
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

Stable-Transformer:
TOWARDS A STABLE TRANSFORMER TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

The scale of parameters in Transformers has expanded dramatically—from
hundreds of millions to several trillion. A key challenge when scaling the model
to trillions is the training instability. Although many practical tricks, such as
learning rate warmup, query-key normalization and better weight initializa-
tion, have been introduced to mitigate the training instability, a rigorous math-
ematical understanding of why such instabilities happen and why the above-
mentioned tricks work well is still unclear. In this paper, we give a theoret-
ical analysis of the initialization, normalization and attention mechanism in
Transformers, and present a set of stabilized designs of the initialization, nor-
malization and attention mechanism, which are thus termed as StableInit, Sta-
bleNorm and StableAtten, individually. In experiments, we demonstrate that
each of our stabilized designs, i.e., StableInit, StableNorm and StableAtten, ex-
hibits better stability. Furthermore, by putting the stabilized designs together,
we propose a stabilized Transformer, termed Stable-Transformer, and show in
experiments on large model (1B parameters) and deep model (200 layers) that
our proposed Stable-Transformer achieves a more stable training process.

“My work always tried to unite the truth with the beautiful, but when I had to choose one or
the other, I usually chose the beautiful.”

— Hermann Weyl

1 INTRODUCTION

The scale of parameters in Transformers (Vaswani et al., 2017; Radford et al., 2018; 2019; Brown
et al., 2020; Touvron et al., 2023; Chowdhery et al., 2023) has expanded dramatically—from hun-
dreds of millions to several trillion—parallel to significant advancements of hardware capabilities
in the field of deep learning (Goodfellow et al., 2016; LeCun et al., 2015; Bengio et al., 2021). This
exponential growth in model size has been facilitated by equally significant strides in computa-
tional power, enabling deeper and more complex network architectures. As these models have
grown, they have set new benchmarks across a myriad of tasks in various fields such as natural
language processing (Dubey et al., 2024; Achiam et al., 2023), computer vision (Ravi et al., 2024),
and generation (Peebles & Xie, 2023).

Despite of these significant achievements, training larger models still suffers from an instabil-
ity issue, which is often characterized as the difficulties in convergence, the sensitivity to initial
conditions, and the necessity to finely tuned optimization strategies. Since that the instability
in training process encumbers the deployment and real-world applicability of the sophisticated
models, it is crucial to have a mathematical understanding of why such instability happens and
it is urgent to invent stabilized design of the architecture or training strategies.

To gain a deeper understanding of the instability in training Transformers, it is essential to in-
vestigate the training dynamics of Transformers. To date, there are various studies devoted to
the training process of Transformers from different perspectives, including normalization (Wang
et al., 2019; Xiong et al., 2020; Liu et al., 2020; Miyato et al., 2018; Wang et al., 2022), attention
mechanisms (Henry et al., 2020; Wortsman et al., 2024), model structures (Bachlechner et al.,
2021; Qi et al., 2023b), and initialization strategies (Glorot & Bengio, 2010; He et al., 2015; Qi et al.,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

0k 100k 200k 300k 400k 500k 600k
Step

2.50

2.60

2.70

2.80

2.90

3.00

3.10

3.20

Va
l L

os
s

OpenWebText Val Loss
GPT2-S (Baseline)
GPT2-M (Baseline)
StableGPT-S
StableGPT-M

(a) StableGPT versus GPT2.

0 50 100 150 200 250 300
Epoch

0.0

20.0

40.0

60.0

80.0

Ac
cu

ra
cy

ImageNet Validation Accuracy

ViT-L (150epochs)
StableViT-L (150epochs)
ViT-L (300epochs)
StableViT-L (300epochs)

(b) StableViT-Large versus ViT-Large.

FIGURE 1: Except for being more stable during the training, StableGPT (left) also achieves a bet-
ter validation loss (2.827 for StableGPT-S (124M) versus 2.848 for GPT2-S (124M), and 2.569 for
StableGPT-M (350M) versus 2.579 for GPT2-M (350M)), and StableViT-L (right) achieves a better
recognition accuracy (82.4% versus 81.3%) compared to ViT-L under the settings of training 150
or 300 epochs. StableGPT-S can get an even better result (validation loss (2.819) with a higher
learning rate (see Appendix I.), but here for fairness, we keep all the parameters of the optimizer
in training are the same as the baseline.

2023b). From the perspective of normalization, it has shown that normalization play a critical
role in stabilizing the training of Transformer, e.g., Xiong et al. (2020) demonstrated that Pre-
LayerNorm (Pre-LN) offers greater stability compared to Post-LayerNorm (Post-LN), Wang et al.
(2022) proposed a DeepNorm and a depth-specific initialization to stabilize Post-LN. From the
perspective of attention, Kim et al. (2021) showed that the standard dot-product attention is not
Lipschitz continuous and thus introduced an alternative L2 attention to address the continuous
issue, QKNorm (Henry et al., 2020; Dehghani et al., 2023) proposed to normalize the query and
key matrices in attention mechanisms to improve the stability of the attention module. From the
perspective of initialization, Zhang et al. (2019) introduced a fixed-update initialization (Fixup)
to prevent gradient exploding or vanishing at the start of training. This method rescales a stan-
dard initialization and enables stable training of residual networks without the need for normal-
ization. Each of these approaches contributes to a better understanding and improvement of
Transformer training stability, paving the way for more robust and efficient models. Bachlech-
ner et al. (2021) demonstrated that a simple architectural modification, i.e., gating each residual
shortcut with a learnable zero-initialized parameter (ReZero), could significantly stabilize the
training of Transformer. Using ReZero, they successfully trained Transformers with up to 120
layers. More recently, Qi et al. (2023b) introduced a novel Transformer architecture, called Lips-
Former, which is designed to be Lipschitz continuous (i.e., the gradients are bounded) and has
been shown more stable during the training. The Lipschitz continuity allows for certain theoret-
ical guarantees about the model’s behavior, which is important in reliability or interpretability.

This paper attempts to provide a theoretical understanding of the components that cause train-
ing instability of Transformer. To be specific, our main contributions are highlighted as follows.

• We give a theoretical analysis of the Xavier initialization from the perspective of random matrix
theory, showing that the Lipschitz constant of the linear projection associated to the Xavier
initialization is bounded by 2. Instead, we present a more stable method for initialization,
termed StableInit (defined in Eq. 1), for which the Lipschitz constant is bounded by 1.

• We dig into the issue in back-propagation of the normalization by analyzing the Jacobian ma-
trix of the normalization layer and find that the factor

p
d will affect the gradient flow signifi-

cantly. As a remedy, we derive a more stable design for the normalization, called StableNorm
(defined in Eq. 2), in which dα with α ∈ [0,0.5] is adopted to replace

p
d in the normalization

layer, and verify that using a smaller α (e.g., 0.475, rather than 0.5) will yield smaller gradients
and thus lead to more stable training.

• We present a new stable form of attention, named StableAtten (defined in Eq. 3), which is built
on our StableNorm and has the advantage that the logit of the attention is not directly related
to the hidden dimension d and thus is robust to the increase of the model scale.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

• By putting together the StableInit, StableNorm and StableAtten, we have a stabilized design for
Transformer, termed Stable-Transformer. In experiments, for the single-direction generative
model i.e., GPT (Radford et al., 2018; 2019; Brown et al., 2020), we compile a StableGPT ; for
a bi-direction attention model i.e., ViT (Dosovitskiy et al., 2020), we compile a StableViT. We
evaluate StableGPT and StableViT extensively on large model (1B parameters) and deep model
(200 layers) that our proposed Stable-Transformer achieves a more stable training process.

The paper is organized as follows. We first introduce our experimental setups, and then present
our stabilized design of the modules. For each module, we give our mathematical analysis at first
and then show empirical evaluation. There is no an independent section for experiments.

2 EXPERIMENTAL METHODOLOGY

We evaluate our stabilized components on ViT (Dosovitskiy et al., 2020) and GPT (Radford et al.,
2018; 2019; Brown et al., 2020). For general training setting, by default, we use the optimizer
Adam Kingma & Ba (2014) with β1 = 0.9, β2 = 0.95 and ϵ = 10−8, and the gradient clipping is set
to 1. When using weight decay, we follow AdamW (Loshchilov & Hutter, 2019), for which only the
weight matrix is enforced to the weight matrix but not the 1-d vector (e.g., γ and β in LayerNorm)
and the scalar. We train all models on GPUs A800 in bfloat16 precision using PyTorch (Paszke
et al., 2019). We use a cosine-decay (Loshchilov & Hutter, 2016) schedule from a preset maximum
learning rate to a preset minimum learning rate.

Experimental setups for ViT (Dosovitskiy et al., 2020) and our StableViT. We use timm Wight-
man (2019) 1. For ViT model, we use two different scales: ViT-Large (ViT-G) and ViT-Huge (ViT-
H). The detailed information about these models are summarized in Table 1. For data augmen-
tation, we use the same data augmentation as Adan (Xie et al., 2024). Thus our results are aligned
with the results reported in (Xie et al., 2024).

Experimental setups for GPT2 and our StableGPT. We use nanoGPT2 (Karpathy, 2022), which
is a simple and fast repository for training and fine-tuning the medium-sized GPTs. The GPT2
is implemented in four versions: GPT2-Small (GPT2-S), GPT2-Medium (GPT2-M), GPT2-Large
(GPT2-L) and GPT2-XL. Due to time and computational costs, we only use GPT2-Small (GPT2-
S), GPT2-Medium (GPT2-M).

We align our experiments with the original repository, and use the exactly same training setting
as nanoGPT. Detailed parameters is listed in Table 3. We reproduce the baseline GPT-2 124M
model with the same setup as in nanoGPT, for which the training loss is reduced to 2.848. The
learning curve of the loss matches to the original nanoGPT.

It is worth to note that when evaluating a module (or method), we keep all the same but the
specific module (or method) for fair comparison. To be more specific, when evaluating each of
StableInit, StableNorm and StableAtten, we only replace the corresponding module (or method).

