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Abstract

In this paper, we study the distributed convex-concave finite-sum minimax opti-
mization over the network, and a decentralized variance-reduced optimistic gradient
method with stochastic mini-batch sizes (DIVERSE) is proposed. For the strongly-
convex-strongly-concave objective, it is shown that DIVERSE can achieve a linear
convergence rate that depends on the global smoothness parameters, yielding
sharper computation and communication complexity bounds than existing results.
Furthermore, we also establish the lower complexity bounds, which show that
our upper bounds are optimal up to a logarithmic factor in terms of the local
incremental first-order oracle calls, the computation rounds, and the communica-
tion rounds. Numerical experiments demonstrate that our algorithm outperforms
existing methods in practice.

1 Introduction

In this paper, we consider the following distributed minimax optimization problem

min
x∈Rdx

max
y∈Rdy

f(x,y) :=
1

m

m∑
i=1

fi(x,y), (1)

where the global objective f : Rdx ×Rdy → R is µ-strongly-convex-µ-strongly-concave. We assume
the local function fi : Rdx × Rdy → R on the i-th node has the finite-sum structure of the form

fi(x,y) :=
1

n

n∑
j=1

fi,j(x,y), (2)

where each fi,j is smooth. This formulation appears in many fields, including game theory [9, 21],
robust optimization [10, 29], and control theory [45]. In particular, it has received increasing attention
recently from the machine learning community, with the rise of adversarial generative networks
[6, 25], adversarial training [7, 49, 68, 71, 77], and reinforcement learning [18, 75].

The first-order minimax optimization has been studied extensively over the past decades. Gradient
descent ascent (GDA) is a natural extension of gradient descent in minimization problem, which
is a cornerstone for many minimax optimization algorithms [11, 51]. In the extragradient (EG)
method, [24, 34, 73] an intermediate prediction step is introduced to improve the convergence of
GDA, which exhibits the optimal convergence rate under the convex-concave assumption [59, 89].
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Additionally, the optimistic gradient descent ascent (OGDA) method [61, 64] can also achieve the
optimal convergence rate, by incorporating the momentum-like term. In the more general variational
inequality framework, Kotsalis et al. [35] proposed an optimal operator extrapolation method.

For large-scale optimization arising from machine learning, it is desirable to design efficient stochastic
algorithms by exploiting the finite-sum structure in the objective since computing the full gradient is
usually expensive. The variance reduction ideas used to achieve the optimal incremental first-order
oracle (IFO) complexity bounds in the minimization problem [1, 4, 20, 32, 37, 67, 78, 90] have been
extended to minimax optimization, though the details are quite involved. Palaniappan and Bach [60]
incorporated variance reduction into GDA iteration and provided an catalyst acceleration framework.
Chavdarova et al. [16] and Alacaoglu et al. [3] studied the EG method with variance reduction for a
specific minimax problem. Alacaoglu and Malitsky [2] introduced a retracted term into the iteration
of EG and OGDA, achieving the optimal IFO complexity for the finite-sum minimax problem under
the convex-concave setting [26].

The decentralized optimization have been widely studied in recent years. Compared with the
centralized scenario, it can avoid the communication and computation bottlenecks for problems over
networks [57, 82, 87], while the algorithm design and analysis are more challenging since each node
in a network can only directly share the information with its neighbors. For the minimax optimization,
Mukherjee and Chakraborty [55], Beznosikov et al. [13], and Luo and Ye [46] developed EG methods
for the decentralized setting and provided the linear convergence rates. Rogozin et al. [65] extended
the results to the non-Euclidean mirror prox framework. Kovalev et al. [39] combined variance
reduction and the optimistic gradient method [61] within the ADOM framework [38], achieving the
best-known upper complexity bound on the computation rounds and the communication rounds.

It is worth noting that exiting decentralized minimax optimization methods require identical mini-
batch size for all the nodes when constructing the local gradient estimator, which is sample inefficient.
Moreover, both the computation complexity and communication complexity of previous works
depend on the local smoothness parameters. It remains an open question on how to develop the
decentralized minimax optimization algorithm that depends on the global smoothness parameters.

