A Near-Optimal Algorithm for Decentralized Convex-Concave Finite-Sum Minimax Optimization

Hongxu Chen¹ Ke Wei¹ Haishan Ye^{2,3} Luo Luo^{1,4*}

¹School of Data Science, Fudan University

²School of Management, Xi'an Jiaotong University

³SGIT AI Lab, State Grid Corporation of China

⁴Shanghai Key Laboratory for Contemporary Applied Mathematics

{hxchen20,kewei}@fudan.edu.cn yehaishan@xjtu.edu.cn luoluo@fudan.edu.cn

Abstract

In this paper, we study the distributed convex-concave finite-sum minimax optimization over the network, and a decentralized variance-reduced optimistic gradient method with stochastic mini-batch sizes (DIVERSE) is proposed. For the strongly-convex-strongly-concave objective, it is shown that DIVERSE can achieve a linear convergence rate that depends on the global smoothness parameters, yielding sharper computation and communication complexity bounds than existing results. Furthermore, we also establish the lower complexity bounds, which show that our upper bounds are optimal up to a logarithmic factor in terms of the local incremental first-order oracle calls, the computation rounds, and the communication rounds. Numerical experiments demonstrate that our algorithm outperforms existing methods in practice.

1 Introduction

In this paper, we consider the following distributed minimax optimization problem

$$\min_{\mathbf{x} \in \mathbb{R}^{d_x}} \max_{\mathbf{y} \in \mathbb{R}^{d_y}} f(\mathbf{x}, \mathbf{y}) := \frac{1}{m} \sum_{i=1}^{m} f_i(\mathbf{x}, \mathbf{y}),$$
(1)

where the global objective $f: \mathbb{R}^{d_x} \times \mathbb{R}^{d_y} \to \mathbb{R}$ is μ -strongly-convex- μ -strongly-concave. We assume the local function $f_i: \mathbb{R}^{d_x} \times \mathbb{R}^{d_y} \to \mathbb{R}$ on the i-th node has the finite-sum structure of the form

$$f_i(\mathbf{x}, \mathbf{y}) := \frac{1}{n} \sum_{j=1}^n f_{i,j}(\mathbf{x}, \mathbf{y}), \tag{2}$$

where each $f_{i,j}$ is smooth. This formulation appears in many fields, including game theory [9, 21], robust optimization [10, 29], and control theory [45]. In particular, it has received increasing attention recently from the machine learning community, with the rise of adversarial generative networks [6, 25], adversarial training [7, 49, 68, 71, 77], and reinforcement learning [18, 75].

The first-order minimax optimization has been studied extensively over the past decades. Gradient descent ascent (GDA) is a natural extension of gradient descent in minimization problem, which is a cornerstone for many minimax optimization algorithms [11, 51]. In the extragradient (EG) method, [24, 34, 73] an intermediate prediction step is introduced to improve the convergence of GDA, which exhibits the optimal convergence rate under the convex-concave assumption [59, 89].

^{*}Corresponding author

Additionally, the optimistic gradient descent ascent (OGDA) method [61, 64] can also achieve the optimal convergence rate, by incorporating the momentum-like term. In the more general variational inequality framework, Kotsalis et al. [35] proposed an optimal operator extrapolation method.

For large-scale optimization arising from machine learning, it is desirable to design efficient stochastic algorithms by exploiting the finite-sum structure in the objective since computing the full gradient is usually expensive. The variance reduction ideas used to achieve the optimal incremental first-order oracle (IFO) complexity bounds in the minimization problem [1, 4, 20, 32, 37, 67, 78, 90] have been extended to minimax optimization, though the details are quite involved. Palaniappan and Bach [60] incorporated variance reduction into GDA iteration and provided an catalyst acceleration framework. Chavdarova et al. [16] and Alacaoglu et al. [3] studied the EG method with variance reduction for a specific minimax problem. Alacaoglu and Malitsky [2] introduced a retracted term into the iteration of EG and OGDA, achieving the optimal IFO complexity for the finite-sum minimax problem under the convex-concave setting [26].

The decentralized optimization have been widely studied in recent years. Compared with the centralized scenario, it can avoid the communication and computation bottlenecks for problems over networks [57, 82, 87], while the algorithm design and analysis are more challenging since each node in a network can only directly share the information with its neighbors. For the minimax optimization, Mukherjee and Chakraborty [55], Beznosikov et al. [13], and Luo and Ye [46] developed EG methods for the decentralized setting and provided the linear convergence rates. Rogozin et al. [65] extended the results to the non-Euclidean mirror prox framework. Kovalev et al. [39] combined variance reduction and the optimistic gradient method [61] within the ADOM framework [38], achieving the best-known upper complexity bound on the computation rounds and the communication rounds.

It is worth noting that exiting decentralized minimax optimization methods require identical minibatch size for all the nodes when constructing the local gradient estimator, which is sample inefficient. Moreover, both the computation complexity and communication complexity of previous works depend on the local smoothness parameters. It remains an open question on how to develop the decentralized minimax optimization algorithm that depends on the global smoothness parameters.

In this paper, we propose a decentralized variance-reduced optimistic gradient method with stochastic mini-batch sizes (DIVERSE) for the minimax problem (1), which can find an ϵ -suboptimal solution with $\mathcal{O}((mn+\min\{mnL,\sqrt{mn}\bar{L}\}/\mu)\log(1/\epsilon))$ local incremental first-order oracle (LIFO) calls, $\tilde{\mathcal{O}}((n+L/\mu+\min\{nL,\sqrt{n/m}\bar{L}\}/\mu)\log(1/\epsilon))$ computation rounds, and $\tilde{\mathcal{O}}(\sqrt{\chi}L/\mu\log(1/\epsilon))$ communication rounds. Here, L is the smoothness parameter of the objective f, \bar{L} is the mean-squared smoothness parameter of the function set $\{f_{i,j}\}_{i,j=1}^{m,n}$, and χ is the characteristic number of the mixing matrix associated with the network. The corresponding lower bounds have also been established which demonstrate that all the above results are (nearly) optimal. We would like to emphasize that all of our complexity bounds have the global smoothness dependency, which are tighter than existing results that only rely on the local smoothness [39, 46, 55]. Moreover, the linear convergence guarantee in this paper only requires the global objective function f to be strongly-convex-strongly-concave, and the local component function $f_{i,j}$ (also the local function f_i) can even be nonconvex-nonconcave. This relaxes the assumption for the state-of-the-art linear convergent decentralized algorithm in Kovalev et al. [39] that requires each f_i to be strongly-convex-strongly-concave.

2 Preliminaries

In this section, we introduce the problem setup, followed by a review of the related work.

2.1 Problem Setup

We use the bold lowercase letters to represent vectors, e.g., $\mathbf{x} \in \mathbb{R}^{d_x}$ and $\mathbf{y} \in \mathbb{R}^{d_y}$, use $\mathbf{x}_i \in \mathbb{R}^{1 \times d_x}$ and $\mathbf{y}_i \in \mathbb{R}^{1 \times d_y}$ to denote the local variables on the i-th node. The bold uppercase letters are used to denote the matrices aggregating the corresponding vectors, such as $\mathbf{X} = [\mathbf{x}_1; \dots; \mathbf{x}_m] \in \mathbb{R}^{m \times d_x}$ and $\mathbf{Y} = [\mathbf{y}_1; \dots; \mathbf{y}_m] \in \mathbb{R}^{m \times d_y}$. The bold lowercase letter with a bar presents the average of local variables, e.g., $\bar{\mathbf{x}} = \frac{1}{m} \sum_{i=1}^m \mathbf{x}_i$ and $\bar{\mathbf{y}} = \frac{1}{m} \sum_{i=1}^m \mathbf{y}_i$. The notations 1 and 0 are vectors (or matrices) whose entries are all one and zero, respectively. We let \mathbf{I} be the identity matrix. The notation $\|\cdot\|$ represents the Euclidean norm of a vector or the Frobenius norm of a matrix.

For the minimax optimization problem (1), we stack the variables $\mathbf{x} \in \mathbb{R}^{d_x}$ and $\mathbf{y} \in \mathbb{R}^{d_y}$ as $\mathbf{z} = [\mathbf{x}; \mathbf{y}] \in \mathbb{R}^{d_z}$, where $d_z = d_x + d_y$. We further define the gradient operators as

$$\mathbf{g}_{i,j}(\mathbf{z}) = \begin{bmatrix} \nabla_{\mathbf{x}} f_{i,j}(\mathbf{x}, \mathbf{y}) \\ -\nabla_{\mathbf{y}} f_{i,j}(\mathbf{x}, \mathbf{y}) \end{bmatrix}, \quad \mathbf{g}_{i}(\mathbf{z}) = \frac{1}{n} \sum_{j=1}^{n} \mathbf{g}_{i,j}(\mathbf{z}), \quad \text{and} \quad \mathbf{g}(\mathbf{z}) = \frac{1}{m} \sum_{i=1}^{m} \mathbf{g}_{i}(\mathbf{z}) \in \mathbb{R}^{d_{z}}.$$

We make the following assumptions for the decentralized minimax optimization problem (1).

Assumption 2.1. The global function $f(\mathbf{x}, \mathbf{y})$ is μ -strongly-convex- μ -strongly-concave, i.e., the function $f(\cdot, \mathbf{y})$ is μ -strongly convex for all given $\mathbf{x} \in \mathbb{R}^{d_x}$ and the function $f(\mathbf{x}, \cdot)$ is μ -strongly concave for all given $\mathbf{y} \in \mathbb{R}^{d_y}$.

Assumption 2.2 (global smoothness). The global function f is L-smooth, i.e., for all $\mathbf{z}, \mathbf{z}' \in \mathbb{R}^{d_z}$, there exists a constant L > 0 such that

$$\|\mathbf{g}(\mathbf{z}) - \mathbf{g}(\mathbf{z}')\|^2 \le L^2 \|\mathbf{z} - \mathbf{z}'\|^2.$$

Assumption 2.3 (mean-squared smoothness). The function set $\{f_{i,j}\}_{i,j=1}^{m,n}$ is \bar{L} -mean-squared smooth, i.e., for all $\mathbf{z}, \mathbf{z}' \in \mathbb{R}^{d_z}$, there exists a constant $\bar{L} > 0$ such that

$$\frac{1}{mn} \sum_{i=1}^{m} \sum_{j=1}^{n} \|\mathbf{g}_{i,j}(\mathbf{z}) - \mathbf{g}_{i,j}(\mathbf{z}')\|^{2} \le \bar{L}^{2} \|\mathbf{z} - \mathbf{z}'\|^{2}.$$

Assumption 2.1 is equivalent to the strong monotonicity of the gradient operator \mathbf{g} , i.e., for all $\mathbf{z}, \mathbf{z}' \in \mathbb{R}^{d_z}$, it holds $\langle \mathbf{g}(\mathbf{z}) - \mathbf{g}(\mathbf{z}'), \mathbf{z} - \mathbf{z}' \rangle \geq \mu \|\mathbf{z} - \mathbf{z}'\|^2$. Note that we have

$$\|\mathbf{g}(\mathbf{z}) - \mathbf{g}(\mathbf{z}')\|^2 \le \frac{1}{mn} \sum_{i=1}^m \sum_{j=1}^n \|\mathbf{g}_{i,j}(\mathbf{z}) - \mathbf{g}_{i,j}(\mathbf{z}')\|^2 \le \bar{L}^2 \|\mathbf{z} - \mathbf{z}'\|^2$$

for all $\mathbf{z}, \mathbf{z}' \in \mathbb{R}^{d_z}$. Therefore, it holds that $L \leq \bar{L}$ for the tight parameters L and \bar{L} satisfying Assumptions 2.2 and 2.3. In fact, \bar{L} can be arbitrarily larger than L if there are no convexity/concavity assumption for the local functions [48].

Our complexity analysis considers the upper and lower bounds with respect to the global smoothness parameter L and the mean-squared smoothness parameter \bar{L} . In contrast, existing works for decentralized minimax optimization only consider the local smoothness assumptions. For example, Mukherjee and Chakraborty [55] and Luo and Ye [46] assume there exists a constant $L_{\rm max}>0$ such that

$$\|\mathbf{g}_{i,j}(\mathbf{z}) - \mathbf{g}_{i,j}(\mathbf{z}')\|^2 \le L_{\max}^2 \|\mathbf{z} - \mathbf{z}'\|^2$$

for all $\mathbf{z}, \mathbf{z}' \in \mathbb{R}^{d_z}$, $i \in [m]$, and $j \in [n]$; Kovalev et al. [39] assume there exist constants $L_l > 0$ and $\bar{L}_l > 0$ such that

$$\|\mathbf{g}_{i}(\mathbf{z}) - \mathbf{g}_{i}(\mathbf{z}')\|^{2} \le L_{l}^{2} \|\mathbf{z} - \mathbf{z}'\|^{2}$$
 and $\frac{1}{n} \sum_{j=1}^{n} \|\mathbf{g}_{i,j}(\mathbf{z}) - \mathbf{g}_{i,j}(\mathbf{z}')\|^{2} \le \bar{L}_{l}^{2} \|\mathbf{z} - \mathbf{z}'\|^{2}$

for all $\mathbf{z}, \mathbf{z}' \in \mathbb{R}^{d_z}$ and $i \in [m]$. Noting that the constants L_l and \bar{L}_l are determined by the "worst" local (component) function so that we can verify that $L \leq L_l \leq L_{\max}$ and $\bar{L} \leq \bar{L}_l \leq L_{\max}$ for the tight smoothness parameters that satisfy the above assumptions [48]. The examples in Appendix A demonstrate that the magnitude of these smoothness parameters can differ significantly under data heterogeneity.

In decentralized optimization, each node can only directly communicate with its neighbors. The communication step is usually expressed based on a mixing matrix $\mathbf{W} \in \mathbb{R}^{m \times m}$, which satisfies the following standard assumption [28, 66, 87].

Assumption 2.4. Let $\mathbf{W} \in \mathbb{R}^{m \times m}$ be a mixing matrix associated with a network. We assume

- (a) W is symmetric with $w_{i,j} \geq 0$ for all i, j, and $w_{i,j} \neq 0$ if and only if nodes i and j are connected or i = j;
- (b) $\mathbf{0} \leq \mathbf{W} \leq \mathbf{I}, \mathbf{W}^{\top} \mathbf{1} = \mathbf{W} \mathbf{1} = \mathbf{1}, \text{ and } \text{null}(\mathbf{I} \mathbf{W}) = \text{span}(\mathbf{1}).$

Table 1: We summarize the complexity for finding the ϵ -suboptimal solution of problem (1). We use the notation $\tilde{\mathcal{O}}(\cdot)$ to hide the logarithmic terms with respect to m, n, μ , and the smoothness parameters. Note that the computation rounds may not be proportional to the LIFO calls, since distributed algorithms include the scheme of partial participated computation.

Algorithms	LIFO Calls	Computation Rounds	Communication Rounds
GT-EG [55]	$\mathcal{O}\left(mn\left(\frac{\chi L_{\max}}{\mu}\right)^{4/3}\log\left(\frac{1}{\epsilon}\right)\right)$	$\mathcal{O}\left(n\left(\frac{\chi L_{\max}}{\mu}\right)^{4/3}\log\left(\frac{1}{\epsilon}\right)\right)$	$\mathcal{O}\left(\left(\frac{\chi L_{\max}}{\mu}\right)^{4/3}\log\left(\frac{1}{\epsilon}\right)\right)$
MC-SVRE [46]	$\mathcal{O}\!\left(\!\left(mn + \frac{m\sqrt{n}L_{\max}}{\mu}\right)\log\left(\frac{1}{\epsilon}\right)\!\right)$	$\mathcal{O}\!\left(\!\left(n + \frac{\sqrt{n}L_{\max}}{\mu}\right)\log\left(\frac{1}{\epsilon}\right)\!\right)$	$\tilde{\mathcal{O}}\left(\sqrt{\chi}\left(n + \frac{\sqrt{n}L_{\max}}{\mu}\right)\log\left(\frac{1}{\epsilon}\right)\right)$
OADSVI [39]	$\mathcal{O}\left(\left(mn + \frac{m\sqrt{n}\bar{L}_l}{\mu}\right)\log\left(\frac{1}{\epsilon}\right)\right)$	$\mathcal{O}\!\left(\!\left(n + \frac{\sqrt{n}\bar{L}_l}{\mu}\right)\log\left(\frac{1}{\epsilon}\right)\!\right)$	$\mathcal{O}\!\left(\!\frac{\sqrt{\chi}L_l}{\mu}\log\left(\frac{1}{\epsilon}\right)\!\right)$
DIVERSE Theorem 3.7	$\mathcal{O}\!\left(\!\left(mn + \frac{\min\{mnL, \sqrt{mn}\bar{L}\}}{\mu}\right)\log\left(\frac{1}{\epsilon}\right)\!\right)$	$\tilde{\mathcal{O}}\left(\left(n + \frac{L}{\mu} + \frac{\min\{nL, \sqrt{n/m}\bar{L}\}}{\mu}\right)\log\left(\frac{1}{\epsilon}\right)\right)$	$)) \qquad \tilde{\mathcal{O}} \bigg(\frac{\sqrt{\chi} L}{\mu} \log \bigg(\frac{1}{\epsilon} \bigg) \bigg) $
Lower Bounds Theorem 4.2–4.	$ \frac{1}{4} \Omega \left(mn + \frac{\min\{mnL, \sqrt{mn}\bar{L}\}}{\mu} \log \left(\frac{1}{\epsilon} \right) \right) $	$\Omega\left(n + \left(\frac{L}{\mu} + \frac{\min\{nL, \sqrt{n/m}\bar{L}\}}{\mu}\right)\log\left(\frac{1}{\epsilon}\right)\right)$	$\Omega\left(\frac{\sqrt{\chi}L}{\mu}\log\left(\frac{1}{\epsilon}\right)\right)$

Assumption 2.4 indicates that $1 - \lambda_2(\mathbf{W}) > 0$, where $\lambda_2(\mathbf{W})$ is the second largest eigenvalue of $\mathbf{W} \in \mathbb{R}^{m \times m}$. Thus, we can define the characteristic number $\chi := 1/(1 - \lambda_2(\mathbf{W}))$.

In this paper we consider the ϵ -suboptimal solution of problem (1), i.e., the point $\mathbf{z} = (\mathbf{x}, \mathbf{y})$ such that

$$\|\mathbf{x} - \mathbf{x}^*\|^2 + \|\mathbf{y} - \mathbf{y}^*\|^2 \le \epsilon,$$

where $(\mathbf{x}^*, \mathbf{y}^*)$ is the solution of problem (1) that satisfies $f(\mathbf{x}^*, \mathbf{y}') \leq f(\mathbf{x}^*, \mathbf{y}^*) \leq f(\mathbf{x}', \mathbf{y}^*)$ for all $\mathbf{x}' \in \mathbb{R}^{d_x}$ and $\mathbf{y}' \in \mathbb{R}^{d_y}$. Noting that the solution $(\mathbf{x}^*, \mathbf{y}^*)$ is unique under the strongly-convex-strongly-concave assumption.

2.2 Related Work

Significant advancement has been made for decentralized optimization over the last decade. For the minimization problem, the convergence of decentralized gradient descent (DGD) with decaying step sizes has been established by Duchi et al. [22], Tsianos and Rabbat [74], and Jakovetić et al. [31]. The gradient tracking technique was introduced in Nedic et al. [56], Qu and Li [63], and Song et al. [69], so that constant step size can be utilized and linear convergence was achieved for strongly-convex objective. Pu and Nedić [62], Koloskova et al. [33], Ye and Chang [85] further investigated the convergence of gradient tracking under stochastic setting. Scaman et al. [66], Kovalev et al. [38], and Ye et al. [87] introduced the multi-consensus steps by Chebyshev acceleration [5, 43] to further improve the communication complexity. For the objective with the finite-sum structure, Xin et al. [81], Ye et al. [86], Hendrikx et al. [28], and Li et al. [41] integrated the variance reduction techniques to improve the computational efficiency of the algorithms. In recent works [44, 48, 52], different types of smoothness parameters have been considered and sharper complexity bounds have been established for the decentralized finite-sum minimization problems.

For decentralized minimax optimization, Mukherjee and Chakraborty [55] proposed the GT-EG method by combining gradient tracking with EG, proving its linear convergence under the strongly-convex–strongly-concave assumption. Later, Luo and Ye [46] improved the decentralized EG method by incorporating variance reduction [2] and multi-consensus steps [5, 43], achieving better complexity bound on the LIFO calls. It is worth noting that the convergence for both of these methods require the assumption that each component function $f_{i,j}$ is L_{\max} -smooth. In a seminal work, Kovalev et al. [39] considered the relaxed conditions that only assume each local function f_i is L_l -smooth and each local function set $\{f_{i,j}\}_{j=1}^n$ is \bar{L}_l -mean-squared smooth. The authors introduced an extra momentum term into the variance-reduced OGDA method [2], so that they could take the advantage of mini-batch sampling to construct an accurate stochastic gradient estimator, leading to improved computation complexity and communication complexity. The lower bounds were also established therein to justify the optimality of their algorithm with respect to the local smoothness parameters L_l and \bar{L}_l . However, none of the previous works on decentralized minimax optimization [39, 46, 55] has considered the potentially tighter complexity bounds with respect to the global smoothness in Assumptions 2.2 and 2.3, which will be well-addressed in this paper. We compare our theoretical results with related work in Table 1.

Algorithm 1 FastMix $(\mathbf{U}^0, \mathbf{W}, R)$

1: Initialize: $\mathbf{U}^{-1} = \mathbf{U}^0$, $\eta_U = \frac{1 - \sqrt{1 - \lambda_2^2(\mathbf{W})}}{1 + \sqrt{1 - \lambda_2^2(\mathbf{W})}}$

2: **for** $r = 0, 1, \dots, R - 1$ **do**

3: $\mathbf{U}^{r+1} = (1 + \eta_U)\mathbf{W}\mathbf{U}^r - \eta_U\mathbf{U}^{r-1}$

4: end for

5: Output: U^R

Algorithm 2 DIVERSE

1: **Input:** initial point \mathbf{z}^0 , step size η , mini-batch size b, probability $p \in [0, 1]$, parameters $\alpha, \beta \in [0, 1]$, mixing matrix \mathbf{W} , iteration numbers K, communication rounds R

2:
$$\mathbf{V}^{-1} = \mathbf{V}^0 = \mathbf{Z}^{-1} = \mathbf{Z}^0 = \mathbf{1}\mathbf{z}^0, \mathbf{S}^{-1} = \mathbf{\Delta}^{-1} = \mathbf{0}$$

3: **for** $k = 0, 1, 2, \dots, K - 1$ **do**

4: **for** i = 1, 2, ..., m **in parallel**

5: $\xi_{i,j}^k \stackrel{\text{i.i.d}}{\sim} \text{Bernoulli}(q) \text{ with } q = b/(mn)$

6:
$$\boldsymbol{\delta}_i^k = \mathbf{g}_i(\mathbf{v}_i^{k-1}) + \frac{1}{n} \sum_{j=1}^n \frac{\xi_{i,j}^k}{q} \left(\mathbf{g}_{i,j}(\mathbf{z}_i^k) - \mathbf{g}_{i,j}(\mathbf{v}_i^{k-1}) + \alpha \left(\mathbf{g}_{i,j}(\mathbf{z}_i^k) - \mathbf{g}_{i,j}(\mathbf{z}_i^{k-1}) \right) \right)$$

7: end for

8: $\mathbf{S}^k = \mathtt{FastMix}(\mathbf{S}^{k-1} + \boldsymbol{\Delta}^k - \boldsymbol{\Delta}^{k-1}, \mathbf{W}, R)$

9: $\mathbf{Z}^{k+1} = \mathtt{FastMix}((1-\beta)\mathbf{Z}^k + \beta \mathbf{V}^k - \eta \mathbf{S}^k, \mathbf{W}, R)$

$$\mathbf{10:} \quad \mathbf{V}^{k+1} = \begin{cases} \mathtt{FastMix}(\mathbf{Z}^k, \mathbf{W}, R) & \text{with probability } p, \\ \mathbf{V}^k & \text{with probability } 1-p \end{cases}$$

11: **end for**

12: Output: $\mathbf{z}_i^{\text{out}} = \mathbf{z}_i^K$

3 Algorithm and Complexity Analysis

The proposed decentralized variance-reduced optimistic gradient method with stochastic mini-batch sizes (DIVERSE) is described in Algorithm 2, which is based on a novel sampling strategy and the subroutine of multi-consensus steps (Algorithm 1). The details of the algorithm and its complexity analysis are presented in Sections 3.1 and 3.2, respectively.

3.1 Algorithm Design

Recall that the standard OGDA update [19, 54, 61] is given by

$$\mathbf{z}^{k+1} = \mathbf{z}^k - \eta (\underbrace{\mathbf{g}(\mathbf{z}^k) + \mathbf{g}(\mathbf{z}^k) - \mathbf{g}(\mathbf{z}^{k-1})}_{\text{optimistic gradient}}),$$

where $\eta > 0$ is the step size. To improve the computational efficiency by using the finite-sum structure in the local function, DIVERSE constructs the variance-reduced optimistic gradient estimator at node i as follows

$$\boldsymbol{\delta}_{i}^{k} = \mathbf{g}_{i}(\mathbf{v}_{i}^{k-1}) + \frac{1}{n} \sum_{j=1}^{n} \frac{\xi_{i,j}^{k}}{q} \left(\mathbf{g}_{i,j}(\mathbf{z}_{i}^{k}) - \mathbf{g}_{i,j}(\mathbf{v}_{i}^{k-1}) + \alpha \left(\mathbf{g}_{i,j}(\mathbf{z}_{i}^{k}) - \mathbf{g}_{i,j}(\mathbf{z}_{i}^{k-1}) \right) \right), \quad (3)$$

where $\xi_{i,j}^k \overset{\text{i.i.d}}{\sim} \operatorname{Bernoulli}(q)$ with q = b/(mn) and \mathbf{v}_i^{k-1} is the snapshot point, and $\alpha > 0$ is the momentum parameter. The distribution of $\xi_{i,j}^k$ means we only need to compute the gradient operator $\mathbf{g}_{i,j}$ in equation (3) when $\xi_{i,j}^k = 1$. Note that the snapshot point \mathbf{v}_i^{k+1} is updated with probability p in

5

each iteration (see Line 10 of Algorithm 2), which implies the term $\mathbf{g}_i(\mathbf{v}_i^{k-1})$ in equation (3) can be reused with probability 1-p. Therefore, the expected LIFO calls of the algorithm in each iteration is $\mathcal{O}(mnp+(1-p)b)$, which is much more efficient than the cost of accessing the full gradient if we take $p\ll 1$ and $b\ll mn$.

The main difference between DIVERSE and exiting decentralized minimax optimization methods [39, 46, 55] is that the mini-batch size for the local gradient estimator δ_i^k in equation (3) is not required to be fixed since the variables $\{\xi_{i,j}^k\}_{i,j=1}^{m,n}$ are random. Therefore, the behaviors of all m nodes are similar to the large mini-batch sampling on a single machine. Besides, the steps of gradient tracking and multi-consensus in Lines 8 and 9 of Algorithm 2 ensures that the local variables are sufficiently close to each other, resulting in the sharper complexity bounds with respect to the global smoothness.

3.2 Complexity Analysis

For the convergence analysis of DIVERSE (Algorithm 2), define the following Lyapunov function based on the mean vectors as follows

$$\begin{split} \Phi^k := & \left(\frac{1}{\eta} + \frac{3\mu}{2} \right) \| \bar{\mathbf{z}}^k - \mathbf{z}^* \|^2 + \frac{\beta}{\eta} \| \bar{\mathbf{z}}^k - \bar{\mathbf{v}}^{k-1} \|^2 + \frac{1}{8\eta} \| \bar{\mathbf{z}}^k - \bar{\mathbf{z}}^{k-1} \|^2 \\ & + 2 \langle \mathbf{g}(\bar{\mathbf{z}}^{k-1}) - \mathbf{g}(\bar{\mathbf{z}}^k), \bar{\mathbf{z}}^k - \mathbf{z}^* \rangle + \frac{\beta + \eta\mu}{p\eta} \| \bar{\mathbf{v}}^k - \mathbf{z}^* \|^2. \end{split}$$

It is not hard to verify that the Lyapunov function Φ^k is always non-negative for all $\eta \leq 1/(4L)$ (see Appendix B.1).

We first consider the case of $\bar{L} \leq \sqrt{mn}L$, in which the Lyapunov function satisfies the following relation.

Lemma 3.1. Under Assumptions 2.1, 2.2, 2.3, and 2.4 with $0 < \mu < L \le \bar{L} \le \sqrt{mn}L$, we run Algorithm 2 with

$$\begin{split} \eta &= \frac{1}{16L}, \quad \beta = p = \frac{\bar{L}}{8L} \max \left\{ \frac{\mu}{\bar{L}}, \frac{1}{\sqrt{mn}} \right\}, \quad \alpha = \max \left\{ 1 - \frac{\mu\eta}{4}, 1 - \frac{p\eta\mu}{\beta + \eta\mu} \right\}, \\ b &= \left\lceil \frac{\bar{L}}{L} \min \left\{ \frac{\bar{L}}{\mu}, \sqrt{mn} \right\} \right\rceil, \quad \textit{and} \quad R = \mathcal{O}\left(\sqrt{\chi} \log(mn\bar{L}/\mu)\right). \end{split}$$

Then it holds that

$$\mathbb{E}\left[\Phi^{k+1}\right] \leq \alpha \mathbb{E}\left[\Phi^{k}\right] + C_{1}\left(\mathbb{E}\left[\|\mathbf{Z}^{k} - \mathbf{1}\bar{\mathbf{z}}^{k}\|^{2}\right] + \mathbb{E}\left[\|\mathbf{Z}^{k-1} - \mathbf{1}\bar{\mathbf{z}}^{k-1}\|^{2}\right] + \mathbb{E}\left[\|\mathbf{V}^{k-1} - \mathbf{1}\bar{\mathbf{v}}^{k-1}\|^{2}\right]\right),$$
where $C_{1} = (1 + \alpha^{2})\left(12n\eta\bar{L}^{2}/b + 6n\bar{L}^{2}/\mu\right)$.

To characterize the convergence of the multi-consensus steps (Algorithm 1), define

$$\rho := \sqrt{14}(1 - (1 - 1/\sqrt{2})\sqrt{1 - \lambda_2(\mathbf{W})})^R.$$

We have $\rho < 1$ if R is sufficient large. See more properties of Algorithm 1 in Appendix B.2.

We then bound the consensus error as follows.

Lemma 3.2. *Under the settings of Lemma 3.1, we have*

$$\mathbb{E}\left[\|\mathbf{Z}^{k+1} - \mathbf{1}\bar{\mathbf{z}}^{k+1}\|^2\right] \le 3\rho^2(1-\beta)^2\mathbb{E}\left[\|\mathbf{Z}^k - \mathbf{1}\bar{\mathbf{z}}^k\|^2\right] \\ + 3\rho^2\beta^2\mathbb{E}\left[\|\mathbf{V}^k - \mathbf{1}\bar{\mathbf{v}}^k\|^2\right] + 3\rho^2\eta^2\mathbb{E}\left[\|\mathbf{S}^k - \mathbf{1}\bar{\mathbf{s}}^k\|^2\right]$$

and

$$\mathbb{E}\left[\|\mathbf{V}^{k+1} - \mathbf{1}\bar{\mathbf{v}}^{k+1}\|^2\right] \leq p\rho^2\mathbb{E}\left[\|\mathbf{Z}^k - \mathbf{1}\bar{\mathbf{z}}^k\|^2\right] + (1-p)\mathbb{E}\left[\|\mathbf{V}^k - \mathbf{1}\bar{\mathbf{v}}^k\|^2\right].$$

Noting that the upper bound in Lemma 3.2 depends on the term $\|\mathbf{S}^k - \mathbf{1}\bar{\mathbf{s}}^k\|^2$, the consensus error for \mathbf{S} can be bounded as follows.

Lemma 3.3. *Under the settings of Lemma 3.1, we have*

$$\mathbb{E}\left[\|\mathbf{S}^{k+1} - \mathbf{1}\bar{\mathbf{s}}^{k+1}\|^2\right] \le C_2 \rho^2 \left(\mathbb{E}\left[\|\mathbf{Z}^k - \mathbf{1}\bar{\mathbf{z}}^k\|^2\right] + \mathbb{E}\left[\|\mathbf{Z}^{k-1} - \mathbf{1}\bar{\mathbf{z}}^{k-1}\|^2\right] + \mathbb{E}\left[\|\mathbf{V}^k - \mathbf{1}\bar{\mathbf{v}}^k\|^2\right] + \mathbb{E}\left[\|\mathbf{V}^{k-1} - \mathbf{1}\bar{\mathbf{v}}^{k-1}\|^2\right]\right) + C_3 \rho^2 \mathbb{E}\left[\|\mathbf{S}^k - \mathbf{1}\bar{\mathbf{s}}^k\|^2\right] + C_4 \rho^2 \left(\mathbb{E}\left[\Phi^{k+1}\right] + \mathbb{E}\left[\Phi^k\right] + \mathbb{E}\left[\Phi^{k-1}\right]\right),$$

where $C_2=270m^2n^2\bar{L}^2$, $C_3=180m^2n^2\bar{L}^2\eta^2+2$, $C_4=60(16\eta+\eta/\beta)m^3n^2\bar{L}^2$, and $\Phi^{-1}=0$.