3 STABLE-TRANSFORMER AND ITS THEORETICAL JUSTIFICATIONS

In this section, we will present our stabilized initialization method StableInit, stabilized normal-
ization module StableNorm, and stabilized attention mechanism StableAtten, individually. More-
over, we will combine them together to build our Stable-Transformer. For each method or mod-
ule, we start with a justification for the instability issue in training and then provide our stabilized
designs with both theoretical justification and empirical evaluation.

3.1 STABLE INITIALIZATION

The Xavier initialization is a remarkable technique that significantly enhances the training of
neural networks by initializing the weights in a way that maintains the variance of activation
across layers, to mitigate the vanishing or exploding gradient problem. In Glorot & Bengio
(2010), the Xavier initialization is sorted to two types, i.e., Gaussian distribution and uniform

1https://github.com/huggingface/pytorch-image-models/tree/main
2https://github.com/karpathy/nanoGPT

3

https://github.com/huggingface/pytorch-image-models/tree/main
https://github.com/karpathy/nanoGPT

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

distribution. The Xavier initialization for W ∈Rni n×nout with Gaussian distribution is defined as:
Wi , j

i.i.d.∼N
(
0, 2

ni n+nout

)
, where ni n and nout denote the dimensions of the input and the output.

It is widely used in training modern neural networks and is usually as the default initialization
method. Therefore, in the following we will only consider the Xavier initialization with Gaussian
distribution when mentioning it.

Now we will analyze the property of the Xavier initialization with Gaussian distribution. To begin
with, we would like to introduce a theorem from Random Matrix Theory (RMT) (Wigner, 1955;
Tao, 2012; Edelman & Rao, 2005). From RMT, we have the theorem about the singular values of a
Gaussian random matrix.

Theorem 1 (Singular Value Bounds of a Gaussian Random Matrix)
Let W ∈Rm×n have i.i.d. standard Gaussian entries, i.e., Wi , j

iid∼N (0,1). For every m ≥ n,
we have the following inequality

p
m −p

n ≤ E[σmin(W)] ≤ E[σmax(W)] ≤p
m +p

n,

where σmin(W) and σmax(W) denote the minimal and maximal singular values, respec-
tively.

We provide the proof of Theorem 1 via theory from high-dimensional probability (Vershynin,
2010) in the appendix B. Theorem 1 presents that a random matrix initialized by standard Gaus-
sian distributionN (0,1), the expectations of its largest and smallest singular values are bounded.
The expectation of its largest singular value is no more than

p
m +p

n, and the expectation of its
smallest singular value is no less than

p
m −p

n.

According to Theorem 1, and the definition of Xavier initialization, we have the following lemma.

Lemma 1 (Upper Bound of Weight Matrix Norm of Xavier Initialization)
Let W ∈ Rni n×nout have i.i.d. standard Gaussian entries, i.e., Wi , j

iid∼N (0, 2
ni n+nout

). we
have the following inequality for its maximum singular value, E[σmax(W)] ≤ 2.

We provide a proof of Lemma 1 in Appendix E.

Remark 1. Back to the year 2010 when we still do not have ResNet (He et al., 2016) and Batch
Normalization (Ioffe & Szegedy, 2015), the Xavier initialization is a remarkable technique that
enables the researchers to train a network more than 10 layers. Suppose that we have a MLP with
10 linear layers with ReLU (Nair & Hinton, 2010) between two nearby linear layers, with a softmax
in the last linear layer, and using a cross-entropy loss, then the expectation of the largest singular
value of each layer is up to 2 and it means that the Lipschitz constant (Fazlyab et al., 2019; Kim
et al., 2021; Qi et al., 2023a;b) for each linear layer is 2. Therefore, we can compute the Lipschitz
constant of the whole network (assuming that the softmax and the cross-entropy has Lipschitz
constant 1) as 210 = 1024, which is under control.

Although Xavier initialization is a popular initialization method, it still has some issues. One main
disadvantage in Xavier initialization is that it is sensitive to the increase of the network depth. If the
number of layers is 50, then the Lipschitz cosntant of the above-mentioned whole network will
be extremely huge. To fix this issue, we present a simple and 1-Lipschitz initialization strategy,
which is termed StableInit. Precisely, we define it as follows:

Wi , j
iid∼N

(
0,

(
1p

ni n +p
nout

)2)
, (1)

where ni n and nout are the dimensions of the input and output of the module, respectively. It
is easy to see that with our StableInit initialization, we have that E[σmax(W)] ≤ 1. Similar to the
Xavier initialization, we can also consider to multiply a gain on the weight. The gain can be set to
be a smaller value when we use deeper networks. By default, we use 1.0 as the gain.

For clarity, we summarize the following two properties of our StableInit initialization.

• 1-Lipschitz constant: with our StableInit, a linear projection module has a Lipschitz constant
with expectation 1, other than 2 in the original Xavier initialization.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

0k 50k 100k 150k 200k
Step

3.00

4.00

5.00

6.00

7.00

8.00

Lo
ss

OpenWebText Train Loss
GPT2-S Xavier
GPT2-S StableInit

(a) GPT

0k 50k 100k 150k 200k
Step

5.0

5.5

6.0

6.5

7.0

7.5

Lo
ss

ImageNet Training Loss
ViT-L Xavier
ViT-L StableInit

(b) ViT

FIGURE 2: Evaluation of StableInit and comparing to the original Xavier initialization. In the
legend, “GPT2-S” denotes GPT2-Small. To compare the stability, we do not use learning rate
warmup in the evaluation.

• Less sensitive to depth increase: our StableInit is less sensitive to the depth increase compared
to the the original initialization. For a MLP with 10 or 100 linear layers with a ReLU (Nair &
Hinton, 2010) between two linear layers, the Lipschitz constant is 1 under our StableInit.

3.1.1 EVALUATION FOR StableInit

These properties of our stabilized Xavier initialization will lead to a more stable training com-
pared to the original Xavier initialization because it has a proper Lipschitz constant.

We can see that from Figure 2 StableInit obtains a more stable training property. With StableInit,
the model can be trained longer until diverge. Theoretically, StableInit will be more robust than
Xavier initialization for larger model. In experiments, the learning curve of ViT is more jitter
because its supervision signal is more sparse, a batch of tokens of GPT is 0.5M tokens, each token
will provide a signal, but the batch size 1024 in ViT only provides 1024 supervision signals.

3.2 STABLE NORMALIZATION

LayerNorm (Ba et al., 2016) is a technique widely used in deep learning to stabilize and acceler-
ate the training of neural networks. The original definition of LayerNorm is LN(x) = γ ⊙z+β,
where z = y

std(y) and y = (
I − 1

d 11⊤)
x. After adding a smoothing factor, it can also be written

as, LN(x) = γ ⊙
p

dy√
∥y∥2

2+ϵ
+β, and y = (

I − 1
d 11

⊤)
x, where ϵ is the smoothing factor, d is the

feature dimension of x, γ and β are two learnable Rd vectors, γ and β are initialized to 1 and
0. Most recently, some new large language models (Touvron et al., 2023; Chowdhery et al., 2023;
Team, 2023) uses RMSNorm (Zhang & Sennrich, 2019) to replace LayerNorm, where RMSNorm

is defined as: RMSN(x) =γ⊙
p

dx√
∥x∥2

2+ϵ
. Compared to LayerNorm, RMSNorm does not use the bias

term and does not conduct the centering.

The Jacobian matrices of LayerNorm and RMSNorm with respect to x are calculated as follows:

∂LN(x)

∂x
= ∂y

∂x

∂LN(x)

∂y
=

p
d√

∥y∥2
2 +ϵ

(
I − 1

d
11⊤

)(
I − yy⊤

∥y∥2
2 +ϵ

)
diag(γ),

∂RMSN(x)

∂x
=

p
d√

∥x∥2
2 +ϵ

(
I − xx⊤

∥x∥2
2 +ϵ

)
diag(γ).

Let us explain each term a little bit individually. It is easy to prove that the maximal singular value

of
(
I − 1

d 11
⊤)

and

(
I − yy⊤

∥y∥2
2+ϵ

)
are both 1. We give a proof ofσmax

(
I − yy⊤

∥y∥2
2+ϵ

)
≤ 1 in Appendix C.

Note that σmax
(
I − 1

d 11
⊤)≤ 1 is a special case of the former.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

To analyze and compare
p

d√
∥y∥2

2+ϵ
in ∂LN(x)

∂x and
p

d√
∥x∥2

2+ϵ
in ∂RMSN(x)

∂x , we have the following in-

equality for the centering transformation.

Theorem 2 (Centering Transformation Inequality)
Let y = (

I − 1
d 11

⊤)
x, we have the following inequality:

p
d√

∥x∥2
2+ϵ

≤
p

d√
∥y∥2

2+ϵ
.

Proof. Centering can be denoted as, y = (
I − 1

d 11T
)
x=x− 1

d

(∑d
i=1 xi

)
1 Then we have,

∥y∥2
2 =

(
x− 1

d

(
d∑

i=1
xi

)
1

)T (
x− 1

d

(
d∑

i=1
xi

)
1

)
=x⊤x−2

1

d

(
d∑

i=1
xi

)
1Tx+ 1

d 2

(
d∑

i=1
xi

)2

1⊤1

Since 1⊤x=∑d
i=1 xi and 1⊤1 = d , we get: ∥y∥2

2 = ∥x∥2
2 − 1

d

(∑d
i=1 xi

)2
. Since the term 1

d

(∑d
i=1 xi

)2

is non-negative, we have ∥y∥2
2 ≤ ∥x∥2

2. Therefore, we have
p

d√
∥x∥2

2+ϵ
≤

p
d√

∥y∥2
2+ϵ

, which proves the

inequality. □

We can see that
p

d√
∥y∥2

2+ϵ
in ∂LN(x)

∂x reaches to the maximum value
p

dp
ϵ

when std(x) is 0, but

p
d√

∥x∥2
2+ϵ

in ∂RMSN(x)
∂x reaches to 0 if and only if x is equal to 0. Theorem 2 means that RMSNorm

is less likely to obtain the maximum value compared to LayerNorm.