In this paper, we propose a decentralized variance-reduced optimistic gradient method with stochastic
mini-batch sizes (DIVERSE) for the minimax problem (1), which can find an ϵ-suboptimal solution
with O((mn+min{mnL,

√
mnL̄}/µ) log (1/ϵ)) local incremental first-order oracle (LIFO) calls,

Õ((n+L/µ+min{nL,
√
n/mL̄}/µ) log(1/ϵ) computation rounds, and Õ(

√
χL/µ log(1/ϵ)) com-

munication rounds. Here, L is the smoothness parameter of the objective f , L̄ is the mean-squared
smoothness parameter of the function set {fi,j}m,n

i,j=1, and χ is the characteristic number of the mixing
matrix associated with the network. The corresponding lower bounds have also been established
which demonstrate that all the above results are (nearly) optimal. We would like to emphasize that all
of our complexity bounds have the global smoothness dependency, which are tighter than existing
results that only rely on the local smoothness [39, 46, 55]. Moreover, the linear convergence guarantee
in this paper only requires the global objective function f to be strongly-convex-strongly-concave,
and the local component function fi,j (also the local function fi) can even be nonconvex-nonconcave.
This relaxes the assumption for the state-of-the-art linear convergent decentralized algorithm in
Kovalev et al. [39] that requires each fi to be strongly-convex-strongly-concave.

2 Preliminaries

In this section, we introduce the problem setup, followed by a review of the related work.

2.1 Problem Setup

We use the bold lowercase letters to represent vectors, e.g., x ∈ Rdx and y ∈ Rdy , use xi ∈ R1×dx

and yi ∈ R1×dy to denote the local variables on the i-th node. The bold uppercase letters are used
to denote the matrices aggregating the corresponding vectors, such as X = [x1; . . . ;xm] ∈ Rm×dx

and Y = [y1; . . . ;ym] ∈ Rm×dy . The bold lowercase letter with a bar presents the average of local
variables, e.g., x̄ = 1

m

∑m
i=1 xi and ȳ = 1

m

∑m
i=1 yi. The notations 1 and 0 are vectors (or matrices)

whose entries are all one and zero, respectively. We let I be the identity matrix. The notation ∥ · ∥
represents the Euclidean norm of a vector or the Frobenius norm of a matrix.
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For the minimax optimization problem (1), we stack the variables x ∈ Rdx and y ∈ Rdy as
z = [x;y] ∈ Rdz , where dz = dx + dy . We further define the gradient operators as

gi,j(z) =

[
∇xfi,j(x,y)
−∇yfi,j(x,y)

]
, gi(z) =

1

n

n∑
j=1

gi,j(z), and g(z) =
1

m

m∑
i=1

gi(z) ∈ Rdz .

We make the following assumptions for the decentralized minimax optimization problem (1).

Assumption 2.1. The global function f(x,y) is µ-strongly-convex-µ-strongly-concave, i.e., the
function f(·,y) is µ-strongly convex for all given x ∈ Rdx and the function f(x, ·) is µ-strongly
concave for all given y ∈ Rdy .

Assumption 2.2 (global smoothness). The global function f is L-smooth, i.e., for all z, z′ ∈ Rdz ,
there exists a constant L > 0 such that

∥g(z)− g(z′)∥2 ≤ L2∥z− z′∥2.

Assumption 2.3 (mean-squared smoothness). The function set {fi,j}m,n
i,j=1 is L̄-mean-squared smooth,

i.e., for all z, z′ ∈ Rdz , there exists a constant L̄ > 0 such that

1

mn

m∑
i=1

n∑
j=1

∥gi,j(z)− gi,j(z
′)∥2 ≤ L̄2∥z− z′∥2.

Assumption 2.1 is equivalent to the strong monotonicity of the gradient operator g, i.e., for all
z, z′ ∈ Rdz , it holds ⟨g(z)− g(z′), z− z′⟩ ≥ µ∥z− z′∥2. Note that we have

∥g(z)− g(z′)∥2 ≤ 1

mn

m∑
i=1

n∑
j=1

∥gi,j(z)− gi,j(z
′)∥2 ≤ L̄2∥z− z′∥2

for all z, z′ ∈ Rdz . Therefore, it holds that L ≤ L̄ for the tight parameters L and L̄ satisfying
Assumptions 2.2 and 2.3. In fact, L̄ can be arbitrarily larger than L if there are no convexity/concavity
assumption for the local functions [48].

