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ABSTRACT

Current LLM hallucination benchmarks are predominantly static, focusing on
factuality while ignoring the computational resources consumed. This creates
a distorted view of performance, as costly mitigation strategies can obscure the
inherent capabilities of more efficient models. This limitation is especially critical
in multi-agent systems (MAS), where resource efficiency and strategic interaction
are paramount. To address this gap, we introduce MAS-HQ (Multi-Agent System
Hallucination Quest Game), a dynamic, game-theoretic framework that evaluates
MAS hallucination under strict resource constraints and direct adversarial competi-
tion. Within MAS-HQ, agents compete to produce low-hallucination summaries
while minimizing resource use. Success is measured by a multi-dimensional metric
that explicitly balances factual accuracy against resource penalties, forcing a trade-
off between quality and efficiency. We instantiate this competition with Q-Agent, a
modular agent architecture designed for strategic play, within a setting that features
partial observability to drive tactical decision-making. Our experiments reveal
the emergence of diverse winning strategies—some prioritizing high factuality,
others superior resource efficiency—and demonstrate adaptive agent behaviors
driven by the competitive dynamics. MAS-HQ establishes a principled paradigm
for benchmarking hallucination in MAS and provides crucial insights into agent
strategies under adversarial, resource-constrained conditions.

Multi-Agent System Hallucination Quest Game
Q-Agent A
with passage 1 to i-1 History

Q-Agent B
with passage N to i+1 History

ascending
order

descending
order

Vision
MechanismAs of 19 March , more than 220,000 cases of 

COVID-19 have been reported in over 150 
countries and territories, resulting in more than 
8,900 deaths and 85,000 recoveries.

Real World News from 
Hallucination Leaderboard

Passage 1 … …Passage i Passage N

Summary: 
As of March 19, over 220,000 COVID-19 cases 
have been reported worldwide, with more than 
8,900 deaths and 85,000 recoveries.

Hallucination Score: 0.8
Penalty: 0.2 (Resource used based on History)
Q-Score: 0.8 – 0.2 = 0.6

Summary:
By March 19, COVID-19 had spread to over 150 
countries, causing 85,000 deaths and 220,000 
recoveries globally.

Hallucination Score: 0.5
Penalty: 0.1 (Resource used based on History)
Q-Score: 0.5 – 0.1 = 0.4

A Wins

Figure 1: Overview of the competitive game between two Q-Agents on MAS-HQ. The original
passage list is input in different sequences to Q-Agent A and Q-Agent B. Both Q-Agents devise
strategies to generate summaries for each passage using mechanisms such as the vision mechanism.
The hallucination scores and resource usage penalties are recorded, leading to the final metric, the Q
Score. The agent with the higher Q-Score wins. In the current context, Q-Agent A wins.
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1 INTRODUCTION

The remarkable advancements in Large Language Models (LLMs) are frequently shadowed by their
tendency towards hallucination—generating outputs that appear plausible yet are factually erroneous
or unsubstantiated (Macpherson & Platchias, 2013; Huang et al., 2021; Ji et al., 2023; Li et al., 2022).
This critical issue is compounded in Multi-Agent Systems (MAS), where interactions between agents
can amplify and propagate such inaccuracies (Schmidgall & Moor, 2025). However, progress in this
area is hindered by a critical flaw in current evaluation methodologies: they are largely static. That
is, existing benchmarks and leaderboards (Huang et al., 2025a; Alzahrani et al., 2024; Huang et al.,
2025b; Singh et al., 2025) focus almost exclusively on final hallucination scores while ignoring the
computational resources consumed to achieve them. This static approach creates a distorted picture,
as it allows models to achieve high factuality through costly mitigation strategies—such as extensive
API calls or complex reasoning chains—without penalty, obscuring the inherent capabilities of agents
under realistic constraints. This oversight is particularly problematic for MAS, where competitive
dynamics and stringent operational budgets are paramount, demanding evaluation frameworks that
reflect these practical realities.

To address this gap, we introduce MAS-HQ (Multi-Agent System Hallucination Quest Game), a novel
framework designed to evaluate hallucination in MAS under strict, explicitly defined resource limits
and direct adversarial competition. MAS-HQ moves beyond such static tests by placing evaluation
in a dynamic, game-theoretic setting, which compels agents to strategically manage the trade-off
between minimizing hallucination and conserving resources within a competitive environment. The
core task within MAS-HQ requires agents to produce low-hallucination summaries of text passages
while simultaneously optimizing for minimal resource consumption—measured in terms of token
count, API calls, and runtime. This setup is designed to rigorously test an agent’s ability to navigate
the critical trade-off between factual accuracy and operational efficiency. Consequently, an agent’s
success is not judged on factuality alone but through a multi-dimensional metric that balances its
hallucination score against penalties for resource consumption.

Within this paradigm, we propose Q-Agent, a modular, structured agent architecture designed
to navigate MAS-HQ’s strategic complexities. Each Q-Agent, with distinct Policy, Summary,
Review, and Evaluation modules, competes head-to-head against another Q-Agent. A key feature of
MAS-HQ’s competitive design is its novel "vision mechanism," introducing partial observability by
selectively revealing aspects of an opponent’s state (e.g., performance metrics and resource usage)
when specific actions like passage review are taken. This turns decisions into strategic gambits: a
review may improve summary quality but risks divulging critical information to the adversary, forcing
agents to weigh refinement benefits against tactical exposure risks. This fosters a rich environment for
emergent strategic behaviors, compelling agents to adapt policies in response to adversarial actions
and the evolving game state. An overview of the Q-Agent game under MAS-HQ is shown in Figure 1.

Our extensive experiments within MAS-HQ demonstrate the emergence of diverse winning strategies:
some Q-Agents triumph by prioritizing exceptionally high hallucination score (high factual consis-
tency), while others achieve victory through superior resource efficiency, even if their hallucination
scores are marginally lower. Further ablation studies validate the framework’s robust design, confirm-
ing its generality on question-answering tasks, scalability to N-player scenarios, and the necessity of
its core competitive mechanisms for inducing these strategic dynamics. These findings underscore
the nuanced interplay between factual accuracy, resource management, and adversarial pressure.
More broadly, MAS-HQ establishes a principled and practically relevant paradigm for hallucination
benchmarking in MAS. It offers crucial insights into agent behavior under conditions of resource
scarcity and competitive stress, thereby contributing to the development of more robust, reliable, and
strategically adept MAS capable of operating effectively in complex, real-world scenarios.