We also observe that in the Jacobian matrices of LayerNorm and RMSNorm, both of them have
a term

p
d , which is the dimension of x and is also called the hidden dimension of the networks

in large language model. With the increase of the hidden dimension d in larger models, there is
a square root ratio effect, and thus may lead to larger gradients. Therefore, it will make it harder
to train larger models. To alleviate this issue, we present a simple but more stable normalization
mechanism as follows:

StableNorm(x)=γ⊙ dαx√
∥x∥2

2 +ϵ
, (2)

where α is a hyper-parameter, the range of α is [0, 0.5]. By choosing a reasonable α, we can ob-
tain a more stable normalization module. We term our stabilized normalization as StableNorm.
When α= 0.5, StableNorm will be equal to RMSNorm (Zhang & Sennrich, 2019).

It is easy to derive that the Jacobian matrix of StableNorm is

∂StableNorm(x)

∂x
= dα√

∥x∥2
2 +ϵ

(
I − xx⊤

∥x∥2
2 +ϵ

)
diag(γ).

We can see that the maximum value is dαp
ϵ

. A reasonable choice for ϵ is 10−5. Along with the

increase of the hidden dimension in larger model, we can tune the α to make the normalization
layer more stable. A good strategy is to choose a smaller α for larger model. To have a more
intuitive understanding, let us see an example. Assume d = 4096, then dα = 64 when α = 0.5
whereas dα ≈ 42.22 when α = 0.45, it means that the gradient will be scaled by 40960.45 ≈ 42.22
in our StableNorm instead of 40960.5 = 64. Similarly, when α = 0.4, the gradient will be scaled
by 40960.4 ≈ 27.85 instead of 64 with α = 0.5. By choosing 0.45 instead of 0.5, we can actually
scale down the gradient by a factor of 42.22

64 = 0.66. Therefore, by choosing a reasonable α, our
StableNorm will help to yield more stable gradients compared to RMSNorm and LayerNorm.

3.2.1 EVALUATION FOR StableNorm

According to our above derivation, different choices of α in Eq. (2) lead to different Jacobian ma-
trix, and thus lead to different gradient flow. Here, we conduct a set of evaluations with different
choices of α. We evaluate five different choices of α, i.e., α ∈ {0.0,0.125,0.25,0.375,0.5}. We con-
duct experiments on GPT and ViT, respectively. The empirical results are shown in Figure 3.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

0k 20k 40k 60k 80k 100k
Step

3.00

4.00

5.00

6.00

7.00

8.00

Lo
ss

OpenWebText Train Loss

GPT2-S LayerNorm
GPT2-S StableNorm =0.0
GPT2-S StableNorm =0.125
GPT2-S StableNorm =0.25
GPT2-S StableNorm =0.375
GPT2-S StableNorm =0.475
GPT2-S StableNorm =0.5

(a) GPT

0k 50k 100k 150k 200k
Step

3.0

4.0

5.0

6.0

7.0

Lo
ss

ImageNet Training Loss

ViT-L LayerNorm
ViT-L StableNorm =0.375
ViT-L StableNorm =0.4
ViT-L StableNorm =0.45
ViT-L StableNorm =0.5

(b) ViT

FIGURE 3: Evaluation of StableNorm and comparison to the original LayerNorm and RM-
SNorm on ViT and GPT, respectively. For instance, “StalbeGPT-S α = 0.5” in the legend denotes
StableGPT-Small model with α set to be 0.5. Where using α = 0.5 is reduced to RMSNorm. To
compare the stability, we do not use learning rate warmup.

we can see that from Figure 3, choosing an extremely small α may lead to gradient vanishing
issue, but choosing a large α may causing training instability. How to choose a good α is an
empirical trick. We note here that some relatively large α can be selected for GPT and some
relatively small α can be selected for ViT, which may be related to the density and sparsity of
the supervised signal of GPT and ViT. When d is large in some large model, a reasonable choice
is to choose a smaller α (which takes a lot of resources to verify this. We thus do not do it in
this paper). According to our current experiments, we can find that α is a good parameter for
balancing gradient vanishing and exploding.

3.3 STABLE ATTENTION

Before we present our stabilized attention module, we review the self-attention (Vaswani et al.,
2017) and the self-attention with Query-Key normalization (QKNorm) (Henry et al., 2020; De-
hghani et al., 2023) at first. Rather than showing the QKNorm works as in Wortsman et al. (2024),
we focus on revealing the underlying theoretical reasons. Then we will present our stabilized
module, termed StableAtten.

3.3.1 WHY SELF-ATTENTION WITH QKNORM WORKS?

For an input sequence X ∈Rd×l , d is the dimension of the feature and l is the sequence length,
self-attention (Vaswani et al., 2017) is defined as:

Y =WvXA, A= softmax(P 1), where P (1) = X⊤Wq
⊤WkX√
d1

,

in which d1 = d/h and h is the number of heads, d1 is called as the head dimension, Wq ,Wk

∈Rd1×d , Wv ∈Rd2×d (in practice, we usually set d1 = d2). The size of the output Y ∈Rd2×l , and

the attention matrix A ∈Rl×l . Therefore, we have P (1)
i j = xi

⊤Wq
⊤Wkx jp
d1

where P (1) is called the

logit in (Dehghani et al., 2023; Wortsman et al., 2024).

Self-attention with QKNorm (Dehghani et al., 2023) is defined as:

A= softmax(P (2)), where P (2)
i j =

(
RMSN(Wqxi)⊤ RMSN(Wkx j)√

d1

)
.

Note that Dehghani et al. (2023) use a LayerNorm layer without bias and centering, which is
equivalent to a RMSNorm Zhang & Sennrich (2019) layer as defined above.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

For clarity, we write down the formula for the i -th query qi and the j -th key k j in QKNorm (De-
hghani et al., 2023) as follows:

qi = RMSN(Wqxi) =γq ⊙
√

d1Wqxi√
∥Wqxi∥2

2 +ϵ
=

√
d1 diag(γq)

Wqxi√
∥Wqxi∥2

2 +ϵ
,

k j = RMSN(Wkx j) =γk ⊙
√

d1Wkx j√
∥Wkx j ∥2

2 +ϵ
=

√
d1 diag(γk)

Wkx j√
∥Wkx j ∥2

2 +ϵ
.

It is easy to see that

P (2)
i j = qi

⊤k j√
d1

=

√
d1

√
d1

(
Wqxi√

∥Wqxi ∥2
2+ϵ

)⊤ (
diag(γq)

)⊤ diag(γk)
Wkx j√

∥Wkx j ∥2
2+ϵ√

d1

=
√

d1

 Wqxi√
∥Wqxi∥2

2 +ϵ

⊤

diag(γq)diag(γk)
Wkx j√

∥Wkx j ∥2
2 +ϵ

.

We find that when using QKNorm in self-attention, both the logit and the gradients are upper
bounded. Precisely, we have the following theorem.

Theorem 3 (Logit Inequality for Self-attention with QKNorm)
The logit in self-attention with QKNorm, where γq and γk are initialized to 1 and not

learned, is upper bounded, i.e., |P (2)
i j | <

√
d1.

Proof. We have that when γq and γk are initialized to 1, then P (2)
i j =√

d1

(
Wqxi√

∥Wqxi ∥2
2+ϵ

)⊤
Wkx j√

∥Wkx j ∥2
2+ϵ

=
√

d1cos(θ) ≤
√

d1, where θ is the angle between
Wqxi√

∥Wqxi ∥2
2+ϵ

and
Wkx j√

∥Wkx j ∥2
2+ϵ

. □

On contrary, the logit P (1)
i j in the original self-attention is not bounded, since that P (1)

i j =
xi

⊤Wq
⊤Wkx j

d1
, where xi , x j and Wq or Wk might be not bounded. The upper bounded logit

in self-attention with QKNorm is one of the theoretical reasons that QKNorm leads stable train-
ing process. Under a fixed hidden dimension d , we see that increasing the number of heads h
will correspond to decrease the head dimension d1. According to the upper bound, we have that
a smaller d1 will stabilize the training process. To verify it, we evaluate the influence of the num-
ber of heads in experiment, and show the results in Figure 4. We can observe that increasing the
number of heads in the attention does stabilize the training process of the original Transformer.

On the other hand, we find that the gradients in self-attention with QKNorm is also upper
bounded. Note that all modules are updated by error back-propagation (Rumelhart et al., 1986;
LeCun et al., 2002; 1989; 1998), and computing the gradients in chain is the key. The gradients is
self-attention without or with QKNorm can be calculated as follows:

∂P (1)
i j

∂xi
=Wq

⊤Wkx j ,
∂P (1)

i j

∂x j
=Wk

⊤Wqxi ,
∂P (1)

i j

∂Wq
=xix j

⊤Wk
⊤,

∂P (1)
i j

∂Wk
=Wq

⊤xi
⊤x j .

and
∂P (2)

i j

∂xi
=

√
d1√

∥Wqxi∥2
2 +ϵ

Wq
⊤

(
I − Wqxi

(
Wqxi

)⊤
∥Wqxi∥2

2 +ϵ

)
diag(γq)diag(γk)

Wkx j√
∥Wkx j ∥2

2 +ϵ
,

∂P (2)
i j

∂Wq
=

√
d1√

∥Wqxi∥2
2 +ϵ

(
I − Wqxi

(
Wqxi

)⊤
∥Wqxi∥2

2 +ϵ

)
diag(γq)diag(γk)

Wkx j√
∥Wkx j ∥2

2 +ϵ
xi

⊤.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0k 50k 100k 150k 200k
Step

3.0

4.0

5.0

6.0

7.0

Lo
ss

ImageNet Training Loss

ViT-L Head=8
ViT-L Head=16
ViT-L Head=32
ViT-L Head=64

(a) Attention head

0k 50k 100k 150k 200k
Step

3.0

4.0

5.0

6.0

7.0

Lo
ss

ImageNet Training Loss
ViT-L Dot-Product Attention
ViT-L StableAtten =0.25
ViT-L StableAtten =0.5

(b) StableAtten

FIGURE 4: Evaluation of the number of attention head, and comparison of StableAtten with the
original dot-product self-attention in Transformer using ViT. For instance, “ViT-L Head=8” in the
legend denotes ViT-Large model with 8 attention heads. To compare the training stability, we do
not use learning rate warmup in the evaluation.