Our complexity analysis considers the upper and lower bounds with respect to the global smoothness
parameter L and the mean-squared smoothness parameter L̄. In contrast, existing works for decentral-
ized minimax optimization only consider the local smoothness assumptions. For example, Mukherjee
and Chakraborty [55] and Luo and Ye [46] assume there exists a constant Lmax > 0 such that

∥gi,j(z)− gi,j(z
′)∥2 ≤ L2

max∥z− z′∥2

for all z, z′ ∈ Rdz , i ∈ [m], and j ∈ [n]; Kovalev et al. [39] assume there exist constants Ll > 0
and L̄l > 0 such that

∥gi(z)− gi(z
′)∥2 ≤ L2

l ∥z− z′∥2 and
1

n

n∑
j=1

∥gi,j(z)− gi,j(z
′)∥2 ≤ L̄2

l ∥z− z′∥2

for all z, z′ ∈ Rdz and i ∈ [m]. Noting that the constants Ll and L̄l are determined by the “worst”
local (component) function so that we can verify that L ≤ Ll ≤ Lmax and L̄ ≤ L̄l ≤ Lmax for the
tight smoothness parameters that satisfy the above assumptions [48]. The examples in Appendix A
demonstrate that the magnitude of these smoothness parameters can differ significantly under data
heterogeneity.

In decentralized optimization, each node can only directly communicate with its neighbors. The
communication step is usually expressed based on a mixing matrix W ∈ Rm×m, which satisfies the
following standard assumption [28, 66, 87].

Assumption 2.4. Let W ∈ Rm×m be a mixing matrix associated with a network. We assume
(a) W is symmetric with wi,j ≥ 0 for all i, j, and wi,j ̸= 0 if and only if nodes i and j are

connected or i = j;
(b) 0 ⪯ W ⪯ I, W⊤1 = W1 = 1, and null(I−W) = span(1).
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Table 1: We summarize the complexity for finding the ϵ-suboptimal solution of problem (1). We
use the notation Õ(·) to hide the logarithmic terms with respect to m, n, µ, and the smoothness
parameters. Note that the computation rounds may not be proportional to the LIFO calls, since
distributed algorithms include the scheme of partial participated computation.

Algorithms LIFO Calls Computation Rounds Communication Rounds

GT-EG
[55]

O
(
mn

(
χLmax

µ

)4/3

log

(
1

ϵ

))
O
(
n

(
χLmax

µ

)4/3

log

(
1

ϵ

))
O
((

χLmax

µ

)4/3

log

(
1

ϵ

))
MC-SVRE

[46]
O
((

mn+
m
√
nLmax

µ

)
log

(
1

ϵ

))
O
((

n+

√
nLmax

µ

)
log

(
1

ϵ

))
Õ
(
√
χ

(
n+

√
nLmax

µ

)
log

(
1

ϵ

))
OADSVI

[39]
O
((

mn+
m
√
nL̄l

µ

)
log

(
1

ϵ

))
O
((

n+

√
nL̄l

µ

)
log

(
1

ϵ

))
O
(√

χLl

µ
log

(
1

ϵ

))
DIVERSE

Theorem 3.7
O
((

mn+
min{mnL,

√
mnL̄}

µ

)
log

(
1

ϵ

))
Õ
((

n+
L

µ
+

min{nL,
√

n/mL̄}
µ

)
log

(
1

ϵ

))
Õ
(√

χL

µ
log

(
1

ϵ

))

Lower Bounds
Theorem 4.2–4.4

Ω

(
mn+

min{mnL,
√
mnL̄}

µ
log

(
1

ϵ

))
Ω

(
n+

(
L

µ
+

min{nL,
√

n/mL̄}
µ

)
log

(
1

ϵ

))
Ω

(√
χL

µ
log

(
1

ϵ

))

Assumption 2.4 indicates that 1 − λ2(W) > 0, where λ2(W) is the second largest eigenvalue of
W ∈ Rm×m. Thus, we can define the characteristic number χ := 1/(1− λ2(W)).