In summary, our contributions are: (1) MAS-HQ Framework: A novel game-theoretic benchmark
for evaluating MAS hallucination, emphasizing strict resource constraints and competitive dynamics
to ensure fairness and practical relevance in assessing inherent agent capabilities. (2) Q-Agent and
Competitive Paradigm: A modular agent (Q-Agent) designed for strategic decision-making in MAS-
HQ, which facilitates adversarial competition and features a "vision mechanism" to induce adaptive
behaviors based on partial observability of opponents. (3) Empirical Insights into Emergent
Strategies: Extensive experiments demonstrating diverse winning strategies and adaptive agent
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Policy

Summary

Review
choose

Evaluation

Text

generatePassage Bank
passage

History

move to   next passage

Current Passage:
Hallucination Score
Passages As For Now:
Average Hallucination
Worst Hallucination Case
Passage Progress
Resources As For Now: 
API Call
Time Elapsed
Review Times
Token Consumption

Continue (current summary)

Review (the worst case)

End (passage bank finished)

If a Q-Agent selects Review, its 
history will be updated and synced 
to another Q-Agent's policy prompt.

Vision Mechanism

Q-Agent A Q-Agent B

The Q-Agent that 
achieves the lowest
illusion with the 
least resources wins.

Policy Agent Summary Agent Review Agent Evaluation Agent

Figure 2: Overview of the composition of the Q-Agent. Policy Agent receives both the Q-Agent’s
own historical information and the opponent’s historical information (via the vision mechanism) to
determine the next strategy. The text summary generated by either the Summary Agent or the Review
Agent is evaluated by the Evaluation Agent, which computes the hallucination score (H-Score) and
resource usage. After all steps are completed, the overall Q-Score is calculated, which includes the
average hallucination score and resource consumption penalties.

behaviors in MAS-HQ, highlighting the complex interplay of hallucination mitigation, resource
management, and adversarial pressure.

2 RELATED WORK

LLM Hallucination LLM hallucination—the generation of fluent yet factually erroneous con-
tent (Macpherson & Platchias, 2013; Huang et al., 2025a)—is a critical challenge. These inaccuracies
can be intrinsic (flawed model internals) or extrinsic (misalignment with external knowledge) (Huang
et al., 2021; Ji et al., 2023; Li et al., 2022), arising from factors like biased data or uncontrolled
inference (Bender et al., 2021; Li et al., 2023; Holtzman et al., 2019). Consequently, a range of
mitigation strategies has emerged, from data filtering and retrieval-augmented generation to architec-
tural modifications and decoding algorithms (Abbas et al., 2021; Dai et al., 2023; Gao et al., 2022;
Shi et al., 2023; Chuang et al., 2023). However, existing efforts and single-agent benchmarks (Lin
et al., 2021; Li et al., 2024; vectara, 2024; Bao et al., 2024; Cheng et al., 2023) predominantly focus
on hallucination reduction in isolation, overlooking the crucial resource implications and nuanced
behaviors arising from competitive dynamics, a gap our work begins to address by compelling an
evaluation of efficiency alongside veracity.

Multi-Agent Systems Multi-Agent Systems (MAS) deploy autonomous, LLM-based agents ca-
pable of complex planning and interaction (Liu et al., 2025; Guo et al., 2024), showing promise in
diverse domains like software development, embodied AI, and scientific discovery (Rasheed et al.,
2024; Wang et al., 2024; Huang et al., 2023; Hong et al., 2023; Chen et al., 2023; Yu et al., 2023;
Ke et al., 2024; Ni & Buehler, 2024; Xie et al., 2024; Jiang et al., 2024; Wu et al., 2023; Fan et al.,
2024; Zhang et al., 2024a;b). As MAS capabilities expand, evaluating their robustness and decision
quality under practical constraints becomes paramount. While current MAS benchmarks (Zhu et al.,
2025) are valuable for assessing collaboration, they often neglect information fidelity, hallucination
propagation, or adversarial interactions under stringent resource limitations. MAS-HQ directly
addresses this by introducing a game-theoretic paradigm that compels agents to strategically balance
task success, resource management, and hallucination minimization against adversaries, fostering a
more realistic and comprehensive evaluation.
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3 MAS-HQ GAME AND Q-AGENT FRAMEWORK

To evaluate hallucination in resource-constrained, competitive MAS, we introduce MAS-HQ, a
dynamic environment compelling agents to balance factual accuracy against resource efficiency and
adversarial tactics. This fosters a holistic assessment of agent capabilities and reveals emergent
behaviors under pressure, addressing the limitations of static benchmarks. The MAS-HQ evaluation
and Q-Agent framework is shown in Figure 2.

3.1 MAS-HQ MECHANICS AND Q-AGENT ARCHITECTURE

MAS-HQ’s gameplay revolves around a core dual-objective challenge built upon news passages from
the Hallucination Leaderboard (vectara, 2024; Bao et al., 2024). Agents must sequentially summarize
these passages, simultaneously pursuing high factual consistency (Minimize Hallucination) and
minimal operational cost (Optimize Resource Consumption). Success is quantified by the Q-Score,
which elegantly integrates these competing objectives.

This dual-objective design mirrors real-world scenarios where both information quality and generation
cost are critical, promoting adaptive and efficient strategies. Integrating hallucination mitigation and
resource management, agent success in MAS-HQ is measured by

Q-Score =
1

N

N∑
i=1

(α ·H-Scorei − β · Pi)

For each of N passages, H-Scorei ∈ [0, 1] is the hallucination score (measures factual consistency,
higher is better), Pi is a resource consumption penalty, and α, β > 0 are fixed weights. This
metric rewards an optimal balance between low-hallucination summaries and resource parsimony,
discouraging inefficient strategies that overspend for marginal accuracy gains.

The Q-Agent Architecture. To navigate this strategic environment, we designed the Q-Agent, a
modular architecture comprising four specialized components. The Policy Agent (PA) serves as
the strategic core, deciding the next action (continue, review, or end) to maximize the final
Q-Score based on its internal state and any opponent intelligence. The Summarization Agent
(SA) executes the primary task of generating initial summaries. The Review Agent (RA) provides
a self-correction mechanism, refining existing summaries to improve their H-Score at the cost of
additional resources. Finally, the Evaluation Agent (EA) assesses summary quality via an external
model (Bao et al., 2024) and tracks all resource consumption, feeding this critical data back to the PA
to inform its next strategic move.

3.2 ADVERSARIAL DYNAMICS AND STRATEGIC SAFEGUARDS

We instantiate MAS-HQ as a head-to-head competition between two Q-Agents, A and B. To break
strategic symmetry and foster dynamic interaction, Agent A processes passages sequentially while
Agent B processes them in reverse. The ultimate winner is the agent with the highest final Q-Score.

The Vision Mechanism. The competition’s strategic depth originates from a novel vision mech-
anism inspired by MOBA games, which induces a state of partial observability. When an agent
executes a costly action like ‘review’, a snapshot of its state (V opponent

A,i ) is disclosed to its rival. This
information leakage allows the opposing agent to dynamically adapt its policy:

ChoiceB,i = PolicyB(TB,i, V
self

B,i , V
opponent

A,i ), for i = 1, . . . , N

This transforms every decision into a strategic gambit, forcing agents to constantly weigh the
immediate reward of self-improvement against the long-term risk of tactical exposure.