Let us have a comparison between
∂P (1)

i j

∂xi
and

∂P (2)
i j

∂xi
. We have the following observations.

•
∂P (1)

i j

∂xi
is not bounded, but

∂P (2)
i j

∂xi
is bounded by

p
d ∥Wq∥p

ϵ
. The upper bounded gradients lead to

more stable training;

• The value of
∂P (1)

i j

∂xi
is proportion to O(∥Wq

⊤Wk∥), but
∂P (2)

i j

∂xi
is only proportion to O(∥Wq∥).

Generally speaking, the spectral norm of O(∥W ∥) will increase along with the training process
and will saturate and oscillate when training comes to convergence.

We also notice of a risk in QKNorm, i.e., there is a factor
p

d in both P (2)
i j and

∂P (2)
i j

∂xi
. Therefore, with

the increase of model size, there is still some potential risk of instability in training.

3.3.2 StableAtten

Based on the above analysis, we present a stabilized attention mechanism, called StableAtten as,

A= softmax(τP (3)), where P (3)
i j =

(
SN(Wqxi)⊤SN(Wkx j)

d1
2α

)
, (3)

where τ is a temperature coefficient, and SN(·) is a StableNorm parameterized by α. Since
that τ is likely related to the sequence length N , other than the head dimension d1, thus we
set τ = 1.618 · log2(N). When the input sequence length is 512, τ = 14.562. We have that

P (3)
i j =

(
Wqxi√

∥Wqxi ∥2
2+ϵ

)⊤
diag(γq)diag(γk)

Wkx j√
∥Wkx j ∥2

2+ϵ
.

The advantage of our stabilized form is that the logit is no longer directly related to the hidden
dimension d . Although d is large in big model, the range of the logit in our StableAtten will not
increase with d . Each StableNorm in query and key normalization will bring in a dα, by dividing
d 2α, we can remove the influence of d .

3.3.3 EVALUATION FOR StableAtten

Here we will evaluate our StableAtten, as defined in Eq. 3, and compare it with the original dot-
product attention. We evaluate on ViT-Large. The results are shown in Figure 4. We can see that
from Figure 4:

• From the left panel of Figure 4, we see that increasing the number of heads in attention will
improve the stability of the model training;

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

FIGURE 5: One block of our Stable Transformer. Our Stable Transformer uses StableNorm to
replace LayerNorm or RMSNorm, use StableAtten to replace the original dot-product attention,
and use StableInit to initialize the weights.

• From the right panel of Figure 4, we see that ViT-Large with StableAtten are more stable than
their corresponding counterparts.

3.4 STABLE-TRANSFORMER

Following the architecture of Transformer, we can build a stabilized Transformer. As shown in
Figure 5, we use StableNorm to replace LayerNorm or RMSNorm, use StableAtten to replace the
original dot-product attention, and keep the same FFN module. Moreover, we use StableInit to
initialize the weights.

In practice, our Stable-Transformer can lead to two different architectures, i.e., a pure encoder
architecture, i.e., Vision Transformer, and a pure decoder architecture, i.e., GPT. Accordingly, we
name them as StableViT and StableGPT, respectively.

To be more specific, for ViT, we build four variants of StableViT in correspondence with ViT
as detailed in Table 1 in the appendix: StableViT-Large, StableViT-Huge, StableViT-giant, and
StableViT-200 (which scales of parameters range from 307M to 1.44B); for GPT, we build three
variants of StableGPT in correspondence with GPT as detailed in Table 2 in the appendix:
StableGPT-Small, StableGPT-Medium and StableGPT-Large (which scales of parameters range
from 124M to 774M).

3.4.1 EVALUATION FOR Stable-Transformer

To verify the effectiveness of our stabilized architecture, we evaluate different variants of Stable-
ViT and Stable-GPT. The experimental configurations of StableViT and StableGPT are shown in
Table 3 and the experimental results are shown in Figure 1. We find that: our StableGPT can be
trained smoothly, achieving a better validation loss (i.e., 2.827 versus 2.848) compared to the orig-
inal GPT2; our StableViT yields a better recognition accuracy (i.e., 82.4% versus 81.3%) compared
to the original ViT.

Moreover, we note that our StableViT and StableGPT can also tolerate larger learning rate. More
empirical results and details are provided in Appendix I.

4 CONCLUSION

We have presented a theoretical analysis for the initialization, normalization and attention mod-
ule of Transformer from the perspective of training stability. Specifically, we derived an upper
bound and a lower bound for the expectations of the maximum and the minimum of the singu-
lar values of weight matrix obtained from Xavier initialization, found the reason why increas-
ing hidden dimension can make the normalization layer likely leading to training instability
from the Lipschits constant of the Jacobian matrix of the normalization layer, and also pointed
out the theoretical mechanism why the hidden dimension can bring instability issue to affect
self-attention module. Accordingly, we proposed three stabilized counterpart designs, i.e., Sta-
bleInit, StableNorm and StableAtten, and by putting them together, we also proposed a Stable-
Transformer. We compiled our stabilized components and Stable-Transformer with GPT and ViT,
and demonstrated that our stabilized methods can improve the training stability, leading im-
proved performance. We hope that our work can benefit the deployment of larger deep models,
especially the large language models, in varied application scenarios.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

ETHICS STATEMENT

In this paper, we aim to provide a stabilized transformer. Our work does not involve any hu-
man subjects, and we have carefully ensured that it poses no potential risks or harms. Addition-
ally, there are no conflicts of interest, sponsorship concerns, or issues related to discrimination,
bias, or fairness associated with this study. We have taken steps to address privacy and security
concerns, and all data used comply with legal and ethical standards. Our work fully adheres to
research integrity principles, and no ethical concerns have arisen during the course of this study.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we provide all the details to reproduce the experi-
ments. Theoretical proofs of the claims made in this paper, and detailed experimental settings
and configurations are provided in Appendices.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Devansh Arpit, Víctor Campos, and Yoshua Bengio. How to initialize your network? robust ini-
tialization for weightnorm & resnets. Advances in Neural Information Processing Systems, 32,
2019.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Thomas Bachlechner, Bodhisattwa Prasad Majumder, Henry Mao, Gary Cottrell, and Julian
McAuley. Rezero is all you need: Fast convergence at large depth. In Uncertainty in Artificial
Intelligence, pp. 1352–1361. PMLR, 2021.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

Yoshua Bengio, Yann Lecun, and Geoffrey Hinton. Deep learning for ai. Communications of the
ACM, 64(7):58–65, 2021.

Jeremy Bernstein, Arash Vahdat, Yisong Yue, and Ming-Yu Liu. On the distance between two neu-
ral networks and the stability of learning. Advances in Neural Information Processing Systems,
33:21370–21381, 2020.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. Journal of Machine Learning Research, 24(240):
1–113, 2023.

Aaron Defazio, Harsh Mehta, Konstantin Mishchenko, Ahmed Khaled, Ashok Cutkosky, et al. The
road less scheduled. arXiv preprint arXiv:2405.15682, 2024.

Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan Heek, Justin Gilmer,
Andreas Peter Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alabdulmohsin, et al. Scaling
vision transformers to 22 billion parameters. In International Conference on Machine Learning,
pp. 7480–7512. PMLR, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. In International
Conference on Learning Representations, 2020.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Alan Edelman and N Raj Rao. Random matrix theory. Acta numerica, 14:233–297, 2005.

Mahyar Fazlyab, Alexander Robey, Hamed Hassani, Manfred Morari, and George Pappas. Effi-
cient and accurate estimation of lipschitz constants for deep neural networks. Advances in
Neural Information Processing Systems, 32, 2019.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neu-
ral networks. In Proceedings of the thirteenth international conference on artificial intelligence
and statistics, pp. 249–256. JMLR Workshop and Conference Proceedings, 2010.

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning, volume 1.
MIT Press, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pp. 1026–1034, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Alex Henry, Prudhvi Raj Dachapally, Shubham Shantaram Pawar, and Yuxuan Chen. Query-key
normalization for transformers. In Findings of the Association for Computational Linguistics:
EMNLP 2020, pp. 4246–4253, 2020.

Xiao Shi Huang, Felipe Perez, Jimmy Ba, and Maksims Volkovs. Improving transformer opti-
mization through better initialization. In International Conference on Machine Learning, pp.
4475–4483. PMLR, 2020.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International conference on machine learning, pp. 448–456.
PMLR, 2015.

Andrej Karpathy. NanoGPT. https://github.com/karpathy/nanoGPT, 2022.

Hyunjik Kim, George Papamakarios, and Andriy Mnih. The lipschitz constant of self-attention.
In International Conference on Machine Learning, pp. 5562–5571. PMLR, 2021.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Tim Large, Yang Liu, Minyoung Huh, Hyojin Bahng, Phillip Isola, and Jeremy Bernstein. Scalable
optimization in the modular norm. arXiv preprint arXiv:2405.14813, 2024.

Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard, Wayne Hub-
bard, and Lawrence D Jackel. Backpropagation applied to handwritten zip code recognition.
Neural computation, 1(4):541–551, 1989.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Yann LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller. Efficient backprop. In
Neural networks: Tricks of the trade, pp. 9–50. Springer, 2002.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444,
2015.

12

https://github.com/karpathy/nanoGPT

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Hong Liu, Zhiyuan Li, David Hall, Percy Liang, and Tengyu Ma. Sophia: A scalable stochas-
tic second-order optimizer for language model pre-training. arXiv preprint arXiv:2305.14342,
2023.

Liyuan Liu, Xiaodong Liu, Jianfeng Gao, Weizhu Chen, and Jiawei Han. Understanding the diffi-
culty of training transformers. In Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pp. 5747–5763, 2020.

Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng
Zhang, Li Dong, et al. Swin transformer v2: Scaling up capacity and resolution. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12009–12019,
2022.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016.