In this paper we consider the ϵ-suboptimal solution of problem (1), i.e., the point z = (x,y) such that

∥x− x∗∥2 + ∥y − y∗∥2 ≤ ϵ,

where (x∗,y∗) is the solution of problem (1) that satisfies f(x∗,y′) ≤ f(x∗,y∗) ≤ f(x′,y∗) for
all x′ ∈ Rdx and y′ ∈ Rdy . Noting that the solution (x∗,y∗) is unique under the strongly-convex-
strongly-concave assumption.

2.2 Related Work

Significant advancement has been made for decentralized optimization over the last decade. For the
minimization problem, the convergence of decentralized gradient descent (DGD) with decaying step
sizes has been established by Duchi et al. [22],Tsianos and Rabbat [74], and Jakovetić et al. [31]. The
gradient tracking technique was introduced in Nedic et al. [56], Qu and Li [63], and Song et al. [69],
so that constant step size can be utilized and linear convergence was achieved for strongly-convex
objective. Pu and Nedić [62], Koloskova et al. [33], Ye and Chang [85] further investigated the
convergence of gradient tracking under stochastic setting. Scaman et al. [66], Kovalev et al. [38],
and Ye et al. [87] introduced the multi-consensus steps by Chebyshev acceleration [5, 43] to further
improve the communication complexity. For the objective with the finite-sum structure, Xin et al.
[81], Ye et al. [86], Hendrikx et al. [28], and Li et al. [41] integrated the variance reduction techniques
to improve the computational efficiency of the algorithms. In recent works [44, 48, 52], different
types of smoothness parameters have been considered and sharper complexity bounds have been
established for the decentralized finite-sum minimization problems.

For decentralized minimax optimization, Mukherjee and Chakraborty [55] proposed the GT-EG
method by combining gradient tracking with EG, proving its linear convergence under the strongly-
convex–strongly-concave assumption. Later, Luo and Ye [46] improved the decentralized EG method
by incorporating variance reduction [2] and multi-consensus steps [5, 43], achieving better complexity
bound on the LIFO calls. It is worth noting that the convergence for both of these methods require the
assumption that each component function fi,j is Lmax-smooth. In a seminal work, Kovalev et al. [39]
considered the relaxed conditions that only assume each local function fi is Ll-smooth and each local
function set {fi,j}nj=1 is L̄l-mean-squared smooth. The authors introduced an extra momentum term
into the variance-reduced OGDA method [2], so that they could take the advantage of mini-batch
sampling to construct an accurate stochastic gradient estimator, leading to improved computation
complexity and communication complexity. The lower bounds were also established therein to justify
the optimality of their algorithm with respect to the local smoothness parameters Ll and L̄l. However,
none of the previous works on decentralized minimax optimization [39, 46, 55] has considered the
potentially tighter complexity bounds with respect to the global smoothness in Assumptions 2.2
and 2.3, which will be well-addressed in this paper. We compare our theoretical results with related
work in Table 1.
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Algorithm 1 FastMix(U0,W, R)

1: Initialize: U−1 = U0, ηU =
1−

√
1−λ2

2(W)

1+
√

1−λ2
2(W)

2: for r = 0, 1, . . . , R− 1 do
3: Ur+1 = (1 + ηU )WUr − ηUU

r−1

4: end for
5: Output: UR

Algorithm 2 DIVERSE
1: Input: initial point z0, step size η, mini-batch size b, probability p ∈ [0, 1], parameters α, β ∈

[0, 1], mixing matrix W, iteration numbers K, communication rounds R

2: V−1 = V0 = Z−1 = Z0 = 1z0, S−1 = ∆−1 = 0

3: for k = 0, 1, 2, . . . ,K − 1 do
4: for i = 1, 2, . . . ,m in parallel

5: ξki,j
i.i.d∼ Bernoulli(q) with q = b/(mn)

6: δki = gi(v
k−1
i ) +

1

n

n∑
j=1

ξki,j
q

(
gi,j(z

k
i )− gi,j(v

k−1
i ) + α

(
gi,j(z

k
i )− gi,j(z

k−1
i )