Operational Safeguards. To ensure fair competition and deepen strategic complexity, the game is
governed by several rules. Limited Review Cycles (R) cap the number of reviews per passage, en-
couraging a judicious allocation of refinement resources. Mandatory Continuation requires an agent
to ‘continue’ after a ‘review’, preventing unproductive loops and ensuring forward progress. Lastly, a
Threshold (T )-Triggered Guidance mechanism promotes proactive quality control by encouraging
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Table 1: Main results of Q-Agent Competition across various LLMs. Within each competition
group, Q-Agents are constructed using the same underlying LLM. Performance (H-Score) and
resource efficiency (API Calls, Tokens, Review, Time) trade-offs determine the winning agent
(Q-Score) for each LLM. The winning agent in each competition is highlighted with a light gray
background, and better values for individual metrics are shown in bold.

Q-Agent
Competition

Metrics

H-Score ↑ API Call ↓ Tokens ↓ Review ↓ Time ↓ Q-Score ↑ Winner

A: GPT-4o-mini 0.9103 2417 1.36M 791 8.83k 0.5217 ✓

B: GPT-4o-mini 0.9132 2438 1.44M 812 8.98k 0.5132

A: Qwen-Max 0.9030 2304 1.48M 682 13.77k 0.5101 ✓

B: Qwen-Max 0.8994 2264 1.52M 642 14.45k 0.5070

A: Deepseek-V3 0.8860 2292 1.42M 666 12.26k 0.4860
B: Deepseek-V3 0.8894 2233 1.38M 607 12.06k 0.5051 ✓

A: Gemini-2.0-Flash 0.9026 2262 1.56M 642 20.29k 0.5026
B: Gemini-2.0-Flash 0.9016 2157 1.53M 537 19.82k 0.5273 ✓

A: Grok-3-beta 0.9070 2376 1.37M 750 10.71k 0.5070
B: Grok-3-beta 0.9049 2253 1.34M 627 10.15k 0.5337 ✓

the PA to ‘review‘ any summary whose hallucination score falls below the predefined threshold T .
Together, these elements shape a decision-making environment that demands sophisticated reasoning
about opponents, resources, and long-term objectives.

3.3 FORMALIZATION AS A DYNAMIC GAME OF IMPERFECT INFORMATION

To rigorously ground our framework, we formalize MAS-HQ as a two-player, finite-horizon, general-
sum, dynamic game of imperfect information, denoted by G. This game-theoretic perspective is
essential for capturing the strategic depth of agent interactions. The core components of G are defined
as follows:

Players, States, and Actions. The set of players is N = {A,B}. At any discrete time step
i ∈ {1, ..., N}, the global state of the game si contains the complete history of actions and outcomes
for both agents. However, the game is one of imperfect information. Each agent j ∈ N only has
access to a private observation oji which comprises its internal state V self

j,i and, conditionally, a partial
signal ωi about its opponent’s state, Ṽ opponent

−j,i , which is revealed by the vision mechanism. The action
space at each step is A = {continue,review}.

Histories, Beliefs, and Information Structure. An agent j’s local history is the sequence of its
past private observations and actions, hj

i = (oj1, a
j
1, . . . , o

j
i−1, a

j
i−1, o

j
i ). Since hj

i does not fully
reveal the global state si (and specifically, the opponent’s history h−j

i ), a rational agent must maintain
a belief state bji ∈ ∆(H−j

i ), which is a probability distribution over the set of all possible opponent
histories. These beliefs are updated via Bayes’ rule whenever new information becomes available.
For instance, upon receiving observation oji (which may contain a signal ωi), the belief is updated
from the previous step:

bji (h
−j
i ) =

P (oji |h
j
i−1, h

−j
i , π−j∗)bji−1(h

−j
i−1)∑

h′−j∈H−j
i

P (oji |h
j
i−1, h

′−j , π−j∗)bji−1(h
′
i−1)

where the likelihood P (oji |·) depends on the opponent’s strategy π−j∗ and the game’s stochastic
transition dynamics.

Strategies and Sequential Rationality. A strategy (or policy) πj for agent j is a complete plan of
action that maps each possible history to a probability distribution over actions, πj : Hj → ∆(A).
The objective of each agent is to maximize its final expected utility, which is the terminal Q-Score.
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Table 2: Main results investigating the impact of LLM and passage processing order. In each
competition group, Q-Agent A and Q-Agent B are constructed using different LLMs. Q-Agent A
retrieves original text from the passage bank in forward order, while Q-Agent B retrieves in reverse
order. The winning agent in each competition is highlighted with a light gray background, and better
values for individual metrics are shown in bold.

Q-Agent
Competition

Metrics

H-Score ↑ API Call ↓ Tokens ↓ Review ↓ Time ↓ Q-Score ↑ Winner

A: GPT-4o-mini 0.9105 2401 1.34M 785 6.54k 0.5401
B: Grok-3-beta 0.9035 2177 1.30M 561 9.29k 0.5445 ✓

A: Grok-3-beta 0.9036 2312 1.34M 696 10.08k 0.5278
B: GPT-4o-mini 0.9092 2422 1.43M 806 6.78k 0.5419 ✓

This can be framed using the Bellman formalism. Let V j(hj
i ) be the value function for agent j

at history hj
i . It represents the maximum expected utility achievable from that point onward. The

action-value function is then:

Qj(hj
i , a

j
i ) = Eπ−j∗,µ∗

[
U j(π) | hj

i , a
j
i

]
Sequential rationality dictates that an agent’s strategy must be optimal at every decision point, given
its beliefs. Thus, the value of a history is determined by the optimal action:

V j(hj
i ) = max

a∈A
Qj(hj

i , a)

A rational agent’s policy πj∗ will only choose actions that satisfy a ∈ argmaxa′∈A Qj(hj
i , a

′).