Ilya Loshchilov and Frank Hutter. Fixing weight decay regularization in adam. In International
Conference on Learning Representations, 2019.

Song Mei. Statistics 210b. https://pillowmath.github.io/, Spring 2022. Course Lec-
ture Notes.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization
for generative adversarial networks. In International Conference on Learning Representations,
2018.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines.
In Proceedings of the 27th international conference on machine learning (ICML-10), pp. 807–
814, 2010.

Yurii Nesterov. A method for unconstrained convex minimization problem with the rate of con-
vergence o (1/kˆ 2). In Doklady an ussr, volume 269, pp. 543–547, 1983.

Yurri Nesterov. Introductory lectures on convex programming volume i: Basic course. 1998.

Toan Q Nguyen and Julian Salazar. Transformers without tears: Improving the normalization of
self-attention. arXiv preprint arXiv:1910.05895, 2019.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32,
2019.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 4195–4205, 2023.

Xianbiao Qi, Jianan Wang, Yihao Chen, Yukai Shi, and Lei Zhang. Lipsformer: Introducing lips-
chitz continuity to vision transformers. In The Eleventh International Conference on Learning
Representations, 2023a.

Xianbiao Qi, Jianan Wang, and Lei Zhang. Understanding optimization of deep learning via ja-
cobian matrix and lipschitz constant. arXiv preprint arXiv:2306.09338, 2023b.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language un-
derstanding by generative pre-training. 2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu Ma,
Haitham Khedr, Roman Rädle, Chloe Rolland, Laura Gustafson, et al. Sam 2: Segment any-
thing in images and videos. arXiv preprint arXiv:2408.00714, 2024.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by back-
propagating errors. nature, 323(6088):533–536, 1986.

13

https://pillowmath.github.io/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Tim Salimans and Durk P Kingma. Weight normalization: A simple reparameterization to accel-
erate training of deep neural networks. Advances in neural information processing systems, 29,
2016.

Andrew M Saxe, James L McClelland, and Surya Ganguli. Exact solutions to the nonlinear dy-
namics of learning in deep linear neural networks. arXiv preprint arXiv:1312.6120, 2013.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initial-
ization and momentum in deep learning. In International conference on machine learning, pp.
1139–1147. PMLR, 2013.

Terence Tao. Topics in random matrix theory, volume 132. American Mathematical Soc., 2012.

Qwen Team. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Roman Vershynin. Introduction to the non-asymptotic analysis of random matrices. arXiv
preprint arXiv:1011.3027, 2010.

Roman Vershynin. High-dimensional probability: An introduction with applications in data sci-
ence, volume 47. Cambridge university press, 2018.

Hongyu Wang, Shuming Ma, Li Dong, Shaohan Huang, Dongdong Zhang, and Furu Wei. Deep-
net: Scaling transformers to 1,000 layers. arXiv preprint arXiv:2203.00555, 2022.

Qiang Wang, Bei Li, Tong Xiao, Jingbo Zhu, Changliang Li, Derek F Wong, and Lidia S Chao.
Learning deep transformer models for machine translation. arXiv preprint arXiv:1906.01787,
2019.

Ross Wightman. Pytorch image models. https://github.com/rwightman/
pytorch-image-models, 2019.

Eugene P Wigner. Characteristic vectors of bordered matrices with infinite dimensions. Annals
of Mathematics, 62(3):548–564, 1955.

Mitchell Wortsman, Peter J Liu, Lechao Xiao, Katie E Everett, Alexander A Alemi, Ben Adlam,
John D Co-Reyes, Izzeddin Gur, Abhishek Kumar, Roman Novak, et al. Small-scale proxies
for large-scale transformer training instabilities. In The Twelfth International Conference on
Learning Representations, 2024.

Xingyu Xie, Pan Zhou, Huan Li, Zhouchen Lin, and Shuicheng Yan. Adan: Adaptive nesterov mo-
mentum algorithm for faster optimizing deep models. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2024.

Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing, Huishuai Zhang,
Yanyan Lan, Liwei Wang, and Tieyan Liu. On layer normalization in the transformer architec-
ture. In International Conference on Machine Learning, pp. 10524–10533. PMLR, 2020.

Greg Yang. Wide feedforward or recurrent neural networks of any architecture are gaussian pro-
cesses. Advances in Neural Information Processing Systems, 32, 2019.

Greg Yang and Edward J Hu. Tensor programs iv: Feature learning in infinite-width neural net-
works. In International Conference on Machine Learning, pp. 11727–11737. PMLR, 2021.

Greg Yang, Edward J Hu, Igor Babuschkin, Szymon Sidor, Xiaodong Liu, David Farhi, Nick Ry-
der, Jakub Pachocki, Weizhu Chen, and Jianfeng Gao. Tensor programs v: Tuning large neural
networks via zero-shot hyperparameter transfer. arXiv preprint arXiv:2203.03466, 2022.

14

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Biao Zhang and Rico Sennrich. Root mean square layer normalization. Advances in Neural Infor-
mation Processing Systems, 32, 2019.

Hongyi Zhang, Yann N Dauphin, and Tengyu Ma. Fixup initialization: Residual learning without
normalization. arXiv preprint arXiv:1901.09321, 2019.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A NOTATIONS

We primarily follow the notations used in the renowned deep learning book (Goodfellow et al.,
2016). We use bold symbol to denote a column vector or a matrix, and use non-bold symbol
to denote scalar. For instance y = Wx, where x and y are two column vectors and W is a
projection matrix. We use denominator layout 3, the Jacobian matrix of y with respect to x is
∂Wx
∂x = W⊤, and we have ∂x⊤Wx

∂x = (
W +W⊤)

x. Using the denominator layout, for a chain
function o= f (g (h(x))), where y = h(x), z = g (y), and o= f (z). we have the Jacobian matrix of

o with respect to x as ∂o
∂x = ∂y

∂x
∂z
∂y

∂o
∂z .

B PROOF OF THEOREM 1

Our proof of Theorem 1 is based on references (Vershynin, 2018; 2010; Mei, Spring 2022). Let us

first clarify our problem, we have W ∈ Rm×n , where Wi , j
iid∼ N (0,1), we need to prove

p
m −p

n ≤ E[σmin(W)] ≤ E[σmax(W)] ≤p
m +p

n. To prove Theorem 1, we need to prove two parts,
i.e., E[σmax(W)] ≤p

m +p
n and

p
m −p

n ≤ E[σmin(W)]. To prove the first part, we need to first
introduce Sudakov-Fernique inequality.

Theorem 4 (Sudakov-Fernique inequality.)
Let (As,t)s∈S,t∈T and (Bs,t)s∈S,t∈T be two zero mean Gaussian processes. Assume that for all
s1, s2 ∈ S and t1, t2 ∈ T , we have

E
[
(At1,s1 − At2,s2)2]≤ E[

(Bt1,s1 −Bt2,s2)2] .

Then we have

E

[
sup

s∈S,t∈T
As,t

]
≤ E

[
sup

s∈S,t∈T
Bs,t

]
.

Here, we do not provide the proof of Theorem 4. You can find the proof in (Vershynin, 2018). The
Sudakov-Fernique inequality will be used in our following proof of E[σmax(W)] ≤p

m +p
n.

Let us define Au,v = 〈Wu,v〉 = v⊤Wu for u ∈ Sn−1 and v ∈ Sm−1, where Wi , j
iid∼N (0,1). We

define

Bu,v = 〈u,g〉+〈v,h〉 =
n∑

i=1
ui gi +

m∑
j=1

v j g j , gi
iid∼N (0,1), h j

iid∼N (0,1).

For any (u,v), (q,z) ∈ (Sn−1 ×Sm−1), let us consider that:

E
[(

Au,v − Aq,z
)2

]
= E

[(〈Wu,v〉−〈Wq,z〉)2
]

= E
[(∑

i , j
Wi j (u j vi −q j zi)

)2]
=∑

i , j
(u j vi −q j zi)2 (by independence, Wi , j

iid∼N (0,1))

= ∥uv⊤−qz⊤∥2
F

≤ ∥u−q∥2
2 +∥v−z∥2

2. (see the following proof.)

We need to prove the following inequality:

∥uv⊤−qz⊤∥2
F ≤ ∥u−q∥2

2 +∥v−z∥2
2,

where u,q ∈ Sn−1 and v,z ∈ Sm−1, and Sn−1 denotes the unit sphere in Rn .

3https://en.wikipedia.org/wiki/Matrix_calculus

16

https://en.wikipedia.org/wiki/Matrix_calculus

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Proof. First, recall that ∥W ∥2
F = tr

[
W⊤W

]
, we have:

∥uv⊤−qz⊤∥2
F = tr

[
(uv⊤−qz⊤)⊤(uv⊤−qz⊤)

]
.

= tr
[
(vu⊤−zq⊤)(uv⊤−qz⊤)

]
.

= tr
[
v(u⊤u)v⊤−v(u⊤q)z⊤−z(q⊤u)v⊤+z(q⊤q)z⊤]

.

= tr
[
vv⊤−vz⊤q⊤u−zu⊤q⊤v+zz⊤]

.

= tr(vv⊤)+ tr(zz⊤)− tr(vz⊤q⊤u)− tr(zu⊤q⊤v).

From the definition of the trace, we have:

tr(vv⊤) = ∥v∥2
2, tr(zz⊤) = ∥z∥2

2, tr(vz⊤q⊤u) = (v⊤z)(q⊤u), tr(zu⊤q⊤v) = (z⊤v)(u⊤q).

Thus, we have:
∥uv⊤−qz⊤∥2

F = ∥v∥2
2∥u∥2

2 +∥z∥2
2∥q∥2

2 −2(v⊤z)(u⊤q).

Since u,q ∈ Sn−1 and v,z ∈ Sm−1, we have ∥u∥2 = ∥q∥2 = 1 and ∥v∥2 = ∥z∥2 = 1, simplifying to:

∥v∥2
2∥u∥2

2 +∥z∥2
2∥q∥2

2 −2(v⊤z)(u⊤q) = 1+1−2(v⊤z)(u⊤q).