Remark 3.4. Lemma 3.3 shows that the upper bound of $\mathbb{E}\left[\|\mathbf{S}^{k+1} - \mathbf{1}\bar{\mathbf{s}}^{k+1}\|^2\right]$ does not only depend on the consensus error at the k-th iteration, but also on that of the (k-1)-th iteration. In contrast, the consensus error in the decentralized minimization problem only depends on the term related to the previous iteration [40, 44, 48, 87]. The difference poses a challenge in the analysis, which requires us to develop a novel inductive proof technique.

Applying Lemmas 3.1–3.3, we obtain the linear convergence for the Lyapunov function and consensus errors.

Lemma 3.5. *Under the settings of Lemma 3.1, we have*

$$\begin{split} & \mathbb{E}\left[\boldsymbol{\Phi}^k\right] \leq \tilde{\alpha}^k \boldsymbol{\Phi}^0, \qquad \mathbb{E}\left[\|\mathbf{Z}^k - \mathbf{1}\bar{\mathbf{z}}^k\|^2\right] \leq \frac{1 - \tilde{\alpha}}{4C_1} \tilde{\alpha}^{k+1} \boldsymbol{\Phi}^0, \\ & \mathbb{E}\left[\|\mathbf{V}^k - \mathbf{1}\bar{\mathbf{v}}^k\|^2\right] \leq \frac{1 - \tilde{\alpha}}{4C_1} \tilde{\alpha}^{k+1} \boldsymbol{\Phi}^0, \qquad \textit{and} \qquad \mathbb{E}\left[\|\mathbf{S}^k - \mathbf{1}\bar{\mathbf{s}}^k\|^2\right] \leq \frac{1 - \tilde{\alpha}}{4\eta^2 C_1} \tilde{\alpha}^{k+1} \boldsymbol{\Phi}^0, \end{split}$$

where $\tilde{\alpha} = \max \{1 - \mu \eta/8, 1 - p \eta \mu/(2(\beta + \eta \mu))\}.$

According to the parameter settings in Lemma 3.1, the linear convergence rate $\tilde{\alpha}$ achieved by Lemma 3.5 has the order of $\Theta(1-\mu/L)$, which depends on the global smoothness. The expected overall LIFO complexity to achieve the ϵ -suboptimal solution is $\mathcal{O}((mn+\sqrt{mn}\bar{L}/\mu)\log(1/\epsilon))$, matching the complexity of variance-reduced EG/OGDA on a single machine [2].

We then consider the case of $L \leq \bar{L}/\sqrt{mn}$. Note that under the setting of Lemma 3.1, one has $b \geq mn$ in this case, which motivates us to use the exact local gradients. That is, we set p=0 and b=mn in Algorithm 2 when $L \leq \bar{L}/\sqrt{mn}$, which leads to $\xi_{i,j}^k = q = 1$ and

$$\boldsymbol{\delta}_i^k = \mathbf{g}_i(\mathbf{z}_i^k) + \alpha (\mathbf{g}_i(\mathbf{z}_i^k) - \mathbf{g}_i(\mathbf{z}_i^{k-1})).$$

Hence, the snapshot \mathbf{v}_i^k is unnecessary, so we set $\beta = 0$ and define the simplified Lyapunov function

$$\Psi^{k} := \left(\frac{1}{\eta} + \frac{3\mu}{2}\right) \|\bar{\mathbf{z}}^{k} - \mathbf{z}^{*}\|^{2} + \frac{3}{4\eta} \|\bar{\mathbf{z}}^{k} - \bar{\mathbf{z}}^{k-1}\|^{2} + 2\langle \mathbf{g}(\bar{\mathbf{z}}^{k-1}) - \mathbf{g}(\bar{\mathbf{z}}^{k}), \bar{\mathbf{z}}^{k} - \mathbf{z}^{*}\rangle.$$

Similar to the analysis of Lemma 3.5, the linear convergence can also be achieved with respect to the global smoothness.

Lemma 3.6. Under Assumptions 2.1, 2.2, 2.3 and 2.4 with $0 < \mu < L \le \bar{L}/\sqrt{mn}$, we run Algorithm 2 with $\eta = 1/(16L)$, $\beta = p = 0$, b = mn, $\alpha = 1 - \mu\eta$, and $R = \mathcal{O}(\sqrt{\chi}\log(mn\bar{L}/\mu))$. Then it holds that

$$\begin{split} & \Psi^k \leq \left(1 - \frac{\mu \eta}{2}\right)^k \Psi^0, \quad \|\mathbf{Z}^k - \mathbf{1}\bar{\mathbf{z}}^k\|^2 \leq \frac{\mu^2 \eta}{48n\bar{L}^2} \left(1 - \frac{\mu \eta}{2}\right)^{k+1} \Psi^0, \\ & \text{and} \quad \|\mathbf{S}^k - \mathbf{1}\bar{\mathbf{s}}^k\|^2 \leq \frac{\mu^2}{48m\bar{L}^2} \left(1 - \frac{\mu \eta}{2}\right)^{k+1} \Psi^0. \end{split}$$

According to Lemma 3.6, we achieve the LIFO complexity of $\mathcal{O}((mnL/\mu)\log(1/\epsilon))$. It is worth noting that the expected overall LIFO complexity of $\mathcal{O}((mn+\sqrt{mn}L/\mu)\log(1/\epsilon))$ achieved by variance reduction (under the parameter settings in Lemma 3.1) is worse than the LIFO complexity achieved by iterations with exact local gradients in the case of $L \leq \bar{L}/\sqrt{mn}$. Similar phenomenon is also observed by Luo et al. [48] in nonconvex minimization. Our result implies that the trade-off between variance-reduced gradient estimator and the exact gradient is also necessary in minimax optimization.

Combining the results of Lemmas 3.5 and 3.6 yields the following upper complexity bounds.

Theorem 3.7. Under Assumptions 2.1, 2.2, 2.3 and 2.4 with $0 < \mu < L \le \bar{L}$, running DIVERSE (Algorithm 2) with appropriate parameter settings can find an ϵ -suboptimal solution at each node, with the expected LIFO complexity of $\mathcal{O}((mn + \min\{mnL, \sqrt{mn\bar{L}}\}/\mu)\log(1/\epsilon))$, the expected computation rounds of $\tilde{\mathcal{O}}((n + L/\mu + \min\{nL, \sqrt{n/m\bar{L}}\}/\mu)\log(1/\epsilon))$, and the communication rounds of $\tilde{\mathcal{O}}(\sqrt{\chi}L/\mu\log(1/\epsilon))$.

As demonstrated in Table 1, all of our upper bounds in Theorem 3.7 are sharper than state-of-the-art results since we have $L \leq L_l \leq L_{\max}$ and $\bar{L} \leq \bar{L}_l \leq L_{\max}$ for the tight smoothness parameters. Additionally, our LIFO complexity depends on \sqrt{m} in the case of $\bar{L} \leq \sqrt{mn}L$, which is better than existing results that always depends on m. These improvements essentially rely on the sampling strategy that does not fix the mini-batch size on different nodes, thereby allowing partial participation to reduce computational costs.

Remark 3.8. The computation rounds in Algorithm 2 depend on $\mathbb{E}[\max_{i \in [m]} \sum_{j=1}^n \xi_{i,j}^k]$, which may not be proportional to the LIFO calls. We upper bound this quantity by using the locally sub-Gaussian property, which simplifies the analysis in Liu et al. [44] and Luo et al. [48], see Lemma C.1 for details.

4 The Lower Complexity Bounds

In this section, we establish the lower complexity bounds of the first-order methods for the decentralized finite-sum minimax optimization. Specifically, we consider the local incremental first-order oracle algorithms as follows.

Definition 4.1. A local incremental first-order oracle (LIFO) algorithm over a network of m nodes satisfies the following constraints:

- Local memory: Each node i stores vectors in local memories $\mathcal{M}_{i,t}^{\mathbf{x}}$ and $\mathcal{M}_{i,t}^{\mathbf{y}}$ at time t>0. The local memories are updated through local computation or local communication, i.e., for all $i \in [m]$, it holds $\mathcal{M}_{i,t}^{\mathbf{x}} \subseteq \mathcal{M}_{i,t}^{\mathrm{comp},\mathbf{x}} \cup \mathcal{M}_{i,t}^{\mathrm{comm},\mathbf{x}}$ and $\mathcal{M}_{i,t}^{\mathbf{y}} \subseteq \mathcal{M}_{i,t}^{\mathrm{comp},\mathbf{y}} \cup \mathcal{M}_{i,t}^{\mathrm{comm},\mathbf{y}}$.
- Local computation: At time t, each node i can query the local first-order oracles $\nabla_{\mathbf{x}} f_{i,j}(\mathbf{x}, \mathbf{y})$ and $\nabla_{\mathbf{y}} f_{i,j}(\mathbf{x}, \mathbf{y})$ for any $\mathbf{x} \in \mathcal{M}_{i,t-1}^{\mathbf{x}}$ and $\mathbf{y} \in \mathcal{M}_{i,t-1}^{\mathbf{y}}$. Additionally, the local computational memories $\mathcal{M}_{i,t}^{\text{comp},\mathbf{x}}$ and $\mathcal{M}_{i,t}^{\text{comp},\mathbf{y}}$ satisfy $\mathcal{M}_{i,t}^{\text{comp},\mathbf{x}} = \operatorname{Span}\left(\{\mathbf{x}, \nabla_{\mathbf{x}} f_{i,j}(\mathbf{x}, \mathbf{y}) : \mathbf{x} \in \mathcal{M}_{i,t-1}^{\mathbf{x}}\}\right)$ and $\mathcal{M}_{i,t}^{\text{comp},\mathbf{y}} = \operatorname{Span}\left(\{\mathbf{y}, \nabla_{\mathbf{y}} f_{i,j}(\mathbf{x}, \mathbf{y}) : \mathbf{y} \in \mathcal{M}_{i,t-1}^{\mathbf{y}}\}\right)$.
- Local communication: At time t, each node i can communicate with its neighbours $\mathcal{N}(i)$. For all $i \in [m]$, the communication memories are defined as $\mathcal{M}_{i,t}^{\operatorname{comm},\mathbf{x}} = \operatorname{Span}(\bigcup_{j \in \mathcal{N}(i),\tau} \mathcal{M}_{j,t-\tau}^{\mathbf{x}})$, and $\mathcal{M}_{i,t}^{\operatorname{comm},\mathbf{y}} = \operatorname{Span}(\bigcup_{j \in \mathcal{N}(i),\tau} \mathcal{M}_{j,t-\tau}^{\mathbf{y}})$, where τ is a delay parameter satisfying $\tau < t$.
- Output value: Each node i specifies local outputs from its memory at time t, that is, for all $i \in [m]$, we have $\mathbf{x}_i^t \in \mathcal{M}_{i,t}^{\mathbf{x}}$ and $\mathbf{y}_i^t \in \mathcal{M}_{i,t}^{\mathbf{y}}$.

The definition of the above algorithm class follows the standard settings in the studies of decentralized optimization [8, 28, 44, 48, 66]. Compared with the algorithm classes defined by Kovalev et al. [39], we remove the requirement that all nodes must access their stochastic local gradients with the identical mini-batch size per iteration, so our algorithm class also contains the partial participated computation schemes.

The lower complexity bounds on the LIFO calls, the computation rounds, and the communication rounds are presented in the following three theorems.

Theorem 4.2. For the parameters $\bar{L} \geq L$, $L/\mu > 2$, and $\epsilon < 0.003$, there exists hard instances satisfying Assumptions 2.1–2.4. In order to find an ϵ -suboptimal solution, the LIFO calls of any LIFO algorithm is lower bounded by $\Omega(mn + \min\{mnL, \sqrt{mn}\bar{L}\}/\mu \log(1/\epsilon))$.

Theorem 4.3. For the parameters $\bar{L} \geq L$, $L/\mu > 2$, and $\epsilon < 0.003$, there exists hard instances satisfying Assumptions 2.1–2.4. In order to find an ϵ -suboptimal solution, the computation rounds of any LIFO algorithm is lower bounded by $\Omega(n + (L/\mu + \min\{nL, \sqrt{n/m}\bar{L}\}/\mu)\log(1/\epsilon))$.

Theorem 4.4. For the parameters $\bar{L} \geq L \geq 2\mu > 0$, and $m \geq 2, n \in \mathbb{N}$, there exists a hard instance satisfying Assumptions 2.1–2.4 with $\lambda_2(\mathbf{W}) \in [0, \cos(\pi/m)]$. In order to find an ϵ -suboptimal solution, the communication rounds of any LIFO algorithm is lower bounded by $\Omega(\sqrt{\chi}L/\mu\log(1/\epsilon))$.

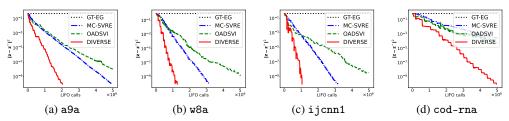


Figure 1: Performance comparison with respect to LIFO calls across different datasets.

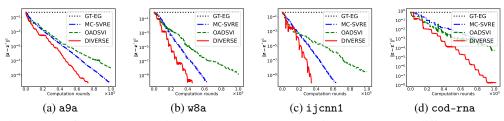


Figure 2: Performance comparison with respect to computation rounds across different datasets.

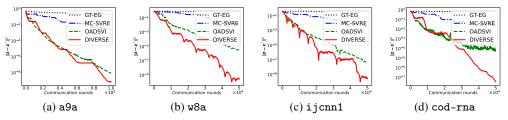


Figure 3: Performance comparison with respect to communication rounds across different datasets.

The above theorems indicate that the upper complexity bounds provided in Theorem 3.7 are optimal (up to a logarithmic factor). Our lower bounds hold for the decentralized finite-sum minimax optimization under the general smoothness settings. Specifically, the results in Theorems 4.2–4.4 hold for all L and \bar{L} such that $0 < L \le \bar{L}$. In contrast, the existing lower bounds [39] consider the local smoothness parameters L_l and \bar{L}_l (see Section 2.1), and their analysis requires the additional condition $\sqrt{n}L_l = \bar{L}_l$.

5 Numerical Experiments

In this section, numerical experiments are conducted to evaluate the performance of Algorithm 2. We consider the problem of robust regularized linear regression [12, 27, 39, 50], which is formulated as

$$\min_{\mathbf{x} \in \mathbb{R}^d} \max_{\mathbf{y} \in \mathbb{R}^d} \frac{1}{2N} \sum_{i=1}^N \left(\mathbf{x}^\top (\mathbf{a}_i + \mathbf{y}) - b_i \right)^2 + \frac{r_1}{2} \|\mathbf{x}\|^2 - \frac{r_2}{2} \|\mathbf{y}\|^2,$$

where x is the weight of the model, y is the adversarial noise, $\{(\mathbf{a}_i,b_i)\}_{i=1}^N$ is the training dataset, and r_1,r_2 are regularization parameters. We consider the undirected ring network with m=50 nodes and each node has n training samples. Therefore, the total number of samples is N=mn. The mixing matrix with Metropolis–Hastings weights [80] is used for communication steps. The regularization parameters are set to be $r_1=r_2=0.2$. The numerical experiments are conducted on datasets a9a, w8a, ijcnn1, and cod-rna, from the LIBSVM repository [14]. We compare the proposed DIVERSE (Algorithm 2) with the baseline methods including GT-EG [55], MC-SVRE [46], and OADSVI [39, Algorithm 1]. The parameters of these algorithms are set according to the theoretical analysis or the recommended settings by the authors [39, 46, 55]. Specifically, the parameter b in the DIVERSE is set to be 128 and the fixed batch size for each node in OADSVI is set to be 3. The best performance step sizes from $\{0.1, 0.05, 0.01\}$ are used, up to the algorithms and the datasets.

The experimental results are shown in Figures 1-3. It can be observed that the proposed DIVERSE outperforms all the tested methods in terms of LIFO calls, the computation rounds, and the communication rounds, which validates our theoretical results. The deterministic method GT-EG [55] and the

stochastic method MC-SVRE [46] require much more communication rounds than other methods. This is because GT-EG does not include Chebyshev acceleration in its communication protocol and MC-SVRE cannot benefit from the communication efficiency by the mini-batch sampling. Additionally, the LIFO complexity of DIVERSE is significantly superior to all the baselines, since it is the only one that uses stochastic mini-batch sizes, benefiting from partially participated computations.

6 Conclusion

This paper proposes variance-reduced optimistic gradient method with stochastic mini-batch sizes for decentralized convex-concave finite-sum minimax problem. We establish the linear convergence rate with global smoothness parameters dependency for the strongly-convex-strongly-concave objective, which is shaper than existing results that only consider the local smoothness. Lower complexity bounds are constructed to show the near optimality of our method. The efficiency of the proposed method is also validated through numerical experiments. For future direction, we would like to extend the ideas to solve the decentralized minimax problem with different constants of strong convexity and strong concavity [26, 36, 42, 47, 53, 70, 76, 84]. We can also study the global smoothness dependency in decentralized nonconvex minimax optimization [17, 23, 30, 72, 79, 83, 91–93].

Acknowledgments and Disclosure of Funding

Luo is supported by the Major Key Project of Pengcheng Laboratory (No. PCL2024A06), National Natural Science Foundation of China (No. 12571557), National Natural Science Foundation of China (No. 62206058), and Shanghai Basic Research Program (23JC1401000). Chen and Wei were partially supported by the National Key R&D Program of China (No. 2023YFA1009300).

References

- [1] Alekh Agarwal and Leon Bottou. A lower bound for the optimization of finite sums. In *International conference on machine learning*, pages 78–86, 2015.
- [2] Ahmet Alacaoglu and Yura Malitsky. Stochastic variance reduction for variational inequality methods. In *Conference on Learning Theory*, pages 778–816, 2022.
- [3] Ahmet Alacaoglu, Yura Malitsky, and Volkan Cevher. Forward-reflected-backward method with variance reduction. *Computational Optimization and Applications*, 80(2):321–346, 2021.
- [4] Zeyuan Allen-Zhu. Katyusha: The first direct acceleration of stochastic gradient methods. *Journal of Machine Learning Research*, 18(221):1–51, 2018.
- [5] Mario Arioli and Jennifer Scott. Chebyshev acceleration of iterative refinement. *Numerical Algorithms*, 66(3):591–608, 2014.
- [6] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks. In *International Conference on Machine Learning*, pages 214–223, 2017.
- [7] Tao Bai, Jinqi Luo, Jun Zhao, Bihan Wen, and Qian Wang. Recent advances in adversarial training for adversarial robustness. In *International Joint Conference on Artificial Intelligence*, pages 4312–4321, 2021.
- [8] Yunyan Bai, Yuxing Liu, and Luo Luo. On the complexity of finite-sum smooth optimization under the Polyak–Łojasiewicz condition. In *International Conference on Machine Learning*, pages 2392–2417, 2024.
- [9] Tamer Başar and Geert Jan Olsder. Dynamic noncooperative game theory. SIAM, 1998.
- [10] Aharon Ben-Tal, Arkadi Nemirovski, and Laurent El Ghaoui. Robust optimization. Princeton university press, 2009.
- [11] Michel Benaim and Morris W. Hirsch. Mixed equilibria and dynamical systems arising from fictitious play in perturbed games. *Games and Economic Behavior*, 29(1-2):36–72, 1999.

- [12] Aleksandr Beznosikov, Gesualdo Scutari, Alexander Rogozin, and Alexander Gasnikov. Distributed saddle-point problems under data similarity. In *Advances in Neural Information Processing Systems*, pages 8172–8184, 2021.
- [13] Aleksandr Beznosikov, Pavel Dvurechenskii, Anastasiia Koloskova, Valentin Samokhin, Sebastian U. Stich, and Alexander Gasnikov. Decentralized local stochastic extra-gradient for variational inequalities. In Advances in Neural Information Processing Systems, pages 38116–38133, 2022.
- [14] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for support vector machines. *ACM Transactions on Intelligent Systems and Technology*, 2(3):1–27, 2011.
- [15] Patrick Chareka, Ottilia Chareka, and Sarah Kennendy. Locally sub-Gaussian random variable and the strong law of large numbers. Atlantic Electronic Journal of Mathematics, 1(1):75–81, 2006.
- [16] Tatjana Chavdarova, Gauthier Gidel, François Fleuret, and Simon Lacoste-Julien. Reducing noise in GAN training with variance reduced extragradient. In *Advances in Neural Information Processing Systems*, pages 391–401, 2019.
- [17] Lesi Chen, Haishan Ye, and Luo Luo. An efficient stochastic algorithm for decentralized nonconvex-strongly-concave minimax optimization. In *International Conference on Artificial Intelligence and Statistics*, pages 1990–1998, 2024.
- [18] Christoph Dann, Gerhard Neumann, and Jan Peters. Policy evaluation with temporal differences: A survey and comparison. *Journal of Machine Learning Research*, 15(1):809–883, 2014.
- [19] Constantinos Daskalakis, Andrew Ilyas, Vasilis Syrgkanis, and Haoyang Zeng. Training GANs with optimism. In *International Conference on Learning Representations*, 2018.
- [20] Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. In *Advances in Neural Information Processing Systems*, pages 1646–1654, 2014.
- [21] Ding-Zhu Du and Panos M. Pardalos. *Minimax and applications*, volume 4. Springer Science & Business Media, 1995.
- [22] John C. Duchi, Alekh Agarwal, and Martin J. Wainwright. Dual averaging for distributed optimization: Convergence analysis and network scaling. *IEEE Transactions on Automatic control*, 57(3):592–606, 2011.
- [23] Hongchang Gao. Decentralized stochastic gradient descent ascent for finite-sum minimax problems. *arXiv preprint arXiv:2212.02724*, 2022.
- [24] Gauthier Gidel, Hugo Berard, Gaëtan Vignoud, Pascal Vincent, and Simon Lacoste-Julien. A variational inequality perspective on generative adversarial networks. In *International Conference on Learning Representations*, 2019.
- [25] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In *Advances in Neural Information Processing Systems*, pages 2672–2680, 2014.
- [26] Yuze Han, Guangzeng Xie, and Zhihua Zhang. Lower complexity bounds of finite-sum optimization problems: The results and construction. *Journal of Machine Learning Research*, 25(2):1–86, 2024.
- [27] Hadrien Hendrikx, Lin Xiao, Sebastien Bubeck, Francis Bach, and Laurent Massoulie. Statistically preconditioned accelerated gradient method for distributed optimization. In *International conference on machine learning*, pages 4203–4227, 2020.
- [28] Hadrien Hendrikx, Francis Bach, and Laurent Massoulie. An optimal algorithm for decentralized finite-sum optimization. *SIAM Journal on Optimization*, 31(4):2753–2783, 2021.

- [29] Zhe Hong, Kwan Deok Bae, and Do Sang Kim. Minimax programming as a tool for studying robust multi-objective optimization problems. *Annals of Operations Research*, 319(2):1589– 1606, 2022.
- [30] Feihu Huang and Songcan Chen. Near-optimal decentralized momentum method for nonconvex-PL minimax problems. *arXiv* preprint arXiv:2304.10902, 2023.
- [31] Dušan Jakovetić, Joao Xavier, and José M.F. Moura. Fast distributed gradient methods. *IEEE Transactions on Automatic Control*, 59(5):1131–1146, 2014.
- [32] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance reduction. In *Advances in Neural Information Processing Systems*, pages 315–323, 2013.
- [33] Anastasiia Koloskova, Tao Lin, and Sebastian U. Stich. An improved analysis of gradient tracking for decentralized machine learning. *Advances in Neural Information Processing Systems*, pages 11422–11435, 2021.
- [34] Galina M. Korpelevich. The extragradient method for finding saddle points and other problems. *Matecon*, 12:747–756, 1976.
- [35] Georgios Kotsalis, Guanghui Lan, and Tianjiao Li. Simple and optimal methods for stochastic variational inequalities, I: operator extrapolation. SIAM Journal on Optimization, 32(3):2041– 2073, 2022.
- [36] Dmitry Kovalev and Alexander Gasnikov. The first optimal algorithm for smooth and strongly-convex-strongly-concave minimax optimization. In *Advances in Neural Information Processing Systems*, pages 14691–14703, 2022.
- [37] Dmitry Kovalev, Samuel Horváth, and Peter Richtárik. Don't jump through hoops and remove those loops: SVRG and Katyusha are better without the outer loop. In *Algorithmic Learning Theory*, pages 451–467, 2020.
- [38] Dmitry Kovalev, Adil Salim, and Peter Richtárik. Optimal and practical algorithms for smooth and strongly convex decentralized optimization. In *Advances in Neural Information Processing Systems*, pages 18342–18352, 2020.
- [39] Dmitry Kovalev, Aleksandr Beznosikov, Abdurakhmon Sadiev, Michael Persiianov, Peter Richtárik, and Alexander Gasnikov. Optimal algorithms for decentralized stochastic variational inequalities. In Advances in Neural Information Processing Systems, pages 31073–31088, 2022.
- [40] Boyue Li, Zhize Li, and Yuejie Chi. DESTRESS: Computation-optimal and communication-efficient decentralized nonconvex finite-sum optimization. *SIAM Journal on Mathematics of Data Science*, 4(3):1031–1051, 2022.
- [41] Huan Li, Zhouchen Lin, and Yongchun Fang. Variance reduced EXTRA and DIGing and their optimal acceleration for strongly convex decentralized optimization. *Journal of Machine Learning Research*, 23(222):1–41, 2022.
- [42] Tianyi Lin, Chi Jin, and Michael I. Jordan. Near-optimal algorithms for minimax optimization. In *Conference on Learning Theory*, pages 2738–2779, 2020.
- [43] Ji Liu and A. Stephen Morse. Accelerated linear iterations for distributed averaging. *Annual Reviews in Control*, 35(2):160–165, 2011.
- [44] Yuxing Liu, Lesi Chen, and Luo Luo. Decentralized convex finite-sum optimization with better dependence on condition numbers. In *International Conference on Machine Learning*, pages 30807–30841, 2024.
- [45] Johan Löfberg. Minimax approaches to robust model predictive control, volume 812. Linköping University Electronic Press, 2003.
- [46] Luo Luo and Haishan Ye. Decentralized stochastic variance reduced extragradient method. *arXiv preprint arXiv:2202.00509*, 2022.

- [47] Luo Luo, Guangzeng Xie, Tong Zhang, and Zhihua Zhang. Near optimal stochastic algorithms for finite-sum unbalanced convex-concave minimax optimization. *arXiv preprint arXiv:2106.01761*, 2021.
- [48] Luo Luo, Yunyan Bai, Lesi Chen, Yuxing Liu, and Haishan Ye. On the complexity of decentralized finite-sum nonconvex optimization. *arXiv preprint arXiv:2210.13931*, 2022.
- [49] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards deep learning models resistant to adversarial attacks. In *International Conference on Learning Representations*, 2018.
- [50] Ulysse Marteau-Ferey, Francis Bach, and Alessandro Rudi. Globally convergent newton methods for ill-conditioned generalized self-concordant losses. In *Advances in Neural Information Processing Systems*, pages 7634–7644, 2019.
- [51] Panayotis Mertikopoulos, Christos Papadimitriou, and Georgios Piliouras. Cycles in adversarial regularized learning. In Smposium on Discrete Algorithms, pages 2703–2717, 2018.
- [52] Dmitry Metelev, Savelii Chezhegov, Alexander Rogozin, Aleksandr Beznosikov, Alexander Sholokhov, Alexander Gasnikov, and Dmitry Kovalev. Decentralized finite-sum optimization over time-varying networks. *arXiv* preprint arXiv:2402.02490, 2024.
- [53] Dmitry Metelev, Alexander Rogozin, Alexander Gasnikov, and Dmitry Kovalev. Decentralized saddle-point problems with different constants of strong convexity and strong concavity. *Computational Management Science*, 21(5):1–41, 2024.
- [54] Aryan Mokhtari, Asuman Ozdaglar, and Sarath Pattathil. A unified analysis of extra-gradient and optimistic gradient methods for saddle point problems: Proximal point approach. In International Conference on Artificial Intelligence and Statistics, pages 1497–1507, 2020.
- [55] Soham Mukherjee and Mrityunjoy Chakraborty. A decentralized algorithm for large scale min-max problems. In *IEEE Conference on Decision and Control*, pages 2967–2972, 2020.
- [56] Angelia Nedic, Alex Olshevsky, and Wei Shi. Achieving geometric convergence for distributed optimization over time-varying graphs. *SIAM Journal on Optimization*, 27(4):2597–2633, 2017.
- [57] Angelia Nedić, Alex Olshevsky, and Michael G Rabbat. Network topology and communication-computation tradeoffs in decentralized optimization. *Proceedings of the IEEE*, 106(5):953–976, 2018.
- [58] Yurii Nesterov et al. Lectures on convex optimization, volume 137. Springer, 2018.
- [59] Yuyuan Ouyang and Yangyang Xu. Lower complexity bounds of first-order methods for convex-concave bilinear saddle-point problems. *Mathematical Programming*, 185(1):1–35, 2021.
- [60] Balamurugan Palaniappan and Francis Bach. Stochastic variance reduction methods for saddle-point problems. In Advances in Neural Information Processing Systems, pages 1408–1416, 2016.
- [61] Leonid Denisovich Popov. A modification of the arrow-hurwitz method of search for saddle points. *Mat. Zametki*, 28(5):777–784, 1980.
- [62] Shi Pu and Angelia Nedić. Distributed stochastic gradient tracking methods. *Mathematical Programming*, 187:409–457, 2021.
- [63] Guannan Qu and Na Li. Harnessing smoothness to accelerate distributed optimization. IEEE Transactions on Control of Network Systems, 5(3):1245–1260, 2017.
- [64] Sasha Rakhlin and Karthik Sridharan. Optimization, learning, and games with predictable sequences. In *Advances in Neural Information Processing Systems*, pages 3066–3074, 2013.
- [65] Alexander Rogozin, Aleksandr Beznosikov, Darina Dvinskikh, Dmitry Kovalev, Pavel Dvurechensky, and Alexander Gasnikov. Decentralized saddle point problems via non-Euclidean mirror prox. *Optimization Methods and Software*, pages 1–26, 2024.

- [66] Kevin Scaman, Francis Bach, Sébastien Bubeck, Yin Tat Lee, and Laurent Massoulié. Optimal algorithms for smooth and strongly convex distributed optimization in networks. In *international conference on machine learning*, pages 3027–3036, 2017.
- [67] Mark Schmidt, Nicolas Le Roux, and Francis Bach. Minimizing finite sums with the stochastic average gradient. *Mathematical Programming*, 162:83–112, 2017.
- [68] Ali Shafahi, Mahyar Najibi, Zheng Xu, John Dickerson, Larry S. Davis, and Tom Goldstein. Universal adversarial training. In *AAAI Conference on Artificial Intelligence*, pages 5636–5643, 2020.
- [69] Zhuoqing Song, Lei Shi, Shi Pu, and Ming Yan. Optimal gradient tracking for decentralized optimization. *Mathematical Programming*, 207(1):1–53, 2024.
- [70] Vladislav Tominin, Yaroslav Tominin, Ekaterina Borodich, Dmitry Kovalev, Alexander Gasnikov, and Pavel Dvurechensky. On accelerated methods for saddle-point problems with composite structure. *arXiv* preprint arXiv:2103.09344, 2021.
- [71] Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Ian Goodfellow, Dan Boneh, and Patrick Mc-Daniel. Ensemble adversarial training: Attacks and defenses. arXiv preprint arXiv:1705.07204, 2017.
- [72] Ioannis Tsaknakis, Mingyi Hong, and Sijia Liu. Decentralized min-max optimization: Formulations, algorithms and applications in network poisoning attack. In *International Conference on Acoustics, Speech and Signal Processing*, pages 5755–5759, 2020.
- [73] Paul Tseng. On linear convergence of iterative methods for the variational inequality problem. *Journal of Computational and Applied Mathematics*, 60(1-2):237–252, 1995.
- [74] Konstantinos I. Tsianos and Michael G. Rabbat. Distributed strongly convex optimization. In *Allerton Conference on Communication, Control, and Computing*, pages 593–600, 2012.
- [75] John Tsitsiklis and Benjamin Van Roy. Analysis of temporal-diffference learning with function approximation. In *Advances in neural information processing systems*, pages 1075–1081, 1996.
- [76] Yuanhao Wang and Jian Li. Improved algorithms for convex-concave minimax optimization. In Advances in Neural Information Processing Systems, pages 4800–4810, 2020.
- [77] Eric Wong, Leslie Rice, and J Zico Kolter. Fast is better than free: Revisiting adversarial training. In *International Conference on Learning Representations*, 2020.
- [78] Blake E. Woodworth and Nati Srebro. Tight complexity bounds for optimizing composite objectives. In *Advances in Neural Information Processing Systems*, pages 3639–3647, 2016.
- [79] Wenhan Xian, Feihu Huang, Yanfu Zhang, and Heng Huang. A faster decentralized algorithm for nonconvex minimax problems. In *Advances in Neural Information Processing Systems*, pages 25865–25877, 2021.
- [80] Lin Xiao, Stephen Boyd, and Sanjay Lall. A scheme for robust distributed sensor fusion based on average consensus. In *International Symposium on Information Processing in Sensor Networks*, pages 63–70, 2005.
- [81] Ran Xin, Usman A. Khan, and Soummya Kar. Variance-reduced decentralized stochastic optimization with accelerated convergence. *IEEE Transactions on Signal Processing*, 68: 6255–6271, 2020.
- [82] Ran Xin, Shi Pu, Angelia Nedić, and Usman A. Khan. A general framework for decentralized optimization with first-order methods. *Proceedings of the IEEE*, 108(11):1869–1889, 2020.
- [83] Yangyang Xu. Decentralized gradient descent maximization method for composite nonconvex strongly-concave minimax problems. SIAM Journal on Optimization, 34(1):1006–1044, 2024.
- [84] Junchi Yang, Siqi Zhang, Negar Kiyavash, and Niao He. A catalyst framework for minimax optimization. In *Advances in Neural Information Processing Systems*, pages 5667–5678, 2020.