))
7: end for
8: Sk = FastMix(Sk−1 +∆k −∆k−1,W, R)

9: Zk+1 = FastMix((1− β)Zk + βVk − ηSk,W, R)

10: Vk+1 =

{
FastMix(Zk,W, R) with probability p,

Vk with probability 1− p

11: end for
12: Output: zout

i = zKi

3 Algorithm and Complexity Analysis

The proposed decentralized variance-reduced optimistic gradient method with stochastic mini-batch
sizes (DIVERSE) is described in Algorithm 2, which is based on a novel sampling strategy and the
subroutine of multi-consensus steps (Algorithm 1). The details of the algorithm and its complexity
analysis are presented in Sections 3.1 and 3.2, respectively.

3.1 Algorithm Design

Recall that the standard OGDA update [19, 54, 61] is given by

zk+1 = zk − η(g(zk) + g(zk)− g(zk−1)︸ ︷︷ ︸
optimistic gradient

),

where η > 0 is the step size. To improve the computational efficiency by using the finite-sum structure
in the local function, DIVERSE constructs the variance-reduced optimistic gradient estimator at node
i as follows

δki = gi(v
k−1
i ) +

1

n

n∑
j=1

ξki,j
q

(
gi,j(z

k
i )− gi,j(v

k−1
i ) + α

(
gi,j(z

k
i )− gi,j(z

k−1
i )

))
, (3)

where ξki,j
i.i.d∼ Bernoulli(q) with q = b/(mn) and vk−1

i is the snapshot point, and α > 0 is the
momentum parameter. The distribution of ξki,j means we only need to compute the gradient operator
gi,j in equation (3) when ξki,j = 1. Note that the snapshot point vk+1

i is updated with probability p in
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each iteration (see Line 10 of Algorithm 2), which implies the term gi(v
k−1
i ) in equation (3) can be

reused with probability 1− p. Therefore, the expected LIFO calls of the algorithm in each iteration is
O(mnp+ (1− p)b), which is much more efficient than the cost of accessing the full gradient if we
take p ≪ 1 and b ≪ mn.

The main difference between DIVERSE and exiting decentralized minimax optimization methods
[39, 46, 55] is that the mini-batch size for the local gradient estimator δki in equation (3) is not
required to be fixed since the variables {ξki,j}

m,n
i,j=1 are random. Therefore, the behaviors of all m

nodes are similar to the large mini-batch sampling on a single machine. Besides, the steps of gradient
tracking and multi-consensus in Lines 8 and 9 of Algorithm 2 ensures that the local variables are
sufficiently close to each other, resulting in the sharper complexity bounds with respect to the global
smoothness.

3.2 Complexity Analysis

For the convergence analysis of DIVERSE (Algorithm 2), define the following Lyapunov function
based on the mean vectors as follows

Φk :=

(
1

η
+

3µ

2

)
∥z̄k − z∗∥2 + β

η
∥z̄k − v̄k−1∥2 + 1

8η
∥z̄k − z̄k−1∥2

+ 2⟨g(z̄k−1)− g(z̄k), z̄k − z∗⟩+ β + ηµ

pη
∥v̄k − z∗∥2.

It is not hard to verify that the Lyapunov function Φk is always non-negative for all η ≤ 1/(4L) (see
Appendix B.1).

We first consider the case of L̄ ≤
√
mnL, in which the Lyapunov function satisfies the following

relation.

Lemma 3.1. Under Assumptions 2.1, 2.2, 2.3, and 2.4 with 0 < µ < L ≤ L̄ ≤
√
mnL, we run

Algorithm 2 with

η =
1

16L
, β = p =

L̄

8L
max

{
µ

L̄
,

1√
mn

}
, α = max

{
1−µη

4
, 1− pηµ

β + ηµ

}
,

b =

⌈
L̄

L
min

{
L̄

µ
,
√
mn

}⌉
, and R = O

(√
χ log(mnL̄/µ)

)
.