Perfect Bayesian Equilibrium and Strategic Trade-offs. The canonical solution concept for
such games is the Perfect Bayesian Equilibrium (PBE) (Fudenberg & Tirole, 1991). A PBE is a
strategy profile (πA∗, πB∗) and a system of beliefs µ∗ where strategies are sequentially rational
for each player given their beliefs, and beliefs are consistent with the strategy profile via Bayesian
updates. This game-theoretic formulation is not merely descriptive; it precisely defines the complex
optimization problem agents face. The strategic tension arises directly from the PBE structure. An
action like ‘review‘ may increase myopic utility by improving a local H-Score, but it simultaneously
alters the opponent’s belief state µ∗ by revealing information. This leakage can be exploited by
a rational opponent, potentially lowering the agent’s future expected utility. A rational agent will
choose to ‘review’ passage k only if the expected value from reviewing exceeds that of continuing:

E[V j(hj
i+1)|a

j
i = review] > E[V j(hj

i+1)|a
j
i = continue]

This decision hinges on balancing the immediate utility gain against the strategic cost of information
leakage, Cinfo. This cost is the expected reduction in future utility resulting from the opponent playing
a more informed best response:

Cinfo(h
j
i ) ≜ Eπ−j∗(·|b−j

prior)
[U j ]− Eπ−j∗(·|b−j

posterior)
[U j ] > 0

While our framework does not compute this equilibrium analytically, its design compels agents
to navigate these exact trade-offs, creating a robust testbed for empirically approximating rational,
equilibrium behavior under strategic pressure.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Our experiments are conducted within MAS-HQ, designed for evaluating MAS on hallucination
benchmarks centered around text summarization tasks. MAS-HQ comprises over 1,000 long-form
news passages. Factual consistency (or hallucination score), denoted as the H-Score, is assessed

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

GPT-4o-mini

Gemini-2.0-flash
Grok-3-beta

Qwen-max
DeepSeek-v3

0.825

0.850

0.875

0.900

0.925

0.950

H
al

lu
ci

na
tio

n 
Sc

or
e

+5.5%
+2.3% +3.6% +3.9%

+5.1%

Before Review
After Review

0.00 0.02 0.029 0.04 0.06 0.08 0.10
Penalty Coefficient 

0.5

0.6

0.7

0.8

0.9

1.0

Q
-S

co
re

Before Review
After Review

Figure 3: Ablation study of the Review Agent in Q-Agent. Each experiment group presents the
average results over Q-Agent A and Q-Agent B. Left: The Review Agent improves the H-Score
and reduces hallucination to varying extents across different Q-Agent models. Right: When both
Q-Agents are built using GPT-4o-mini, the smaller the penalty coefficient β, the more significant the
improvement in the final Q-Score after review.

using a pre-trained discriminator model (Bao et al., 2024) provided by the hallucination leader-
board (vectara, 2024). A practical challenge encountered was the refusal of some LLMs to summarize
passages containing sensitive content (e.g., violence). This behavior affected our Q-Agent’s Sum-
marization Agent and Review Agent modules. To address this, we filtered the dataset for each
LLM, retaining only those passages it could process. Consequently, the Q-Agent constructed with
GPT-4o-mini (Hurst et al., 2024) utilized 808 passages; Grok-3-beta (xAI, 2025), 813 passages;
Qwen-Max (Yang et al., 2024), 811 passages; Deepseek-V3 (Liu et al., 2024), 813 passages; and
Gemini-2.0-Flash (DeepMind, 2024), 810 passages.

For all experimental configurations, we set the hallucination threshold T for review guidance at
0.85 and the maximum number of review times R per passage at 3. The final Q-Score is computed
with weighting factors α = 1 and β = 0.01. The penalty term Pi for each article i incorporates
several factors: the number of API calls, total token consumption (input and output), total review
count, and overall runtime. Each component of the penalty is normalized by dividing the current
Q-Agent’s value by the maximum value observed between itself and its opponent for that component;
these normalized values are then summed to form Pi. H-Scorei is directly obtained from the
aforementioned discriminator. In all competitive setups, Q-Agent A and Q-Agent B commenced their
tasks simultaneously. Q-Agent A processed passages in their original sequence, while Q-Agent B
processed them in reverse order. This design choice aimed to mitigate behavioral convergence and
encourage the emergence of diverse strategic approaches.

4.2 EMERGENT STRATEGIES IN Q-AGENT COMPETITION

We conducted a series of competitions to validate that MAS-HQ elicits the complex, strategic
behaviors it was designed to measure. A key critique of existing benchmarks is their narrow focus
on accuracy metrics like H-Score, which fails to capture the holistic nature of agent intelligence.
Our primary contribution is not a new factuality metric, but rather a new game-theoretic paradigm
for evaluation, embodied by the Q-Score. This metric’s value lies in its integration of a standard

Table 3: Scalability to 3-Agent Competition. Results using GPT-4o-mini demonstrate that the
MAS-HQ framework scales to N-player scenarios, enriching the strategic dynamics. Q-Agent A wins
via resource efficiency despite having the lowest H-Score.

Q-Agent
Competition

Metrics

H-Score ↑ API Calls ↓ Tokens ↓ Reviews ↓ Time (s) ↓ Q-Score ↑ Winner

A: GPT-4o-mini 0.9108 2424 1.36M 798 8.84k 0.5214 ✓
B: GPT-4o-mini 0.9139 2445 1.44M 819 8.99k 0.5139
C: GPT-4o-mini 0.9123 2434 1.40M 808 8.89k 0.5180
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Table 4: MAS-HQ Generality on SimpleQA Task. Results show the framework’s applicability to
question-answering. The H-Score is adapted to exact match accuracy. The core trade-off between
performance and resource cost remains, with the winning agent in both cases investing more resources
for higher accuracy.

Q-Agent
Competition

Metrics

H-Score ↑ API Calls ↓ Tokens ↓ Reviews ↓ Time (s) ↓ Q-Score ↑ Winner

A: GPT-4o 0.3872 11.40k 0.89M 2745 12.54k 0.3832 ✓
B: GPT-4o 0.3837 11.16k 0.87M 2512 12.39k 0.3798

A: GPT-4o-mini 0.0132 11.09k 0.86M 2437 12.20k 0.0092 ✓
B: GPT-4o-mini 0.0116 11.03k 0.85M 2382 12.14k 0.0086

factuality score with a multi-faceted resource penalty, compelling a trade-off between accuracy and
efficiency. The following experiments demonstrate that winning in MAS-HQ requires navigating this
trade-off, revealing strategic nuances that static leaderboards miss.

As shown in our homogeneous and heterogeneous competitions (Table 1 and Table 2), victory
is not solely determined by achieving the highest H-Score. For instance, in the GPT-4o-mini
competition, the winning agent had a worse H-Score but triumphed through superior resource
efficiency. Conversely, the Qwen-Max winner prioritized a higher H-Score at the cost of more API
calls. These results directly validate our framework’s contribution: it successfully quantifies and
reveals the diverse strategic trade-offs agents must make under competitive, resource-constrained
conditions. Different LLMs enable distinct paths to victory, underscoring the depth of evaluation
MAS-HQ provides beyond simple factuality.

4.3 FRAMEWORK VALIDATION AND ABLATION STUDIES

To further validate the robustness, generality, and design choices of our framework, we conducted
a series of targeted ablation studies. These experiments demonstrate that MAS-HQ is a versatile
paradigm applicable beyond summarization and that its core components are not arbitrary but
necessary for inducing meaningful strategic competition.