- [85] Haishan Ye and Xiangyu Chang. Snap-shot decentralized stochastic gradient tracking methods. *arXiv preprint arXiv:2212.05273*, 2022.
- [86] Haishan Ye, Wei Xiong, and Tong Zhang. PMGT-VR: A decentralized proximal-gradient algorithmic framework with variance reduction. *arXiv preprint arXiv:2012.15010*, 2020.
- [87] Haishan Ye, Luo Luo, Ziang Zhou, and Tong Zhang. Multi-consensus decentralized accelerated gradient descent. *Journal of Machine Learning Research*, 24(306):1–50, 2023.
- [88] Kun Yuan, Xinmeng Huang, Yiming Chen, Xiaohan Zhang, Yingya Zhang, and Pan Pan. Revisiting optimal convergence rate for smooth and non-convex stochastic decentralized optimization. In *Advances in Neural Information Processing Systems*, pages 36382–36395, 2022.
- [89] Junyu Zhang, Mingyi Hong, and Shuzhong Zhang. On lower iteration complexity bounds for the convex concave saddle point problems. *Mathematical Programming*, 194(1):901–935, 2022.
- [90] Lijun Zhang, Mehrdad Mahdavi, and Rong Jin. Linear convergence with condition number independent access of full gradients. In *Advances in Neural Information Processing Systems*, pages 980–988, 2013.
- [91] Xin Zhang, Zhuqing Liu, Jia Liu, Zhengyuan Zhu, and Songtao Lu. Taming communication and sample complexities in decentralized policy evaluation for cooperative multi-agent reinforcement learning. In *Advances in Neural Information Processing Systems*, pages 18825–18838, 2021.
- [92] Xuan Zhang, Gabriel Mancino-Ball, Necdet Serhat Aybat, and Yangyang Xu. Jointly improving the sample and communication complexities in decentralized stochastic minimax optimization. In *AAAI Conference on Artificial Intelligence*, pages 20865–20873, 2024.
- [93] Yihan Zhang, Wenhao Jiang, Feng Zheng, Chiu C. Tan, Xinghua Shi, and Hongchang Gao. Can decentralized stochastic minimax optimization algorithms converge linearly for finite-sum nonconvex-nonconcave problems? *arXiv preprint arXiv:2304.11788*, 2023.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: The main contributions of this paper are summarized in the final paragraph of the introduction.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See Section 6.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [Yes]

Justification: All assumptions are stated in Section 2, and complete proofs of the theorems are provided in the appendix.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The algorithm is elaborated in Section 3, and the details required for reproducing the experiments, including parameter settings, are provided in Section 5.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
 - (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
 - (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
 - (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: The code is included in the supplementary material.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-parameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: The experimental details are elaborated in Section 5.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental
 material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [No]

Justification: The effect of the settings such as random seed is minor since the datasets and initialization are fixed, and only the random gradients are affected, with little impact on the experimental results.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).

- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error
 of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how
 they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [No]

Justification: It requires few computational resources to run the numerical experiments.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform with the NeurIPS Code of Ethics. Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a
 deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [NA]

Justification: The paper focuses on optimization theory, so the work does not have direct societal impacts.

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.

- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with
 necessary safeguards to allow for controlled use of the model, for example by requiring
 that users adhere to usage guidelines or restrictions to access the model or implementing
 safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do
 not require this, but we encourage authors to take this into account and make a best
 faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

5 W C1. [105]

Justification: The datasets used in the numerical experiments are properly cited in Section 5. Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.

- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects. Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects. Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any important, original, or non-standard components.

Guidelines:

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.

Appendix

In Appendix A, we construct examples that smoothness parameters are significantly different. In Appendix B, we present some basic results, including the non-negativity of the Lyapunov functions and several useful lemmas. The proofs of the lemmas and Theorem 3.7 in Section 3 are provided in Appendix C, and Appendix D contains the proofs of Theorems 4.2, 4.3 and 4.4 in Section 4.

A Examples of Differences among Smoothness Parameters

In this section, we provide two specific examples to show that the smoothness parameters can differ significantly. We first construct an instance where the local smoothness parameters L_l , \bar{L}_l , and L_{\max} are a factor of $\Theta(\sqrt{m})$ larger than the global parameters L and \bar{L} .

Example A.1. For simplicity, assume $d_x = d_y$ and n = 1. Define the function

$$h(\mathbf{x}, \mathbf{y}) = \sqrt{(L^2 - \mu^2)} \mathbf{x}^{\top} \mathbf{y} + \frac{\mu}{2} ||\mathbf{x}||^2 - \frac{\mu}{2} ||\mathbf{y}||^2,$$
 (4)

and denote its gradient operator by $\mathbf{g}_h(\mathbf{z})$. It can be verified that for any $\mathbf{z}, \mathbf{z}' \in \mathbb{R}^{d_z}$,

$$\|\mathbf{g}_{h}(\mathbf{z}) - \mathbf{g}_{h}(\mathbf{z}')\|^{2}$$

$$= \|\nabla_{\mathbf{x}}h(\mathbf{x},\mathbf{y}) - \nabla_{\mathbf{x}}h(\mathbf{x}',\mathbf{y}')\|^{2} + \|\nabla_{\mathbf{y}}h(\mathbf{x},\mathbf{y}) - \nabla_{\mathbf{y}}h(\mathbf{x}',\mathbf{y}')\|^{2}$$

$$= \|\sqrt{(L^{2} - \mu^{2})}(\mathbf{y} - \mathbf{y}') + \mu(\mathbf{x} - \mathbf{x}')\|^{2} + \|\sqrt{(L^{2} - \mu^{2})}(\mathbf{x} - \mathbf{x}') - \mu(\mathbf{y} - \mathbf{y}')\|^{2}$$

$$= L^{2}(\|\mathbf{x} - \mathbf{x}'\|^{2} + \|\mathbf{y} - \mathbf{y}'\|^{2})$$

$$= L^{2}\|\mathbf{z} - \mathbf{z}'\|^{2}.$$

indicating that $h(\mathbf{x}, \mathbf{y})$ is L-smooth, and the constant L is tight.

We now define the local objective functions as

$$f_i(\mathbf{x}, \mathbf{y}) = \begin{cases} (1 + \sqrt{m})h(\mathbf{x}, \mathbf{y}), & \text{if } i = 1, \\ (1 - \sqrt{m})h(\mathbf{x}, \mathbf{y}), & \text{if } i = 2, \\ h(\mathbf{x}, \mathbf{y}), & \text{otherwise.} \end{cases}$$

Then the global objective $f(\mathbf{x}, \mathbf{y}) = \frac{1}{m} \sum_{i=1}^m f_i(\mathbf{x}, \mathbf{y}) = h(\mathbf{x}, \mathbf{y})$ remains L-smooth. The global mean-squared smoothness parameter \bar{L} can be computed as

$$\frac{1}{m} \sum_{i=1}^{m} \|\mathbf{g}_{i}(\mathbf{z}) - \mathbf{g}_{i}(\mathbf{z}')\|^{2} = \frac{1}{m} \left((1 + \sqrt{m})^{2} + (1 - \sqrt{m})^{2} + m - 2 \right) \|\mathbf{g}_{h}(\mathbf{z}) - \mathbf{g}_{h}(\mathbf{z}')\|^{2}
= 3L^{2} \|\mathbf{z} - \mathbf{z}'\|^{2}.$$

Meanwhile, the local smoothness parameters L_l , \bar{L}_l , and L_{\max} are all determined by f_1 , since for any $i \in [m]$,

$$\|\mathbf{g}_{i}(\mathbf{z}) - \mathbf{g}_{i}(\mathbf{z}')\|^{2} \leq \|\mathbf{g}_{1}(\mathbf{z}) - \mathbf{g}_{1}(\mathbf{z}')\|^{2}$$

$$= (1 + \sqrt{m})^{2} \|\mathbf{g}_{h}(\mathbf{z}) - \mathbf{g}_{h}(\mathbf{z}')\|^{2}$$

$$= (1 + \sqrt{m})^{2} L^{2} \|\mathbf{z} - \mathbf{z}'\|^{2}.$$

Thus, we conclude that $\bar{L} = \sqrt{3}L$ and $L_l = \bar{L}_l = L_{\text{max}} = (1 + \sqrt{m})L$.

Based on Example A.1 and Table 1 (ignoring all log term), DIVERSE achieves the LIFO calls complexity of $\tilde{\mathcal{O}}(m+\sqrt{m}L/\mu)$, computation rounds complexity of $\tilde{\mathcal{O}}(L/\mu)$, and communication complexity of $\tilde{\mathcal{O}}(\sqrt{\chi}L/\mu)$. In contrast, the existing state-of-the-art method OADSVI requires the LIFO calls complexity of $\tilde{\mathcal{O}}(m+m^{3/2}L/\mu)$, computation rounds complexity of $\tilde{\mathcal{O}}(\sqrt{m}L/\mu)$, and communication complexity of $\tilde{\mathcal{O}}(\sqrt{m}\chi L/\mu)$.

If the heterogeneity among nodes further increases, the local smoothness parameters may exceed $\Omega(\sqrt{m})$ relative to L, as demonstrated by the following example. (In fact, the local smoothness parameters can be arbitrarily large relative to L.)

Example A.2. Using the same definition of $h(\mathbf{x}, \mathbf{y})$ as in equation (4), define the local functions as

$$f_i(\mathbf{x}, \mathbf{y}) = \begin{cases} (1 + m^2)h(\mathbf{x}, \mathbf{y}), & \text{if } i = 1, \\ (1 - m^2)h(\mathbf{x}, \mathbf{y}), & \text{if } i = 2, \\ h(\mathbf{x}, \mathbf{y}), & \text{otherwise.} \end{cases}$$

Then the global objective remains $f(\mathbf{x}, \mathbf{y}) = h(\mathbf{x}, \mathbf{y})$, which is L-smooth. Following the calculation as in Example A.1, it is straightforward to verify that $\bar{L} = \sqrt{1 + m^3}L$ and $L_l = \bar{L}_l = L_{\max} = (1 + m^2)L$.

For Example A.2, DIVERSE achieves the LIFO calls complexity of $\tilde{\mathcal{O}}(m+mL/\mu)$, computation rounds complexity of $\tilde{\mathcal{O}}(L/\mu)$, and communication complexity of $\tilde{\mathcal{O}}(\sqrt{\chi}L/\mu)$, while existing methods require the LIFO calls complexity of $\tilde{\mathcal{O}}(m+m^3L/\mu)$, computation rounds complexity of $\tilde{\mathcal{O}}(m^2L/\mu)$, and communication complexity of $\tilde{\mathcal{O}}(m^2\sqrt{\chi}L/\mu)$.

B Some Basic Results

In this section, we establish the non-negativity of the Lyapunov functions, and then present some useful lemmas.

B.1 The Non-Negativity of Lyapunov Functions

In this section, we prove that the defined Lyapunov functions Φ and Ψ are non-negative when $\eta \leq 1/(4L)$. Recalling the definition of Φ^k , we have

$$\begin{split} &\Phi^{k} = \left(\frac{1}{\eta} + \frac{3\mu}{2}\right) \|\bar{\mathbf{z}}^{k} - \mathbf{z}^{*}\|^{2} + \frac{\beta}{\eta} \|\bar{\mathbf{z}}^{k} - \bar{\mathbf{v}}^{k-1}\|^{2} + \frac{1}{8\eta} \|\bar{\mathbf{z}}^{k} - \bar{\mathbf{z}}^{k-1}\|^{2} \\ &\quad + 2\langle \mathbf{g}(\bar{\mathbf{z}}^{k-1}) - \mathbf{g}(\bar{\mathbf{z}}^{k}), \bar{\mathbf{z}}^{k} - \mathbf{z}^{*}\rangle + \frac{\beta + \eta\mu}{p\eta} \|\bar{\mathbf{v}}^{k} - \mathbf{z}^{*}\|^{2} \\ &\geq \frac{1}{2\eta} \|\bar{\mathbf{z}}^{k} - \mathbf{z}^{*}\|^{2} + 2\langle \mathbf{g}(\bar{\mathbf{z}}^{k-1}) - \mathbf{g}(\bar{\mathbf{z}}^{k}), \bar{\mathbf{z}}^{k} - \mathbf{z}^{*}\rangle + \frac{1}{8\eta} \|\bar{\mathbf{z}}^{k} - \bar{\mathbf{z}}^{k-1}\|^{2} \\ &\geq \frac{1}{2\eta} \|\bar{\mathbf{z}}^{k} - \mathbf{z}^{*}\|^{2} - \frac{1}{8\eta L^{2}} \|\mathbf{g}(\bar{\mathbf{z}}^{k}) - \mathbf{g}(\bar{\mathbf{z}}^{k-1})\|^{2} - 8\eta L^{2} \|\bar{\mathbf{z}}^{k} - \mathbf{z}^{*}\|^{2} + \frac{1}{8\eta} \|\bar{\mathbf{z}}^{k} - \bar{\mathbf{z}}^{k-1}\|^{2} \\ &\geq \frac{1}{2\eta} \|\bar{\mathbf{z}}^{k} - \mathbf{z}^{*}\|^{2} - \frac{1}{8\eta} \|\bar{\mathbf{z}}^{k} - \bar{\mathbf{z}}^{k-1}\|^{2} - 8\eta L^{2} \|\bar{\mathbf{z}}^{k} - \mathbf{z}^{*}\|^{2} + \frac{1}{8\eta} \|\bar{\mathbf{z}}^{k} - \bar{\mathbf{z}}^{k-1}\|^{2} \\ &= \left(\frac{1}{2\eta} - 8\eta L^{2}\right) \|\bar{\mathbf{z}}^{k} - \mathbf{z}^{*}\|^{2} \\ &> 0. \end{split}$$

where the third inequality holds by Assumption 2.2 and the last inequality is based on $\eta \leq 1/(4L)$. Similarly, for Ψ^k , we have

$$\begin{split} \Psi^k &= \left(\frac{1}{\eta} + \frac{3\mu}{2}\right) \|\bar{\mathbf{z}}^k - \mathbf{z}^*\|^2 + \frac{3}{4\eta} \|\bar{\mathbf{z}}^k - \bar{\mathbf{z}}^{k-1}\|^2 + 2\langle \mathbf{g}(\bar{\mathbf{z}}^{k-1}) - \mathbf{g}(\bar{\mathbf{z}}^k), \bar{\mathbf{z}}^k - \mathbf{z}^*\rangle \\ &\geq \frac{1}{2\eta} \|\bar{\mathbf{z}}^k - \mathbf{z}^*\|^2 + 2\langle \mathbf{g}(\bar{\mathbf{z}}^{k-1}) - \mathbf{g}(\bar{\mathbf{z}}^k), \bar{\mathbf{z}}^k - \mathbf{z}^*\rangle + \frac{1}{8\eta} \|\bar{\mathbf{z}}^k - \bar{\mathbf{z}}^{k-1}\|^2 \\ &> 0. \end{split}$$

B.2 Useful Lemmas

In this section, we present basic lemmas that will be used in the subsequent proofs. Firstly, based on Assumption 2.3, we can derive the following lemma.

Lemma B.1. Under Assumption 2.3, we have

$$\|\mathbf{g}_{i,j}(\mathbf{z}) - \mathbf{g}_{i,j}(\mathbf{z}')\|^2 \le mn\bar{L}^2\|\mathbf{z} - \mathbf{z}'\|^2,$$
 (5)

and

$$\|\mathbf{g}_i(\mathbf{z}) - \mathbf{g}_i(\mathbf{z}')\|^2 \le m\bar{L}^2 \|\mathbf{z} - \mathbf{z}'\|^2, \tag{6}$$

for all $\mathbf{z}, \mathbf{z}' \in \mathbb{R}^{d_z}$, $i \in [m]$, and $j \in [n]$.

Proof. For equation (5), it holds because

$$\|\mathbf{g}_{i,j}(\mathbf{z}) - \mathbf{g}_{i,j}(\mathbf{z}')\|^2 \le \sum_{i=1}^m \sum_{j=1}^n \|\mathbf{g}_{i,j}(\mathbf{z}) - \mathbf{g}_{i,j}(\mathbf{z}')\|^2 \le mn\bar{L}^2 \|\mathbf{z} - \mathbf{z}'\|^2,$$

where the last inequality is based on Assumption 2.3. Equation (6) is due to the fact that

$$\|\mathbf{g}_{i}(\mathbf{z}) - \mathbf{g}_{i}(\mathbf{z}')\|^{2} = \|\frac{1}{n} \sum_{j=1}^{n} (\mathbf{g}_{i,j}(\mathbf{z}) - \mathbf{g}_{i,j}(\mathbf{z}'))\|^{2}$$

$$\leq \frac{1}{n} \sum_{j=1}^{n} \|\mathbf{g}_{i,j}(\mathbf{z}) - \mathbf{g}_{i,j}(\mathbf{z}')\|^{2}$$

$$\leq \frac{1}{n} \sum_{i=1}^{m} \sum_{j=1}^{n} \|\mathbf{g}_{i,j}(\mathbf{z}) - \mathbf{g}_{i,j}(\mathbf{z}')\|^{2}$$

$$\leq m \bar{L}^{2} \|\mathbf{z} - \mathbf{z}'\|^{2}.$$

This completes the proof.

The following proposition [87] characterizes the convergence of Algorithm 1.

Proposition B.2 (Ye et al. [87, Proposition 1]). Under Assumption 2.4, Algorithm 1 holds that

$$\frac{1}{m} \mathbf{1}^{\top} \mathbf{U}^R = \bar{\mathbf{u}}^0$$

and

$$\|\mathbf{U}^R - \mathbf{1}\bar{\mathbf{u}}^0\| \le c_1 (1 - c_2 \sqrt{1 - \lambda_2(\mathbf{W})})^R \|\mathbf{U}^0 - \mathbf{1}\bar{\mathbf{u}}^0\|,$$

where $\bar{\mathbf{u}}^0 = \frac{1}{m} \mathbf{1}^\top \mathbf{U}^0$, $c_1 = \sqrt{14}$, and $c_2 = 1 - 1/\sqrt{2}$.

The following lemma shows a crucial property of gradient tracking.

Lemma B.3. For Algorithm 2, it holds that

$$\bar{\mathbf{s}}^k = \bar{\boldsymbol{\delta}}^k. \tag{7}$$

Proof. From Proposition B.2, combined with the update of S^k in Algorithm 2 (Line 8), we have

$$\begin{split} \bar{\mathbf{s}}^k &= \frac{1}{m} \mathbf{1}^\top \mathbf{S}^k \\ &= \frac{1}{m} \mathbf{1}^\top \mathbf{FastMix} (\mathbf{S}^{k-1} + \boldsymbol{\Delta}^k - \boldsymbol{\Delta}^{k-1}, \mathbf{W}, R) \\ &= \bar{\mathbf{s}}^{k-1} + \bar{\boldsymbol{\delta}}^k - \bar{\boldsymbol{\delta}}^{k-1}. \end{split}$$

Note that $\bar{\mathbf{s}}^0 = \bar{\delta}^0$. By induction, it is straightforward to verify that $\bar{\mathbf{s}}^k = \bar{\delta}^k$ holds for $k \geq 0$.

C The Proofs for Section 3

In this section, we prove the lemmas and Theorem 3.7 in Section 3. Specifically, it is organized as follows:

 In Appendix C.1, we prove Lemma 3.1, which provides an upper bound for the Lyapunov function Φ.

- In Appendix C.2, we provide the proof of Lemma 3.2, which bounds the consensus errors of Z and V.
- In Appendix C.3, Lemma 3.3 is established, bounding the consensus error of S.
- In Appendix C.4, we prove Lemma 3.5 by applying Lemmas 3.1–3.3 and induction.
- In Appendix C.5, Lemma 3.6 is established using a similar approach to Lemma 3.5.
- Theorem 3.7 is proved in Appendix C.6.

C.1 The Proof of Lemma 3.1

It follows from Line 9 of Algorithm 2 and equation (7) that

$$\begin{split} \bar{\mathbf{z}}^{k+1} &= \frac{1}{m} \mathbf{1}^{\top} \mathbf{Z}^{k+1} \\ &= \frac{1}{m} \mathbf{1}^{\top} \mathtt{FastMix} \left((1-\beta) \mathbf{Z}^k + \beta \mathbf{V}^k - \eta \mathbf{S}^k, \mathbf{W}, R \right) \\ &= (1-\beta) \bar{\mathbf{z}}^k + \beta \bar{\mathbf{v}}^k - \eta \bar{\mathbf{s}}^k \\ &= (1-\beta) \bar{\mathbf{z}}^k + \beta \bar{\mathbf{v}}^k - \eta \bar{\boldsymbol{\delta}}^k, \end{split}$$

which implies

$$\bar{\mathbf{z}}^{k+1} - \bar{\mathbf{z}}^k = \beta \left(\bar{\mathbf{v}}^k - \bar{\mathbf{z}}^k \right) - \eta \bar{\boldsymbol{\delta}}^k.$$

We have

$$\|\bar{\mathbf{z}}^{k+1} - \mathbf{z}^*\|^2 = \|\bar{\mathbf{z}}^{k+1} - \bar{\mathbf{z}}^k + \bar{\mathbf{z}}^k - \mathbf{z}^*\|^2$$

$$= \|\bar{\mathbf{z}}^k - \mathbf{z}^*\|^2 + 2\langle \bar{\mathbf{z}}^{k+1} - \bar{\mathbf{z}}^k, \bar{\mathbf{z}}^k - \mathbf{z}^*\rangle + \|\bar{\mathbf{z}}^{k+1} - \bar{\mathbf{z}}^k\|^2$$

$$= \|\bar{\mathbf{z}}^k - \mathbf{z}^*\|^2 + 2\langle \bar{\mathbf{z}}^{k+1} - \bar{\mathbf{z}}^k, \bar{\mathbf{z}}^{k+1} - \mathbf{z}^*\rangle - \|\bar{\mathbf{z}}^{k+1} - \bar{\mathbf{z}}^k\|^2$$

$$= \|\bar{\mathbf{z}}^k - \mathbf{z}^*\|^2 + 2\beta\langle \bar{\mathbf{v}}^k - \bar{\mathbf{z}}^k, \bar{\mathbf{z}}^{k+1} - \mathbf{z}^*\rangle$$

$$- 2\eta\langle \bar{\delta}^k - \mathbf{g}(\mathbf{z}^*), \bar{\mathbf{z}}^{k+1} - \mathbf{z}^*\rangle - \|\bar{\mathbf{z}}^{k+1} - \bar{\mathbf{z}}^k\|^2$$

$$= \|\bar{\mathbf{z}}^k - \mathbf{z}^*\|^2 + 2\beta\langle \bar{\mathbf{v}}^k - \mathbf{z}^*, \bar{\mathbf{z}}^{k+1} - \mathbf{z}^*\rangle - 2\beta\langle \bar{\mathbf{z}}^k - \mathbf{z}^*, \bar{\mathbf{z}}^{k+1} - \mathbf{z}^*\rangle$$

$$- 2\eta\langle \bar{\delta}^k - \mathbf{g}(\mathbf{z}^*), \bar{\mathbf{z}}^{k+1} - \mathbf{z}^*\rangle - \|\bar{\mathbf{z}}^{k+1} - \bar{\mathbf{z}}^k\|^2$$

$$= \|\bar{\mathbf{z}}^k - \mathbf{z}^*\|^2 - \beta\left(\|\bar{\mathbf{z}}^{k+1} - \bar{\mathbf{v}}^k\|^2 - \|\bar{\mathbf{v}}^k - \mathbf{z}^*\|^2 - \|\bar{\mathbf{z}}^{k+1} - \mathbf{z}^*\|^2\right)$$

$$+ \beta\left(\|\bar{\mathbf{z}}^{k+1} - \bar{\mathbf{z}}^k\|^2 - \|\bar{\mathbf{z}}^k - \mathbf{z}^*\|^2 - \|\bar{\mathbf{z}}^{k+1} - \mathbf{z}^*\|^2\right)$$

$$- \|\bar{\mathbf{z}}^{k+1} - \bar{\mathbf{z}}^k\|^2 - 2\eta\langle \bar{\delta}^k - \mathbf{g}(\mathbf{z}^*), \bar{\mathbf{z}}^{k+1} - \mathbf{z}^*\rangle$$

$$= (1 - \beta)\|\bar{\mathbf{z}}^k - \mathbf{z}^*\|^2 - \beta\|\bar{\mathbf{z}}^{k+1} - \bar{\mathbf{v}}^k\|^2 + \beta\|\bar{\mathbf{v}}^k - \mathbf{z}^*\|^2 - (1 - \beta)\|\bar{\mathbf{z}}^{k+1} - \bar{\mathbf{z}}^k\|^2$$

$$- 2\eta\langle \bar{\delta}^k - \mathbf{g}(\mathbf{z}^*), \bar{\mathbf{z}}^{k+1} - \mathbf{z}^*\rangle. \tag{8}$$

Then we bound the term $\mathbb{E}\left[\langle \bar{\pmb{\delta}}^k - \mathbf{g}(\mathbf{z}^*), \bar{\mathbf{z}}^{k+1} - \mathbf{z}^* \rangle\right]$. Note that

$$\mathbb{E}\left[\langle \bar{\boldsymbol{\delta}}^{k} - \mathbf{g}(\mathbf{z}^{*}), \bar{\mathbf{z}}^{k+1} - \mathbf{z}^{*} \rangle\right] = \mathbb{E}\left[\langle \bar{\boldsymbol{\delta}}^{k} - \mathbb{E}_{\xi^{k}}[\bar{\boldsymbol{\delta}}^{k}], \bar{\mathbf{z}}^{k} - \mathbf{z}^{*} \rangle\right] + \mathbb{E}\left[\langle \bar{\boldsymbol{\delta}}^{k} - \mathbb{E}_{\xi^{k}}[\bar{\boldsymbol{\delta}}^{k}], \bar{\mathbf{z}}^{k+1} - \bar{\mathbf{z}}^{k} \rangle\right] + \mathbb{E}\left[\langle \mathbb{E}_{\xi^{k}}[\bar{\boldsymbol{\delta}}^{k}] - \mathbf{g}(\mathbf{z}^{*}), \bar{\mathbf{z}}^{k+1} - \mathbf{z}^{*} \rangle\right], \tag{9}$$

where \mathbb{E}_{ξ^k} denotes the expectation taken over random variables $\{\xi_{i,j}^k\}_{i,j=1}^{m,n}$.

For the first term of equation (9), we have

$$\mathbb{E}\left[\langle \bar{\boldsymbol{\delta}}^k - \mathbb{E}_{\xi^k}[\bar{\boldsymbol{\delta}}^k], \bar{\mathbf{z}}^k - \mathbf{z}^* \rangle\right] = \mathbb{E}\left[\mathbb{E}_{\xi^k}\left[\langle \bar{\boldsymbol{\delta}}^k - \mathbb{E}_{\xi^k}[\bar{\boldsymbol{\delta}}^k], \bar{\mathbf{z}}^k - \mathbf{z}^* \rangle\right]\right] = 0. \tag{10}$$

For the second term of equation (9), we aim to obtain its lower bound, which is equivalent to finding an upper bound for $\mathbb{E}\left[\langle \bar{\delta}^k - \mathbb{E}_{\xi^k}[\bar{\delta}^k], \bar{\mathbf{z}}^k - \bar{\mathbf{z}}^{k+1} \rangle\right]$. By Young's inequality, we have

$$\mathbb{E}\left[\langle \bar{\boldsymbol{\delta}}^k - \mathbb{E}_{\xi^k}[\bar{\boldsymbol{\delta}}^k], \bar{\mathbf{z}}^k - \bar{\mathbf{z}}^{k+1} \rangle\right] \le \eta \mathbb{E}\left[\|\bar{\boldsymbol{\delta}}^k - \mathbb{E}_{\xi^k}[\bar{\boldsymbol{\delta}}^k]\|^2\right] + \frac{1}{4\eta} \mathbb{E}\left[\|\bar{\mathbf{z}}^{k+1} - \bar{\mathbf{z}}^k\|^2\right]. \tag{11}$$

Recalling the definition that

$$\bar{\boldsymbol{\delta}}^k = \frac{1}{m} \sum_{i=1}^m \mathbf{g}_i(\mathbf{v}_i^{k-1}) + \frac{1}{mn} \sum_{i=1}^m \sum_{j=1}^n \frac{\xi_{i,j}^k}{q} \left(\mathbf{g}_{i,j}(\mathbf{z}_i^k) - \mathbf{g}_{i,j}(\mathbf{v}_i^{k-1}) + \alpha (\mathbf{g}_{i,j}(\mathbf{z}_i^k) - \mathbf{g}_{i,j}(\mathbf{z}_i^{k-1})) \right),$$

we have

$$\mathbb{E}_{\xi^{k}}\left[\left\|\bar{\boldsymbol{\delta}}^{k} - \mathbb{E}_{\xi^{k}}\left[\bar{\boldsymbol{\delta}}^{k}\right]\right\|^{2}\right] \leq 2\mathbb{E}_{\xi^{k}}\left[\left\|\frac{1}{mn}\sum_{i=1}^{m}\sum_{j=1}^{n}\left(\frac{\xi_{i,j}^{k}}{q} - 1\right)\left(\mathbf{g}_{i,j}(\mathbf{z}_{i}^{k}) - \mathbf{g}_{i,j}(\mathbf{v}_{i}^{k-1})\right)\right\|^{2}\right] + 2\mathbb{E}_{\xi^{k}}\left[\left\|\frac{\alpha}{mn}\sum_{i=1}^{m}\sum_{j=1}^{n}\left(\frac{\xi_{i,j}^{k}}{q} - 1\right)\left(\mathbf{g}_{i,j}(\mathbf{z}_{i}^{k}) - \mathbf{g}_{i,j}(\mathbf{z}_{i}^{k-1})\right)\right\|^{2}\right].$$
(12)

By Yong's inequality, the first term of equation (12) can be bounded by

$$2\mathbb{E}_{\xi^{k}} \left[\left\| \frac{1}{mn} \sum_{i=1}^{m} \sum_{j=1}^{n} \left(\frac{\xi_{i,j}^{k}}{q} - 1 \right) \left(\mathbf{g}_{i,j}(\mathbf{z}_{i}^{k}) - \mathbf{g}_{i,j}(\mathbf{v}_{i}^{k-1}) \right) \right\|^{2} \right]$$

$$= 2\mathbb{E}_{\xi^{k}} \left[\left\| \frac{1}{mn} \sum_{i=1}^{m} \sum_{j=1}^{n} \left(\frac{\xi_{i,j}^{k}}{q} - 1 \right) \left(\mathbf{g}_{i,j}(\mathbf{z}_{i}^{k}) - \mathbf{g}_{i,j}(\bar{\mathbf{z}}^{k}) \right) - \frac{1}{mn} \sum_{i=1}^{m} \sum_{j=1}^{n} \left(\frac{\xi_{i,j}^{k}}{q} - 1 \right) \left(\mathbf{g}_{i,j}(\mathbf{v}_{i}^{k-1}) - \mathbf{g}_{i,j}(\bar{\mathbf{v}}^{k-1}) \right) \right.$$

$$\left. + \frac{1}{mn} \sum_{i=1}^{m} \sum_{j=1}^{n} \left(\frac{\xi_{i,j}^{k}}{q} - 1 \right) \left(\mathbf{g}_{i,j}(\bar{\mathbf{z}}^{k}) - \mathbf{g}_{i,j}(\bar{\mathbf{v}}^{k-1}) \right) \right\|^{2} \right]$$

$$\leq 6\mathbb{E}_{\xi^{k}} \left[\left\| \frac{1}{mn} \sum_{i=1}^{m} \sum_{j=1}^{n} \left(\frac{\xi_{i,j}^{k}}{q} - 1 \right) \left(\mathbf{g}_{i,j}(\mathbf{z}_{i}^{k}) - \mathbf{g}_{i,j}(\bar{\mathbf{v}}^{k}) \right) \right\|^{2} \right]$$

$$+ 6\mathbb{E}_{\xi^{k}} \left[\left\| \frac{1}{mn} \sum_{i=1}^{m} \sum_{j=1}^{n} \left(\frac{\xi_{i,j}^{k}}{q} - 1 \right) \left(\mathbf{g}_{i,j}(\bar{\mathbf{v}}^{k-1}) - \mathbf{g}_{i,j}(\bar{\mathbf{v}}^{k-1}) \right) \right\|^{2} \right].$$

$$(13)$$

$$+ 6\mathbb{E}_{\xi^{k}} \left[\left\| \frac{1}{mn} \sum_{i=1}^{m} \sum_{j=1}^{n} \left(\frac{\xi_{i,j}^{k}}{q} - 1 \right) \left(\mathbf{g}_{i,j}(\bar{\mathbf{z}}^{k}) - \mathbf{g}_{i,j}(\bar{\mathbf{v}}^{k-1}) \right) \right\|^{2} \right].$$

For the first term of equation (13), we have

$$\mathbb{E}_{\xi^{k}} \left[\left\| \frac{1}{mn} \sum_{i=1}^{m} \sum_{j=1}^{n} \left(\frac{\xi_{i,j}^{k}}{q} - 1 \right) \left(\mathbf{g}_{i,j}(\mathbf{z}_{i}^{k}) - \mathbf{g}_{i,j}(\bar{\mathbf{z}}^{k}) \right) \right\|^{2} \right] \\
= \frac{1}{m^{2}n^{2}} \sum_{i=1}^{m} \sum_{j=1}^{n} \frac{1-q}{q} \left\| \left(\mathbf{g}_{i,j}(\mathbf{z}_{i}^{k}) - \mathbf{g}_{i,j}(\bar{\mathbf{z}}^{k}) \right) \right\|^{2} \\
\leq \frac{1}{m^{2}n^{2}q} \sum_{i=1}^{m} \sum_{j=1}^{n} \left\| \left(\mathbf{g}_{i,j}(\mathbf{z}_{i}^{k}) - \mathbf{g}_{i,j}(\bar{\mathbf{z}}^{k}) \right) \right\|^{2} \\
\leq \frac{\bar{L}^{2}}{mnq} \sum_{i=1}^{m} \sum_{j=1}^{n} \left\| \mathbf{z}_{i}^{k} - \bar{\mathbf{z}}^{k} \right\|^{2} \\
= \frac{n\bar{L}^{2}}{b} \left\| \mathbf{Z}^{k} - \mathbf{1}\bar{\mathbf{z}}^{k} \right\|^{2},$$

where the second inequality holds by equation (5).