Then it holds that

E
[
Φk+1

]
≤ αE

[
Φk
]
+ C1

(
E
[
∥Zk − 1z̄k∥2

]
+ E

[
∥Zk−1 − 1z̄k−1∥2

]
+ E

[
∥Vk−1 − 1v̄k−1∥2

] )
,

where C1 = (1 + α2)
(
12nηL̄2/b+ 6nL̄2/µ

)
.

To characterize the convergence of the multi-consensus steps (Algorithm 1), define

ρ :=
√
14(1− (1− 1/

√
2)
√
1− λ2(W))R.

We have ρ < 1 if R is sufficient large. See more properties of Algorithm 1 in Appendix B.2.

We then bound the consensus error as follows.

Lemma 3.2. Under the settings of Lemma 3.1, we have

E
[
∥Zk+1 − 1z̄k+1∥2

]
≤ 3ρ2(1− β)2E

[
∥Zk − 1z̄k∥2

]
+ 3ρ2β2E

[
∥Vk − 1v̄k∥2

]
+ 3ρ2η2E

[
∥Sk − 1s̄k∥2

]
and

E
[
∥Vk+1 − 1v̄k+1∥2

]
≤ pρ2E

[
∥Zk − 1z̄k∥2

]
+ (1− p)E

[
∥Vk − 1v̄k∥2

]
.

Noting that the upper bound in Lemma 3.2 depends on the term ∥Sk − 1s̄k∥2, the consensus error
for S can be bounded as follows.
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Lemma 3.3. Under the settings of Lemma 3.1, we have

E
[
∥Sk+1 − 1s̄k+1∥2

]
≤ C2ρ

2
(
E
[
∥Zk − 1z̄k∥2

]
+ E

[
∥Zk−1 − 1z̄k−1∥2

]
+ E

[
∥Vk − 1v̄k∥2

]
+ E

[
∥Vk−1 − 1v̄k−1∥2

] )
+ C3ρ

2E
[
∥Sk − 1s̄k∥2

]
+ C4ρ

2
(
E
[
Φk+1

]
+ E

[
Φk
]
+ E

[
Φk−1

])
,

where C2 = 270m2n2L̄2, C3 = 180m2n2L̄2η2 + 2, C4 = 60(16η + η/β)m3n2L̄2, and Φ−1 = 0.

Remark 3.4. Lemma 3.3 shows that the upper bound of E
[
∥Sk+1 − 1s̄k+1∥2

]
does not only depend

on the consensus error at the k-th iteration, but also on that of the (k− 1)-th iteration. In contrast, the
consensus error in the decentralized minimization problem only depends on the term related to the
previous iteration [40, 44, 48, 87]. The difference poses a challenge in the analysis, which requires
us to develop a novel inductive proof technique.

Applying Lemmas 3.1–3.3, we obtain the linear convergence for the Lyapunov function and consensus
errors.

Lemma 3.5. Under the settings of Lemma 3.1, we have

E
[
Φk
]
≤ α̃kΦ0, E

[
∥Zk − 1z̄k∥2

]
≤ 1− α̃

4C1
α̃k+1Φ0,

E
[
∥Vk − 1v̄k∥2

]
≤ 1− α̃

4C1
α̃k+1Φ0, and E

[
∥Sk − 1s̄k∥2

]
≤ 1− α̃

4η2C1
α̃k+1Φ0,

where α̃ = max
{
1− µη/8, 1− pηµ/(2(β + ηµ))

}
.

According to the parameter settings in Lemma 3.1, the linear convergence rate α̃ achieved by
Lemma 3.5 has the order of Θ(1− µ/L), which depends on the global smoothness. The expected
overall LIFO complexity to achieve the ϵ-suboptimal solution is O((mn +

√
mnL̄/µ) log(1/ϵ)),

matching the complexity of variance-reduced EG/OGDA on a single machine [2].

We then consider the case of L ≤ L̄/
√
mn. Note that under the setting of Lemma 3.1, one has b ≥ mn

in this case, which motivates us to use the exact local gradients. That is, we set p = 0 and b = mn in
Algorithm 2 when L ≤ L̄/

√
mn, which leads to ξki,j = q = 1 and

δki = gi(z
k
i ) + α

(
gi(z

k
i )− gi(z

k−1
i )

)
.