= 2−2(v⊤z)(u⊤q).

Now, consider the right-hand side:

∥u−q∥2
2 +∥v−z∥2

2. = (∥u∥2
2 −2u⊤q+∥q∥2

2)+ (∥v∥2
2 −2v⊤z+∥z∥2

2).

= 1−2u⊤q+1+1−2v⊤z+1.

= 2−2(u⊤q)+2−2(v⊤z).

= 4−2(u⊤q)−2(v⊤z).

let us assume c =u⊤q and d = v⊤z. Since u,q ∈ Sn−1 and v,z ∈ Sm−1, we know c ≤ 1, d ≤ 1, and(
4−2(u⊤q)−2(v⊤z)

)− (
2−2(u⊤q)(v⊤z)

)= 2(1− c)(1−d) ≥ 0.

Similarly, we have,

E
[(

Bu,v −Bq,z
)2

]
= E

[(〈g,u−q〉+〈h,v−z〉)2
]

= E[〈g,u−q〉2]+E[〈h,v−z〉2] (by independence, mean 0)

= ∥u−q∥2
2 +∥v−z∥2

2. (since g,h are standard normal).

Thus, we have

E
[

Au,v − Aq,z
]2 ≤ E

[(
Bu,v −Bq,z

)2
]

.

Now, applying the Sudakov-Fernique inequality, we have

E

[
sup

(u,v)∈Sn−1×Sm−1
〈Wu,v〉

]
≤ E

[
sup

(u,v)∈Sn−1×Sm−1

(〈u,g〉+〈v,h〉)]

= E
[

sup
(u,v)∈Sn−1×Sm−1

〈u,g〉
]
+E

[
sup

(u,v)∈Sn−1×Sm−1
〈v,h〉

]
= E[∥g∥2]+E[∥h∥2]

≤ E[∥g∥2
2]1/2 +E[∥h∥2

2]1/2

=p
n +p

m.

This completes the proof of the first part of Theorem 1.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

□

To prove the second part, we need to introduce Gordon’s Inequality.

Theorem 5 (Gordon’s Inequality.)
Let (As,t)s∈S,t∈T and (Bs,t)s∈S,t∈T be two Gaussian processes with E[As,t] = E[Bs,t] = 0, and
suppose that{

E[(As,t1 − As,t2)2] ≥ E[(Bs,t1 −Bs,t2)2] ∀t1, t2 ∈ T, s ∈ S,

E[(As1,t1 − As2,t2)2] ≤ E[(Bs1,t1 −Bs2,t2)2] ∀s1 ̸= s2 ∈ S, t1, t2 ∈ T.

Then

E

[
sup
s∈S

inf
t∈T

As,t

]
≤ E

[
sup
s∈S

inf
t∈T

Bs,t

]
.

Same as above, we do not provide the proof of Gordon’s ineqaulity. The proof can be found
in (Vershynin, 2018). We will directly use it to help our proof of Theorem 1.

Proof. Let Bu,v = 〈g,u〉+〈h,v〉. Check that Au,v and Bu,v satisfy the conditions in the theorem.
Then we have

−E[σmin(W)] = E
[

sup
v∈Sn−1

−∥Wv∥2

]

= E
[

sup
v∈Sn−1

inf
u∈Sm−1

〈u,−Wv〉
]

≤ E
[

sup
v∈Sn−1

inf
u∈Sm−1

〈g,u〉+〈h,v〉
]

= E
[

sup
v∈Sn−1

〈h,v〉
]
+E

[
inf

u∈Sm−1
〈g,u〉

]
(since g,h are standard normal.)

= E[∥h∥2]−E[∥g∥2]

=p
n −p

m.

Therefore, we have
E[σmin(W)] ≥p

m −p
n.

This completes the proof of the second part of Theorem 1. □

C PROOF OF σmax

(
I − yyT

∥y∥2
2+ϵ

)
≤ 1

Proof. Let M =
(
I − yyT

∥y∥2
2+ϵ

)
, to prove that the maximum singular value of the matrix M is 1, we

need to analyze the properties of this matrix.

Let A = yyT

∥y∥2
2+ϵ

, the matrix A is a rank-1 matrix with one non-zero eigenvalue. The non-zero

eigenvalue is

λA = ∥y∥2
2

∥y∥2
2 +ϵ

The eigenvalues of M are 1−λA and 1 with multiplicity n −1:

λM = 1− ∥y∥2
2

∥y∥2
2 +ϵ

= ϵ

∥y∥2
2 +ϵ

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

All other eigenvalues are 1. The singular values of M are the absolute values of its eigenvalues:

σ1(M) = 1, (with multiplicity n −1)

σ2(M) = ϵ

∥y∥2
2 +ϵ

.

The maximum singular value of M is the largest eigenvalue in absolute value, which is 1. Thus,

the maximum singular value of the matrix

(
I − yyT

∥y∥2
2+ϵ

)
is 1. □

D QKNORM DERIVATIONS

Here, we list all the partial derivations for the QKNorm.

∂P (2)
i j

∂xi
=

p
d√

∥Wqxi∥2
2 +ϵ

Wq
⊤

(
I − Wqxi

(
Wqxi

)⊤
∥Wqxi∥2

2 +ϵ

)
diag(γq)diag(γk)

Wkx j√
∥Wkx j ∥2

2 +ϵ
,

∂P (2)
i j

∂x j
=

p
d√

∥Wkx j ∥2
2 +ϵ

Wk
⊤

(
I − Wkx j

(
Wkx j

)⊤
∥Wkx j ∥2

2 +ϵ

)
diag(γk)diag(γq)

Wqxi√
∥Wqxi∥2

2 +ϵ
,

∂P (2)
i j

∂Wq
=

p
d√

∥Wqxi∥2
2 +ϵ

(
I − Wqxi

(
Wqxi

)⊤
∥Wqxi∥2

2 +ϵ

)
diag(γq)diag(γk)

Wkx j√
∥Wkx j ∥2

2 +ϵ
xi

⊤,

∂P (2)
i j

∂Wk
=

p
d√

∥Wkx j ∥2
2 +ϵ

(
I − Wkx j

(
Wkx j

)⊤
∥Wkx j ∥2

2 +ϵ

)
diag(γk)diag(γq)

Wqxi√
∥Wqxi∥2

2 +ϵ
x j

⊤.

When considering γq and γk are set to be 1,
∂P (2)

i j

∂xi
is only proportion to O(∥Wq∥) and

∂P (2)
i j

∂Wq
≤

p
dp
ϵ

.

E PROOF OF LEMMA 1

Proof. To prove E[σmax(W)] ≤ 2, it is equivalent to prove
√

2
ni n+nout

(
p

ni n +p
nout) ≤ 2 for any

ni n and nout . Note that:(√
2

ni n +nout
(
p

ni n +p
nout)

)2

= 2(
p

ni n +p
nout)2

ni n +nout
= 2(ni n +nout)+4

p
ni nnout

ni n +nout
= 2+4

p
ni nnout

ni n +nout
≤ 4.

Thus, we have
(√

2
ni n+nout

(
p

ni n +p
nout)

)
≤ 2. □

F MODEL AND TRAINING CONFIGURATION

Model Configurations. We list some basic configurations of our StableViT and StableGPT in
Table 1 and Table 2.

Training Configurations. We list the training configurations of our StableGPT and StableViT in
Table 3. For StableGPT, we fully follow the experimental configurations of nanoGPT (Karpathy,
2022), all parameters are same as GPT2 (Radford et al., 2019). All experiments are conducted on

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

TABLE 1: Model configuration for StableViT. The StableViT is similar with the original ViT (Doso-
vitskiy et al., 2020).

Model Card Params. Blocks Embed. dim. MLP. dim. Heads Epochs Peak LR

StableViT-L-16 307M 24 1024 4096 16 150 or 300 1e-3
StableViT-H-14 632M 32 1280 5120 16 150 or 300 1e-3
StableViT-g-14 1011M 40 1408 6144 16 150 or 300 1e-3
StableViT-200 1439M 200 768 3072 12 150 or 300 1e-3

TABLE 2: Model configuration for StableGPT. The StableGPT is similar with the original
GPT2 (Radford et al., 2019). We do not include larger models as in nanoGPT (Karpathy, 2022)
because training larger models will cost much more computational resource.

Model Card Params. Blocks Embed. dim. Heads Train steps Peak LR Minimum LR

StableGPT-S 124M 12 768 12 600K 6e-4 6e-5
StableGPT-M 350M 24 1024 16 600K 3e-4 3e-5
StableGPT-L 774M 36 1280 20 600K 2.5e-4 2.5e-5

A800 GPU cluster. For instance, it takes around 3 days to train StableGPT-Small on a GPU server
with 8 A800 GPUs. StableGPT-Medium will take around 7.5 days. Note that in the original ViT,
we use 60 epochs’ learning rate warmup, but in our StableViT, we do not use warmup. We do not
include some new optimizer (Liu et al., 2023) or learning schedule (Defazio et al., 2024) to further
improve the performance of the models.

TABLE 3: Training configurations for StableGPT and StableViT.

(a) Training configurations for StableGPT.

training config StableGPT-S/M/L
weight init StableInit
optimizer AdamW
baseline learning rate 0.0006
weight decay 0.1
optimizer momentum β1,β2 = 0.9,0.95
warmup 2,000
tokens seen each update 500,000
max iters 600,000
batch size 480
sequence length 1024
dropout 0.0
bfloat16 True
gradient clipping 1.0

(b) Training configurations for Stable-ViT.

training config StableViT-L/H/g/200 (2242)
weight init StableInit
optimizer AdamW
base learning rate 1e-3
weight decay 0.1
optimizer momentum β1,β2 = 0.9,0.99
batch size 1024
training epochs 300 or 150 or 60
learning rate schedule cosine decay
warmup epochs 0
randaugment (9,0.5)
mixup 0.8
cutmix 1.0
random erasing 0
label smoothing 0.1
stochastic depth 0.5/0.5
gradient clip None
exp. mov. avg. (EMA) no

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

G DEMONSTRATION CODE

To help the audience understand the details of the introduced modules, we list our demonstra-
tion codes.