Similarly, it holds that

$$\mathbb{E}_{\xi^k} \left[\left\| \frac{1}{mn} \sum_{i=1}^m \sum_{j=1}^n \left(\frac{\xi_{i,j}^k}{q} - 1 \right) \left(\mathbf{g}_{i,j}(\mathbf{v}_i^{k-1}) - \mathbf{g}_{i,j}(\bar{\mathbf{v}}^{k-1}) \right) \right\|^2 \right] \le \frac{n\bar{L}^2}{b} \left\| \mathbf{V}^{k-1} - \mathbf{1}\bar{\mathbf{v}}^{k-1} \right\|^2.$$

For the third term of equation (13),

$$\mathbb{E}_{\xi^{k}} \left[\left\| \frac{1}{mn} \sum_{i=1}^{m} \sum_{j=1}^{n} \left(\frac{\xi_{i,j}^{k}}{q} - 1 \right) \left(\mathbf{g}_{i,j}(\bar{\mathbf{z}}^{k}) - \mathbf{g}_{i,j}(\bar{\mathbf{v}}^{k-1}) \right) \right\|^{2} \right]$$

$$= \frac{1}{m^{2}n^{2}} \sum_{i=1}^{m} \sum_{j=1}^{n} \frac{1-q}{q} \left\| \left(\mathbf{g}_{i,j}(\bar{\mathbf{z}}^{k}) - \mathbf{g}_{i,j}(\bar{\mathbf{v}}^{k-1}) \right) \right\|^{2}$$

$$\leq \frac{1}{m^{2}n^{2}q} \sum_{i=1}^{m} \sum_{j=1}^{n} \left\| \left(\mathbf{g}_{i,j}(\bar{\mathbf{z}}^{k}) - \mathbf{g}_{i,j}(\bar{\mathbf{v}}^{k-1}) \right) \right\|^{2}$$

$$\leq \frac{\bar{L}^{2}}{mnq} \left\| \bar{\mathbf{z}}^{k} - \bar{\mathbf{v}}^{k-1} \right\|^{2}$$

$$= \frac{\bar{L}^{2}}{b} \left\| \bar{\mathbf{z}}^{k} - \bar{\mathbf{v}}^{k-1} \right\|^{2},$$

where the second inequality holds by Assumption 2.3.

Thus, an upper bound for equation (13) is given by

$$2\mathbb{E}_{\xi^{k}} \left[\left\| \frac{1}{mn} \sum_{i=1}^{m} \sum_{j=1}^{n} \left(\frac{\xi_{i,j}^{k}}{q} - 1 \right) \left(\mathbf{g}_{i,j}(\mathbf{z}_{i}^{k}) - \mathbf{g}_{i,j}(\mathbf{v}_{i}^{k-1}) \right) \right\|^{2} \right]$$

$$\leq \frac{6n\bar{L}^{2}}{b} \left\| \mathbf{Z}^{k} - \mathbf{1}\bar{\mathbf{z}}^{k} \right\|^{2} + \frac{6n\bar{L}^{2}}{b} \left\| \mathbf{V}^{k-1} - \mathbf{1}\bar{\mathbf{v}}^{k-1} \right\|^{2} + \frac{6\bar{L}^{2}}{b} \left\| \bar{\mathbf{z}}^{k} - \bar{\mathbf{v}}^{k-1} \right\|^{2}.$$

Similarly, the second term of equation (12) can be bounded by

$$\begin{split} & \mathbb{E}_{\xi^{k}} \left[\left\| \frac{\alpha}{mn} \sum_{i=1}^{m} \sum_{j=1}^{n} \left(\frac{\xi_{i,j}^{k}}{q} - 1 \right) \left(\mathbf{g}_{i,j}(\mathbf{z}_{i}^{k}) - \mathbf{g}_{i,j}(\mathbf{z}_{i}^{k-1}) \right) \right\|^{2} \right] \\ & \leq \alpha^{2} \left(\frac{6n\bar{L}^{2}}{b} \| \mathbf{Z}^{k} - \mathbf{1}\bar{\mathbf{z}}^{k} \|^{2} + \frac{6n\bar{L}^{2}}{b} \| \mathbf{Z}^{k-1} - \mathbf{1}\bar{\mathbf{z}}^{k-1} \|^{2} + \frac{6\bar{L}^{2}}{b} \|\bar{\mathbf{z}}^{k} - \bar{\mathbf{z}}^{k-1} \|^{2} \right) \\ & = \frac{6n\bar{L}^{2}\alpha^{2}}{b} \| \mathbf{Z}^{k} - \mathbf{1}\bar{\mathbf{z}}^{k} \|^{2} + \frac{6n\bar{L}^{2}\alpha^{2}}{b} \| \mathbf{Z}^{k-1} - \mathbf{1}\bar{\mathbf{z}}^{k-1} \|^{2} + \frac{6\bar{L}^{2}\alpha^{2}}{b} \|\bar{\mathbf{z}}^{k} - \bar{\mathbf{z}}^{k-1} \|^{2}. \end{split}$$

Consequently, an upper bound for equation (11) is

$$\mathbb{E}\left[\langle\bar{\boldsymbol{\delta}}^{k} - \mathbb{E}_{\boldsymbol{\xi}^{k}}[\bar{\boldsymbol{\delta}}^{k}], \bar{\mathbf{z}}^{k} - \bar{\mathbf{z}}^{k+1}\rangle\right]
\leq \eta \mathbb{E}\left[\|\bar{\boldsymbol{\delta}}^{k} - \mathbb{E}_{\boldsymbol{\xi}^{k}}[\bar{\boldsymbol{\delta}}^{k}]\|^{2}\right] + \frac{1}{4\eta} \mathbb{E}\left[\|\bar{\mathbf{z}}^{k+1} - \bar{\mathbf{z}}^{k}\|^{2}\right]
\leq \left(\frac{6\eta n\bar{L}^{2}}{b} + \frac{6\eta n\bar{L}^{2}\alpha^{2}}{b}\right) \mathbb{E}\left[\|\mathbf{Z}^{k} - \mathbf{1}\bar{\mathbf{z}}^{k}\|^{2}\right] + \frac{6\eta n\bar{L}^{2}}{b} \mathbb{E}\left[\|\mathbf{V}^{k-1} - \mathbf{1}\bar{\mathbf{v}}^{k-1}\|^{2}\right]
+ \frac{6\eta n\bar{L}^{2}\alpha^{2}}{b} \mathbb{E}\left[\|\mathbf{Z}^{k-1} - \mathbf{1}\bar{\mathbf{z}}^{k-1}\|^{2}\right] + \frac{6\eta\bar{L}^{2}}{b} \mathbb{E}\left[\|\bar{\mathbf{z}}^{k} - \bar{\mathbf{v}}^{k-1}\|^{2}\right]
+ \frac{6\eta\bar{L}^{2}\alpha^{2}}{b} \mathbb{E}\left[\|\bar{\mathbf{z}}^{k} - \bar{\mathbf{z}}^{k-1}\|^{2}\right] + \frac{1}{4\eta} \mathbb{E}\left[\|\bar{\mathbf{z}}^{k+1} - \bar{\mathbf{z}}^{k}\|^{2}\right].$$
(14)

For the third term of equation (9), we have

$$\mathbb{E}\left[\left\langle \mathbb{E}_{\xi^{k}}[\bar{\boldsymbol{\delta}}^{k}] - \mathbf{g}(\mathbf{z}^{*}), \bar{\mathbf{z}}^{k+1} - \mathbf{z}^{*}\right\rangle\right] \\
= \mathbb{E}\left[\left\langle \frac{1}{m} \sum_{i=1}^{m} \mathbf{g}_{i}(\mathbf{z}_{i}^{k}) + \alpha \left(\frac{1}{m} \sum_{i=1}^{m} \mathbf{g}_{i}(\mathbf{z}_{i}^{k}) - \frac{1}{m} \sum_{i=1}^{m} \mathbf{g}_{i}(\mathbf{z}_{i}^{k-1})\right) - \mathbf{g}(\mathbf{z}^{*}), \bar{\mathbf{z}}^{k+1} - \mathbf{z}^{*}\right\rangle\right] \\
= \mathbb{E}\left[\left\langle \frac{1}{m} \sum_{i=1}^{m} \mathbf{g}_{i}(\mathbf{z}_{i}^{k}) + \alpha \left(\frac{1}{m} \sum_{i=1}^{m} \mathbf{g}_{i}(\mathbf{z}_{i}^{k}) - \frac{1}{m} \sum_{i=1}^{m} \mathbf{g}_{i}(\mathbf{z}_{i}^{k-1})\right) - \mathbf{g}(\bar{\mathbf{z}}^{k}) - \alpha \left(\mathbf{g}(\bar{\mathbf{z}}^{k}) - \mathbf{g}(\bar{\mathbf{z}}^{k-1})\right), \bar{\mathbf{z}}^{k+1} - \mathbf{z}^{*}\right\rangle\right] \\
+ \mathbb{E}\left[\left\langle \mathbf{g}(\bar{\mathbf{z}}^{k}) + \alpha \left(\mathbf{g}(\bar{\mathbf{z}}^{k}) - \mathbf{g}(\bar{\mathbf{z}}^{k-1})\right) - \mathbf{g}(\mathbf{z}^{k}), \bar{\mathbf{z}}^{k+1} - \mathbf{z}^{*}\right\rangle\right] \\
\geq -\frac{1}{\mu} \mathbb{E}\left[\left\| \frac{1}{m} \sum_{i=1}^{m} \mathbf{g}_{i}(\mathbf{z}_{i}^{k}) + \alpha \left(\frac{1}{m} \sum_{i=1}^{m} \mathbf{g}_{i}(\mathbf{z}_{i}^{k}) - \frac{1}{m} \sum_{i=1}^{m} \mathbf{g}_{i}(\mathbf{z}_{i}^{k-1})\right) - \mathbf{g}(\bar{\mathbf{z}}^{k}) - \alpha \left(\mathbf{g}(\bar{\mathbf{z}}^{k}) - \mathbf{g}(\bar{\mathbf{z}}^{k-1})\right)\right\|^{2}\right] \\
- \frac{\mu}{4} \mathbb{E}\left[\left\| \frac{1}{m} \sum_{i=1}^{m} \mathbf{g}_{i}(\mathbf{z}_{i}^{k}) - \mathbf{g}(\bar{\mathbf{z}}^{k})\right\|^{2}\right] - \frac{3}{\mu} \mathbb{E}\left[\left\| \frac{\alpha}{m} \sum_{i=1}^{m} \mathbf{g}_{i}(\mathbf{z}_{i}^{k}) - \mathbf{g}(\bar{\mathbf{z}}^{k})\right\|^{2}\right] \\
- \frac{3}{\mu} \mathbb{E}\left[\left\| \frac{\alpha}{m} \sum_{i=1}^{m} \mathbf{g}_{i}(\mathbf{z}_{i}^{k-1}) - \mathbf{g}(\bar{\mathbf{z}}^{k-1})\right\|^{2}\right] - \frac{\mu}{4} \mathbb{E}\left[\left\| \bar{\mathbf{z}}^{k+1} - \mathbf{z}^{*}\right\|^{2}\right] \\
+ \mathbb{E}\left[\left\langle \mathbf{g}(\bar{\mathbf{z}}^{k}) + \alpha \left(\mathbf{g}(\bar{\mathbf{z}}^{k}) - \mathbf{g}(\bar{\mathbf{z}}^{k-1})\right) - \mathbf{g}(\mathbf{z}^{*}), \bar{\mathbf{z}}^{k+1} - \mathbf{z}^{*}\right)\right], \tag{15}$$

where the inequalities hold by Young's inequality.

Note that

$$\left\| \frac{1}{m} \sum_{i=1}^{m} \mathbf{g}_{i}(\mathbf{z}_{i}^{k}) - \mathbf{g}_{i}(\bar{\mathbf{z}}^{k}) \right\|^{2} \leq \frac{1}{m} \sum_{i=1}^{m} \left\| \mathbf{g}_{i}(\mathbf{z}_{i}^{k}) - \mathbf{g}_{i}(\bar{\mathbf{z}}^{k}) \right\|^{2}$$

$$\leq \frac{1}{mn} \sum_{i=1}^{m} \sum_{j=1}^{n} \left\| \mathbf{g}_{i,j}(\mathbf{z}_{i}^{k}) - \mathbf{g}_{i,j}(\bar{\mathbf{z}}^{k}) \right\|^{2}$$

$$\leq \frac{1}{mn} \sum_{i=1}^{m} \sum_{j=1}^{n} mn\bar{L}^{2} \left\| \mathbf{z}_{i}^{k} - \bar{\mathbf{z}}^{k} \right\|^{2}$$

$$= n\bar{L}^{2} \left\| \mathbf{Z}^{k} - \mathbf{1}\bar{\mathbf{z}}^{k} \right\|^{2},$$

where the first inequality is based on the fact $\left\|\frac{1}{m}\sum_{i=1}^{m}\mathbf{a}_{i}\right\|^{2} \leq \frac{1}{m}\sum_{i=1}^{m}\|\mathbf{a}_{i}\|^{2}$; the second inequality follows similarly; the third inequality is based on equation (5), and

$$\begin{split} & \left\langle \mathbf{g}(\bar{\mathbf{z}}^k) + \alpha \left(\mathbf{g}(\bar{\mathbf{z}}^k) - \mathbf{g}(\bar{\mathbf{z}}^{k-1}) \right) - \mathbf{g}(\mathbf{z}^*), \bar{\mathbf{z}}^{k+1} - \mathbf{z}^* \right\rangle \\ &= \left\langle \mathbf{g}(\bar{\mathbf{z}}^k) - \mathbf{g}(\bar{\mathbf{z}}^{k+1}), \bar{\mathbf{z}}^{k+1} - \mathbf{z}^* \right\rangle - \alpha \left\langle \mathbf{g}(\bar{\mathbf{z}}^{k-1}) - \mathbf{g}(\bar{\mathbf{z}}^k), \bar{\mathbf{z}}^{k+1} - \bar{\mathbf{z}}^k \right\rangle \\ &- \alpha \left\langle \mathbf{g}(\bar{\mathbf{z}}^{k-1}) - \mathbf{g}(\bar{\mathbf{z}}^k), \bar{\mathbf{z}}^k - \mathbf{z}^* \right\rangle + \left\langle \mathbf{g}(\bar{\mathbf{z}}^{k+1}) - \mathbf{g}(\mathbf{z}^*), \bar{\mathbf{z}}^{k+1} - \mathbf{z}^* \right\rangle \\ &\geq \left\langle \mathbf{g}(\bar{\mathbf{z}}^k) - \mathbf{g}(\bar{\mathbf{z}}^{k+1}), \bar{\mathbf{z}}^{k+1} - \mathbf{z}^* \right\rangle - \frac{\alpha}{2} \left(4\eta\alpha \|\mathbf{g}(\bar{\mathbf{z}}^k) - \mathbf{g}(\bar{\mathbf{z}}^{k-1})\|^2 + \frac{1}{4\eta\alpha} \|\bar{\mathbf{z}}^{k+1} - \bar{\mathbf{z}}^k\|^2 \right) \\ &- \alpha \left\langle \mathbf{g}(\bar{\mathbf{z}}^{k-1}) - \mathbf{g}(\bar{\mathbf{z}}^k), \bar{\mathbf{z}}^k - \mathbf{z}^* \right\rangle + \mu \|\bar{\mathbf{z}}^{k+1} - \mathbf{z}^*\|^2 \\ &\geq \left\langle \mathbf{g}(\bar{\mathbf{z}}^k) - \mathbf{g}(\bar{\mathbf{z}}^{k+1}), \bar{\mathbf{z}}^{k+1} - \mathbf{z}^* \right\rangle - 2\eta\alpha^2L^2\|\bar{\mathbf{z}}^k - \bar{\mathbf{z}}^{k-1}\|^2 - \frac{1}{8\eta}\|\bar{\mathbf{z}}^{k+1} - \bar{\mathbf{z}}^k\|^2 \\ &- \alpha \left\langle \mathbf{g}(\bar{\mathbf{z}}^{k-1}) - \mathbf{g}(\bar{\mathbf{z}}^k), \bar{\mathbf{z}}^k - \mathbf{z}^* \right\rangle + \mu \|\bar{\mathbf{z}}^{k+1} - \mathbf{z}^*\|^2, \end{split}$$

where the first inequality holds due to Young's inequality and Assumption 2.1 (equivalently, the strong monotonicity), while the second inequality follows from Assumption 2.2. The lower bound of

equation (15) can be further expressed as

$$\mathbb{E}\left[\left\langle \mathbb{E}_{\xi^{k}}[\bar{\boldsymbol{\delta}}^{k}] - \mathbf{g}(\mathbf{z}^{*}), \bar{\mathbf{z}}^{k+1} - \mathbf{z}^{*}\right\rangle\right] \\
\geq -\frac{3n\bar{L}^{2}}{\mu}(1+\alpha^{2})\mathbb{E}\left[\left\|\mathbf{Z}^{k} - \mathbf{1}\bar{\mathbf{z}}^{k}\right\|^{2}\right] - \frac{3n\bar{L}^{2}\alpha^{2}}{\mu}\mathbb{E}\left[\left\|\mathbf{Z}^{k-1} - \mathbf{1}\bar{\mathbf{z}}^{k-1}\right\|^{2}\right] \\
+ \mathbb{E}\left[\left\langle \mathbf{g}(\bar{\mathbf{z}}^{k}) - \mathbf{g}(\bar{\mathbf{z}}^{k+1}), \bar{\mathbf{z}}^{k+1} - \mathbf{z}^{*}\right\rangle\right] - 2\eta\alpha^{2}L^{2}\mathbb{E}\left[\left\|\bar{\mathbf{z}}^{k} - \bar{\mathbf{z}}^{k-1}\right\|^{2}\right] - \frac{1}{8\eta}\mathbb{E}\left[\left\|\bar{\mathbf{z}}^{k+1} - \bar{\mathbf{z}}^{k}\right\|^{2}\right] \\
- \alpha\mathbb{E}\left[\left\langle \mathbf{g}(\bar{\mathbf{z}}^{k-1}) - \mathbf{g}(\bar{\mathbf{z}}^{k}), \bar{\mathbf{z}}^{k} - \mathbf{z}^{*}\right\rangle\right] + \frac{3\mu}{4}\mathbb{E}\left[\left\|\bar{\mathbf{z}}^{k+1} - \mathbf{z}^{*}\right\|^{2}\right].$$
(16)

Combining the results of equations (8), (9), (10), (14), and (16), we obtain the upper bound of $\mathbb{E}\left[\|\bar{\mathbf{z}}^{k+1} - \mathbf{z}^*\|^2\right]$:

$$\begin{split} &\mathbb{E}\left[\|\bar{\mathbf{z}}^{k+1} - \mathbf{z}^*\|^2\right] \\ &= (1 - \beta)\mathbb{E}\left[\|\bar{\mathbf{z}}^k - \mathbf{z}^*\|^2\right] - \beta\mathbb{E}\left[\|\bar{\mathbf{z}}^{k+1} - \bar{\mathbf{v}}^k\|^2\right] + \beta\mathbb{E}\left[\|\bar{\mathbf{v}}^k - \mathbf{z}^*\|^2\right] \\ &- (1 - \beta)\mathbb{E}\left[\|\bar{\mathbf{z}}^{k+1} - \bar{\mathbf{z}}^k\|^2\right] - 2\eta\mathbb{E}\left[\langle\bar{\boldsymbol{\delta}}^k - \mathbf{g}(\mathbf{z}^*), \bar{\mathbf{z}}^{k+1} - \mathbf{z}^*\rangle\right] \\ &\leq (1 - \beta)\mathbb{E}\left[\|\bar{\mathbf{z}}^k - \mathbf{z}^*\|^2\right] - \beta\mathbb{E}\left[\|\bar{\mathbf{z}}^{k+1} - \bar{\mathbf{v}}^k\|^2\right] + \beta\mathbb{E}\left[\|\bar{\mathbf{v}}^k - \mathbf{z}^*\|^2\right] \\ &- (1 - \beta)\mathbb{E}\left[\|\bar{\mathbf{z}}^{k+1} - \bar{\mathbf{z}}^k\|^2\right] + \frac{1}{2}\mathbb{E}\left[\|\bar{\mathbf{z}}^{k+1} - \bar{\mathbf{z}}^k\|^2\right] \\ &+ \frac{12\eta^2n\bar{L}^2(1 + \alpha^2)}{b}\mathbb{E}\left[\|\mathbf{Z}^k - \mathbf{1}\bar{\mathbf{z}}^k\|^2\right] + \frac{12\eta^2n\bar{L}^2}{b}\mathbb{E}\left[\|\mathbf{V}^{k-1} - \mathbf{1}\bar{\mathbf{v}}^{k-1}\|^2\right] \\ &+ \frac{12\eta^2n\bar{L}^2\alpha^2}{b}\mathbb{E}\left[\|\mathbf{Z}^{k-1} - \mathbf{1}\bar{\mathbf{z}}^{k-1}\|^2\right] + \frac{12\eta^2\bar{L}^2}{b}\mathbb{E}\left[\|\bar{\mathbf{z}}^k - \bar{\mathbf{v}}^{k-1}\|^2\right] \\ &+ \frac{12\eta^2\bar{L}^2\alpha^2}{b}\mathbb{E}\left[\|\bar{\mathbf{z}}^k - \bar{\mathbf{z}}^{k-1}\|^2\right] + \frac{6\eta n\bar{L}^2}{\mu}(1 + \alpha^2)\mathbb{E}\left[\|\mathbf{Z}^k - \mathbf{1}\bar{\mathbf{z}}^k\|^2\right] \\ &+ \frac{6\eta n\bar{L}^2\alpha^2}{\mu}\mathbb{E}\left[\|\bar{\mathbf{z}}^{k-1} - \mathbf{1}\bar{\mathbf{z}}^{k-1}\|^2\right] - 2\eta\mathbb{E}\left[\langle\mathbf{g}(\bar{\mathbf{z}}^k) - \mathbf{g}(\bar{\mathbf{z}}^{k+1}), \bar{\mathbf{z}}^{k+1} - \mathbf{z}^*\rangle\right] \\ &+ 2\eta\alpha\mathbb{E}\left[\langle\mathbf{g}(\bar{\mathbf{z}}^{k-1}) - \mathbf{g}(\bar{\mathbf{z}}^k), \bar{\mathbf{z}}^k - \mathbf{z}^*\rangle\right] + 4\eta^2\alpha^2L^2\mathbb{E}\left[\|\bar{\mathbf{z}}^k - \bar{\mathbf{z}}^{k-1}\|^2\right] \\ &+ \frac{1}{4}\mathbb{E}\left[\|\bar{\mathbf{z}}^{k+1} - \bar{\mathbf{z}}^k\|^2\right] - \frac{3}{2}\mu\eta\mathbb{E}\left[\|\bar{\mathbf{z}}^{k+1} - \mathbf{z}^*\|^2\right]. \end{split}$$

Rearranging the above equations yields

$$\left(\frac{1}{\eta} + \frac{3}{2}\mu\right) \mathbb{E}\left[\|\bar{\mathbf{z}}^{k+1} - \mathbf{z}^*\|^2\right] + \frac{\beta}{\eta} \mathbb{E}\left[\|\bar{\mathbf{z}}^{k+1} - \bar{\mathbf{v}}^k\|^2\right] + \left(\frac{1}{4\eta} - \frac{\beta}{\eta}\right) \mathbb{E}\left[\|\bar{\mathbf{z}}^{k+1} - \bar{\mathbf{z}}^k\|^2\right] \\
+ 2\mathbb{E}\left[\left\langle \mathbf{g}(\bar{\mathbf{z}}^k) - \mathbf{g}(\bar{\mathbf{z}}^{k+1}), \bar{\mathbf{z}}^{k+1} - \mathbf{z}^*\right\rangle\right] \\
\leq \left(\frac{1}{\eta} - \frac{\beta}{\eta}\right) \mathbb{E}\left[\|\bar{\mathbf{z}}^k - \mathbf{z}^*\|^2\right] + \frac{\beta}{\eta} \mathbb{E}\left[\|\bar{\mathbf{v}}^k - \mathbf{z}^*\|^2\right] + \frac{12\eta\bar{L}^2}{b} \mathbb{E}\left[\|\bar{\mathbf{z}}^k - \bar{\mathbf{v}}^{k-1}\|^2\right] \\
+ \left(\frac{12\eta\bar{L}^2\alpha^2}{b} + 4\eta\alpha^2L^2\right) \mathbb{E}\left[\|\bar{\mathbf{z}}^k - \bar{\mathbf{z}}^{k-1}\|^2\right] + 2\alpha\mathbb{E}\left[\left\langle \mathbf{g}(\bar{\mathbf{z}}^{k-1}) - \mathbf{g}(\bar{\mathbf{z}}^k), \bar{\mathbf{z}}^k - \mathbf{z}^*\right\rangle\right] \\
+ \left(\frac{12\eta\eta\bar{L}^2}{b} + \frac{6n\bar{L}^2}{\mu}\right) (1 + \alpha^2) \mathbb{E}\left[\|\mathbf{Z}^k - \mathbf{1}\bar{\mathbf{z}}^k\|^2\right] + \frac{12\eta\eta\bar{L}^2}{b} \mathbb{E}\left[\|\mathbf{V}^{k-1} - \mathbf{1}\bar{\mathbf{v}}^{k-1}\|^2\right] \\
+ \left(\frac{12\eta\eta\bar{L}^2\alpha^2}{b} + \frac{6n\bar{L}^2\alpha^2}{\mu}\right) \mathbb{E}\left[\|\mathbf{Z}^{k-1} - \mathbf{1}\bar{\mathbf{z}}^{k-1}\|^2\right].$$
(17)

According to the update rule (Line 10) in Algorithm 2, we have

$$\frac{\beta + \eta \mu}{p\eta} \mathbb{E}\left[\|\bar{\mathbf{v}}^{k+1} - \mathbf{z}^*\|^2\right] = \frac{\beta + \eta \mu}{\eta} \mathbb{E}\left[\|\bar{\mathbf{z}}^k - \mathbf{z}^*\|^2\right] + (1 - p) \frac{\beta + \eta \mu}{p\eta} \mathbb{E}\left[\|\bar{\mathbf{v}}^k - \mathbf{z}^*\|^2\right]. \tag{18}$$

By adding equation (18) to both sides of equation (17) and rearranging the terms, we obtain

$$\left(\frac{1}{\eta} + \frac{3}{2}\mu\right) \mathbb{E}\left[\|\bar{\mathbf{z}}^{k+1} - \mathbf{z}^*\|^2\right] + \frac{\beta}{\eta} \mathbb{E}\left[\|\bar{\mathbf{z}}^{k+1} - \bar{\mathbf{v}}^k\|^2\right] + \left(\frac{1}{4\eta} - \frac{\beta}{\eta}\right) \mathbb{E}\left[\|\bar{\mathbf{z}}^{k+1} - \bar{\mathbf{z}}^k\|^2\right] \\
+ 2\mathbb{E}\left[\langle \mathbf{g}(\bar{\mathbf{z}}^k) - \mathbf{g}(\bar{\mathbf{z}}^{k+1}), \bar{\mathbf{z}}^{k+1} - \mathbf{z}^*\rangle\right] + \frac{\beta + \eta\mu}{p\eta} \mathbb{E}\left[\|\bar{\mathbf{v}}^{k+1} - \mathbf{z}^*\|^2\right] \\
\leq \left(\frac{1}{\eta} + \mu\right) \mathbb{E}\left[\|\bar{\mathbf{z}}^k - \mathbf{z}^*\|^2\right] + \frac{12\eta\bar{L}^2}{b} \mathbb{E}\left[\|\bar{\mathbf{z}}^k - \bar{\mathbf{v}}^{k-1}\|^2\right] \\
+ \left(\frac{12\eta\bar{L}^2\alpha^2}{b} + 4\eta\alpha^2L^2\right) \mathbb{E}\left[\|\bar{\mathbf{z}}^k - \bar{\mathbf{z}}^{k-1}\|^2\right] \\
+ 2\alpha\mathbb{E}\left[\langle \mathbf{g}(\bar{\mathbf{z}}^{k-1}) - \mathbf{g}(\bar{\mathbf{z}}^k), \bar{\mathbf{z}}^k - \mathbf{z}^*\rangle\right] + \left(1 - \frac{p\eta\mu}{\beta + \eta\mu}\right) \frac{\beta + \eta\mu}{p\eta} \mathbb{E}\left[\|\bar{\mathbf{v}}^k - \mathbf{z}^*\|^2\right] \\
+ \left(\frac{12\eta\eta\bar{L}^2}{b} + \frac{6n\bar{L}^2}{\mu}\right) (1 + \alpha^2)\mathbb{E}\left[\|\mathbf{Z}^k - \mathbf{1}\bar{\mathbf{z}}^k\|^2\right] + \frac{12\eta\eta\bar{L}^2}{b}\mathbb{E}\left[\|\mathbf{V}^{k-1} - \mathbf{1}\bar{\mathbf{v}}^{k-1}\|^2\right] \\
+ \left(\frac{12\eta\eta\bar{L}^2\alpha^2}{b} + \frac{6n\bar{L}^2\alpha^2}{\mu}\right) \mathbb{E}\left[\|\mathbf{Z}^{k-1} - \mathbf{1}\bar{\mathbf{z}}^{k-1}\|^2\right].$$

Based on the choice of parameters, it follows that

$$\begin{split} &\frac{1}{\eta} + \mu \leq \left(1 - \frac{\mu\eta}{4}\right) \left(\frac{1}{\eta} + \frac{3}{2}\mu\right), \quad \frac{12\eta\bar{L}^2}{b} \leq \frac{\alpha\beta}{\eta}, \\ &\frac{1}{4\eta} - \frac{\beta}{\eta} \geq \frac{1}{8\eta}, \quad \text{and} \quad \frac{12\eta\bar{L}^2\alpha^2}{b} + 4\eta\alpha^2L^2 \leq \frac{\alpha}{8\eta}. \end{split}$$

Thus, equation (19) implies that

$$\begin{split} &\left(\frac{1}{\eta} + \frac{3}{2}\mu\right) \mathbb{E}\left[\|\bar{\mathbf{z}}^{k+1} - \mathbf{z}^*\|^2\right] + \frac{\beta}{\eta} \mathbb{E}\left[\|\bar{\mathbf{z}}^{k+1} - \bar{\mathbf{v}}^k\|^2\right] + \frac{1}{8\eta} \mathbb{E}\left[\|\bar{\mathbf{z}}^{k+1} - \bar{\mathbf{z}}^k\|^2\right] \\ &+ 2\mathbb{E}\left[\left\langle \mathbf{g}(\bar{\mathbf{z}}^k) - \mathbf{g}(\bar{\mathbf{z}}^{k+1}), \bar{\mathbf{z}}^{k+1} - \mathbf{z}^*\right\rangle\right] + \frac{\beta + \eta\mu}{p\eta} \mathbb{E}\left[\|\bar{\mathbf{v}}^{k+1} - \mathbf{z}^*\|^2\right] \\ &\leq \left(1 - \frac{\mu\eta}{4}\right) \left(\frac{1}{\eta} + \frac{3}{2}\mu\right) \mathbb{E}\left[\|\bar{\mathbf{z}}^k - \mathbf{z}^*\|^2\right] + \alpha \cdot \frac{\beta}{\eta} \mathbb{E}\left[\|\bar{\mathbf{z}}^k - \bar{\mathbf{v}}^{k-1}\|^2\right] + \alpha \cdot \frac{1}{8\eta} \mathbb{E}\left[\|\bar{\mathbf{z}}^k - \bar{\mathbf{z}}^{k-1}\|^2\right] \\ &+ 2\alpha \mathbb{E}\left[\left\langle \mathbf{g}(\bar{\mathbf{z}}^{k-1}) - \mathbf{g}(\bar{\mathbf{z}}^k), \bar{\mathbf{z}}^k - \mathbf{z}^*\right\rangle\right] + \left(1 - \frac{p\eta\mu}{\beta + \eta\mu}\right) \frac{\beta + \eta\mu}{p\eta} \mathbb{E}\left[\|\bar{\mathbf{v}}^k - \mathbf{z}^*\|^2\right] \\ &+ \left(\frac{12\eta\eta\bar{L}^2}{b} + \frac{6n\bar{L}^2}{\mu}\right) (1 + \alpha^2) \left(\mathbb{E}\left[\|\mathbf{Z}^k - \mathbf{1}\bar{\mathbf{z}}^k\|^2\right] + \mathbb{E}\left[\|\mathbf{Z}^{k-1} - \mathbf{1}\bar{\mathbf{z}}^{k-1}\|^2\right] \right) . \end{split}$$

Recalling

$$\alpha = \max \left\{ 1 - \frac{\mu \eta}{4}, 1 - \frac{p \eta \mu}{\beta + \eta \mu} \right\}, \quad C_1 = \left(\frac{12 \eta n \bar{L}^2}{b} + \frac{6 n \bar{L}^2}{\mu} \right) (1 + \alpha^2).$$

we thereby complete the proof of Lemma 3.1.