Generality and Scalability. A core design principle of MAS-HQ is modularity. To demonstrate that
it is a general framework rather than a task-specific one, we adapted it to a challenging factoid question-
answering task using SimpleQA dataset (Wei et al., 2024). The adaptation was straightforward: we
replaced the Summarization/Review agents with task-specific QA agents and swapped the H-Score
metric for exact match accuracy using ChatGPT classifier following the setting in Wei et al. (2024).
As shown in Table 4, the framework successfully evaluated the accuracy-resource trade-off in this new
domain, confirming its versatility. Furthermore, we tested scalability by extending the competition to
three agents (Table 3). The framework scaled effectively, creating a more complex dynamic where
the winning agent again prevailed through superior resource management, proving MAS-HQ is a
robust paradigm for N-player scenarios.

Necessity of Core Competitive Mechanisms. The MAS-HQ game mechanics—the Review Agent,
reverse passage order, and the vision mechanism—were deliberately designed as a coherent system to
create a non-trivial competitive environment. Ablation studies confirm their necessity. As shown in

Table 5: Ablation on Passage Order and Vision Mechanism. The results show that both reverse
order processing and the vision mechanism are necessary to break symmetry and induce a dynamic,
non-identical competition.

Setup Passage Order Agent A Q-Score Agent B Q-Score Outcome

Our Paper’s Setup (Vision On) A: Fwd, B: Rev 0.5217 0.5132 Dynamic Competition
Ablation 1 (Vision On) A: Fwd, B: Fwd 0.5097 0.5097 Identical (No Asymmetry)
Ablation 2 (Vision Off) A: Fwd, B: Rev 0.5081 0.5081 Identical (No Interaction)
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Q-Agent B

Q-Agent A

ID:0    Continue -> End

With only 1 text remaining to 
complete the set of 99, it is 
strategic to process this last text to 
ensure all summaries are 
generated. My current average 
hallucination score of 0.9061 is 
slightly lower than my opponent's 
0.9205, but completing all texts 
promptly may provide an edge in 
overall performance. A review 
can be considered after if 
necessary, but resource usage is 
still within acceptable limits.

ID:11    Continue
With 12 texts remaining and a decent 
average hallucination score of 0.9052, 
continuing to process the next text 
is the best strategy to complete the 
summarization task efficiently. My 
score is slightly lower than the 
opponent's 0.9204, but I have more 
completed texts (87 vs 65). 
Reviewing now might consume 
additional resources without 
significant gain, as the worst score 
(0.8629) is not critically low.

ID:5    Review

The hallucination 
score of 0.7789 for 
text ID 5 is below the 
acceptable threshold 
of 0.85, and 
improving this score 
is critical to 
maintaining a high 
average factual 
accuracy.

ID:22    Review
The hallucination score of 
0.4433 for text ID 22 is 
significantly below the 
acceptable threshold of 
0.85, indicating a high 
level of factual 
inconsistency that needs 
improvement to 
maintain a competitive 
average score.

ID:100    Review -> End

The hallucination score of 0.8255 
for text ID 99 is below the 
acceptable threshold of 0.85. 
Reviewing this text to improve 
factual accuracy is necessary to 
maintain a high average score 
and stay competitive.

ID:97    Review 

The hallucination 
score of 0.8251 for 
text ID 96 is below 
the acceptable 
threshold of 0.85. 
Reviewing this text 
is necessary to 
improve factual 
accuracy and 
maintain a 
competitive average 
hallucination score 
against the opponent.

ID:75    Continue
I have 26 texts remaining to 
summarize, and my current average 
hallucination score (0.9220) is higher 
than my opponent's (0.9067). 
Continuing to process the next text 
will help me complete more 
summaries efficiently while 
maintaining a strong factual 
consistency. Reviewing can be 
considered later if needed, but 
completing the remaining texts takes 
priority to avoid falling behind on 
progress compared to my opponent 
who has only 6 texts left.

ID:64    Continue
I am behind my opponent 
in terms of completed 
texts (62 vs 79). My 
current average 
hallucination score 
(0.9248) is higher than my 
opponent's (0.9025), so I 
should focus on 
completing more texts to 
close the gap while 
maintaining efficiency. 
Reviewing can be 
considered later if 
necessary, as my worst 
score (0.8992) is still 
relatively high.

B Results
H Score: 0.9068
Policy API: 99
Summary API: 99
Review API: 63
Total API: 261
In Tokens: 111k
Out Tokens: 23k
Total Tokens: 
135k
Review: 63
Time: 1065.42

Q-Score: 0.5386

A Results
H Score: 0.9080
Policy API: 99
Summary API: 99
Review API: 68
Total API: 266
In Tokens: 121k
Out Tokens: 26k
Total Tokens: 
147k
Review: 68
Time: 1247.79

Q-Score: 0.5080

descending order

ascending order

Figure 4: Case study on a subset of MAS-HQ. Through vision mechanism, Q-Agent A and Q-Agent
B dynamically adjust their strategies based on their own H-Score, resource usage, and comparisons
with the opponent, deciding whether to continue generating summaries or perform reviews. In this
example, Q-Agent B wins due to its lower resource usage, despite having a slightly lower H-Score.

Figure 3, the Review Agent is critical for enabling the core trade-off between improving the H-Score
and incurring resource costs. The vision mechanism and reverse passage order are equally vital for
breaking strategic symmetry and creating the information asymmetry that drives dynamic interaction.
As Table 5 unequivocally show, removing either of these components causes the competition to
collapse. Without them, agents lack opponent intelligence or asymmetric starting conditions, leading
them to adopt identical strategies and achieve identical scores. This confirms these design choices are
not subjective customizations but are fundamental prerequisites for a testbed capable of measuring
emergent, adaptive strategies under adversarial pressure.

4.4 CASE STUDY

To provide a concrete illustration of emergent agent behaviors, we detail a case study on a 100-passage
subset of the game. As depicted in Figure 4, the agents dynamically adapt their strategies based on
their own progress, resource usage, and the partial information revealed about their opponent via
the vision mechanism. In this instance, Q-Agent B secures a strategic victory with a Q-Score of
0.5386 over Q-Agent A’s 0.5080. Notably, Agent B wins despite a marginally lower H-Score (0.9068
vs. 0.9080). Its victory is a direct result of superior resource efficiency, particularly lower token
consumption and a shorter runtime. This case perfectly exemplifies an intelligent agent balancing
the dual objectives of achieving high factual consistency and maintaining operational efficiency, a
nuanced capability that MAS-HQ is uniquely designed to reveal.

5 CONCLUSION

MAS-HQ is the first comprehensive game-theoretic framework for rigorously evaluating hallucina-
tion in MAS under strict resource limits and challenging adversarial settings. Using the Q-Agent
architecture, experiments demonstrated diverse winning strategies that effectively balance accuracy
and resource use, alongside adaptive behaviors emerging from competitive interactions. MAS-HQ
provides a fairer, more practical, and dynamic benchmarking approach beyond static leaderboards,
actively promoting the development of robust, efficient, and resilient MAS.
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A THE USE OF LLMS

In the article, we only used LLMs to polish our writing, and did not use them for any other assistance.

