.g, node dropping and edge dropping) reduce the size of
input graphs (i.e., node number decreases 25%, edge number decreases 25-35%); (ii) During each
epoch, our GraphDec prunes datasets so that approximately only 50% of the training data is used.
(iii) GraphDec prunes the model weights, resulting in a lighter model requiring less computational
resources. (iv) Despite the fact that augmentation doubles the number of input graphs, the additional
new views only consume forward computational resources without requiring a backward or weight
update step, thereby only marginally increases the computation.

18


	Introduction
	Related Work
	Methodology
	Sparse Subset Approximation Hypothesis
	Graph Decantation

	Experiments
	Experimental Setup
	Class-imbalanced Graph Classification Performance
	Class-imbalanced Node Classification Performance
	Ablation Study
	Analyzing Evolution of Sparse Subset by Scoring All Samples

	Conclusion
	Proof of Theorem 1
	Preliminaries: GNNs, Graph Contrastive Learning, Network Pruning
	Experimental Details
	Datasets Details
	Baseline Details
	Details of GraphDec Variants
	Full Results with Error Bars

	Finding Informative Samples by Sparse GNN
	Resource Cost