C.2 The proof of Lemma 3.2

Based on the update rule for \mathbf{Z}^{k+1} in Algorithm 2, we obtain

$$\begin{split} & \mathbb{E}\left[\|\mathbf{Z}^{k+1} - \mathbf{1}\bar{\mathbf{z}}^{k+1}\|^2\right] \\ &= \mathbb{E}\Big[\left\|\mathrm{FastMix}\left((1-\beta)\mathbf{Z}^k + \beta\mathbf{V}^k - \eta\mathbf{S}^k, \mathbf{W}, R\right) \right. \\ & \left. - \frac{1}{m}\mathbf{1}\mathbf{1}^{\top}\mathrm{FastMix}\left((1-\beta)\mathbf{Z}^k + \beta\mathbf{V}^k - \eta\mathbf{S}^k, \mathbf{W}, R\right)\right\|^2\Big] \end{split}$$

$$\leq \rho^{2} \mathbb{E} \left[\left\| (1 - \beta) \mathbf{Z}^{k} + \beta \mathbf{V}^{k} - \eta \mathbf{S}^{k} - \mathbf{1} \left((1 - \beta) \bar{\mathbf{z}}^{k} + \beta \bar{\mathbf{v}}^{k} - \eta \bar{\mathbf{s}}^{k} \right) \right\|^{2} \right]
\leq 3\rho^{2} (1 - \beta)^{2} \mathbb{E} \left[\left\| \mathbf{Z}^{k} - \mathbf{1} \bar{\mathbf{z}}^{k} \right\|^{2} \right] + 3\rho^{2} \beta^{2} \mathbb{E} \left[\left\| \mathbf{V}^{k} - \mathbf{1} \bar{\mathbf{v}}^{k} \right\|^{2} \right] + 3\rho^{2} \eta^{2} \mathbb{E} \left[\left\| \mathbf{S}^{k} - \mathbf{1} \bar{\mathbf{s}}^{k} \right\|^{2} \right], \quad (20)$$

where the first inequality follows from Proposition B.2, and the second inequality is due to Young's inequality.

For the consensus error of V^{k+1} , we have

$$\begin{split} & \mathbb{E}\left[\|\mathbf{V}^{k+1} - \mathbf{1}\bar{\mathbf{v}}^{k+1}\|^2\right] \\ &= p\mathbb{E}\left[\left\|\mathrm{FastMix}\left(\mathbf{Z}^k, \mathbf{W}, R\right) - \frac{1}{m}\mathbf{1}\mathbf{1}^{\top}\mathrm{FastMix}\left(\mathbf{Z}^k, \mathbf{W}, R\right)\right\|^2\right] + (1-p)\mathbb{E}\left[\|\mathbf{V}^k - \mathbf{1}\bar{\mathbf{v}}^k\|^2\right] \\ &\leq p\rho^2\mathbb{E}\left[\|\mathbf{Z}^k - \mathbf{1}\bar{\mathbf{z}}^k\|^2\right] + (1-p)\mathbb{E}\left[\|\mathbf{V}^k - \mathbf{1}\bar{\mathbf{v}}^k\|^2\right], \end{split}$$

where the inequality holds by Proposition B.2.

C.3 The proof of Lemma 3.3

According to the update rule for S^{k+1} in Algorithm 2, we have

$$\begin{split} &\|\mathbf{S}^{k+1} - \mathbf{1}\bar{\mathbf{s}}^{k+1}\|^2 \\ &= \left\| \operatorname{FastMix} \left(\mathbf{S}^k + \boldsymbol{\Delta}^{k+1} - \boldsymbol{\Delta}^k, \mathbf{W}, R \right) - \frac{1}{m} \mathbf{1} \mathbf{1}^\top \operatorname{FastMix} \left(\mathbf{S}^k + \boldsymbol{\Delta}^{k+1} - \boldsymbol{\Delta}^k, \mathbf{W}, R \right) \right\|^2 \\ &\leq \rho^2 \left\| \mathbf{S}^k + \boldsymbol{\Delta}^{k+1} - \boldsymbol{\Delta}^k - \frac{1}{m} \mathbf{1} \mathbf{1}^\top \left(\mathbf{S}^k + \boldsymbol{\Delta}^{k+1} - \boldsymbol{\Delta}^k \right) \right\|^2 \\ &\leq 2\rho^2 \|\mathbf{S}^k - \mathbf{1}\bar{\mathbf{s}}^k\|^2 + 2\rho^2 \|\boldsymbol{\Delta}^{k+1} - \boldsymbol{\Delta}^k - \frac{1}{m} \mathbf{1} \mathbf{1}^\top (\boldsymbol{\Delta}^{k+1} - \boldsymbol{\Delta}^k) \|^2 \\ &\leq 2\rho^2 \|\mathbf{S}^k - \mathbf{1}\bar{\mathbf{s}}^k\|^2 + 2\rho^2 \|\boldsymbol{\Delta}^{k+1} - \boldsymbol{\Delta}^k\|^2, \end{split} \tag{21}$$

where the second inequality holds due to Young's inequality, and the last inequality follows from the fact that $\|\mathbf{A} - \frac{1}{m}\mathbf{1}\mathbf{1}^{\top}\mathbf{A}\| \leq \|\mathbf{A}\|$ for any $\mathbf{A} \in \mathbb{R}^{m \times d_z}$.

Next, we bound the term $\mathbb{E}\left[\|\boldsymbol{\Delta}^{k+1}-\boldsymbol{\Delta}^k\|^2\right]$. It follows that

$$\mathbb{E}\left[\|\boldsymbol{\Delta}^{k+1} - \boldsymbol{\Delta}^{k}\|^{2}\right] \\
= \sum_{i=1}^{m} \mathbb{E}\left[\|\boldsymbol{\delta}_{i}^{k+1} - \boldsymbol{\delta}_{i}^{k}\|^{2}\right] \\
= \sum_{i=1}^{m} \mathbb{E}\left[\|\mathbf{g}_{i}(\mathbf{v}_{i}^{k}) - \mathbf{g}_{i}(\mathbf{v}_{i}^{k-1}) + \frac{1}{n} \sum_{j=1}^{n} \frac{\xi_{i,j}^{k}}{q} \left(\left(\mathbf{g}_{i,j}(\mathbf{z}_{i}^{k+1}) - \mathbf{g}_{i,j}(\mathbf{v}_{i}^{k})\right) + \alpha \left(\mathbf{g}_{i,j}(\mathbf{z}_{i}^{k+1}) - \mathbf{g}_{i,j}(\mathbf{z}_{i}^{k})\right)\right) \\
- \frac{1}{n} \sum_{j=1}^{n} \frac{\xi_{i,j}^{k-1}}{q} \left(\left(\mathbf{g}_{i,j}(\mathbf{z}_{i}^{k}) - \mathbf{g}_{i,j}(\mathbf{v}_{i}^{k-1})\right) + \alpha \left(\mathbf{g}_{i,j}(\mathbf{z}_{i}^{k}) - \mathbf{g}_{i,j}(\mathbf{z}_{i}^{k-1})\right)\right) \|^{2}\right] \\
\leq 5 \sum_{i=1}^{m} \mathbb{E}\left[\|\mathbf{g}_{i}(\mathbf{v}_{i}^{k}) - \mathbf{g}_{i}(\mathbf{v}_{i}^{k-1})\|^{2}\right] + 5 \sum_{i=1}^{m} \mathbb{E}\left[\left\|\frac{1}{n} \sum_{j=1}^{n} \frac{\xi_{i,j}^{k}}{q} \left(\mathbf{g}_{i,j}(\mathbf{z}_{i}^{k+1}) - \mathbf{g}_{i,j}(\mathbf{z}_{i}^{k})\right)\right\|^{2}\right] \\
+ 5 \sum_{i=1}^{m} \mathbb{E}\left[\left\|\frac{\alpha}{n} \sum_{j=1}^{n} \frac{\xi_{i,j}^{k}}{q} \left(\mathbf{g}_{i,j}(\mathbf{z}_{i}^{k}) - \mathbf{g}_{i,j}(\mathbf{z}_{i}^{k-1})\right)\right\|^{2}\right] \\
+ 5 \sum_{i=1}^{m} \mathbb{E}\left[\left\|\frac{\alpha}{n} \sum_{j=1}^{n} \frac{\xi_{i,j}^{k-1}}{q} \left(\mathbf{g}_{i,j}(\mathbf{z}_{i}^{k}) - \mathbf{g}_{i,j}(\mathbf{z}_{i}^{k-1})\right)\right\|^{2}\right] \\
+ 5 \sum_{i=1}^{m} \mathbb{E}\left[\left\|\frac{\alpha}{n} \sum_{j=1}^{n} \frac{\xi_{i,j}^{k-1}}{q} \left(\mathbf{g}_{i,j}(\mathbf{z}_{i}^{k}) - \mathbf{g}_{i,j}(\mathbf{z}_{i}^{k-1})\right)\right\|^{2}\right].$$

For the first term of equation (22), it holds that

$$\mathbb{E}\left[\|\mathbf{g}_{i}(\mathbf{v}_{i}^{k}) - \mathbf{g}_{i}(\mathbf{v}_{i}^{k-1})\|^{2}\right]
\leq m\bar{L}^{2}\mathbb{E}\left[\|\mathbf{v}_{i}^{k} - \mathbf{v}_{i}^{k-1}\|^{2}\right]
\leq 3m\bar{L}^{2}\mathbb{E}\left[\|\mathbf{v}_{i}^{k} - \bar{\mathbf{v}}^{k}\|^{2}\right] + 3m\bar{L}^{2}\mathbb{E}\left[\|\bar{\mathbf{v}}^{k} - \bar{\mathbf{v}}^{k-1}\|^{2}\right] + 3m\bar{L}^{2}\mathbb{E}\left[\|\mathbf{v}_{i}^{k-1} - \bar{\mathbf{v}}^{k-1}\|^{2}\right],$$
(23)

where the first inequality holds by equation (6) and the second inequality is due to Young's inequality. For the other terms in equation (22), Note that

$$\begin{split} & \mathbb{E}_{\xi^{k}} \left[\left\| \frac{1}{n} \sum_{j=1}^{n} \frac{\xi_{i,j}^{k}}{q} \left(\mathbf{g}_{i,j}(\mathbf{z}_{i}^{k+1}) - \mathbf{g}_{i,j}(\mathbf{v}_{i}^{k}) \right) \right\|^{2} \right] \\ & \leq \frac{1}{n} \sum_{j=1}^{n} \mathbb{E}_{\xi^{k}} \left[\left\| \frac{\xi_{i,j}^{k}}{q} \left(\mathbf{g}_{i,j}(\mathbf{z}_{i}^{k+1}) - \mathbf{g}_{i,j}(\mathbf{v}_{i}^{k}) \right) \right\|^{2} \right] \\ & = \frac{1}{nq} \sum_{j=1}^{n} \| \mathbf{g}_{i,j}(\mathbf{z}_{i}^{k+1}) - \mathbf{g}_{i,j}(\mathbf{v}_{i}^{k}) \|^{2} \\ & \leq \frac{mn\bar{L}^{2}}{q} \| \mathbf{z}_{i}^{k+1} - \mathbf{v}_{i}^{k} \|^{2} \\ & \leq \frac{3m^{2}n^{2}\bar{L}^{2}}{b} \| \mathbf{z}_{i}^{k+1} - \bar{\mathbf{z}}^{k+1} \|^{2} + \frac{3m^{2}n^{2}\bar{L}^{2}}{b} \| \bar{\mathbf{z}}^{k+1} - \bar{\mathbf{v}}^{k} \|^{2} + \frac{3m^{2}n^{2}\bar{L}^{2}}{b} \| \mathbf{v}_{i}^{k} - \bar{\mathbf{v}}^{k} \|^{2}, \end{split}$$

where the first inequality is based on the fact that $\left\|\frac{1}{n}\sum_{i=1}^{n}\mathbf{a}_{i}\right\|^{2} \leq \frac{1}{n}\sum_{i=1}^{n}\|\mathbf{a}_{i}\|^{2}$; the second inequality is based on equation (5); the last inequality holds by Young's inequality. Further, we obtain

$$\mathbb{E}\left[\left\|\frac{1}{n}\sum_{j=1}^{n}\frac{\xi_{i,j}^{k}}{q}\left(\mathbf{g}_{i,j}(\mathbf{z}_{i}^{k+1})-\mathbf{g}_{i,j}(\mathbf{v}_{i}^{k})\right)\right\|^{2}\right] \\
\leq \frac{3m^{2}n^{2}\bar{L}^{2}}{b}\mathbb{E}\left[\left\|\mathbf{z}_{i}^{k+1}-\bar{\mathbf{z}}^{k+1}\right\|^{2}\right] + \frac{3m^{2}n^{2}\bar{L}^{2}}{b}\mathbb{E}\left[\left\|\bar{\mathbf{z}}^{k+1}-\bar{\mathbf{v}}^{k}\right\|^{2}\right] + \frac{3m^{2}n^{2}\bar{L}^{2}}{b}\mathbb{E}\left[\left\|\mathbf{v}_{i}^{k}-\bar{\mathbf{v}}^{k}\right\|^{2}\right]. \tag{24}$$

Similarly, for the third term in equation (22), we have

$$\mathbb{E}\left[\left\|\frac{\alpha}{n}\sum_{j=1}^{n}\frac{\xi_{i,j}^{k}}{q}\left(\mathbf{g}_{i,j}(\mathbf{z}_{i}^{k+1})-\mathbf{g}_{i,j}(\mathbf{z}_{i}^{k})\right)\right\|^{2}\right] \\
\leq \frac{3m^{2}n^{2}\bar{L}^{2}\alpha^{2}}{b}\mathbb{E}\left[\left\|\mathbf{z}_{i}^{k+1}-\bar{\mathbf{z}}^{k+1}\right\|^{2}\right]+\frac{3m^{2}n^{2}\bar{L}^{2}\alpha^{2}}{b}\mathbb{E}\left[\left\|\bar{\mathbf{z}}^{k+1}-\bar{\mathbf{z}}^{k}\right\|^{2}\right]+\frac{3m^{2}n^{2}\bar{L}^{2}\alpha^{2}}{b}\mathbb{E}\left[\left\|\mathbf{z}_{i}^{k}-\bar{\mathbf{z}}^{k}\right\|^{2}\right].$$
(25)

For the fourth term, it follows that

$$\mathbb{E}\left[\left\|\frac{1}{n}\sum_{j=1}^{n}\frac{\xi_{i,j}^{k-1}}{q}\left(\mathbf{g}_{i,j}(\mathbf{z}_{i}^{k})-\mathbf{g}_{i,j}(\mathbf{v}_{i}^{k-1})\right)\right\|^{2}\right] \\
\leq \frac{3m^{2}n^{2}\bar{L}^{2}}{b}\mathbb{E}\left[\left\|\mathbf{z}_{i}^{k}-\bar{\mathbf{z}}^{k}\right\|^{2}\right]+\frac{3m^{2}n^{2}\bar{L}^{2}}{b}\mathbb{E}\left[\left\|\bar{\mathbf{z}}^{k}-\bar{\mathbf{v}}^{k-1}\right\|^{2}\right]+\frac{3m^{2}n^{2}\bar{L}^{2}}{b}\mathbb{E}\left[\left\|\mathbf{v}_{i}^{k-1}-\bar{\mathbf{v}}^{k-1}\right\|^{2}\right]. (26)$$

For the fifth term, it holds that

$$\mathbb{E}\left[\left\|\frac{\alpha}{n}\sum_{j=1}^{n}\frac{\xi_{i,j}^{k-1}}{q}\left(\mathbf{g}_{i,j}(\mathbf{z}_{i}^{k})-\mathbf{g}_{i,j}(\mathbf{z}_{i}^{k-1})\right)\right\|^{2}\right] \\
\leq \frac{3m^{2}n^{2}\bar{L}^{2}\alpha^{2}}{b}\mathbb{E}\left[\left\|\mathbf{z}_{i}^{k}-\bar{\mathbf{z}}^{k}\right\|^{2}\right]+\frac{3m^{2}n^{2}\bar{L}^{2}\alpha^{2}}{b}\mathbb{E}\left[\left\|\bar{\mathbf{z}}^{k}-\bar{\mathbf{z}}^{k-1}\right\|^{2}\right]+\frac{3m^{2}n^{2}\bar{L}^{2}\alpha^{2}}{b}\mathbb{E}\left[\left\|\mathbf{z}_{i}^{k-1}-\bar{\mathbf{z}}^{k-1}\right\|^{2}\right].$$
(27)

Substituting the results of equations (23), (24), (25), (26), and (27) into equation (22), we finally obtain an upper bound for $\mathbb{E}\left[\|\boldsymbol{\Delta}^{k+1}-\boldsymbol{\Delta}^{k}\|^{2}\right]$ as

$$\begin{split} &\mathbb{E}\left[\|\mathbf{\Delta}^{k+1} - \mathbf{\Delta}^k\|^2\right] \\ &\leq 15m\tilde{L}^2\mathbb{E}\left[\|\mathbf{V}^k - \mathbf{1}\mathbf{v}^k\|^2\right] + 15m^2\tilde{L}^2\mathbb{E}\left[\|\mathbf{v}^k - \mathbf{v}^{k-1}\|^2\right] + 15m\tilde{L}^2\mathbb{E}\left[\|\mathbf{V}^{k-1} - \mathbf{1}\mathbf{v}^{k-1}\|^2\right] \\ &\quad + \frac{15m^2n^2\tilde{L}^2}{b}\mathbb{E}\left[\|\mathbf{Z}^{k+1} - \mathbf{1}\bar{\mathbf{z}}^{k+1}\|^2\right] + \frac{15m^3n^2\tilde{L}^2}{b}\mathbb{E}\left[\|\mathbf{Z}^{k+1} - \bar{\mathbf{v}}^k\|^2\right] \\ &\quad + \frac{15m^2n^2\tilde{L}^2}{b}\mathbb{E}\left[\|\mathbf{V}^k - \mathbf{1}\bar{\mathbf{v}}^k\|^2\right] + \frac{15m^2n^2\tilde{L}^2\alpha^2}{b}\mathbb{E}\left[\|\mathbf{Z}^{k+1} - \mathbf{1}\bar{\mathbf{z}}^{k+1}\|^2\right] \\ &\quad + \frac{15m^3n^2\tilde{L}^2\alpha^2}{b}\mathbb{E}\left[\|\mathbf{Z}^{k-1} - \bar{\mathbf{z}}^k\|^2\right] + \frac{15m^3n^2\tilde{L}^2\alpha^2}{b}\mathbb{E}\left[\|\mathbf{Z}^k - \mathbf{1}\bar{\mathbf{z}}^k\|^2\right] \\ &\quad + \frac{15m^2n^2\tilde{L}^2}{b}\mathbb{E}\left[\|\mathbf{Z}^k - \mathbf{1}\bar{\mathbf{z}}^k\|^2\right] + \frac{15m^3n^2\tilde{L}^2\alpha^2}{b}\mathbb{E}\left[\|\bar{\mathbf{Z}}^k - \bar{\mathbf{v}}^{k-1}\|^2\right] \\ &\quad + \frac{15m^3n^2\tilde{L}^2\alpha^2}{b}\mathbb{E}\left[\|\mathbf{V}^{k-1} - \mathbf{1}\bar{\mathbf{v}}^{k-1}\|^2\right] + \frac{15m^2n^2\tilde{L}^2\alpha^2}{b}\mathbb{E}\left[\|\mathbf{Z}^{k-1} - \mathbf{1}\bar{\mathbf{z}}^{k-1}\|^2\right] \\ &\quad + \frac{15m^3n^2\tilde{L}^2\alpha^2}{b}\mathbb{E}\left[\|\mathbf{V}^k - \mathbf{1}\bar{\mathbf{v}}^k\|^2\right] + 15m^2\tilde{L}^2\alpha^2\mathbb{E}\left[\|\bar{\mathbf{z}}^k - \bar{\mathbf{v}}^{k-1}\|^2\right] \\ &\quad + \frac{30m^2n^2\tilde{L}^2\alpha^2}{b}\mathbb{E}\left[\|\mathbf{Z}^k - \mathbf{1}\bar{\mathbf{z}}^{k+1}\|^2\right] + 15m^2\tilde{L}^2\alpha^2\mathbb{E}\left[\|\mathbf{Z}^{k-1} - \mathbf{1}\bar{\mathbf{z}}^{k-1}\|^2\right] \\ &\quad + 30m^2n^2\tilde{L}^2\mathbb{E}\left[\|\mathbf{Z}^{k-1} - \mathbf{1}\bar{\mathbf{z}}^{k-1}\|^2\right] + 15m^3n^2\tilde{L}^2\mathbb{E}\left[\|\mathbf{Z}^k - \mathbf{1}\bar{\mathbf{z}}^k\|^2\right] \\ &\quad + 15m^3n^2\tilde{L}^2\alpha^2\mathbb{E}\left[\|\mathbf{Z}^{k-1} - \mathbf{1}\bar{\mathbf{z}}^{k-1}\|^2\right] + 15m^3n^2\tilde{L}^2\mathbb{E}\left[\|\mathbf{Z}^k - \mathbf{v}^{k-1}\|^2\right] \\ &\quad + 15m^3n^2\tilde{L}^2\alpha^2\mathbb{E}\left[\|\mathbf{Z}^{k-1} - \mathbf{z}^{k-1}\|^2\right] + 15m^3n^2\tilde{L}^2\mathbb{E}\left[\|\mathbf{Z}^k - \mathbf{v}^{k-1}\|^2\right] \\ &\quad + 30m^2n^2\tilde{L}^2\mathbb{E}\left[\|\mathbf{Z}^k - \mathbf{z}^{k-1}\|^2\right] + 15m^3n^2\tilde{L}^2\mathbb{E}\left[\|\mathbf{Z}^k - \mathbf{v}^{k-1}\|^2\right] \\ &\quad + 30m^2n^2\tilde{L}^2\mathbb{E}\left[\|\mathbf{Z}^k - \mathbf{z}^{k-1}\|^2\right] + 15m^3n^2\tilde{L}^2\mathbb{E}\left[\|\mathbf{Z}^k - \mathbf{1}\bar{\mathbf{v}}^k\|^2\right] \\ &\quad + 15m^3n^2\tilde{L}^2\alpha^2\mathbb{E}\left[\|\mathbf{Z}^{k-1} - \mathbf{1}\bar{\mathbf{z}}^{k-1}\|^2\right] + 15m^3n^2\tilde{L}^2\mathbb{E}\left[\|\mathbf{Z}^k - \mathbf{v}^{k-1}\|^2\right] \\ &\quad + 15m^3n^2\tilde{L}^2\alpha^2\mathbb{E}\left[\|\mathbf{Z}^{k-1} - \mathbf{1}\bar{\mathbf{z}}^{k-1}\|^2\right] + 15m^3n^2\tilde{L}^2\mathbb{E}\left[\|\mathbf{Z}^k - \mathbf{v}^{k-1}\|^2\right] \\ &\quad + 15m^3n^2\tilde{L}^2\alpha^2\mathbb{E}\left[\|\mathbf{Z}^k - \mathbf{z}^{k-1}\|^2\right] + 15m^3n^2\tilde{L}^2\mathbb{E}\left[\|\mathbf{Z}^k - \mathbf{v}^{k-1}\|^2\right] \\ &\quad + 15m^3n^2\tilde{L}^2\mathbb{E}\left[\|\mathbf{Z}^k - \mathbf{1}\bar{\mathbf{z}}^k\|^2\right] + 15m^3n^2\tilde{L}^2\mathbb{E}\left[\|\mathbf{Z}^k - \mathbf{v}^{k$$

where the second inequality holds because $b, m, n \ge 1$ and $\alpha \le 1$; the third inequality follows from equation (20); the last inequality is due to $\rho < 1$ and $\beta \in [0, 1]$.

Substituting the above results into equation (21), we have

$$\begin{split} & \mathbb{E}\left[\|\mathbf{S}^{k+1} - \mathbf{1}\bar{\mathbf{s}}^{k+1}\|^2\right] \\ & \leq 2\rho^2 \mathbb{E}\left[\|\mathbf{S}^k - \mathbf{1}\bar{\mathbf{s}}^k\|^2\right] + 2\rho^2 \mathbb{E}\left[\|\boldsymbol{\Delta}^{k+1} - \boldsymbol{\Delta}^k\|^2\right] \\ & \leq 240m^2 n^2 \bar{L}^2 \rho^2 \mathbb{E}\left[\|\mathbf{V}^k - \mathbf{1}\bar{\mathbf{v}}^k\|^2\right] + 30m^2 \bar{L}^2 \rho^2 \mathbb{E}\left[\|\bar{\mathbf{v}}^k - \bar{\mathbf{v}}^{k-1}\|^2\right] \end{split}$$

$$+60m^{2}n^{2}\bar{L}^{2}\rho^{2}\mathbb{E}\left[\|\mathbf{V}^{k-1}-\mathbf{1}\bar{\mathbf{v}}^{k-1}\|^{2}\right]+270m^{2}n^{2}\bar{L}^{2}\rho^{2}\mathbb{E}\left[\|\mathbf{Z}^{k}-\mathbf{1}\bar{\mathbf{z}}^{k}\|^{2}\right]$$

$$+30m^{2}n^{2}\bar{L}^{2}\alpha^{2}\rho^{2}\mathbb{E}\left[\|\mathbf{Z}^{k-1}-\mathbf{1}\bar{\mathbf{z}}^{k-1}\|^{2}\right]+(180m^{2}n^{2}\bar{L}^{2}\eta^{2}\rho^{2}+2\rho^{2})\mathbb{E}\left[\|\mathbf{S}^{k}-\mathbf{1}\bar{\mathbf{s}}^{k}\|^{2}\right]$$

$$+30m^{3}n^{2}\bar{L}^{2}\rho^{2}\mathbb{E}\left[\|\bar{\mathbf{z}}^{k+1}-\bar{\mathbf{v}}^{k}\|^{2}\right]+30m^{3}n^{2}\bar{L}^{2}\alpha^{2}\rho^{2}\mathbb{E}\left[\|\bar{\mathbf{z}}^{k+1}-\bar{\mathbf{z}}^{k}\|^{2}\right]$$

$$+30m^{3}n^{2}\bar{L}^{2}\rho^{2}\mathbb{E}\left[\|\bar{\mathbf{z}}^{k}-\bar{\mathbf{v}}^{k-1}\|^{2}\right]+30m^{3}n^{2}\bar{L}^{2}\alpha^{2}\rho^{2}\mathbb{E}\left[\|\bar{\mathbf{z}}^{k}-\bar{\mathbf{z}}^{k-1}\|^{2}\right]$$

$$\leq 270m^{2}n^{2}\bar{L}^{2}\rho^{2}\left(\mathbb{E}\left[\|\mathbf{Z}^{k}-\mathbf{1}\bar{\mathbf{z}}^{k}\|^{2}\right]+\mathbb{E}\left[\|\mathbf{Z}^{k-1}-\mathbf{1}\bar{\mathbf{z}}^{k-1}\|^{2}\right]+\mathbb{E}\left[\|\mathbf{V}^{k}-\mathbf{1}\bar{\mathbf{v}}^{k}\|^{2}\right]$$

$$+\mathbb{E}\left[\|\mathbf{V}^{k-1}-\mathbf{1}\bar{\mathbf{v}}^{k-1}\|^{2}\right]\right)+(180m^{2}n^{2}\bar{L}^{2}\eta^{2}+2)\rho^{2}\mathbb{E}\left[\|\mathbf{S}^{k}-\mathbf{1}\bar{\mathbf{s}}^{k}\|^{2}\right]$$

$$+60m^{2}\bar{L}^{2}\rho^{2}\left(\mathbb{E}\left[\|\bar{\mathbf{v}}^{k}-\bar{\mathbf{v}}^{*}\|^{2}\right]+\mathbb{E}\left[\|\bar{\mathbf{v}}^{k-1}-\bar{\mathbf{v}}^{*}\|^{2}\right]\right)$$

$$+30m^{3}n^{2}\bar{L}^{2}\rho^{2}\left(\mathbb{E}\left[\|\bar{\mathbf{z}}^{k+1}-\bar{\mathbf{v}}^{k}\|^{2}\right]+\mathbb{E}\left[\|\bar{\mathbf{z}}^{k+1}-\bar{\mathbf{z}}^{k}\|^{2}\right]+\mathbb{E}\left[\|\bar{\mathbf{z}}^{k}-\bar{\mathbf{v}}^{k-1}\|^{2}\right]$$

$$+\mathbb{E}\left[\|\bar{\mathbf{z}}^{k}-\bar{\mathbf{z}}^{k-1}\|^{2}\right]\right). \tag{28}$$

With the choice of parameters $\beta = p$, it holds that

$$\Phi^k \geq \frac{\beta}{\eta} \|\bar{\mathbf{z}}^k - \bar{\mathbf{v}}^{k-1}\|^2 + \frac{1}{16\eta} \|\bar{\mathbf{z}}^k - \bar{\mathbf{z}}^{k-1}\|^2 + \frac{1}{\eta} \|\bar{\mathbf{v}}^k - \mathbf{z}^*\|^2.$$

Therefore,

$$\|\bar{\mathbf{z}}^k - \bar{\mathbf{v}}^{k-1}\|^2 + \|\bar{\mathbf{z}}^k - \bar{\mathbf{z}}^{k-1}\|^2 + \|\bar{\mathbf{v}}^k - \mathbf{z}^*\|^2 \le \left(16\eta + \frac{\eta}{\beta}\right)\Phi^k. \tag{29}$$

Combining the results of equations (28) and (29), we obtain

$$\begin{split} & \mathbb{E}\left[\|\mathbf{S}^{k+1} - \mathbf{1}\bar{\mathbf{s}}^{k+1}\|^{2}\right] \\ & \leq C_{2}\rho^{2}\Big(\mathbb{E}\left[\|\mathbf{Z}^{k} - \mathbf{1}\bar{\mathbf{z}}^{k}\|^{2}\right] + \mathbb{E}\left[\|\mathbf{Z}^{k-1} - \mathbf{1}\bar{\mathbf{z}}^{k-1}\|^{2}\right] + \mathbb{E}\left[\|\mathbf{V}^{k} - \mathbf{1}\bar{\mathbf{v}}^{k}\|^{2}\right] + \mathbb{E}\left[\|\mathbf{V}^{k-1} - \mathbf{1}\bar{\mathbf{v}}^{k-1}\|^{2}\right]\Big) \\ & + C_{3}\rho^{2}\mathbb{E}\left[\|\mathbf{S}^{k} - \mathbf{1}\bar{\mathbf{s}}^{k}\|^{2}\right] + C_{4}\rho^{2}\left(\mathbb{E}\left[\Phi^{k+1}\right] + \mathbb{E}\left[\Phi^{k}\right] + \mathbb{E}\left[\Phi^{k-1}\right]\right), \end{split}$$
 where $C_{2} = 270m^{2}n^{2}\bar{L}^{2}$, $C_{3} = 180m^{2}n^{2}\bar{L}^{2}\eta^{2} + 2$, $C_{4} = 60(16\eta + \eta/\beta)m^{3}n^{2}\bar{L}^{2}$, and $\Phi^{-1} = 0$.