CODE 1: Stable-Transformer Implementation Demonstration.
1 import torch
2 import torch.nn as nn
3 import math
4

5 def StableInit(module: nn.Module, name: str = ’ ’) -> None:
6 if isinstance(module, nn.Linear):
7 n_in, n_out = module.weight.shape[0], module.weight.shape[1]
8 init_std = 1.0/(math.sqrt(n_in)+math.sqrt(n_out))
9 torch.nn.init.normal_(module.weight, mean=0.0, std=init_std)

10 if module.bias is not None:
11 nn.init.zeros_(module.bias)
12

13 class StableNorm(nn.Module):
14 def __init__(self, ndim: int, alpha: float = 0.0, eps: float = 1e-8):
15 super().__init__()
16 self.alpha = alpha
17 self.ndim = ndim
18 self.eps = eps
19 self.weight = nn.Parameter(torch.ones(ndim))
20

21 def forward(self, input):
22 x_norm = torch.norm(input, dim=2, keepdim=True) + self.eps
23 x = math.pow(self.ndim, self.alpha)*input/x_norm
24 y = self.weight.unsqueeze(0).unsqueeze(0)*x
25 return y
26

27 class StableAtten(nn.Module):
28 def __init__(self, dim: int, num_heads: int = 8, qkv_bias: bool = False,
29 attn_drop: float = 0., proj_drop: float = 0.,
30 norm_layer: nn.Module = StableNorm,
31 temperature: float = 1.0, sequence_length: int=0) -> None:
32 super().__init__()
33 assert dim % num_heads == 0,
34 self.num_heads = num_heads
35 self.head_dim = dim // num_heads
36 self.scale = self.head_dim ** -0.5
37 self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
38 self.q_norm = norm_layer(self.head_dim)
39 self.k_norm = norm_layer(self.head_dim)
40 norm_alpha = 2 * self.q_norm.alpha
41 self.tau = 1.618*math.log(sequence_length,2)*temperature
42 self.scale = self.head_dim**(-norm_alpha)*self.tau
43 self.attn_drop = nn.Dropout(attn_drop)
44 self.proj = nn.Linear(dim, dim)
45 self.proj_drop = nn.Dropout(proj_drop)
46

47 def forward(self, x: torch.Tensor) -> torch.Tensor:
48 B, N, C = x.shape
49 qkv = self.qkv(x).reshape(B,N,3,self.num_heads,self.head_dim)
50 qkv = qkv.permute(2,0,3,1,4)
51 q, k, v = qkv.unbind(0)
52 q, k = self.q_norm(q), self.k_norm(k)
53 q = q * self.scale
54 attn = q @ k.transpose(-2, -1)
55 attn = attn.softmax(dim=-1)
56 attn = self.attn_drop(attn)
57 x = attn @ v
58

59 x = x.transpose(1, 2).reshape(B, N, C)
60 x = self.proj(x)
61 x = self.proj_drop(x)
62 return x

H DISCUSSION ABOUT INITIALIZATION IMPLEMENTATION IN NANOGPT

We observe that, in some popular open-sourced project, e.g., nanoGPT, they use an initialization
implementation as code below. Let us consider a model with hidden dimension 768. Suppose

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

we have a linear layer projecting a 768-d feature into a new 768-d feature. For such a linear layer,
the used standard variance is math.sqrt(2

768+768) ≈ 0.036. For StableNorm, the used standard

variance is 1
2∗math.sqrt(768) ≈ 0.018. In the following code, the used standard variance is 0.02. It

works. However, when we train a GPT-3 175B model with hidden dimension 12288, the standard
variance 0.02 is too large. For a GPT-3 175B model with hidden dimension 12288, For StableNorm,
the used standard variance is 1

2∗math.sqrt(12768) ≈ 0.0045.

CODE 2: Initilization Implementation in nanoGPT.
1 def _init_weights(self, module):
2 if isinstance(module, nn.Linear):
3 torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
4 if module.bias is not None:
5 torch.nn.init.zeros_(module.bias)
6 elif isinstance(module, nn.Embedding):
7 torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)

In conclusion, this implementation works for small model, but it will make training unstable or
harder to train when the model is large, e.g., GPT-3 13B or GPT-3 175B.

I ABLATION STUDY

StableGPT can tolerate larger learning rate. To further validate the stability of our algorithm, we
used larger learning rates (1.2e-3, 1.8e-3, 2.4e-3) to test our model. As shown in Figure 6, we found
that our model can tolerate higher learning rates while maintaining good stability. Meanwhile,
we can see that StableGPT-S using 1.2e-3 learning rate achieves a better performance than 6e-4
(2.819 verse 2.827).

0k 100k 200k 300k 400k 500k 600k
Step

2.80

2.85

2.90

2.95

3.00

3.05

3.10

3.15

3.20

Va
l L

os
s

OpenWebText Val Loss
GPT2-S (Baseline)
StableGPT-S lr=6e-4
StableGPT-S lr=1.2e-3
StableGPT-S lr=2.4e-3
StableGPT-S lr=4.8e-3

FIGURE 6: StableGPT can tolerate larger learning rate.

StableGPT is robust to the temperature coefficient in StableAtten. We conducted an evaluation
of the parameter τ in the StableAtten, using values of τ = 0.809log2 N , τ = 1.618log2 N , and τ =
3.236log2 N , the used learning rate here is 6e-4 for all comparisons. We found that our algorithm
is relatively robust to this parameter, with performance remaining stable across these values.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

0k 100k 200k 300k 400k 500k 600k
Step

2.80

2.85

2.90

2.95

3.00

3.05

3.10

3.15

3.20

Va
l L

os
s

OpenWebText Val Loss
StableGPT-S =0.809
StableGPT-S =1.618
StableGPT-S =3.236

FIGURE 7: Evaluation of temperature coefficient in StableAtten.

About StableViT -Huge. We also conducted evaluations and comparisons on larger StableViT
models, as shown in Figure 8. Compared to ViT-Huge, our algorithm demonstrates better per-
formance, 81.8 (StableViT-Huge) versus 80.5 (ViT-Huge). We also noticed that Model StableViT-
Huge is not as good as Model StableViT-Large, which may be mainly due to two aspects: 1).
Insufficient data leading to a certain degree of overfitting, 2). Inadequate data augmentation,
although we have adopted data augmentation methods similar to those in previous papers (Xie
et al., 2024).

0 50 100 150 200 250 300
Epoch

0.0

20.0

40.0

60.0

80.0

Ac
cu

ra
cy

ImageNet Validation Accuracy

ViT-L (150epochs)
StableViT-L (150epochs)
ViT-L (300epochs)
StableViT-L (300epochs)
ViT-H (300epochs)
StableViT-H (300epochs)

FIGURE 8: Evaluation of StableViT-Huge.

J EXPERIMENT OF 1B STABLEVIT

To further evaluate the effectiveness of our method at a larger scale, we assessed StableViT with
1B parameters, we term it as StableViT-g where “g” means giant. The model architecture consists
of 40 layers with a hidden dimension of 1408, 16 attention heads, and an MLP dimension of 6144.
The total parameter count is 1011M, around one billion parameters. We conducted a compar-
ative study between StableViT-g and ViT-g, where ViT-g was evaluated under two settings: with

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

and without learning rate warmup. Our StableViT-g does not use warmup. In StableViT, we use
an α value of 0.25. The comparison results are presented in Figure 9 and Figure 10.

Figure 9 shows that ViT-g crashes after only a few training steps when running without warmup.
While the use of warmup enables ViT-g to complete training, our StableViT-g not only achieves
stable training without warmup but also demonstrates superior performance. Meanwhile, from
Figure 10, we can also observe that the loss of StableViT-g has no spike, but ViT-g even with learn-
ing rate warmup has a spike.

0 20 40 60 80 100 120 140 160
Epoch

0.0

20.0

40.0

60.0

80.0

Ac
cu

ra
cy

ImageNet Validation Accuracy
ViT-g
ViT-g wo warmup
StableViT-g

FIGURE 9: Accuracy of StableViT-g compared with ViT-g.

0 20 40 60 80 100 120 140 160
Epoch

1.0

2.0

3.0

4.0

5.0

6.0

7.0

Lo
ss

ImageNet Validation Loss
ViT-g
ViT-g wo warmup
StableViT-g

FIGURE 10: Loss curve of StableViT-g compared with ViT-g.

K EXPERIMENT OF 0.77B STABLEGPT

We also evaluated the effectiveness of StableGPT at a larger scale, termed as StableGPT-large.
The model architecture consists of 36 layers with a hidden dimension of 1280 and 20 attention
heads. The total parameter count is 774M. Our experimental setup strictly follows the nanoGPT
configuration, including all learning rate settings. It is important to note that training StableGPT-
large is computationally intensive, requiring two weeks to train 600K steps on 16 A800 GPUs.
To reduce the training time, we limited our training to 100K steps instead of the full 600K steps.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

The comparison results are presented in Figure 11. We can see from Figure 11, StableGPT-large
obtains a better validation loss, 2.523 versus 2.536, than its counterpart, GPT2-large.

0k 20k 40k 60k 80k 100k
Step

2.50

2.60

2.70

2.80

2.90

3.00
Va

l L
os

s

OpenWebText Val Loss
GPT2-L (Baseline)
StableGPT-L

FIGURE 11: Evaluation of StableGPT-Large compared with CPT2-Large.

L EXPERIMENT OF 200 LAYERS’ STABLEVIT WITH 1.44B PARAMETERS

To further verify the stability of our Stable-Transformer, we conduct an experiment of super deep
StableViT that has 200 layers. The model architecture consists of 200 layers with a hidden di-
mension of 768, 12 attention heads, and an MLP dimension of 3072. The total parameter count
is 1439M, around 1.4B. We term our model as StableViT-200. Finally, StableViT-200 has 1.44B
parameters. The α in StableNorm is set to be 0.25. We compare StableViT-200 with ViT-200.