B DETAILED GAME-THEORETIC FORMALIZATION OF MAS-HQ

In this appendix, we provide a comprehensive formalization of the MAS-HQ framework. We
model the system as a two-player, general-sum, finite-horizon, Partially Observable Stochastic Game
(POSG), which is a standard and powerful model for multi-agent interactions under uncertainty. This
level of detail clarifies the precise mechanics and strategic complexities that the agents must navigate.

A POSG can be formally defined by the tuple G = ⟨N ,S, {Aj}j∈N , T ,R, {Ωj}j∈N ,O, H⟩. We
define each component in the context of MAS-HQ.

B.1 CORE COMPONENTS OF THE MAS-HQ GAME

Players (N ): The set of players is N = {A,B}, representing the two competing Q-Agents.

State Space (S): The global state space S captures the complete, objective state of the game at any
time step. A state si ∈ S at step i is a composite tuple:

si = (sAi , s
B
i , Ii)

where Ii tracks the current passage index for each agent, and sji is the private state of agent j, invisible
to its opponent. This private state is itself a detailed record of performance and resource expenditure:

sji = ⟨{H
j
k}

N
k=1, {C

j
k}

N
k=1,p

j
i , ρ

j
i , t

j
i ⟩

• {Hj
k}Nk=1 is the vector of H-Scores for all passages, with entries for unprocessed passages

set to a null value.
• {Cj

k}Nk=1 is the vector of completion statuses for all passages (e.g., not started, summarized,
reviewed).

• pj
i is the vector of cumulative resource penalties incurred up to step i, including token

counts, API calls, etc.
• ρji is the number of remaining review cycles available to agent j.

• tji is the cumulative runtime for agent j.

Action Space (A): The joint action space is A = AA ×AB . At any step i, each agent j selects an
action aji ∈ Aj = {continue,reviewk,end}, where k ∈ {1, ..., N} specifies which passage to
review. The Policy Agent’s decision maps to one of these grounded actions.

Transition Function (T ): The transition function T : S × A → ∆(S) defines the dynamics of
the game, specifying the probability P (si+1|si,ai) of transitioning to state si+1 given the current
state si and joint action ai = (aAi , a

B
i ). Most transitions are deterministic (e.g., choosing ‘continue‘

increments the passage index). However, stochasticity arises from the ‘review‘ action, where the
resulting H-Scorejk,new is a random variable conditioned on the Review Agent’s capabilities and the
passage complexity.

Reward Function (R): The game has a terminal reward structure. For any non-terminal step
i < H , the immediate reward for each player is zero. The reward functionR : S → R|N | is defined
as:

Rj(si) =

{
0 if i < H
1
N

∑N
k=1

(
α ·Hj

k − β · P j
k (p

j
H ,p−j

H )
)

if i = H

where H is the horizon (total number of passages, N ), and the penalty P j
k is computed based on the

final resource vectors pj
H and p−j

H of both agents, reflecting the normalization step described in the
main text.
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Observation Spaces (Ω) and Observation Function (O): This is the core of the imperfect
information structure. Each agent j has a private observation space Ωj . The observation function
O : S ×A → ∆(ΩA × ΩB) gives the probability P (oi+1|si+1,ai) of the agents observing a joint
observation oi+1 = (oAi+1, o

B
i+1) after a transition. An observation oji ∈ Ωj is defined as:

oji = (sji , ω
j
i )

• sji is the agent’s own private state, which it always observes.

• ωj
i is the signal received from the opponent. The observation function is designed to

implement the "vision mechanism":

ωj
i =

{
ϕ(s−j

i ) if a−j
i−1 ∈ {reviewk}Nk=1

∅ otherwise

where ϕ(s−j
i ) is a function that extracts a public snapshot of the opponent’s state (e.g., their

worst H-Score and total tokens used).

B.2 BELIEFS, POLICIES, AND EQUILIBRIUM

Histories and Belief States: Since each agent cannot observe the full state si, it must maintain a
belief over the possible states of the opponent. An agent j’s history is a sequence of its past actions
and observations, hj

i = (aj0, o
j
1, . . . , a

j
i−1, o

j
i ). A belief state bji ∈ Bj = ∆(S) is a probability

distribution over the global state space S , conditioned on the agent’s private history hj
i . The belief is

updated recursively using the Bayes filter:

bji (s
′) = P (si = s′|hj

i ) =
P (oji |s′, a

j
i−1, b

j
i−1)

∑
s∈S P (s′|s, aji−1, π

−j∗)bji−1(s)

P (oji |a
j
i−1, b

j
i−1)

where the update depends on the observation function, the transition function, and a model of the
opponent’s policy π−j∗.

Policies and Value Functions: A policy πj : Bj → ∆(Aj) maps an agent’s belief state to a
distribution over its actions. A rational agent seeks a policy that maximizes its expected terminal
utility. This can be solved via dynamic programming over the belief space. The value of a belief state
for agent j at step i under a policy profile (πj , π−j) is given by the Bellman equation:

V j
i (b) = max

aj∈Aj

(
Rj(b, aj) +

∑
oj∈Ωj

P (oj |b, aj , π−j)V j
i+1(τ(b, a

j , oj , π−j))

)
where Rj(b, aj) =

∑
s∈S b(s)Rj(s, aj) is the expected immediate reward, and τ(·) is the belief

update function.

Perfect Bayesian Equilibrium (PBE): The central solution concept for this game is the PBE. A
PBE is a strategy profile (πA∗, πB∗) and a system of beliefs µ∗ such that:

1. Sequential Rationality: For each player j, the policy πj∗ must be a best response to π−j∗

at every possible belief state b ∈ Bj that can be reached under the equilibrium strategies.
That is, πj∗ must satisfy the Bellman optimality equation above.

2. Belief Consistency: The beliefs µ∗ must be derived from the strategy profile (πA∗, πB∗)
using Bayesian updating, wherever possible.

The strategic decision to ‘review‘ is thus a comparison between the expected values Qj(b,review)
and Qj(b,continue). The ‘review‘ action may increase the immediate components of the final
utility (by improving an H-Score) but incurs two costs: (1) a direct resource penalty captured
by T and R, and (2) a strategic information cost, as revealing information through O allows the
opponent to form a more accurate belief b−j , leading to a more effective counter-strategy π−j∗,
thereby reducing player j’s future expected utility. MAS-HQ is designed to create an environment
where these complex, interdependent calculations are necessary for victory, thus providing a deep
and holistic benchmark of strategic agent intelligence.
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C MORE ABLATION STUDIES

Influence of Hyperparameters T and R Within the Q-Agent framework, the threshold for review
guidance T and the maximum number of review times R are critical hyperparameters. R limits the
review investment per passage, encouraging broader resource allocation. T influences the Policy
Agent’s decision to review by providing a recommendation if a passage’s H-Score falls below this
threshold (and R is not exceeded), aiming to maintain a baseline level of factual consistency.