C.4 The proof of Lemma 3.5

From the definition of ρ , it follows that

$$\rho^2 = 14(1 - (1 - 1/\sqrt{2})\sqrt{1 - \lambda_2(\mathbf{W})})^{2R} \le 14 \exp\left(-2(1 - 1/\sqrt{2})\sqrt{1 - \lambda_2(\mathbf{W})})R\right), \quad (30)$$

where the inequality holds by the fact that $1 - x \le e^{-x}$.

Therefore, when

$$R = \left\lceil \frac{2 + \sqrt{2}}{2\sqrt{1 - \lambda_2(\mathbf{W})}} \log \left(14 \max \left\{ \frac{3C_3}{\tilde{\alpha}}, \frac{12\eta^2 C_2}{\tilde{\alpha}^2}, \frac{36\eta^2 C_1 C_4}{(1 - \tilde{\alpha})\tilde{\alpha}^3}, \frac{9}{\tilde{\alpha}}, \frac{p}{1 - \tilde{\alpha}}, \frac{8C_1\eta^2 \left(m^2 \bar{L}^2 || \mathbf{z}^0 - \mathbf{z}^* ||^2 + \sum_{i=1}^m || \mathbf{g}_i(\mathbf{z}^*) ||^2 \right)}{(1 - \tilde{\alpha})\tilde{\alpha}\Phi^0} \right\} \right) \right\rceil,$$
(31)

it holds that

$$\rho^{2} \leq \min \left\{ \frac{\tilde{\alpha}}{3C_{3}}, \frac{\tilde{\alpha}^{2}}{12\eta^{2}C_{2}}, \frac{(1-\tilde{\alpha})\tilde{\alpha}^{3}}{36\eta^{2}C_{1}C_{4}}, \frac{\tilde{\alpha}}{9}, \frac{1-\tilde{\alpha}}{p}, \frac{(1-\tilde{\alpha})\tilde{\alpha}\Phi^{0}}{8C_{1}\eta^{2}\left(m^{2}\bar{L}^{2}\|\mathbf{z}^{0}-\mathbf{z}^{*}\|^{2} + \sum_{i=1}^{m}\|\mathbf{g}_{i}(\mathbf{z}^{*})\|^{2}\right)} \right\}. \tag{32}$$

We will use induction to prove that the following results hold for $k \ge 0$:

$$\mathbb{E}\left[\Phi^{k}\right] \leq \tilde{\alpha}^{k}\Phi^{0},$$

$$\mathbb{E}\left[\|\mathbf{Z}^{k} - \mathbf{1}\bar{\mathbf{z}}^{k}\|^{2}\right] \leq \frac{1 - \tilde{\alpha}}{4C_{1}}\tilde{\alpha}^{k+1}\Phi^{0},$$

$$\mathbb{E}\left[\|\mathbf{V}^{k} - \mathbf{1}\bar{\mathbf{v}}^{k}\|^{2}\right] \leq \frac{1 - \tilde{\alpha}}{4C_{1}}\tilde{\alpha}^{k+1}\Phi^{0},$$

$$\mathbb{E}\left[\|\mathbf{S}^{k} - \mathbf{1}\bar{\mathbf{s}}^{k}\|^{2}\right] \leq \frac{1 - \tilde{\alpha}}{4\eta^{2}C_{1}}\tilde{\alpha}^{k+1}\Phi^{0},$$
(33)

where $\tilde{\alpha} = \max \left\{ 1 - \frac{\mu \eta}{8}, 1 - \frac{p \eta \mu}{2(\beta + \eta \mu)} \right\}.$

For k=0, since $\|\mathbf{Z}^0 - \mathbf{1}\bar{\mathbf{z}}^0\|^2 = \|\mathbf{V}^0 - \mathbf{1}\bar{\mathbf{v}}^0\|^2 = 0$, it is straightforward to verify that the first three inequalities hold. Next, we verify that $\|\mathbf{S}^0 - \mathbf{1}\bar{\mathbf{s}}^0\|^2$ also satisfies the inequality in (33). It holds that

$$\begin{split} \|\mathbf{S}^0 - \mathbf{1}\bar{\mathbf{s}}^0\|^2 &= \|\mathrm{FastMix}(\boldsymbol{\Delta}^0, \mathbf{W}, R) - \frac{1}{m}\mathbf{1}\mathbf{1}^{\top}\mathrm{FastMix}(\boldsymbol{\Delta}^0, \mathbf{W}, R)\|^2 \\ &\leq \rho^2\|\boldsymbol{\Delta}^0 - \frac{1}{m}\mathbf{1}\mathbf{1}^{\top}\boldsymbol{\Delta}^0\|^2 \\ &\leq \rho^2\|\boldsymbol{\Delta}^0\|^2 \\ &= \rho^2\sum_{i=1}^m\|\mathbf{g}_i(\mathbf{z}^0)\|^2 \\ &\leq 2\rho^2\sum_{i=1}^m\|\mathbf{g}_i(\mathbf{z}^0) - \mathbf{g}_i(\mathbf{z}^*)\|^2 + 2\rho^2\sum_{i=1}^m\|\mathbf{g}_i(\mathbf{z}^*)\|^2 \\ &\leq 2\rho^2m^2\bar{L}^2\|\mathbf{z}^0 - \mathbf{z}^*\|^2 + 2\rho^2\sum_{i=1}^m\|\mathbf{g}_i(\mathbf{z}^*)\|^2, \end{split}$$

where the first inequality holds by Proposition B.2, the second inequality follows from the fact that $\|\mathbf{A} - \frac{1}{m}\mathbf{1}\mathbf{1}^{\top}\mathbf{A}\| \leq \|\mathbf{A}\|$ for any $\mathbf{A} \in \mathbb{R}^{m \times d_z}$, the third inequality is based on Young's inequality, and the last inequality holds due to Assumption 2.3.

From the upper bound of ρ^2 in equation (32), we have

$$\|\mathbf{S}^0 - \mathbf{1}\bar{\mathbf{s}}^0\|^2 \le \frac{1 - \tilde{\alpha}}{4\eta^2 C_1} \tilde{\alpha}\Phi^0.$$

For k = 1, according to Lemma 3.1,

$$\mathbb{E}\left[\Phi^{1}\right] \leq \max\left\{1 - \frac{\mu\eta}{4}, 1 - \frac{p\eta\mu}{\beta + \eta\mu}\right\}\Phi^{0}$$
$$\leq \max\left\{1 - \frac{\mu\eta}{8}, 1 - \frac{p\eta\mu}{2(\beta + \eta\mu)}\right\}\Phi^{0}.$$

From Lemmas 3.2 and 3.3, together with equation (32), we have

$$\mathbb{E}\left[\|\mathbf{Z}^1 - \mathbf{1}\bar{\mathbf{z}}^1\|^2\right] \le 3\rho^2\eta^2\mathbb{E}\left[\|\mathbf{S}^0 - \mathbf{1}\bar{\mathbf{s}}^0\|^2\right] \le \frac{1 - \tilde{\alpha}}{4C_1}\tilde{\alpha}^2\Phi^0,$$

$$\mathbb{E}\left[\|\mathbf{V}^1 - \mathbf{1}\bar{\mathbf{v}}^1\|^2\right] = p\mathbb{E}\left[\|\mathbf{Z}^0 - \mathbf{1}\bar{\mathbf{z}}^0\|^2\right] + (1-p)\mathbb{E}\left[\|\mathbf{V}^0 - \mathbf{1}\bar{\mathbf{v}}^0\|^2\right] = 0,$$

and

$$\mathbb{E}\left[\|\mathbf{S}^{1} - \mathbf{1}\bar{\mathbf{s}}^{1}\|^{2}\right] \leq C_{3}\rho^{2}\mathbb{E}\left[\|\mathbf{S}^{0} - \mathbf{1}\bar{\mathbf{s}}^{0}\|^{2}\right] + C_{4}\rho^{2}\left(\mathbb{E}\left[\Phi^{1}\right] + \mathbb{E}\left[\Phi^{0}\right]\right) \\
\leq C_{3} \cdot \frac{\tilde{\alpha}}{3C_{3}} \cdot \frac{1 - \tilde{\alpha}}{4\eta^{2}C_{1}}\tilde{\alpha}\Phi^{0} + C_{4} \cdot \frac{(1 - \tilde{\alpha})\tilde{\alpha}^{3}}{36\eta^{2}C_{1}C_{4}} \cdot (\tilde{\alpha} + 1)\Phi^{0} \\
\leq \frac{1 - \tilde{\alpha}}{4\eta^{2}C_{1}}\tilde{\alpha}^{2}\Phi^{0}.$$

Assume that the conclusion of equation (33) holds for $k \leq t$. Then, for k = t + 1, by Lemma 3.1, we have

$$\mathbb{E}\left[\Phi^{t+1}\right] \leq \alpha \mathbb{E}\left[\Phi^{t}\right] + C_{1}\left(\mathbb{E}\left[\|\mathbf{Z}^{t} - \mathbf{1}\bar{\mathbf{z}}^{t}\|^{2}\right] + \mathbb{E}\left[\|\mathbf{Z}^{t-1} - \mathbf{1}\bar{\mathbf{z}}^{t-1}\|^{2}\right] + \mathbb{E}\left[\|\mathbf{V}^{t-1} - \mathbf{1}\bar{\mathbf{v}}^{t-1}\|^{2}\right]\right) \\
\leq \alpha \cdot \tilde{\alpha}^{t}\Phi^{0} + C_{1}\left(\frac{1-\tilde{\alpha}}{4C_{1}}\tilde{\alpha}^{t+1}\Phi^{0} + \frac{1-\tilde{\alpha}}{4C_{1}}\tilde{\alpha}^{t}\Phi^{0} + \frac{1-\tilde{\alpha}}{4C_{1}}\tilde{\alpha}^{t}\Phi^{0}\right) \\
\leq \max\left\{1-\frac{\mu\eta}{4}, 1-\frac{p\eta\mu}{\beta+\eta\mu}\right\}\left(\max\left\{1-\frac{\mu\eta}{8}, 1-\frac{p\eta\mu}{2(\beta+\eta\mu)}\right\}\right)^{t}\Phi^{0} \\
+ 3\min\left\{\frac{\mu\eta}{32}, \frac{p\eta\mu}{8(\beta+\eta\mu)}\right\}\left(\max\left\{1-\frac{\mu\eta}{8}, 1-\frac{p\eta\mu}{2(\beta+\eta\mu)}\right\}\right)^{t}\Phi^{0} \\
= \left(\max\left\{1-\frac{\mu\eta}{4}, 1-\frac{p\eta\mu}{\beta+\eta\mu}\right\} + \min\left\{\frac{3\mu\eta}{32}, \frac{3p\eta\mu}{8(\beta+\eta\mu)}\right\}\right)\left(\max\left\{1-\frac{\mu\eta}{8}, 1-\frac{p\eta\mu}{2(\beta+\eta\mu)}\right\}\right)^{t}\Phi^{0} \\
\leq \left(\max\left\{1-\frac{\mu\eta}{8}, 1-\frac{p\eta\mu}{2(\beta+\eta\mu)}\right\}\right)^{t+1}\Phi^{0} \\
= \tilde{\alpha}^{t+1}\Phi^{0}, \tag{34}$$

where the second inequality is derived using the inductive hypothesis.

For $\mathbb{E}\left[\|\mathbf{Z}^{t+1} - \mathbf{1}\bar{\mathbf{z}}^{t+1}\|^2\right]$, by Lemma 3.2, it holds that

$$\begin{split} \mathbb{E}\left[\|\mathbf{Z}^{t+1} - \mathbf{1}\bar{\mathbf{z}}^{t+1}\|^2\right] &\leq 3\rho^2 \left(\mathbb{E}\left[\|\mathbf{Z}^t - \mathbf{1}\bar{\mathbf{z}}^t\|^2\right] + \mathbb{E}\left[\|\mathbf{V}^t - \mathbf{1}\bar{\mathbf{v}}^t\|^2\right] + \eta^2\mathbb{E}\left[\|\mathbf{S}^t - \mathbf{1}\bar{\mathbf{s}}^t\|^2\right]\right) \\ &\leq 3\rho^2 \left(\frac{1-\tilde{\alpha}}{4C_1}\tilde{\alpha}^{t+1}\Phi^0 + \frac{1-\tilde{\alpha}}{4C_1}\tilde{\alpha}^{t+1}\Phi^0 + \eta^2 \cdot \frac{1-\tilde{\alpha}}{4\eta^2C_1}\tilde{\alpha}^{t+1}\Phi^0\right) \\ &\leq 3 \cdot \frac{\tilde{\alpha}}{9} \cdot 3 \cdot \frac{1-\tilde{\alpha}}{4C_1}\tilde{\alpha}^{t+1}\Phi^0 \\ &= \frac{1-\tilde{\alpha}}{4C_1}\tilde{\alpha}^{t+2}\Phi^0, \end{split}$$

where the second inequality holds by the inductive hypothesis, and the third inequality follows equation (32).

For $\mathbb{E}\left[\|\mathbf{V}^{t+1} - \mathbf{1}\bar{\mathbf{v}}^{t+1}\|^2\right]$, note that

$$1 - p \le 1 - \frac{p\eta\mu}{\beta + \eta\mu} \le \max\left\{1 - \frac{\mu\eta}{4}, 1 - \frac{p\eta\mu}{\beta + \eta\mu}\right\} = \alpha. \tag{35}$$

By Lemma 3.2, we obtain

$$\begin{split} \mathbb{E}\left[\|\mathbf{Z}^{t+1} - \mathbf{1}\bar{\mathbf{z}}^{t+1}\|^2\right] &\leq p\rho^2 \mathbb{E}\left[\|\mathbf{Z}^k - \mathbf{1}\bar{\mathbf{z}}^k\|^2\right] + (1-p)\mathbb{E}\left[\|\mathbf{V}^k - \mathbf{1}\bar{\mathbf{v}}^k\|^2\right] \\ &\leq p\rho^2 \frac{1-\tilde{\alpha}}{4C_1}\tilde{\alpha}^{t+1}\Phi^0 + (1-p)\frac{1-\tilde{\alpha}}{4C_1}\tilde{\alpha}^{t+1}\Phi^0 \\ &\leq p\cdot\frac{1-\tilde{\alpha}}{p}\cdot\frac{1-\tilde{\alpha}}{4C_1}\tilde{\alpha}^{t+1}\Phi^0 + \alpha\cdot\frac{1-\tilde{\alpha}}{4C_1}\tilde{\alpha}^{t+1}\Phi^0 \\ &= (1-\tilde{\alpha}+\alpha)\,\frac{1-\tilde{\alpha}}{4C_1}\tilde{\alpha}^{t+1}\Phi^0 \\ &= \frac{1-\tilde{\alpha}}{4C_1}\tilde{\alpha}^{t+2}\Phi^0, \end{split}$$

where the second inequality holds by the inductive hypothesis; the third inequality follows equation (32) and equation (35); the last equality is based on the fact that $1 - \tilde{\alpha} + \alpha = \tilde{\alpha}$.

For $\mathbb{E}\left[\|\mathbf{S}^{t+1} - \mathbf{1}\bar{\mathbf{s}}^{t+1}\|^2\right]$, by Lemma 3.3, it follows that

$$\mathbb{E}\left[\|\mathbf{S}^{t+1} - \mathbf{1}\bar{\mathbf{s}}^{t+1}\|^{2}\right]$$

$$\leq C_{2}\rho^{2}\left(\mathbb{E}\left[\|\mathbf{Z}^{t} - \mathbf{1}\bar{\mathbf{z}}^{t}\|^{2}\right] + \mathbb{E}\left[\|\mathbf{Z}^{t-1} - \mathbf{1}\bar{\mathbf{z}}^{t-1}\|^{2}\right] + \mathbb{E}\left[\|\mathbf{V}^{t} - \mathbf{1}\bar{\mathbf{v}}^{t}\|^{2}\right] + \mathbb{E}\left[\|\mathbf{V}^{t-1} - \mathbf{1}\bar{\mathbf{v}}^{t-1}\|^{2}\right]\right)$$

$$\begin{split} & + C_{3}\rho^{2}\mathbb{E}\left[\|\mathbf{S}^{t} - \mathbf{1}\bar{\mathbf{s}}^{t}\|^{2}\right] + C_{4}\rho^{2}\left(\mathbb{E}\left[\Phi^{t+1}\right] + \mathbb{E}\left[\Phi^{t}\right] + \mathbb{E}\left[\Phi^{t-1}\right]\right) \\ & \leq C_{2}\rho^{2} \cdot 4 \cdot \frac{1 - \tilde{\alpha}}{4C_{1}}\tilde{\alpha}^{t}\Phi^{0} + C_{3}\rho^{2} \cdot \frac{1 - \tilde{\alpha}}{4\eta^{2}C_{1}}\tilde{\alpha}^{t+1}\Phi^{0} + C_{4}\rho^{2} \cdot 3 \cdot \tilde{\alpha}^{t-1}\Phi^{0} \\ & \leq \frac{\tilde{\alpha}^{2}}{12\eta^{2}C_{2}} \cdot 4C_{2} \cdot \frac{1 - \tilde{\alpha}}{4C_{1}}\tilde{\alpha}^{t}\Phi^{0} + \frac{\tilde{\alpha}}{3C_{3}} \cdot C_{3} \cdot \frac{1 - \tilde{\alpha}}{4\eta^{2}C_{1}}\tilde{\alpha}^{t+1}\Phi^{0} + \frac{(1 - \tilde{\alpha})\tilde{\alpha}^{3}}{36\eta^{2}C_{1}C_{4}} \cdot 3C_{4} \cdot \tilde{\alpha}^{t-1}\Phi^{0} \\ & = \frac{1 - \tilde{\alpha}}{4\eta^{2}C_{1}}\tilde{\alpha}^{t+2}\Phi^{0}, \end{split}$$

where the second inequality follows from the inductive hypothesis and equation (34), while the third inequality holds due to equation (32).

This completes the proof for the case k = t + 1. The conclusion of Lemma 3.5 is established by induction.

C.5 The proof of Lemma 3.6

Under the parameter settings of Lemma 3.6, it follows from equation (8) that

$$\|\bar{\mathbf{z}}^{k+1} - \mathbf{z}^*\|^2 = \|\bar{\mathbf{z}}^k - \mathbf{z}^*\|^2 - \|\bar{\mathbf{z}}^{k+1} - \bar{\mathbf{z}}^k\|^2 - 2\eta \langle \bar{\boldsymbol{\delta}}^k - \mathbf{g}(\mathbf{z}^*), \bar{\mathbf{z}}^{k+1} - \mathbf{z}^* \rangle.$$

Note that $\bar{\delta}^k = \mathbb{E}_{\xi^k} \left[\bar{\delta}^k \right]$, by equation (16), we have

$$\begin{split} &\langle \bar{\boldsymbol{\delta}}^k - \mathbf{g}(\mathbf{z}^*), \bar{\mathbf{z}}^{k+1} - \mathbf{z}^* \rangle \\ &\geq -\frac{3n\bar{L}^2}{\mu} (1 + \alpha^2) \|\mathbf{Z}^k - \mathbf{1}\bar{\mathbf{z}}^k\|^2 - \frac{3n\bar{L}^2\alpha^2}{\mu} \|\mathbf{Z}^{k-1} - \mathbf{1}\bar{\mathbf{z}}^{k-1}\|^2 \\ &+ \langle \mathbf{g}(\bar{\mathbf{z}}^k) - \mathbf{g}(\bar{\mathbf{z}}^{k+1}), \bar{\mathbf{z}}^{k+1} - \mathbf{z}^* \rangle - 2\eta\alpha^2L^2 \|\bar{\mathbf{z}}^k - \bar{\mathbf{z}}^{k-1}\|^2 - \frac{1}{8\eta} \|\bar{\mathbf{z}}^{k+1} - \bar{\mathbf{z}}^k\|^2 \\ &- \alpha \langle \mathbf{g}(\bar{\mathbf{z}}^{k-1}) - \mathbf{g}(\bar{\mathbf{z}}^k), \bar{\mathbf{z}}^k - \mathbf{z}^* \rangle + \frac{3\mu}{4} \|\bar{\mathbf{z}}^{k+1} - \mathbf{z}^*\|^2. \end{split}$$

Therefore, it holds that

$$\begin{split} \|\bar{\mathbf{z}}^{k+1} - \mathbf{z}^*\|^2 &\leq \|\bar{\mathbf{z}}^k - \mathbf{z}^*\|^2 - \|\bar{\mathbf{z}}^{k+1} - \bar{\mathbf{z}}^k\|^2 + \frac{6\eta n \bar{L}^2}{\mu} (1 + \alpha^2) \|\mathbf{Z}^k - \mathbf{1}\bar{\mathbf{z}}^k\|^2 \\ &\quad + \frac{6\eta n \bar{L}^2 \alpha^2}{\mu} \|\mathbf{Z}^{k-1} - \mathbf{1}\bar{\mathbf{z}}^{k-1}\|^2 - 2\eta \langle \mathbf{g}(\bar{\mathbf{z}}^k) - \mathbf{g}(\bar{\mathbf{z}}^{k+1}), \bar{\mathbf{z}}^{k+1} - \mathbf{z}^* \rangle \\ &\quad + 2\eta \alpha \langle \mathbf{g}(\bar{\mathbf{z}}^{k-1}) - \mathbf{g}(\bar{\mathbf{z}}^k), \bar{\mathbf{z}}^k - \mathbf{z}^* \rangle + 4\eta^2 \alpha^2 L^2 \|\bar{\mathbf{z}}^k - \bar{\mathbf{z}}^{k-1}\|^2 \\ &\quad + \frac{1}{4} \|\bar{\mathbf{z}}^{k+1} - \bar{\mathbf{z}}^k\|^2 - \frac{3}{2}\mu \eta \|\bar{\mathbf{z}}^{k+1} - \mathbf{z}^*\|^2. \end{split}$$

Rearranging the above equation, we obtain

$$\begin{split} & \left(\frac{1}{\eta} + \frac{3\mu}{2}\right) \|\bar{\mathbf{z}}^{k+1} - \mathbf{z}^*\|^2 + \frac{3}{4\eta} \|\bar{\mathbf{z}}^{k+1} - \bar{\mathbf{z}}^k\|^2 + 2\langle \mathbf{g}(\bar{\mathbf{z}}^k) - \mathbf{g}(\bar{\mathbf{z}}^{k+1}), \bar{\mathbf{z}}^{k+1} - \mathbf{z}^*\rangle \\ & \leq \frac{1}{\eta} \|\bar{\mathbf{z}}^k - \mathbf{z}^*\|^2 + 4\eta\alpha^2L^2 \|\bar{\mathbf{z}}^k - \bar{\mathbf{z}}^{k-1}\|^2 + 2\alpha\langle \mathbf{g}(\bar{\mathbf{z}}^{k-1}) - \mathbf{g}(\bar{\mathbf{z}}^k), \bar{\mathbf{z}}^k - \mathbf{z}^*\rangle \\ & + \frac{6n\bar{L}^2}{\mu} (1 + \alpha^2) \|\mathbf{Z}^k - \mathbf{1}\bar{\mathbf{z}}^k\|^2 + \frac{6n\bar{L}^2\alpha^2}{\mu} \|\mathbf{Z}^{k-1} - \mathbf{1}\bar{\mathbf{z}}^{k-1}\|^2. \end{split}$$

Based on the parameter settings, we have

$$\frac{1}{\eta} \leq (1 - \mu \eta) \left(\frac{1}{\eta} + \frac{3\mu}{2} \right) \quad \text{and} \quad 4\eta \alpha^2 L^2 \leq \frac{3}{4\eta} \alpha.$$

Thus, the following inequality holds:

$$\left(\frac{1}{\eta} + \frac{3\mu}{2}\right) \|\bar{\mathbf{z}}^{k+1} - \mathbf{z}^*\|^2 + \frac{3}{4\eta} \|\bar{\mathbf{z}}^{k+1} - \bar{\mathbf{z}}^k\|^2 + 2\langle \mathbf{g}(\bar{\mathbf{z}}^k) - \mathbf{g}(\bar{\mathbf{z}}^{k+1}), \bar{\mathbf{z}}^{k+1} - \mathbf{z}^*\rangle$$

$$\leq (1 - \mu \eta) \left(\frac{1}{\eta} + \frac{3\mu}{2} \right) \|\bar{\mathbf{z}}^k - \mathbf{z}^*\|^2 + \alpha \frac{3}{4\eta} \|\bar{\mathbf{z}}^k - \bar{\mathbf{z}}^{k-1}\|^2 + 2\alpha \langle \mathbf{g}(\bar{\mathbf{z}}^{k-1}) - \mathbf{g}(\bar{\mathbf{z}}^k), \bar{\mathbf{z}}^k - \mathbf{z}^* \rangle$$

$$+ \frac{12n\bar{L}^2}{\mu} \left(\|\mathbf{Z}^k - \mathbf{1}\bar{\mathbf{z}}^k\|^2 + \|\mathbf{Z}^{k-1} - \mathbf{1}\bar{\mathbf{z}}^{k-1}\|^2 \right),$$

that is,

$$\Psi^{k+1} \le \alpha \Psi^k + \frac{12n\bar{L}^2}{\mu} \left(\|\mathbf{Z}^k - \mathbf{1}\bar{\mathbf{z}}^k\|^2 + \|\mathbf{Z}^{k-1} - \mathbf{1}\bar{\mathbf{z}}^{k-1}\|^2 \right). \tag{36}$$

Next, we bound the consensus errors. For $\|\mathbf{Z}^{k+1} - \mathbf{1}\bar{\mathbf{z}}^{k+1}\|^2$, similar to equation (20), we have

$$\|\mathbf{Z}^{k+1} - \mathbf{1}\bar{\mathbf{z}}^{k+1}\|^2 \le 2\rho^2 \|\mathbf{Z}^k - \mathbf{1}\bar{\mathbf{z}}^k\|^2 + 2\rho^2 \eta^2 \|\mathbf{S}^k - \mathbf{1}\bar{\mathbf{s}}^k\|^2. \tag{37}$$

For $\|\mathbf{S}^{k+1} - \mathbf{1}\bar{\mathbf{s}}^{k+1}\|^2$, according to equation (21), we have

$$\|\mathbf{S}^{k+1} - \mathbf{1}\bar{\mathbf{s}}^{k+1}\|^2 \le 2\rho^2 \|\mathbf{S}^k - \mathbf{1}\bar{\mathbf{s}}^k\|^2 + 2\rho^2 \|\mathbf{\Delta}^{k+1} - \mathbf{\Delta}^k\|^2$$

Note that

$$\begin{aligned} & \left\| \mathbf{g}_{i}(\mathbf{z}_{i}^{k+1}) - \alpha \left(\mathbf{g}_{i}(\mathbf{z}_{i}^{k+1}) - \mathbf{g}_{i}(\mathbf{z}_{i}^{k}) \right) - \left(\mathbf{g}_{i}(\mathbf{z}_{i}^{k}) - \alpha \left(\mathbf{g}_{i}(\mathbf{z}_{i}^{k}) - \mathbf{g}_{i}(\mathbf{z}_{i}^{k-1}) \right) \right) \right\|^{2} \\ & \leq 3 \| \mathbf{g}_{i}(\mathbf{z}_{i}^{k+1}) - \mathbf{g}_{i}(\mathbf{z}_{i}^{k}) \|^{2} + 3\alpha^{2} \| \mathbf{g}_{i}(\mathbf{z}_{i}^{k+1}) - \mathbf{g}_{i}(\mathbf{z}_{i}^{k}) \|^{2} + 3\alpha^{2} \| \mathbf{g}_{i}(\mathbf{z}_{i}^{k}) - \mathbf{g}_{i}(\mathbf{z}_{i}^{k-1}) \|^{2} \\ & \leq 6m\bar{L}^{2} \| \mathbf{z}_{i}^{k+1} - \mathbf{z}_{i}^{k} \|^{2} + 3m\bar{L}^{2} \| \mathbf{z}_{i}^{k} - \mathbf{z}_{i}^{k-1} \|^{2} \\ & \leq 18m\bar{L}^{2} \| \mathbf{z}_{i}^{k+1} - \bar{\mathbf{z}}^{k+1} \|^{2} + 18m\bar{L}^{2} \| \mathbf{z}_{i}^{k} - \bar{\mathbf{z}}^{k} \|^{2} + 18m\bar{L}^{2} \| \bar{\mathbf{z}}^{k+1} - \bar{\mathbf{z}}^{k} \|^{2} \\ & + 9m\bar{L}^{2} \| \mathbf{z}_{i}^{k} - \bar{\mathbf{z}}^{k} \|^{2} + 9m\bar{L}^{2} \| \mathbf{z}_{i}^{k-1} - \bar{\mathbf{z}}^{k-1} \|^{2} + 9m\bar{L}^{2} \| \bar{\mathbf{z}}^{k} - \bar{\mathbf{z}}^{k-1} \|^{2}, \end{aligned}$$

where the first and third inequalities hold due to Young's inequality, while the second inequality follows from equation (6).