0 10 20 30 40 50 60
Epoch

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

Ac
cu

ra
cy

ImageNet Validation Accuracy
ViT-200
StableViT-200

FIGURE 12: Accuracy of StableGPT-200 compared with ViT-200.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

0 10 20 30 40 50 60
Epoch

2.0

3.0

4.0

5.0

6.0

7.0

Lo
ss

ImageNet Validation Loss

ViT-200
StableViT-200

FIGURE 13: Loss curve of StableGPT-200 compared with ViT-200.

From Figure 13, with learning rate warmup, ViT-200 has a smoothing loss curve in the early
stage, but the loss spikes around at 56th epochs. But StableViT-200, without using learning rate
warmup, can converge stably. It fully verify the stability of StableViT in very deep Transformer.

M DISCUSSION ABOUT LIPSCHITZ CONSTANT OF STABLENORM

Lipschitz continuity of the network is a very important condition for a stable training. Actually
the principle behind StableNorm can also be explained by its Lipschitz constant. Note that the
Jacobian matrix of StableNorm is defined as

∂StableNorm(x)

∂x
= dα√

∥x∥2
2 +ϵ

(
I − xx⊤

∥x∥2
2 +ϵ

)
diag(γ)

and the Jacobian matrix of RMSNorm is defined as

∂RMSNorm(x)

∂x
= d 0.5√

∥x∥2
2 +ϵ

(
I − xx⊤

∥x∥2
2 +ϵ

)
diag(γ).

By choosing a smaller α, e.g., α < 0.5, the Lipschitz constant of StableNorm will less than that
of RMSNorm. For example, if d = 1024, when we choose α = 0.475, the Lipschitz constant of
StableNorm is only around 84% of that of RMSNorm. This explains why StableNorm has a better
stability than RMSNorm.

N STABLEATTEN COMPARED WITH L2 SELF-ATTENTION

We further compared our StableAtten with L2 self-attention (Kim et al., 2021). As shown in (Kim
et al., 2021), a necessary condition to guarantee its Lipschitz continuity is Wq = Wk , thus we
evaluate two versions of L2 self-attentions: a) using tied Wq and Wk , i.e., Wq =Wk and b) using
two separate Wq and Wk , i.e., Wq ̸=Wk . We conduct experiments to compare the two versions
of L2 self-attention methods with StableGPT-large, where the same training settings as the exper-
iments in Appendix K are used, and show in Figure 14 the validation losses of our StableGPT-g
and ViT-g with L2 self-attention.

We can see from Figure 14 that, StableGPT-L with StableAtten achieves better validation loss than
that of using the L2 self-attention methods. Note that the performance degenerates notably when
using the L2 self-attention with tied Wq and Wk .

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

0k 20k 40k 60k 80k 100k
Step

2.50

2.60

2.70

2.80

2.90

3.00

Va
l L

os
s

OpenWebText Val Loss
StableGPT-L
GPT2-L (L2Attn-SeparateQK)
GPT2-L (L2Attn-TiedQK)

FIGURE 14: The curve of validation loss of StableGPT-g compared to ViT-g with L2 self-
attention (Kim et al., 2021) under two settings.

O ROBUSTNESS TO DISTRIBUTION SHIFT

We further conduct a set of experiments to compare the robustness between StableViT-small and
ViT-small against to the distribution shift on CIFAR-100. The protocol in experiments is to train
both models on the original dataset CIFAR-100 for 200 epochs, with a batch size 512, a learning
rate 1e-3, and a weight decay of 1e-4, and then to evaluate the trained models on the original
test images of CIFAR-100 and the corrupted test images of CIFAR-100, respectively. Experimental
results are reported in Table 4.

TABLE 4: Evaluation (Accuracy) of robustness of StableViT against to distribution shift.

Models CIFAR-100 CIFAR-100-C
ViT-small 67.3 51.5

StableViT-small 69.9 53.4

We can see that from Table 4, StableViT-small obtains a better accuracy than ViT-small, and im-
proves the accuracy from 67.3% to 69.9%. On the corrupted CIFAR-100-C dataset, StableViT-
small also shows a better robustness to corruption from 51.5% to 53.4%.

P RELATED WORK

Initialization. Xavier Initialization does the most groundbreaking work in model Initialization. it
sets the weights to ensure the variance of activations remains constant across layers, relieving the
vanishing and exploding gradient problems. Sutskever et al. (2013) investigates the importance of
initialization and momentum (Nesterov, 1983; 1998) in deep learning. Kaiming Initialization (He
et al., 2015), builds on Xavier Initialization by scaling the weights for ReLU activations (Nair &
Hinton, 2010). Admin (Liu et al., 2020) introduces an adaptive initialization method that dy-
namically adjusts the initialization parameters based on the network’s depth and width. Saxe
et al. (2013) introduce an orthogonal initialization, which further optimizes the initial parameter
distribution to boost training outcomes. Arpit et al. (2019) also investigates the orthogonal ini-

tialization. Huang et al. (2020) propose to scale decoder by (9L)−
1
4 and scale encoder by 0.67L− 1

4 ,

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

this initialization method can be seen as a depth-aware initialization. Different from the above-
mentioned methods, our StableInit is built on Random Matrix Theory, can promise the weight
initialized by StableInit has Lipschitz constant approximately 1.

Normalization. LayerNorm (Ba et al., 2016), different from BatchNorm (Ioffe & Szegedy,
2015), normalizes across the features for each data point, making it effective for recurrent and
transformer-based architectures. Wang et al. (2019) discuss the influence of Pre-Norm and Post-
Norm on the training deep transformer. Xiong et al. (2020) further discuss the influence of
pre-norm and post-norm on the training stability. RMSNorm (Zhang & Sennrich, 2019) is a
variant of LayerNorm that uses root mean square statistics, offering computational efficiency.
DeepNorm (Wang et al., 2022) extends normalization strategies to deep transformer networks.
WeightNorm (Salimans & Kingma, 2016) reparameterizes weight vectors to decouple the magni-
tude from the direction, facilitating smoother optimization. CenterNorm (Qi et al., 2023b) only
conducts the centering but does not scaling the feature. ScaleNorm (Nguyen & Salazar, 2019)
normalizes only by the scale of the feature vectors, simplifying the normalization process. RM-
SNorm and ScaleNorm can be seen as a special case of our StableNorm where α = 0.5 and α = 0.
By choosing a better α, our StableNorm can obtain a better training stability.

Attention. Attention mechanism (Bahdanau et al., 2014) is firstly introduced to neural machine
translation. Scaled dot-product attention, used in the Transformer architecture, calculates the at-
tention weights using the scaled dot-product of query and key vectors, providing an efficient way
to capture dependencies. L2 distance attention employs the Euclidean distance between queries
and keys to compute attention scores. Attention with QK-Norm (Henry et al., 2020) normalizes
the query and key vectors before computing attention, improving stability and performance. De-
hghani et al. (2023) scale the model to 22B via bringing QKNorm into attention. Wortsman et al.
(2024) further experimentally evaluate the value of QKNorm on small-scale models. However,
these three papers do not mathematically explain why QKNorm works. Liu et al. (2022) intro-
duce to use a Scaled Cosine Attention (SCA) for Transformer. Meanwhile, Qi et al. (2023a) also
propose to use scaled cosine similarity attention (SCSA) to compute attention weights. Different
from Liu et al. (2022), SCSA (Qi et al., 2023a) multiply a temperature coefficient instead of divid-
ing a temperature coefficient. Cosine similarity attention and attention with QK-Norm share the
similar idea, except that the former uses a scalar as a scale, but the latter uses a vector γ, SCSA
also normalizes the values but the latter does not. StableAtten, the logit of the attention will not be
directly related to the hidden dimension d, and thus it is robust to the increase of the model scale.

Neural Network Stability. To obtain a better training stability, ReZero (Bachlechner et al., 2021)
introduces a simple yet effective mechanism where residual connections start as zero, allowing
networks to learn identity mappings more easily and stabilize training. Admin (Liu et al., 2020)
not only offers an initialization scheme but also contributes to network stability by dynamically
adjusting learning rates and weight decay. DeepNorm (Wang et al., 2022) extends its benefits to
network stability by adjusting normalization parameters dynamically to accommodate deeper
networks. Lipsformer (Qi et al., 2023a) introduce a Lipschitz continuity constraint to ensure sta-
bility in transformer networks, addressing the issue of exploding gradients. Large et al. (2024)
introduces a modular norm strategy for scalable optimization. The modular norm normalizes
the weights and their updates in the forward and the backward individually. They prove that
the gradient of the network is Lipschitz-continuous in the modular norm with the Lipschitz con-
stant that admits a simple recursive formula. The modular norm introduces a new possible di-
rection for future deep neural network optimization. However, a problem is that it cannot be
directly plugged into current Transformer framework. All components in Transformer needs to
be re-adapted. Our Stable-Transformer is built on our stabilized components, i.e., StableInit, Sta-
bleNorm and StableAtten. It roots on solid theoretical justification.

Some other great works also investigate the feature learning or representation learning (Yang,
2019; Yang & Hu, 2021; Yang et al., 2022) and learning stability (Bernstein et al., 2020), we would
like to recommend them to the readers although they are not directly related to this paper.

28

	Introduction
	Experimental methodology
	Stable-Transformer and Its Theoretical Justifications
	Stable Initialization
	Evaluation for StableInit

	Stable Normalization
	Evaluation for StableNorm

	Stable Attention
	Why Self-attention with QKNorm works?
	StableAtten
	Evaluation for StableAtten

	Stable-Transformer
	Evaluation for Stable-Transformer

	Conclusion
	Notations
	Proof of Theorem 1
	Proof of .
	QKNorm Derivations
	Proof of Lemma 1
	Model and Training Configuration
	Demonstration Code
	Discussion about initialization implementation in nanoGPT
	Ablation Study
	Experiment of 1B StableViT
	Experiment of 0.77B StableGPT
	Experiment of 200 Layers' StableViT with 1.44B parameters
	Discussion about Lipschitz constant of StableNorm
	StableAtten compared with L2 self-attention
	Robustness to Distribution Shift
	Related Work