Threshold T : We fixed R = 3 and varied T ∈ {0.8, 0.85, 0.9}. As shown in Table 6, increasing T
generally leads to higher resource consumption. As T rises, more passages are likely to fall below the
threshold, triggering more review recommendations and, consequently, actual reviews by the Policy
Agent. This was observed as an increase in total resource usage for both Q-Agent A and B. But a
higher T does not automatically guarantee a significantly improved H-Score or final Q-Score. The
experiments showed that while resource consumption increased with T , the H-Score did not exhibit
a corresponding significant rise and, in some instances, slightly decreased. This led to a marginal
decrease in the final Q-Score. This phenomenon could be attributed to two factors: (i) the Policy
Agent may still opt against reviewing despite the recommendation if its internal logic deems the
current H-Score sufficient relative to costs, or (ii) excessive reviews on already reasonably good
summaries might yield diminishing returns on H-Score improvement.

Maximum Review Times R: We fixed T = 0.85 and varied R ∈ {2, 3, 4}. As shown in Table 7,
increasing R beyond a certain point (R = 3 in our tests) showed minimal impact on H-Score and
overall resource consumption; token consumption even saw a slight decrease. The final Q-Score
was highest when R = 3, suggesting that simply allowing more reviews per article does not compel
Policy Agent to utilize them if it deems further reviews unnecessary or inefficient. A limit of R = 3
appeared sufficient for the Q-Agents to achieve a good balance, and further increasing R did not lead
to proportionally more reviews or better H-Scores, thus avoiding unproductive resource expenditure.

Table 6: Effect of Hallucination Threshold (T ). Results evaluate Q-Agent (built with GPT-4o-mini)
performance and resource consumption with a fixed number of allowed reviews (R = 3) and varying
T ∈ {0.8, 0.85, 0.9}. As T increases, resource consumption rises but leads to a slight decrease in
H-Score and overall Q-Score.

Q-Agent
Competition

Metrics

H-Score ↑ API Call ↓ Tokens ↓ Reviews ↓ Time ↓ Q-Score ↑ Winner

A: R = 3, T = 0.8 0.9110 2401 1.33M 785 7.03k 0.5241 ✓

B: R = 3, T = 0.8 0.9141 2422 1.41M 806 7.33k 0.5141

A: R = 3, T = 0.85 0.9103 2417 1.36M 791 8.83k 0.5217 ✓

B: R = 3, T = 0.85 0.9132 2438 1.44M 812 8.99k 0.5132

A: R = 3, T = 0.9 0.9074 2427 1.39M 807 9.10k 0.5132 ✓

B: R = 3, T = 0.9 0.9113 2429 1.46M 809 9.20k 0.5113

Table 7: Effect of Maximum Allowed Reviews (R). Results evaluate Q-Agent (built with GPT-4o-
mini) performance and resource consumption with a fixed hallucination score threshold (T = 0.85)
and varying R ∈ {2, 3, 4}. Increasing R beyond 3 does not significantly alter H-Score or resource
consumption, with the highest overall Q-Score observed at R = 3.

Q-Agent
Competition

Metrics

H-Score ↑ API Call ↓ Tokens ↓ Reviews ↓ Time ↓ Q-Score ↑ Winner

A: T = 0.85, R = 2 0.9074 2414 1.39M 798 6.83k 0.5139 ✓

B: T = 0.85, R = 2 0.9089 2423 1.24M 807 7.04k 0.5089

A: T = 0.85, R = 3 0.9103 2417 1.36M 791 8.83k 0.5217 ✓

B: T = 0.85, R = 3 0.9132 2438 1.45M 812 8.99k 0.5132

A: T = 0.85, R = 4 0.9101 2417 1.36M 799 8.15k 0.5197 ✓

B: T = 0.85, R = 4 0.9112 2426 1.45M 808 8.32k 0.5112
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Statistical Robustness. To address the concern regarding the robustness of our findings, we re-
ran the GPT-4o-mini experiment from Table 1 for 100 independent trials. The results, reported in
Table 8 with means and standard deviations, confirm the stability and statistical significance of our
conclusions. The extremely low standard deviations across all metrics indicate that the strategic
trade-offs captured by our framework are highly consistent. The outcome—Q-Agent A winning via
resource efficiency—is reproducible, validating that our single-run experiments reliably represent the
agents’ behaviors.

Table 8: Statistical Robustness Analysis. Mean and standard deviation over 100 independent trials
of the GPT-4o-mini competition. The low variance across all metrics confirms the stability and
reproducibility of our findings.

Q-Agent
Competition

Metrics (Mean ± Std. Dev.)

H-Score ↑ API Calls ↓ Tokens ↓ Reviews ↓ Time (s) ↓ Q-Score ↑

A: GPT-4o-mini 0.9102±.0009 2417±5 1.36M±.001M 791±5 8.83k±.05k 0.5216±.0009
B: GPT-4o-mini 0.9132±.0009 2438±5 1.44M±.001M 812±5 8.98k±.05k 0.5131±.0009

D PROMPTS AND OTHER RESULTS

In the appendix, we first present the prompt composition of each module in the Q-Agent. Table 9
shows the detailed results of Table 1 and Table 2 in the main text, with the addition of the changes
in H-Score before and after review, and input tokens consumption and output tokens consumption;
Table 10 presents the detailed results of Tables 6 and Table 7 in the main text, also including the
changes in H-Score before and after review.

User Prompt for Q-Agent in MAS-HQ

# Policy Agent
You are part of a Multi-Agent System engaged in a summarization competition against several opponents,
where each agent generates multiple candidate summary texts based on the original news article.
The objective is to produce summaries with the lowest possible hallucination (i.e., highest factual con-
sistency, reflected in higher hallucination scores) while minimizing resource usage—including API calls,
token consumption, time, and review attempts, all of which are penalized when excessive.
Your ultimate goal is to outperform your competitors by achieving the best balance between factual
accuracy and resource efficiency, and to emerge as the final winner.
Your role is to make strategic decisions about what to do next.
Here is your current status:
- MAS ID: {mas_id}
- Completed texts: {completed_texts}/{total_texts}
- Remaining texts: {remaining_texts}
- Current token usage: {token_usage} tokens
- API calls made: {api_calls}
- Review calls made: {review_calls}
- Current average hallucination score: {avg_score}
- Time elapsed: {time_elapsed:.2f} seconds
You need to decide whether to:
- CONTINUE: Process the next text and generate a new summary
- REVIEW: Revisit and improve the text with the highest hallucination rate (lower hallucination score
means more hallucination)
- END: Stop processing if all texts have been summarized and there’s no need for review
The current text summarization task is at ID {current_id} out of {max_id} texts.
The text with the highest hallucination rate so far is ID {worst_id}, with hallucination score: {worst_score},
where 0 means most hallucinated and 1 means least hallucinated.
{opponent_info}
IMPORTANT: You must output your decision in the following JSON format:

‘‘‘
{
"choice": "continue" or "review" or "end",
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"question_id": current question ID,
"previous_id": ID of the text with highest hallucination rate
}
‘‘‘

# Summary Agent
You are a chat bot answering questions using data. You must stick to the answers provided solely by the
text in the passage provided.
You are asked the question ’Provide a concise summary of the following passage, covering the core pieces
of information described.’
{passage}
IMPORTANT: You must output your response in the following JSON format:

‘‘‘
{
"summary": "your summary here"
}
‘‘‘

# Review Agent
You are a chat bot answering questions using data. You must stick to the answers provided solely by the
text in the passage provided.
You previously summarized the following passage, but your summary contained hallucinations (halluci-
nation score: {score}, where 0 means most hallucinated and 1 means least hallucinated), which means
factual inconsistencies occurred.
Original passage: {passage}
Your previous summary: {previous_summary}
Please provide a new, more accurate summary that strictly adheres to the information in the passage. Focus
on improving factual consistency and removing any information not present in the original text.
IMPORTANT: You must output your response in the following JSON format:

‘‘‘
{
"summary": "your revised summary here"
}
‘‘‘

Table 9: The detailed data in Table 1 and Table 2 include H-Score before the review (to the left
of the arrow) and after the review (to the right of the arrow), as well as the input tokens and output
tokens.

Q-Agent
Competition

Metrics

H-Score ↑ API Call ↓ In Tokens ↓ Out Tokens ↓ Reviews ↓ Time ↓ Q-Score ↑

A: GPT-4o-mini 0.8606→ 0.9103 2417 1193792 166277 791 8832.44 0.8715
B: GPT-4o-mini 0.8673→ 0.9132 2438 1270282 178959 812 8987.41 0.5132

A: Qwen-Max 0.8689→ 0.9030 2304 1230775 254575 682 13776.31 0.5101
B: Qwen-Max 0.8658→ 0.8994 2264 1250367 270670 642 14453.96 0.5070

A: Deepseek-V3 0.8489→ 0.8860 2292 1219960 202441 666 12267.18 0.4860
B: Deepseek-V3 0.8504→ 0.8894 2233 1185813 198797 607 12068.32 0.5051

A: Gemini-2.0-flash 0.8835→ 0.9026 2262 1173195 394719 642 20295.29 0.5026
B: Gemini-2.0-flash 0.8794→ 0.9016 2157 1150648 379961 537 19825.70 0.5273

A: Grok-3-Beta 0.8753→ 0.9070 2376 1180401 195116 750 10719.56 0.5070
B: Grok-3-Beta 0.8743→ 0.9049 2253 1160176 188357 627 10150.14 0.5337

A: GPT-4o-mini 0.8613→ 0.9105 2401 1177136 165320 785 6543.14 0.5401
B: Grok-3-Beta 0.8752→ 0.9035 2177 1121979 178422 561 9294.05 0.5445

A: Grok-3-Beta 0.8730→ 0.9036 2312 1161825 187466 696 10082.70 0.5278
B: GPT-4o-mini 0.8566→ 0.9092 2422 1256067 178474 806 6783.37 0.5419

Then, we present the pseudocode implemented by Q-Agent on MAS-HQ in Algorithm 1.
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Input: Passages Ti, i = 1 to N ; Q-Agents A and B; Hallucination scoring model
Output: Global scores QA, QB for both agents
for each agent A ∈ {Agent A,Agent B} do

Initialize self-state V self
1 ;

for each article Ti in order determined by agent (A: i = 1..N , B: i = N..1) do
// Policy decision with optional opponent state

if A has received V opponent
i then

choicei ← PA(Ti, V
self
i , V opponent

i );
else

choicei ← PA(Ti, V
self
i );

end
if choicei = continue then

Generate summary Si ← SA(Ti);
else if choicei = review then

Identify worst summary Sw based on hallucination score;
Generate revised summary Sw ← RA(Tw, Sw);
// Referee exposes partial state to opponent

Referee observes V self
i and shares with opponent as V opponent

i+1 ;
else if choicei = end then

Terminate processing;
break;

end
// Evaluation step
Compute hallucination score Hi ← EA(Ti, Si);
Track resource usage: tokens, time, reviews→ Pi;
// Update self-state

Update V self
i+1 with current metrics;

end
// Compute final global score

QA = 1
N

∑N
i=1 (α ·Hi − β · Pi);

end
return QA, QB

Algorithm 1: MAS-HQ multi-agent evaluation and competition. Each agent sequentially summa-
rizes passages while minimizing hallucination and managing resources. Review actions reveal
partial state to opponents, introducing adversarial strategy.
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Table 10: The detailed data in Table 6 and Table 7 include H-Score before the review (to the left
of the arrow) and after the review (to the right of the arrow), as well as the input tokens and output
tokens.

Q-Agent
Competition

Metrics

H-Score ↑ API Call ↓ In Tokens ↓ Out Tokens ↓ Reviews ↓ Time ↓ Q-Score ↑

A: R = 3, T = 0.8 0.8653→ 0.9110 2401 1173893 164656 785 7025.22 0.5241
B: R = 3, T = 0.8 0.8626→ 0.9141 2422 1239197 175090 806 7334.55 0.5141

A: R = 3, T = 0.85 0.8606→ 0.9103 2417 1193792 166277 791 8832.44 0.5217
B: R = 3, T = 0.85 0.8673→ 0.9132 2438 1270282 178959 812 8987.41 0.5132

A: R = 3, T = 0.9 0.8621→ 0.9074 2427 1221860 169344 807 9101.14 0.5132
B: R = 3, T = 0.9 0.8554→ 0.9113 2429 1275735 179762 809 9201.04 0.5113

A: R = 2, T = 0.85 0.8598→ 0.9074 2414 1221271 174944 798 6836.23 0.5139
B: R = 2, T = 0.85 0.8588→ 0.9089 2423 1248994 178067 807 7043.92 0.5089

A: R = 3, T = 0.85 0.8606→ 0.9103 2417 1193792 166277 791 8832.44 0.5217
B: R = 3, T = 0.85 0.8673→ 0.9132 2438 1270282 178959 812 8987.41 0.5132

A: R = 4, T = 0.85 0.8620→ 0.9101 2417 1193519 162816 799 8153.87 0.5197
B: R = 4, T = 0.85 0.8599→ 0.9112 2426 1268954 176334 808 8321.54 0.5112
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