The term $\|\mathbf{\Delta}^{k+1} - \mathbf{\Delta}^k\|^2$ can be upper bounded by

$$\begin{split} &\|\boldsymbol{\Delta}^{k+1} - \boldsymbol{\Delta}^{k}\|^{2} \\ &= \sum_{i=1}^{m} \|\mathbf{g}_{i}(\mathbf{z}_{i}^{k+1}) - \alpha \left(\mathbf{g}_{i}(\mathbf{z}_{i}^{k+1}) - \mathbf{g}_{i}(\mathbf{z}_{i}^{k})\right) - \left(\mathbf{g}_{i}(\mathbf{z}_{i}^{k}) - \alpha \left(\mathbf{g}_{i}(\mathbf{z}_{i}^{k}) - \mathbf{g}_{i}(\mathbf{z}_{i}^{k-1})\right)\right)\|^{2} \\ &\leq 18m\bar{L}^{2}\|\mathbf{Z}^{k+1} - \mathbf{1}\bar{\mathbf{z}}^{k+1}\|^{2} + 18m\bar{L}^{2}\|\mathbf{Z}^{k} - \mathbf{1}\bar{\mathbf{z}}^{k}\|^{2} + 18m^{2}\bar{L}^{2}\|\bar{\mathbf{z}}^{k+1} - \bar{\mathbf{z}}^{k}\|^{2} \\ &\quad + 9m\bar{L}^{2}\|\mathbf{Z}^{k} - \mathbf{1}\bar{\mathbf{z}}^{k}\|^{2} + 9m\bar{L}^{2}\|\mathbf{Z}^{k-1} - \mathbf{1}\bar{\mathbf{z}}^{k-1}\|^{2} + 9m^{2}\bar{L}^{2}\|\bar{\mathbf{z}}^{k} - \bar{\mathbf{z}}^{k-1}\|^{2} \\ &\leq 18m\bar{L}^{2}\left(2\rho^{2}\|\mathbf{Z}^{k} - \mathbf{1}\bar{\mathbf{z}}^{k}\|^{2} + 2\rho^{2}\eta^{2}\|\mathbf{S}^{k} - \mathbf{1}\bar{\mathbf{z}}^{k}\|^{2}\right) + 27m\bar{L}^{2}\|\mathbf{Z}^{k} - \mathbf{1}\bar{\mathbf{z}}^{k}\|^{2} \\ &\quad + 9m\bar{L}^{2}\|\mathbf{Z}^{k-1} - \mathbf{1}\bar{\mathbf{z}}^{k-1}\|^{2} + 18m^{2}\bar{L}^{2}\|\bar{\mathbf{z}}^{k+1} - \bar{\mathbf{z}}^{k}\|^{2} + 9m^{2}\bar{L}^{2}\|\bar{\mathbf{z}}^{k} - \bar{\mathbf{z}}^{k-1}\|^{2} \\ &\leq 63m\bar{L}^{2}\|\mathbf{Z}^{k} - \mathbf{1}\bar{\mathbf{z}}^{k}\|^{2} + 9m\bar{L}^{2}\|\mathbf{Z}^{k-1} - \mathbf{1}\bar{\mathbf{z}}^{k-1}\|^{2} + 36\eta^{2}m\bar{L}^{2}\|\mathbf{S}^{k} - \mathbf{1}\bar{\mathbf{s}}^{k}\|^{2} \\ &\quad + 18m^{2}\bar{L}^{2}\|\bar{\mathbf{z}}^{k+1} - \bar{\mathbf{z}}^{k}\|^{2} + 9m^{2}\bar{L}^{2}\|\bar{\mathbf{z}}^{k} - \bar{\mathbf{z}}^{k-1}\|^{2}, \end{split}$$

where the second inequality is based on equation (37). Recalling the definition of Ψ , it holds that $\Psi^k \geq 1/(2\eta) \|\bar{\mathbf{z}}^k - \bar{\mathbf{z}}^{k-1}\|^2$.

Thus, the consensus error $\|\mathbf{S}^{k+1} - \mathbf{1}\bar{\mathbf{s}}^{k+1}\|^2$ has the following bound:

$$\|\mathbf{S}^{k+1} - \mathbf{1}\bar{\mathbf{s}}^{k+1}\|^{2} \leq 2\rho^{2}\|\mathbf{S}^{k} - \mathbf{1}\bar{\mathbf{s}}^{k}\|^{2} + 2\rho^{2}\|\boldsymbol{\Delta}^{k+1} - \boldsymbol{\Delta}^{k}\|^{2}$$

$$\leq 126m\bar{L}^{2}\rho^{2}\left(\|\mathbf{Z}^{k} - \mathbf{1}\bar{\mathbf{z}}^{k}\|^{2} + \|\mathbf{Z}^{k-1} - \mathbf{1}\bar{\mathbf{z}}^{k-1}\|^{2}\right)$$

$$+ \left(72\eta^{2}m\bar{L}^{2} + 2\right)\rho^{2}\|\mathbf{S}^{k} - \mathbf{1}\bar{\mathbf{s}}^{k}\|^{2} + 72\eta m^{2}\bar{L}^{2}\rho^{2}\left(\Psi^{k+1} + \Psi^{k}\right).$$
(38)

Similar to Lemma 3.5, we proceed to prove the conclusion of Lemma 3.6 using induction. Letting

$$R = \left[\frac{2 + \sqrt{2}}{2\sqrt{1 - \lambda_2(\mathbf{W})}} \log \left(14 \max \left\{ \frac{3 \left(72\eta^2 m \bar{L}^2 + 2 \right)}{1 - \frac{\mu\eta}{2}}, \frac{20736\eta^2 m^2 n \bar{L}^4}{\mu^2 \left(1 - \frac{\mu\eta}{2} \right)^2}, \frac{4}{1 - \frac{\mu\eta}{2}}, \frac{756\eta^2 m \bar{L}^2}{\left(1 - \frac{\mu\eta}{2} \right)^2}, \frac{96\eta n \bar{L}^2 \left(m^2 \bar{L}^2 || \mathbf{z}^0 - \mathbf{z}^* ||^2 + \sum_{i=1}^m || \mathbf{g}_i(\mathbf{z}^*) ||^2 \right)}{\mu^2 \left(1 - \frac{\mu\eta}{2} \right) \Psi^0} \right\} \right) \right],$$
(39)

it holds that

$$\rho^{2} \leq \min \left\{ \frac{1 - \frac{\mu\eta}{2}}{3\left(72\eta^{2}m\bar{L}^{2} + 2\right)}, \frac{\mu^{2}\left(1 - \frac{\mu\eta}{2}\right)^{2}}{20736\eta^{2}m^{2}n\bar{L}^{4}}, \frac{1 - \frac{\mu\eta}{2}}{4}, \frac{1 - \frac{\mu\eta}{2}}{4}, \frac{\left(1 - \frac{\mu\eta}{2}\right)^{2}}{756\eta^{2}m\bar{L}^{2}}, \frac{\mu^{2}\left(1 - \frac{\mu\eta}{2}\right)\Psi^{0}}{96\eta n\bar{L}^{2}\left(m^{2}\bar{L}^{2}\|\mathbf{z}^{0} - \mathbf{z}^{*}\|^{2} + \sum_{i=1}^{m}\|\mathbf{g}_{i}(\mathbf{z}^{*})\|^{2}\right)} \right\}.$$

$$(40)$$

For k = 0, we have

$$\|\mathbf{S}^{0} - \mathbf{1}\bar{\mathbf{s}}^{0}\|^{2} \leq \rho^{2}\|\mathbf{\Delta}^{0}\|^{2} \leq 2\rho^{2}m^{2}\bar{L}^{2}\|\mathbf{z}^{0} - \mathbf{z}^{*}\|^{2} + 2\rho^{2}\sum_{i=1}^{m}\|\mathbf{g}_{i}(\mathbf{z}^{*})\|^{2} \leq \frac{\mu^{2}}{48\eta n\bar{L}^{2}}\left(1 - \frac{\mu\eta}{2}\right)\Psi^{0}.$$

For k = 1, we have

$$\Psi^{1} \leq (1 - \mu \eta) \Psi^{0} \leq \left(1 - \frac{\mu \eta}{2}\right) \Psi^{0},$$
$$\|\mathbf{Z}^{1} - \mathbf{1}\bar{\mathbf{z}}^{1}\|^{2} \leq 2\rho^{2}\eta^{2}\|\mathbf{S}^{0} - \mathbf{1}\bar{\mathbf{s}}^{0}\|^{2} \leq \frac{\mu^{2}\eta}{48n\bar{L}^{2}} \left(1 - \frac{\mu\eta}{2}\right)^{2} \Psi^{0}$$

and

$$\begin{split} \|\mathbf{S}^{1} - \mathbf{1}\bar{\mathbf{s}}^{1}\|^{2} &\leq \left(72\eta^{2}m\bar{L}^{2} + 2\right)\rho^{2}\|\mathbf{S}^{0} - \mathbf{1}\bar{\mathbf{s}}^{0}\|^{2} + 72\eta m^{2}\bar{L}^{2}\rho^{2}\left(\Psi^{1} + \Psi^{0}\right) \\ &\leq \left(72\eta^{2}m\bar{L}^{2} + 2\right) \cdot \frac{\left(1 - \frac{\mu\eta}{2}\right)}{3\left(72\eta^{2}m\bar{L}^{2} + 2\right)} \cdot \frac{\mu^{2}}{48\eta n\bar{L}^{2}}\left(1 - \frac{\mu\eta}{2}\right)\Psi^{0} \\ &+ 72\eta m^{2}\bar{L}^{2} \cdot \frac{\mu^{2}\left(1 - \frac{\mu\eta}{2}\right)^{2}}{20736\eta^{2}m^{2}n\bar{L}^{4}} \cdot 2\Psi^{0} \\ &\leq \frac{\mu^{2}}{48\eta n\bar{L}^{2}}\left(1 - \frac{\mu\eta}{2}\right)^{2}\Psi^{0}. \end{split}$$

Assume that

$$\begin{split} \Psi^k & \leq \left(1 - \frac{\mu \eta}{2}\right)^k \Psi^0, \\ \|\mathbf{Z}^k - \mathbf{1}\bar{\mathbf{z}}^k\|^2 & \leq \frac{\mu^2 \eta}{48n\bar{L}^2} \left(1 - \frac{\mu \eta}{2}\right)^{k+1} \Psi^0, \\ \|\mathbf{S}^k - \mathbf{1}\bar{\mathbf{s}}^k\|^2 & \leq \frac{\mu^2}{48\eta n\bar{L}^2} \left(1 - \frac{\mu \eta}{2}\right)^{k+1} \Psi^0, \end{split}$$

holds for all $k \le t$. Then for k = t + 1, we have

$$\begin{split} \Psi^{t+1} & \leq (1 - \mu \eta) \, \Psi^t + \frac{12 n \bar{L}^2}{\mu} \left(\| \mathbf{Z}^t - \mathbf{1} \bar{\mathbf{z}}^t \|^2 + \| \mathbf{Z}^{t-1} - \mathbf{1} \bar{\mathbf{z}}^{t-1} \|^2 \right) \\ & \leq (1 - \mu \eta) \left(1 - \frac{\mu \eta}{2} \right)^t \Psi^0 + \frac{12 n \bar{L}^2}{\mu} \cdot 2 \cdot \frac{\mu^2 \eta}{48 n \bar{L}^2} \left(1 - \frac{\mu \eta}{2} \right)^t \Psi^0 \\ & = \left(1 - \frac{\mu \eta}{2} \right)^{t+1} \Psi^0, \end{split}$$

where the first inequality is based on equation (36) and the second inequality is due to the induction hypothesis.

For $\|\mathbf{Z}^k - \mathbf{1}\bar{\mathbf{z}}^k\|^2$, it holds that

$$\begin{split} &\|\mathbf{Z}^{k+1} - \mathbf{1}\bar{\mathbf{z}}^{k+1}\|^2 \\ &\leq 2\rho^2\|\mathbf{Z}^k - \mathbf{1}\bar{\mathbf{z}}^k\|^2 + 2\rho^2\eta^2\|\mathbf{S}^k - \mathbf{1}\bar{\mathbf{s}}^k\|^2 \\ &\leq 2\cdot\frac{\left(1 - \frac{\mu\eta}{2}\right)}{4}\cdot\frac{\mu^2\eta}{48n\bar{L}^2}\left(1 - \frac{\mu\eta}{2}\right)^{t+1}\Psi^0 + 2\cdot\frac{\left(1 - \frac{\mu\eta}{2}\right)}{4}\cdot\eta^2\cdot\frac{\mu^2}{48\eta n\bar{L}^2}\left(1 - \frac{\mu\eta}{2}\right)^{t+1}\Psi^0 \\ &= \frac{\mu^2\eta}{48n\bar{L}^2}\left(1 - \frac{\mu\eta}{2}\right)^{t+2}\Psi^0, \end{split}$$

where the first inequality is based on equation (37) and the second inequality is due to the induction hypothesis and equation (40).

For $\|\mathbf{S}^{t+1} - \mathbf{1}\bar{\mathbf{s}}^{t+1}\|^2$, it holds that

$$\begin{split} &\|\mathbf{S}^{t+1} - \mathbf{1}\bar{\mathbf{s}}^{t+1}\|^2 \\ &\leq 126m\bar{L}^2\rho^2 \left(\|\mathbf{Z}^k - \mathbf{1}\bar{\mathbf{z}}^k\|^2 + \|\mathbf{Z}^{k-1} - \mathbf{1}\bar{\mathbf{z}}^{k-1}\|^2\right) \\ &\quad + \left(72\eta^2m\bar{L}^2 + 2\right)\rho^2\|\mathbf{S}^k - \mathbf{1}\bar{\mathbf{s}}^k\|^2 + 72\eta m^2\bar{L}^2\rho^2 \left(\Psi^{k+1} + \Psi^k\right) \\ &\leq 126m\bar{L}^2 \cdot \frac{\left(1 - \frac{\mu\eta}{2}\right)^2}{756\eta^2m\bar{L}^2} \cdot 2 \cdot \frac{\mu^2\eta}{48n\bar{L}^2} \left(1 - \frac{\mu\eta}{2}\right)^t \Psi^0 \\ &\quad + \left(72\eta^2m\bar{L}^2 + 2\right) \cdot \frac{\left(1 - \frac{\mu\eta}{2}\right)}{3\left(72\eta^2m\bar{L}^2 + 2\right)} \cdot \frac{\mu^2}{48\eta n\bar{L}^2} \left(1 - \frac{\mu\eta}{2}\right)^{t+1} \Psi^0 \\ &\quad + 72\eta m^2\bar{L}^2 \cdot \frac{\mu^2\left(1 - \frac{\mu\eta}{2}\right)^2}{20736\eta^2m^2n\bar{L}^4} \cdot 2 \cdot \left(1 - \frac{\mu\eta}{2}\right)^t \Psi^0 \\ &= \frac{\mu^2}{48m\bar{L}^2} \left(1 - \frac{\mu\eta}{2}\right)^{t+2} \Psi^0, \end{split}$$

where the first inequality is based on equation (38) and the second inequality is due to the induction hypothesis and equation (40).

Thus, the conclusion of Lemma 3.6 holds by induction.

C.6 The proof of Theorem 3.7

In this section, the upper bounds in Theorem 3.7 are proved based on the linear convergence of the Lyapunov functions and the consensus errors established in Lemmas 3.5 and 3.6.

Case I: $\bar{L} \leq \sqrt{mn}L$.

By Young's inequality, for any $i \in [m]$, it holds that

$$\|\mathbf{z}_{i}^{K} - \mathbf{z}^{*}\|^{2} \le 2\|\mathbf{z}_{i}^{K} - \bar{\mathbf{z}}^{K}\|^{2} + 2\|\bar{\mathbf{z}}^{K} - \mathbf{z}^{*}\|^{2}.$$

According to Lemma 3.5, we have

$$\frac{1}{2\eta} \mathbb{E}\left[\|\bar{\mathbf{z}}^K - \mathbf{z}^*\|^2\right] \le \mathbb{E}\left[\Phi^K\right] \\
\le \left(\max\left\{1 - \frac{\mu\eta}{8}, 1 - \frac{p\eta\mu}{2(\beta + \eta\mu)}\right\}\right)^K \left(\frac{1}{\eta} + \frac{3\mu}{2} + \frac{\beta + \eta\mu}{p\eta}\right) \|\bar{\mathbf{z}}^0 - \mathbf{z}^*\|^2,$$

and

$$\begin{split} \mathbb{E}\left[\|\mathbf{z}_i^K - \bar{\mathbf{z}}^K\|^2\right] &\leq \mathbb{E}\left[\|\mathbf{Z}^K - \mathbf{1}\bar{\mathbf{z}}^K\|^2\right] \\ &\leq \frac{1 - \tilde{\alpha}}{4C_1} \tilde{\alpha}^{K+1} \Phi^0 \\ &\leq \frac{2\eta\Phi^0}{3} \left(\max\left\{1 - \frac{\mu\eta}{8}, 1 - \frac{p\eta\mu}{2(\beta + \eta\mu)}\right\}\right)^K, \end{split}$$

where the last inequality holds by $C_1 \geq 3/(8\eta)$.

Therefore, for any $i \in [m]$,

$$\mathbb{E}\left[\|\mathbf{z}_i^K - \mathbf{z}^*\|^2\right] = \mathcal{O}\left(\left(\max\left\{1 - \frac{\mu\eta}{8}, 1 - \frac{p\eta\mu}{2(\beta + \eta\mu)}\right\}\right)^K\right).$$

By the fact that $1-x \leq e^{-x}$, the number of iterations for $\mathbb{E}\left[\|\mathbf{z}_i^K - \mathbf{z}^*\|^2\right] \leq \epsilon$ is

$$K = \mathcal{O}\left(\left(\frac{1}{\mu\eta} + \frac{\beta + \mu\eta}{p\mu\eta}\right)\log\left(\frac{1}{\epsilon}\right)\right)$$
$$= \mathcal{O}\left(\left(\frac{1}{\mu\eta} + \frac{1}{p}\right)\log\left(\frac{1}{\epsilon}\right)\right)$$
$$= \mathcal{O}\left(\frac{L}{\mu}\log\left(\frac{1}{\epsilon}\right)\right). \tag{41}$$

LIFO Calls: Under the parameter settings of Lemma 3.1, the expected LIFO calls have the upper bound:

$$\mathcal{O}\left(mn + (pmn + (1-p)b)K\right) \\
= \mathcal{O}\left(mn + (pmn + b)K\right) \\
= \mathcal{O}\left(mn + \left(mn\frac{\bar{L}}{L}\max\left\{\frac{\mu}{\bar{L}}, \frac{1}{\sqrt{mn}}\right\} + \left\lceil\frac{\bar{L}}{L}\min\left\{\frac{\bar{L}}{\mu}, \sqrt{mn}\right\}\right\rceil\right)\frac{L}{\mu}\log\left(\frac{1}{\epsilon}\right)\right) \\
= \mathcal{O}\left(\left(mn + \sqrt{mn}\frac{\bar{L}}{\mu}\right)\log\left(\frac{1}{\epsilon}\right)\right). \tag{42}$$

Computation Rounds: In each iteration, the number of computation rounds depends on the node with the maximum computation rounds, that is, $\max_{i \in [m]} \sum_{j=1}^n \xi_{i,j}^k$. Therefore, we first bound $\mathbb{E}[\max_{i \in [m]} \sum_{j=1}^n \xi_{i,j}^k]$.

Lemma C.1. Let $Y_i = \sum_{j=1}^n \xi_{ij}$, where $\xi_{ij} \sim Bernoulli(q)$ are i.i.d. random variables, so that $Y_i \sim Binomial(n,q)$. It holds that

$$\mathbb{E}\left[\max_{i\in[m]}Y_i\right] \le 2nq + \log m.$$

Proof. Firstly, we show that Y_i is locally sub-Gaussian [15]. For all $t \in [-1, 1]$, the moment generating function of Y_i satisfies

$$\mathbb{E}\left[e^{tY_{i}}\right] = \mathbb{E}\left[e^{t\sum_{j=1}^{n}\xi_{ij}}\right]$$

$$= ((1-q) + qe^{t})^{n}$$

$$\leq ((1-q) + q(1+t+t^{2}))^{n}$$

$$= (1+qt+qt^{2})^{n}$$

$$< e^{nqt+nqt^{2}}.$$

where the first inequality holds due to $e^x \le 1 + x + x^2, x \in [-1, 1]$, and the second inequality follows $1 + x \le e^x$.

Then we have

$$\exp\left(\mathbb{E}\left[t\max_{i\in[m]}Y_i\right]\right) \leq \mathbb{E}\left[\exp\left(t\max_{i\in[m]}Y_i\right)\right] = \mathbb{E}\left[\max_{i\in[m]}e^{tY_i}\right] \leq \sum_{i=1}^m \mathbb{E}\left[e^{tY_i}\right] \leq me^{nqt + nqt^2},$$

where the first inequality is based on Jensen's inequality.

Letting t = 1 and taking the logarithm of the inequality, we have

$$\mathbb{E}\left[\max_{i\in[m]}Y_i\right] \le 2nq + \log m.$$

This completes the proof.

We now derive the upper bound for the expected computation rounds:

$$\mathcal{O}\left(n + \left(pn + (1-p)\mathbb{E}\left[\max_{i \in [m]} \sum_{j=1}^{n} \xi_{i,j}^{k}\right]\right) K\right) \\
= \mathcal{O}\left(n + \left(pn + 2nq + \log m\right) K\right) \\
= \mathcal{O}\left(n + \left(pn + \frac{b}{m} + \log m\right) K\right) \\
= \mathcal{O}\left(n + \left(n\frac{\bar{L}}{L} \max\left\{\frac{\mu}{\bar{L}}, \frac{1}{\sqrt{mn}}\right\} + \frac{1}{m}\left[\frac{\bar{L}}{L} \min\left\{\frac{\bar{L}}{\mu}, \sqrt{mn}\right\}\right] + \log m\right) \frac{L}{\mu} \log\left(\frac{1}{\epsilon}\right)\right) \\
= \mathcal{O}\left(\left(n + \sqrt{\frac{n}{m}} \frac{\bar{L}}{\mu} + \frac{L}{\mu} \log m\right) \log\left(\frac{1}{\epsilon}\right)\right) \\
= \tilde{\mathcal{O}}\left(\left(n + \sqrt{\frac{n}{m}} \frac{\bar{L}}{\mu} + \frac{L}{\mu}\right) \log\left(\frac{1}{\epsilon}\right)\right), \tag{43}$$

where the first step follows from Lemma C.1 and $1 - p \le 1$, the second step from q = b/mn, and the third step from the choice of parameters p and b.

Communication Rounds: Based on the value of R in equation (31), we have

$$R = \tilde{\mathcal{O}}\left(\frac{1}{\sqrt{1 - \lambda_2(\mathbf{W})}}\right) = \tilde{\mathcal{O}}\left(\sqrt{\chi}\right).$$

Therefore, the communication rounds can be upper bounded by

$$KR = \tilde{\mathcal{O}}\left(\sqrt{\chi}K\right) = \tilde{\mathcal{O}}\left(\frac{\sqrt{\chi}L}{\mu}\log\left(\frac{1}{\epsilon}\right)\right).$$
 (44)

Case II: $\bar{L} \geq \sqrt{mn}L$.

When $\bar{L} \geq \sqrt{mn}L$, similar to the proof of equation (41), we can upper bound the number of iterations based on Lemma 3.6. Specifically, the number of iterations for $\|\mathbf{z}_i^K - \mathbf{z}^*\|^2 \leq \epsilon$ is

$$K = \mathcal{O}\left(\left(\frac{1}{\mu\eta}\right)\log\left(\frac{1}{\epsilon}\right)\right)$$
$$= \mathcal{O}\left(\frac{L}{\mu}\log\left(\frac{1}{\epsilon}\right)\right). \tag{45}$$

LIFO Calls: Under the parameter settings of Lemma 3.6, the LIFO calls required for each iteration are $\mathcal{O}(mn)$. Therefore, the total LIFO calls can be upper bounded by

$$\mathcal{O}(mnK) = \mathcal{O}\left(\frac{mnL}{\mu}\log\left(\frac{1}{\epsilon}\right)\right). \tag{46}$$

Computation Rounds: For each iteration, the computation rounds per node are $\mathcal{O}(n)$, and thus the total computation rounds are bounded by

$$\mathcal{O}(nK) = \mathcal{O}\left(\frac{nL}{\mu}\log\left(\frac{1}{\epsilon}\right)\right). \tag{47}$$

Communication Rounds: Under the parameter settings of Lemma 3.6, it holds that $R = \tilde{\mathcal{O}}\left(\sqrt{\chi}\right)$. The communication rounds are bounded by

$$KR = \tilde{\mathcal{O}}\left(\sqrt{\chi}K\right) = \tilde{\mathcal{O}}\left(\frac{\sqrt{\chi}L}{\mu}\log\left(\frac{1}{\epsilon}\right)\right).$$
 (48)

Finally, combining the results of Case I and Case II, we obtain that for any $0 < L \le \bar{L}$, running Algorithm 2 with appropriate parameter settings can find an ϵ -suboptimal solution at each node, with the expected LIFO complexity of

$$\mathcal{O}\left(\left(mn + \frac{\min\{mnL, \sqrt{mn}\bar{L}\}}{\mu}\right)\log\left(\frac{1}{\epsilon}\right)\right),$$

the expected computation rounds of

$$\tilde{\mathcal{O}}\left(\left(n+\frac{L}{\mu}+\frac{\min\{nL,\sqrt{n/m}\bar{L}\}}{\mu}\right)\log\left(\frac{1}{\epsilon}\right)\right),$$

and the communication rounds of

$$\tilde{\mathcal{O}}\left(\frac{\sqrt{\chi}L}{\mu}\log\left(\frac{1}{\epsilon}\right)\right).$$

D The Proofs for Section 4

In this section, we will establish the complexity lower bounds presented in Section 4. The proofs of Theorems 4.2, 4.3 and 4.4 are provided in Appendix D.1, D.2 and D.3, respectively.

D.1 The Proof of Theorem 4.2

Luo et al. [47] established the LIFO complexity lower bound for the single-machine finite-sum problem. We extend this result to the decentralized setting and derive lower bounds with respect to the smoothness parameters L and \bar{L} .

Let $d_x = d_y = d$ and N = mn. Without loss of generality, the algorithm can be assumed to start at $(\mathbf{x}^0, \mathbf{y}^0) = (\mathbf{0}, \mathbf{0})$. Following Luo et al. [47], we consider the function $H : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ defined as

$$H(\mathbf{x}, \mathbf{y}; \gamma, d) = \frac{\gamma}{2} \|\mathbf{x}\|^2 + \mathbf{x}^{\top} (\mathbf{B}\mathbf{y} - \mathbf{c}) - \frac{\gamma}{2} \|\mathbf{y}\|^2,$$
(49)

where

$$\mathbf{B} = \begin{bmatrix} 1 \\ -1 & 1 \\ & \ddots & \ddots \\ & & -1 & 1 \\ & & & -1 & \sqrt{\gamma\omega} \end{bmatrix} \in \mathbb{R}^{d \times d},$$

$$\mathbf{c} = (\omega, 0, 0, \dots, 0)^{\mathsf{T}}$$
 and $\omega = (\sqrt{\gamma^2 + 4} - \gamma)/2$.

To characterize the zero-chain property [58] of H, we define subspaces \mathcal{F}_k as

$$\mathcal{F}_k = \begin{cases} \operatorname{span}\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_k\}, & k = 1, \dots, d, \\ \{\mathbf{0}_d\}, & k = 0, \end{cases}$$

where $\{\mathbf{e}_1, \dots, \mathbf{e}_d\}$ is the standard basis of \mathbb{R}^d .

Following lemma characterizes the properties of H.

Lemma D.1 (Luo et al. [47, Lemma 13]). The function H has following properties:

- 1. H is $\sqrt{8+2\gamma^2}$ -smooth.
- 2. For k < d, if $(\mathbf{x}, \mathbf{y}) \in \mathcal{F}_k \times \mathcal{F}_k$, then $(\nabla_{\mathbf{x}} H(\mathbf{x}, \mathbf{y}), \nabla_{\mathbf{y}} H(\mathbf{x}, \mathbf{y})) \in \mathcal{F}_{k+1} \times \mathcal{F}_{k+1}$.
- 3. Let $r = (2 + \gamma^2 \gamma \sqrt{\gamma^2 + 4})/2$. The saddle point of H is

$$\begin{cases} \mathbf{x}^* = (r, r^2, \dots, r^d)^\top, \\ \mathbf{y}^* = \omega \left(r, r^2, \dots, r^{d-1}, \frac{1}{\sqrt{1-r}} r^d \right)^\top. \end{cases}$$

4. For $k \leq d/2$ and $(\mathbf{x}, \mathbf{y}) \in \mathcal{F}_k \times \mathcal{F}_k$, it holds that

$$\frac{\|\mathbf{x} - \mathbf{x}^*\|^2 + \|\mathbf{y} - \mathbf{y}^*\|^2}{\|\mathbf{x}^*\|^2 + \|\mathbf{y}^*\|^2} \ge \frac{1}{2}r^{2k}.$$

Lemma D.2. For the parameters $\bar{L} \geq L$, $\min\{\bar{L}^2, mnL^2\}/\mu^2 > 10mn$, and $\epsilon < e^{-5}/2$, there exists a hard instance satisfying Assumptions 2.1–2.4. In order to find an ϵ -suboptimal solution, the LIFO calls of any LIFO algorithm is lower bounded by

$$\Omega\left(\frac{\min\{mnL,\sqrt{mn}\bar{L}\}}{\mu}\log\left(\frac{1}{\epsilon}\right)\right).$$

Proof. Recalling that N=mn, we define a matrix sequence $\{\mathbf{U}_i\}_{i=1}^N$ such that $\mathbf{U}_i\in\mathbb{R}^{d\times Nd}$, $\mathbf{U}_i\mathbf{U}_i^\top=\mathbf{I}$, and $\mathbf{U}_i\mathbf{U}_j^\top=\mathbf{0}$ for any $1\leq i\neq j\leq N$. we set parameters as

$$\hat{L}^2 = \min\{\bar{L}^2, NL^2\}, \quad \gamma = \sqrt{\frac{8N}{\hat{L}^2/\mu^2 - 2N}}, \quad \hat{\lambda} = \frac{N\mu}{\gamma}, \quad d = \left\lfloor \frac{1}{\gamma} \log \left(\frac{1}{2\epsilon}\right) \right\rfloor - 4.$$

A hard instance $f: \mathbb{R}^{Nd} \times \mathbb{R}^{Nd} \to \mathbb{R}$ can be constructed as $f_{i,j}(\mathbf{x}, \mathbf{y}) = \tilde{f}_{(i-1) \times n+j}(\mathbf{x}, \mathbf{y})$, where

$$\tilde{f}_i(\mathbf{x}, \mathbf{y}) = \hat{\lambda} H(\mathbf{U}_i \mathbf{x}, \mathbf{U}_i \mathbf{y}).$$

The global objective function $f(\mathbf{x}, \mathbf{y})$ is given by

$$f(\mathbf{x}, \mathbf{y}) = \frac{1}{mn} \sum_{i=1}^{m} \sum_{j=1}^{n} f_{i,j}(\mathbf{x}, \mathbf{y}) = \frac{1}{N} \sum_{i=1}^{N} \hat{\lambda} H(\mathbf{U}_{i}\mathbf{x}, \mathbf{U}_{i}\mathbf{y})$$
$$= \frac{\hat{\lambda}\gamma}{2N} \|\mathbf{x}\|^{2} - \frac{\hat{\lambda}}{N} \mathbf{x}^{\top} \left(\sum_{i=1}^{N} \mathbf{U}_{i}^{\top} \mathbf{c} \right) + \frac{\hat{\lambda}}{N} \mathbf{x}^{\top} \left(\sum_{i=1}^{N} \mathbf{U}_{i}^{\top} \mathbf{B} \mathbf{U}_{i} \right) \mathbf{y} - \frac{\hat{\lambda}\gamma}{2N} \|\mathbf{y}\|^{2}.$$

Based on $\hat{\lambda} = N\mu/\gamma$, it is straightforward to see that f is μ -strongly-convex- μ -strongly-concave.

Then, we verify that the function satisfies the smoothness Assumptions 2.2 and 2.3. It follows that, for any $(\mathbf{x}_1, \mathbf{y}_1), (\mathbf{x}_2, \mathbf{y}_2) \in \mathbb{R}^{Nd} \times \mathbb{R}^{Nd}$,

$$\begin{split} &\|\nabla_{\mathbf{x}}f(\mathbf{x}_{1},\mathbf{y}_{1}) - \nabla_{\mathbf{x}}f(\mathbf{x}_{2},\mathbf{y}_{2})\|^{2} + \|\nabla_{\mathbf{y}}f(\mathbf{x}_{1},\mathbf{y}_{1}) - \nabla_{\mathbf{y}}f(\mathbf{x}_{2},\mathbf{y}_{2})\|^{2} \\ &= \left\| \frac{1}{N} \sum_{i=1}^{N} \left(\nabla_{\mathbf{x}}\tilde{f}_{i}(\mathbf{x}_{1},\mathbf{y}_{1}) - \nabla_{\mathbf{x}}\tilde{f}_{i}(\mathbf{x}_{2},\mathbf{y}_{2}) \right) \right\|^{2} + \left\| \frac{1}{N} \sum_{i=1}^{N} \left(\nabla_{\mathbf{y}}\tilde{f}_{i}(\mathbf{x}_{1},\mathbf{y}_{1}) - \nabla_{\mathbf{y}}\tilde{f}_{i}(\mathbf{x}_{2},\mathbf{y}_{2}) \right) \right\|^{2} \\ &= \frac{\hat{\lambda}^{2}}{N^{2}} \left(\left\| \sum_{i=1}^{N} \mathbf{U}_{i}^{\top} \left(\nabla_{\mathbf{x}}H(\mathbf{U}_{i}\mathbf{x}_{1}, \mathbf{U}_{i}\mathbf{y}_{1}) - \nabla_{\mathbf{x}}H(\mathbf{U}_{i}\mathbf{x}_{2}, \mathbf{U}_{i}\mathbf{y}_{2}) \right) \right\|^{2} \\ &+ \left\| \sum_{i=1}^{N} \mathbf{U}_{i}^{\top} \left(\nabla_{\mathbf{y}}H(\mathbf{U}_{i}\mathbf{x}_{1}, \mathbf{U}_{i}\mathbf{y}_{1}) - \nabla_{\mathbf{y}}H(\mathbf{U}_{i}\mathbf{x}_{2}, \mathbf{U}_{i}\mathbf{y}_{2}) \right) \right\|^{2} \right) \\ &= \frac{\hat{\lambda}^{2}}{N^{2}} \sum_{i=1}^{N} \left(\left\| \nabla_{\mathbf{x}}H(\mathbf{U}_{i}\mathbf{x}_{1}, \mathbf{U}_{i}\mathbf{y}_{1}) - \nabla_{\mathbf{x}}H(\mathbf{U}_{i}\mathbf{x}_{2}, \mathbf{U}_{i}\mathbf{y}_{2}) \right\|^{2} \right) \\ &\leq \frac{\hat{\lambda}^{2}(8 + 2\gamma^{2})}{N^{2}} \sum_{i=1}^{N} \left(\left\| \mathbf{U}_{i}(\mathbf{x}_{1} - \mathbf{x}_{2}) \right\|^{2} + \left\| \mathbf{U}_{i}(\mathbf{y}_{1} - \mathbf{y}_{2}) \right\|^{2} \right) \\ &= \frac{\hat{\lambda}^{2}(8 + 2\gamma^{2})}{N^{2}} \left(\left\| \mathbf{x}_{1} - \mathbf{x}_{2} \right\|^{2} + \left\| \mathbf{y}_{1} - \mathbf{y}_{2} \right\|^{2} \right) \\ &\leq \frac{\hat{L}^{2}}{N^{2}} \left(\left\| \mathbf{x}_{1} - \mathbf{x}_{2} \right\|^{2} + \left\| \mathbf{y}_{1} - \mathbf{y}_{2} \right\|^{2} \right) \\ &\leq L^{2} \left(\left\| \mathbf{x}_{1} - \mathbf{x}_{2} \right\|^{2} + \left\| \mathbf{y}_{1} - \mathbf{y}_{2} \right\|^{2} \right), \end{split}$$

where the first inequality holds by Property 1 in Lemma D.1 and the second inequality follows from the setting of \hat{L} .

Meanwhile, for any $(\mathbf{x}_1, \mathbf{y}_1), (\mathbf{x}_2, \mathbf{y}_2) \in \mathbb{R}^{Nd} \times \mathbb{R}^{Nd}$, it holds that

$$\frac{1}{mn} \sum_{i=1}^{m} \sum_{j=1}^{n} \left(\|\nabla_{\mathbf{x}} f_{i,j}(\mathbf{x}_{1}, \mathbf{y}_{1}) - \nabla_{\mathbf{x}} f_{i,j}(\mathbf{x}_{2}, \mathbf{y}_{2})\|^{2} + \|\nabla_{\mathbf{y}} f_{i,j}(\mathbf{x}_{1}, \mathbf{y}_{1}) - \nabla_{\mathbf{y}} f_{i,j}(\mathbf{x}_{2}, \mathbf{y}_{2})\|^{2} \right)$$

$$= \frac{1}{N} \sum_{i=1}^{N} \left(\|\nabla_{\mathbf{x}} \tilde{f}_{i}(\mathbf{x}_{1}, \mathbf{y}_{1}) - \nabla_{\mathbf{x}} \tilde{f}_{i}(\mathbf{x}_{2}, \mathbf{y}_{2})\|^{2} + \|\nabla_{\mathbf{y}} \tilde{f}_{i}(\mathbf{x}_{1}, \mathbf{y}_{1}) - \nabla_{\mathbf{y}} \tilde{f}_{i}(\mathbf{x}_{2}, \mathbf{y}_{2})\|^{2} \right)$$

$$= \frac{\hat{\lambda}^{2}}{N} \sum_{i=1}^{N} \left(\|\mathbf{U}_{i}^{\top} (\nabla_{\mathbf{x}} H(\mathbf{U}_{i}\mathbf{x}_{1}, \mathbf{U}_{i}\mathbf{y}_{1}) - \nabla_{\mathbf{x}} H(\mathbf{U}_{i}\mathbf{x}_{2}, \mathbf{U}_{i}\mathbf{y}_{2}))\|^{2} \right)$$

$$+ \|\mathbf{U}_{i}^{\top} (\nabla_{\mathbf{y}} H(\mathbf{U}_{i}\mathbf{x}_{1}, \mathbf{U}_{i}\mathbf{y}_{1}) - \nabla_{\mathbf{y}} H(\mathbf{U}_{i}\mathbf{x}_{2}, \mathbf{U}_{i}\mathbf{y}_{2}))\|^{2}$$

$$+ \|\nabla_{\mathbf{y}} H(\mathbf{U}_{i}\mathbf{x}_{1}, \mathbf{U}_{i}\mathbf{y}_{1}) - \nabla_{\mathbf{y}} H(\mathbf{U}_{i}\mathbf{x}_{2}, \mathbf{U}_{i}\mathbf{y}_{2})\|^{2}$$

$$+ \|\nabla_{\mathbf{y}} H(\mathbf{U}_{i}\mathbf{x}_{1}, \mathbf{U}_{i}\mathbf{y}_{1}) - \nabla_{\mathbf{y}} H(\mathbf{U}_{i}\mathbf{x}_{2}, \mathbf{U}_{i}\mathbf{y}_{2})\|^{2}$$

$$\leq \frac{\hat{\lambda}^{2}(8 + 2\gamma^{2})}{N} \sum_{i=1}^{N} \left(\|\mathbf{U}_{i}(\mathbf{x}_{1} - \mathbf{x}_{2})\|^{2} + \|\mathbf{U}_{i}(\mathbf{y}_{1} - \mathbf{y}_{2})\|^{2} \right)$$

$$= \frac{\hat{\lambda}^{2}(8 + 2\gamma^{2})}{N} \left(\|\mathbf{x}_{1} - \mathbf{x}_{2}\|^{2} + \|\mathbf{y}_{1} - \mathbf{y}_{2}\|^{2} \right)$$

$$\leq \tilde{L}^{2} \left(\|\mathbf{x}_{1} - \mathbf{x}_{2}\|^{2} + \|\mathbf{y}_{1} - \mathbf{y}_{2}\|^{2} \right).$$

For any LIFO algorithm with at most $\lfloor Nd/2 \rfloor$ LIFO calls, by Property 2 in Lemma D.1, the variable ${\bf x}$ has at most $\lfloor Nd/2 \rfloor$ non-zero coordinates. Therefore, there exist an index i_0 such that ${\bf U}_{i_0}{\bf x} \in {\cal F}_{d/2}$. Then by Property 4 in Lemma D.1, we have

$$\mathbb{E}\left[\|\mathbf{x} - \mathbf{x}^*\|^2 + \|\mathbf{y} - \mathbf{y}^*\|^2\right] \ge \mathbb{E}\left[\|\mathbf{U}_{i_0}(\mathbf{x} - \mathbf{x}^*)\|^2 + \|\mathbf{U}_{i_0}(\mathbf{y} - \mathbf{y}^*)\|^2\right]$$

$$\ge \frac{r^{d/2}}{2} \left(\|\mathbf{U}_{i_0}\mathbf{x}^*\|^2 + \|\mathbf{U}_{i_0}\mathbf{y}^*\|^2\right)$$

$$\ge \frac{r^{d/2}}{2}r^2\frac{1 - r^{2d}}{1 - r^2}$$

$$\ge \frac{r^{d/2+2}}{2},$$

where the third inequality holds by the Property 3 in Lemma D.1, i.e., $\mathbf{U}_{i_0}\mathbf{x}^*=(r,r^2,\ldots,r^d)^{\top}$. Note that

$$(\frac{d}{2} + 2) \log(\frac{1}{r}) = (\frac{d}{2} + 2) \log(1 + \frac{\gamma(\gamma + \sqrt{\gamma^2 + 4})}{2})$$

$$\leq (\frac{d}{2} + 2) \frac{\gamma(\gamma + \sqrt{\gamma^2 + 4})}{2}$$

$$< (\frac{d}{2} + 2)\gamma(\gamma + 1),$$

where the first inequality follows the fact that $\log(1+x) \leq x$ and the second inequality holds by $\sqrt{a+b} < \sqrt{a} + \sqrt{b}$ for a,b>0. Since $\min\{\bar{L}^2,NL^2\}/\mu^2>10N$, we have $\gamma=\sqrt{8N/(\hat{L}^2/\mu^2-2N)}\leq 1$, which further implies

$$(\frac{d}{2} + 2)\log(1/r) < (d+4)\gamma \le \log(1/2\epsilon).$$

Thus, when the number of LIFO calls is less than $\lfloor Nd/2 \rfloor$, we have $\mathbb{E}\left[\|\mathbf{x} - \mathbf{x}^*\|^2 + \|\mathbf{y} - \mathbf{y}^*\|^2\right] > \epsilon$. Then the LIFO calls to find an ϵ -suboptimal solution is lower bounded by

$$\frac{Nd}{2} = \Omega\left(\frac{\sqrt{N}\hat{L}}{\mu}\log\left(\frac{1}{\epsilon}\right)\right) = \Omega\left(\frac{\min\{mnL,\sqrt{mn}\bar{L}\}}{\mu}\log\left(\frac{1}{\epsilon}\right)\right).$$

This completes the proof of Lemma D.2.

For the case $\min\{\bar{L}^2, mnL^2\}/\mu^2 = \mathcal{O}(\sqrt{mn})$, we have the following lemma.

Lemma D.3. For the parameters $\bar{L} \geq L$, $L/\mu > 2$, and $\epsilon < 1/8$, there exists a hard instance satisfying Assumptions 2.1–2.4. In order to find an ϵ -suboptimal solution, the LIFO calls of any LIFO algorithm is lower bounded by $\Omega(mn)$.

Proof. Let x_i and y_i denote the *i*-th coordinates of the vectors \mathbf{x} and \mathbf{y} , respectively. Consider the functions $f_{i,j}(\mathbf{x},\mathbf{y}) = \tilde{f}_{(i-1)\times n+j}(\mathbf{x},\mathbf{y})$, where

$$\tilde{f}_i(\mathbf{x}, \mathbf{y}) = \frac{\mu}{2} \|\mathbf{x}\|^2 + \frac{\sqrt{mn}\hat{L}}{2} (x_i - 1)^2 - \frac{\mu}{2} \|\mathbf{y}\|^2 - \frac{\sqrt{mn}\hat{L}}{2} (y_i - 1)^2$$

for $i \in [mn]$ and $\hat{L} = \sqrt{L^2/2 - \mu^2}$. It follows that the global objective $f(\mathbf{x}, \mathbf{y}) : \mathbb{R}^{mn} \times \mathbb{R}^{mn} \to \mathbb{R}$ takes the form

$$f(\mathbf{x}, \mathbf{y}) = \frac{\mu}{2} \|\mathbf{x}\|^2 + \frac{\hat{L}}{2\sqrt{mn}} \|\mathbf{x} - \mathbf{1}\|^2 - \frac{\mu}{2} \|\mathbf{y}\|^2 - \frac{\hat{L}}{2\sqrt{mn}} \|\mathbf{y} - \mathbf{1}\|^2.$$

It is clear that f is μ -strongly-convex- μ -strongly concave and the saddle point $(\mathbf{x}^*, \mathbf{y}^*)$ satisfies

$$\mathbf{x}^* = \mathbf{y}^* = \frac{\hat{L}}{\hat{L} + \sqrt{mn\mu}} \mathbf{1}.$$

For any $(\mathbf{x}_1, \mathbf{y}_1), (\mathbf{x}_2, \mathbf{y}_2) \in \mathbb{R}^{mn} \times \mathbb{R}^{mn}$, we have

$$\frac{1}{mn} \sum_{i=1}^{m} \sum_{j=1}^{n} \left(\|\nabla_{\mathbf{x}} f_{i,j}(\mathbf{x}_{1}, \mathbf{y}_{1}) - \nabla_{\mathbf{x}} f_{i,j}(\mathbf{x}_{2}, \mathbf{y}_{2}) \|^{2} + \|\nabla_{\mathbf{y}} f_{i,j}(\mathbf{x}_{1}, \mathbf{y}_{1}) - \nabla_{\mathbf{y}} f_{i,j}(\mathbf{x}_{2}, \mathbf{y}_{2}) \|^{2} \right)$$

$$= \frac{1}{mn} \sum_{i=1}^{mn} \left(\|\nabla_{\mathbf{x}} \tilde{f}_{i}(\mathbf{x}_{1}, \mathbf{y}_{1}) - \nabla_{\mathbf{x}} \tilde{f}_{i}(\mathbf{x}_{1}, \mathbf{y}_{1}) \|^{2} + \|\nabla_{\mathbf{y}} \tilde{f}_{i}(\mathbf{x}_{1}, \mathbf{y}_{1}) - \nabla_{\mathbf{y}} \tilde{f}_{i}(\mathbf{x}_{1}, \mathbf{y}_{1}) \|^{2} \right)$$

$$= \frac{1}{mn} \sum_{i=1}^{mn} \left(\|\mu(\mathbf{x}_{1} - \mathbf{x}_{2}) + \sqrt{mn} \hat{L} \mathbf{e}_{i} \mathbf{e}_{i}^{\top}(\mathbf{x}_{1} - \mathbf{x}_{2}) \|^{2} + \|\mu(\mathbf{y}_{1} - \mathbf{y}_{2}) + \sqrt{mn} \hat{L} \mathbf{e}_{i} \mathbf{e}_{i}^{\top}(\mathbf{y}_{1} - \mathbf{y}_{2}) \|^{2} \right)$$

$$\leq \frac{1}{mn} \sum_{i=1}^{mn} \left(2\mu^{2} \|\mathbf{x}_{1} - \mathbf{x}_{2}\|^{2} + 2mn \hat{L}^{2} \|\mathbf{e}_{i} \mathbf{e}_{i}^{\top}(\mathbf{x}_{1} - \mathbf{x}_{2}) \|^{2} + 2mn \hat{L}^{2} \|\mathbf{e}_{i} \mathbf{e}_{i}^{\top}(\mathbf{y}_{1} - \mathbf{y}_{2}) \|^{2} \right)$$

$$= 2(\hat{L}^{2} + \mu^{2}) \left(\|\mathbf{x}_{1} - \mathbf{x}_{2}\|^{2} + \|\mathbf{y}_{1} - \mathbf{y}_{2}\|^{2} \right)$$

$$= L^{2} \left(\|\mathbf{x}_{1} - \mathbf{x}_{2}\|^{2} + \|\mathbf{y}_{1} - \mathbf{y}_{2}\| \right).$$

Thus, the function set $\{f_{i,j}\}_{i,j=1}^{m,n}$ is \bar{L} -mean-squared smooth $(L \leq \bar{L})$ and f is L-smooth.

By the zero-chain property of f, if the LIFO calls are less than mn/2, it holds that

$$\mathbb{E}\left[\|\mathbf{x} - \mathbf{x}^*\|^2 + \|\mathbf{y} - \mathbf{y}^*\|^2\right]$$

$$\geq \frac{mn}{2} \cdot \frac{\hat{L}^2}{(\hat{L} + \sqrt{mn}\mu)^2}$$

$$\geq \frac{mn}{2} \cdot \frac{\hat{L}^2}{2\hat{L}^2 + 2mn\mu^2}$$

$$= \frac{mn}{2} \cdot \frac{L^2/2 - \mu^2}{L^2 - 2\mu^2 + 2mn\mu^2}$$

$$= \frac{mn}{4} \left(1 - \frac{2mn}{L^2/\mu^2 + 2mn - 2} \right)$$

$$\geq \frac{mn}{4(mn+1)} \geq \frac{1}{8} > \epsilon.$$

Therefore, the LIFO calls to find an ϵ -suboptimal solution is lower bounded by $\Omega(mn)$.

Combing the results of Lemmas D.2 and D.3, for the parameters $\bar{L} \geq L, L/\mu > 2$, and $\epsilon < 0.003$, the LIFO calls of any LIFO algorithm is lower bounded by

$$\Omega\left(mn + \frac{\min\{mnL, \sqrt{mn}\bar{L}\}}{\mu}\log\left(\frac{1}{\epsilon}\right)\right).$$

D.2 The proof of Theorem 4.3

For any decentralized LIFO algorithm, it can perform at most m LIFO calls in each computation round. From the conclusion of Theorem 4.2, it follows that the LIFO calls are lower bounded by

$$\Omega\left(mn + \frac{\min\left\{mnL, \sqrt{mn}\bar{L}\right\}}{\mu}\log\left(\frac{1}{\epsilon}\right)\right).$$

Therefore, the computation rounds have the lower bound

$$\Omega\left(\frac{1}{m}\left(mn + \frac{\min\left\{mnL, \sqrt{mn}\bar{L}\right\}}{\mu}\log\left(\frac{1}{\epsilon}\right)\right)\right) = \Omega\left(n + \frac{\min\left\{nL, \sqrt{n/m}\bar{L}\right\}}{\mu}\log\left(\frac{1}{\epsilon}\right)\right). \tag{50}$$

Another instance is a direct extension of the single-machine setting [89]. For all $i \in [m]$ and $j \in [n]$, define

$$f_{i,j}(\mathbf{x}, \mathbf{y}) = f(\mathbf{x}, \mathbf{y}) = \frac{\sqrt{L^2 - \mu^2}}{2} \mathbf{x}^{\top} \mathbf{A} \mathbf{y} + \frac{L^2 - \mu^2}{4\mu} \mathbf{e}_1^{\top} \mathbf{y} + \frac{\mu}{2} ||\mathbf{x}||^2 - \frac{\mu}{2} ||\mathbf{y}||^2,$$
(51)

where

$$\mathbf{A} = egin{bmatrix} 1 & -1 & & & & & \\ & 1 & -1 & & & & \\ & & \ddots & \ddots & & \\ & & & 1 & -1 \\ & & & & 1 \end{bmatrix} \in \mathbb{R}^{d \times d}.$$

It can be verified that the function defined in (51) satisfies Assumptions 2.1, 2.2 and 2.3, as all $f_{i,j}$ are L-smooth. From the single-machine case [89], it is straightforward to deduce that the algorithm requires at least $\Omega(L/\mu\log(1/\epsilon))$ iterations to achieve an ϵ -sub-optimal solution. Since each iteration requires at least one computation round, this implies a lower bound on the computation rounds of

$$\Omega\left(\frac{L}{\mu}\log\left(\frac{1}{\epsilon}\right)\right). \tag{52}$$

Combining the results of equations (50) and (52), it follows that the computation rounds have a lower bound of

$$\Omega\left(n + \left(\frac{L}{\mu} + \frac{\min\{nL, \sqrt{n/m}\bar{L}\}}{\mu}\right) \log\left(\frac{1}{\epsilon}\right)\right).$$

D.3 The proof of Theorem 4.4

The main idea of proving the lower bound on communication complexity is to extend the difficult examples constructed by Zhang et al. [89] to the distributed setting. First, we divide all nodes into three sets \mathcal{V}_1 , \mathcal{V}_2 , and \mathcal{V}_3 , where $|\mathcal{V}_1| = |\mathcal{V}_2| = \lfloor m/3 \rfloor$, and $|\mathcal{V}_3| = m - |\mathcal{V}_1| - |\mathcal{V}_2|$. Let $d_x = d_y = d$, $\hat{L}^2 = (L^2 - \mu^2)|\mathcal{V}_1|/(2m)$,

$$\mathbf{A}_1 = \begin{bmatrix} 1 & 0 & & & & \\ & 1 & -2 & & & \\ & & \ddots & \ddots & \\ & & & 1 & 0 \\ & & & & 1 \end{bmatrix}, \quad \mathbf{A}_2 = \begin{bmatrix} 1 & -2 & & & \\ & 1 & 0 & & \\ & & \ddots & \ddots & \\ & & & 1 & -2 \\ & & & & 1 \end{bmatrix} \in \mathbb{R}^{d \times d},$$

and $\mathbf{A} = (\mathbf{A}_1 + \mathbf{A}_2)/2$. For i = 1, 2, ..., m, the functions are constructed as $f_{i,1}(\mathbf{x}, \mathbf{y}) = \cdots = f_{i,n}(\mathbf{x}, \mathbf{y}) = f_i(\mathbf{x}, \mathbf{y})$, where

$$f_{i}(\mathbf{x}, \mathbf{y}) = \begin{cases} \frac{m}{|\mathcal{V}_{1}|} \left(\frac{\hat{L}}{4} \mathbf{x}^{\top} \mathbf{A}_{1} \mathbf{y} + \frac{\hat{L}^{2}}{4\mu} \mathbf{e}_{1}^{\top} \mathbf{y} \right) + \frac{\mu}{2} \|\mathbf{x}\|^{2} - \frac{\mu}{2} \|\mathbf{y}\|^{2}, & i \in \mathcal{V}_{1}, \\ \frac{m}{|\mathcal{V}_{2}|} \left(\frac{\hat{L}}{4} \mathbf{x}^{\top} \mathbf{A}_{2} \mathbf{y} \right) + \frac{\mu}{2} \|\mathbf{x}\|^{2} - \frac{\mu}{2} \|\mathbf{y}\|^{2}, & i \in \mathcal{V}_{2}, \\ \frac{\mu}{2} \|\mathbf{x}\|^{2} - \frac{\mu}{2} \|\mathbf{y}\|^{2}, & i \in \mathcal{V}_{3}. \end{cases}$$

$$(53)$$

Then the global objective function takes the form

$$f(\mathbf{x}, \mathbf{y}) = \frac{\hat{L}}{2} \mathbf{x}^{\top} \mathbf{A} \mathbf{y} + \frac{\hat{L}^2}{4\mu} \mathbf{e}_1^{\top} \mathbf{y} + \frac{\mu}{2} ||\mathbf{x}||^2 - \frac{\mu}{2} ||\mathbf{y}||^2.$$

We will prove that the constructed functions are L-mean-squared smooth, thereby satisfying Assumptions 2.2 and 2.3. For any $\mathbf{x}_1, \mathbf{x}_2, \mathbf{y}_1, \mathbf{y}_2 \in \mathbb{R}^d$,

$$\begin{split} &\frac{1}{mn} \sum_{i=1}^{m} \sum_{j=1}^{n} \left(\|\nabla_{\mathbf{x}} f_{i,j}(\mathbf{x}_{1}, \mathbf{y}_{1}) - \nabla_{\mathbf{x}} f_{i,j}(\mathbf{x}_{2}, \mathbf{y}_{2})\|^{2} + \|\nabla_{\mathbf{y}} f_{i,j}(\mathbf{x}_{1}, \mathbf{y}_{1}) - \nabla_{\mathbf{y}} f_{i,j}(\mathbf{x}_{2}, \mathbf{y}_{2})\|^{2} \right) \\ &= \frac{1}{m} \sum_{i=1}^{m} \left(\|\nabla_{\mathbf{x}} f_{i}(\mathbf{x}_{1}, \mathbf{y}_{1}) - \nabla_{\mathbf{x}} f_{i}(\mathbf{x}_{2}, \mathbf{y}_{2})\|^{2} + \|\nabla_{\mathbf{y}} f_{i}(\mathbf{x}_{1}, \mathbf{y}_{1}) - \nabla_{\mathbf{y}} f_{i}(\mathbf{x}_{2}, \mathbf{y}_{2})\|^{2} \right) \\ &= \frac{1}{m} \sum_{i \in \mathcal{V}_{1}} \left(\left\| \frac{m}{|\mathcal{V}_{1}|} \frac{\hat{L}}{4} \mathbf{A}_{1}(\mathbf{y}_{1} - \mathbf{y}_{2}) + \mu(\mathbf{x}_{1} - \mathbf{x}_{2}) \right\|^{2} + \left\| \frac{m}{|\mathcal{V}_{1}|} \frac{\hat{L}}{4} \mathbf{A}_{1}^{\top}(\mathbf{x}_{1} - \mathbf{x}_{2}) - \mu(\mathbf{y}_{1} - \mathbf{y}_{2}) \right\|^{2} \right) \\ &+ \frac{1}{m} \sum_{i \in \mathcal{V}_{2}} \left(\left\| \frac{m}{|\mathcal{V}_{2}|} \frac{\hat{L}}{4} \mathbf{A}_{2}(\mathbf{y}_{1} - \mathbf{y}_{2}) + \mu(\mathbf{x}_{1} - \mathbf{x}_{2}) \right\|^{2} + \left\| \frac{m}{|\mathcal{V}_{2}|} \frac{\hat{L}}{4} \mathbf{A}_{2}^{\top}(\mathbf{x}_{1} - \mathbf{x}_{2}) - \mu(\mathbf{y}_{1} - \mathbf{y}_{2}) \right\|^{2} \right) \\ &+ \frac{|\mathcal{V}_{3}|}{m} \mu^{2} \left(\|\mathbf{A}_{1}(\mathbf{y}_{1} - \mathbf{y}_{2})\|^{2} + \|\mathbf{A}_{1}^{\top}(\mathbf{x}_{1} - \mathbf{x}_{2})\|^{2} \right) \\ &= \frac{m}{|\mathcal{V}_{2}|} \frac{\hat{L}^{2}}{16} \left(\|\mathbf{A}_{2}(\mathbf{y}_{1} - \mathbf{y}_{2})\|^{2} + \|\mathbf{A}_{1}^{\top}(\mathbf{x}_{1} - \mathbf{x}_{2})\|^{2} \right) \\ &+ \frac{m}{|\mathcal{V}_{2}|} \frac{\hat{L}^{2}}{16} \left(\|\mathbf{A}_{2}(\mathbf{y}_{1} - \mathbf{y}_{2})\|^{2} + \|\mathbf{A}_{1}^{\top}(\mathbf{x}_{1} - \mathbf{x}_{2})\|^{2} \right) \\ &\leq \left(\frac{2m}{|\mathcal{V}_{1}|} \hat{L}^{2} + \mu^{2} \right) \left(\|\mathbf{x}_{1} - \mathbf{x}_{2}\|^{2} + \|\mathbf{y}_{1} - \mathbf{y}_{2}\|^{2} \right) \\ &= L^{2} \left(\|\mathbf{x}_{1} - \mathbf{x}_{2}\|^{2} + \|\mathbf{y}_{1} - \mathbf{y}_{2}\|^{2} \right), \end{split}$$

where the inequality holds because $\|\mathbf{A}_1\|_2 \le 4$, $\|\mathbf{A}_2\|_2 \le 4$ and $|\mathcal{V}_1| = |\mathcal{V}_2|$.

For a decentralized algorithm starting at $(\mathbf{x}^0, \mathbf{y}^0) = (\mathbf{0}, \mathbf{0})$, its communication complexity depends on the distance between \mathcal{V}_1 and \mathcal{V}_2 on the graph, which is denoted by $D(\mathcal{V}_1, \mathcal{V}_2)$. Based on the zero-chain property of the constructed function, the following lemma holds.

Lemma D.4. Consider the minimax problem with the objective functions (53). For any algorithm satisfying Definition 4.1, after R communication rounds, the algorithm's output has only the first $|R/D(V_1, V_2)|$ coordinates non-zero, while the remaining $d - |R/D(V_1, V_2)|$ coordinates are zero.

Proof. Initially, for a variable in \mathcal{V}_1 , transmitting it to \mathcal{V}_2 requires at least $D(\mathcal{V}_1,\mathcal{V}_2)$ communication rounds. According to the constructed function (53), nodes in \mathcal{V}_2 will maintain $\mathbf{x} = \mathbf{y} = \mathbf{0}$ until receiving values from \mathcal{V}_1 . Similarly, the nodes in \mathcal{V}_1 will have at most the first coordinate non-zero until they receive the non-zero values returned from \mathcal{V}_2 . (Nodes in \mathcal{V}_3 do not contribute to increasing the number of non-zero coordinates.) In subsequent steps, each additional non-zero coordinate needs at least $D(\mathcal{V}_1,\mathcal{V}_2)$ communication rounds. After R communication rounds, the output of the algorithm will have only the first $\lfloor R/D(\mathcal{V}_1,\mathcal{V}_2) \rfloor$ coordinates non-zero, while the remaining $\lfloor R/D(\mathcal{V}_1,\mathcal{V}_2) \rfloor$ coordinates are zero.

The following lemma establishes a lower bound on the distance between the current point and the optimal solution.

Lemma D.5 (Zhang et al. [89, Theorem 3.5]). For $d \ge \max\{4k, 2\log(\iota/4\sqrt{2})\}$ and $(\mathbf{x}, \mathbf{y}) \in \mathcal{F}_k \times \mathcal{F}_k$, it holds that

$$\mathbb{E}\left[\|\mathbf{x} - \mathbf{x}^*\|^2 + \|\mathbf{y} - \mathbf{y}^*\|^2\right] \ge \tau^k \frac{\|\mathbf{y}^0 - \mathbf{y}^*\|^2}{16},$$

where
$$\tau = ((2 + \iota) - \sqrt{(2 + \iota)^2 - 4})/2 \in (0, 1)$$
 and $\iota = 4\mu^2/\hat{L}^2$.

Combing the result of Lemma D.4, it holds that for any decentralized first-order algorithm satisfying Definition 4.1, the output $(\mathbf{x}_{\text{out}}^R, \mathbf{y}_{\text{out}}^R)$ after R communication rounds will satisfy

$$\mathbb{E}\left[\|\mathbf{x}_{\text{out}}^{R} - \mathbf{x}^{*}\|^{2} + \|\mathbf{y}_{\text{out}}^{R} - \mathbf{y}^{*}\|^{2}\right] \ge \tau^{\frac{R}{D(\mathcal{V}_{1}, \mathcal{V}_{2})}} \frac{\|\mathbf{y}^{0} - \mathbf{y}^{*}\|^{2}}{16}.$$
 (54)

Lemma D.6 (Yuan et al. [88, Theorem 1]). For any $m \ge 2$ and $\lambda_2 \in [0, \cos(\pi/m)]$, we can always construct a ring-lattice graph so that the mixing matrix \mathbf{W} satisfies Assumption 2.4 and $\lambda_2(\mathbf{W}) = \lambda_2$, and the diameter of the graph satisfies

$$D(\mathcal{V}_1, \mathcal{V}_2) = \Omega(\sqrt{\chi}).$$

With the above lemmas, we proceed to prove Theorem 4.4.

Proof of Theorem 4.4. By equation (54), to find an ϵ -suboptimal solution, communication rounds R are lower bounded by

$$R \ge D(\mathcal{V}_1, \mathcal{V}_2) \log \left(\frac{\|\mathbf{y}^0 - \mathbf{y}^*\|^2}{16\epsilon} \right) / \log \frac{1}{\tau}.$$

For any x > 0, it holds that $(\log(1+x))^{-1} \ge x^{-1}$. Thus, we have

$$\left(\log \frac{1}{\tau}\right)^{-1} = \left(\log \left(1 + \left(\frac{1}{\tau} - 1\right)\right)\right)^{-1}$$

$$\geq \frac{\tau}{1 - \tau}$$

$$= \frac{1 + \frac{\iota}{2} - \frac{1}{2}\sqrt{(2 + \iota)^2 - 4}}{\frac{1}{2}\sqrt{(2 + \iota)^2 - 4} - \frac{\iota}{2}}$$

$$= \frac{\sqrt{\iota(4 + \iota)}}{2\iota} - \frac{1}{2}$$

$$= \frac{1}{2}\sqrt{\frac{\hat{L}^2}{4\mu^2}\left(4 + \frac{4\mu^2}{\hat{L}^2}\right)} - \frac{1}{2}$$

$$\begin{split} &=\frac{1}{2}\sqrt{\frac{\hat{L}^2}{\mu^2}+1}-\frac{1}{2}\\ &=\Omega\left(\frac{\hat{L}}{\mu}\right). \end{split}$$

Based on the fact that $\hat{L}^2=(L^2-\mu^2)|\mathcal{V}_1|/(2m)$, where $|\mathcal{V}_1|=\lfloor m/3\rfloor$ and $L\geq 2\mu$, it follows that $\hat{L}=\Omega(L)$. Therefore, for any decentralized LIFO algorithm, the communication rounds have the lower bound:

$$R \ge D(\mathcal{V}_1, \mathcal{V}_2) \log \left(\frac{\|\mathbf{y}^0 - \mathbf{y}^*\|^2}{16\epsilon} \right) / \log \frac{1}{\tau}$$
$$= \Omega \left(D(\mathcal{V}_1, \mathcal{V}_2) \frac{L}{\mu} \log \left(\frac{1}{\epsilon} \right) \right)$$
$$= \Omega \left(\frac{\sqrt{\chi} L}{\mu} \log \left(\frac{1}{\epsilon} \right) \right),$$

where the last step holds by Lemma D.6.