Hence, the snapshot vk
i is unnecessary, so we set β = 0 and define the simplified Lyapunov function

Ψk :=

(
1

η
+

3µ

2

)
∥z̄k − z∗∥2 + 3

4η
∥z̄k − z̄k−1∥2 + 2⟨g(z̄k−1)− g(z̄k), z̄k − z∗⟩.

Similar to the analysis of Lemma 3.5, the linear convergence can also be achieved with respect to the
global smoothness.

Lemma 3.6. Under Assumptions 2.1, 2.2, 2.3 and 2.4 with 0 < µ < L ≤ L̄/
√
mn, we run

Algorithm 2 with η = 1/(16L), β = p = 0, b = mn, α = 1− µη, and R = O(
√
χ log(mnL̄/µ)).

Then it holds that

Ψk ≤
(
1− µη

2

)k
Ψ0, ∥Zk − 1z̄k∥2 ≤ µ2η

48nL̄2

(
1− µη

2

)k+1

Ψ0,

and ∥Sk − 1s̄k∥2 ≤ µ2

48ηnL̄2

(
1− µη

2

)k+1

Ψ0.

According to Lemma 3.6, we achieve the LIFO complexity of O((mnL/µ) log(1/ϵ)). It is worth
noting that the expected overall LIFO complexity of O((mn +

√
mnL̄/µ) log(1/ϵ)) achieved by

variance reduction (under the parameter settings in Lemma 3.1) is worse than the LIFO complexity
achieved by iterations with exact local gradients in the case of L ≤ L̄/

√
mn. Similar phenomenon

is also observed by Luo et al. [48] in nonconvex minimization. Our result implies that the trade-off
between variance-reduced gradient estimator and the exact gradient is also necessary in minimax
optimization.

Combining the results of Lemmas 3.5 and 3.6 yields the following upper complexity bounds.
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Theorem 3.7. Under Assumptions 2.1, 2.2, 2.3 and 2.4 with 0 < µ < L ≤ L̄, running DIVERSE
(Algorithm 2) with appropriate parameter settings can find an ϵ-suboptimal solution at each node,
with the expected LIFO complexity of O((mn + min{mnL,

√
mnL̄}/µ) log(1/ϵ)), the expected

computation rounds of Õ((n + L/µ + min{nL,
√

n/mL̄}/µ) log(1/ϵ)), and the communication
rounds of Õ(

√
χL/µ log(1/ϵ)).

As demonstrated in Table 1, all of our upper bounds in Theorem 3.7 are sharper than state-of-the-art
results since we have L ≤ Ll ≤ Lmax and L̄ ≤ L̄l ≤ Lmax for the tight smoothness parameters.
Additionally, our LIFO complexity depends on

√
m in the case of L̄ ≤

√
mnL, which is better than

existing results that always depends on m. These improvements essentially rely on the sampling
strategy that does not fix the mini-batch size on different nodes, thereby allowing partial participation
to reduce computational costs.
Remark 3.8. The computation rounds in Algorithm 2 depend on E[maxi∈[m]

∑n
j=1 ξ

k
i,j ], which may

not be proportional to the LIFO calls. We upper bound this quantity by using the locally sub-Gaussian
property, which simplifies the analysis in Liu et al. [44] and Luo et al. [48], see Lemma C.1 for
details.

4 The Lower Complexity Bounds

In this section, we establish the lower complexity bounds of the first-order methods for the decen-
tralized finite-sum minimax optimization. Specifically, we consider the local incremental first-order
oracle algorithms as follows.

Definition 4.1. A local incremental first-order oracle (LIFO) algorithm over a network of m nodes
satisfies the following constraints:

• Local memory: Each node i stores vectors in local memories Mx
i,t and My

i,t at time t > 0.
The local memories are updated through local computation or local communication, i.e., for
all i ∈ [m], it holds Mx

i,t ⊆ Mcomp,x
i,t ∪Mcomm,x

i,t and My
i,t ⊆ Mcomp,y

i,t ∪Mcomm,y
i,t .

• Local computation: At time t, each node i can query the local first-order oracles ∇xfi,j(x,y)
and ∇yfi,j(x,y) for any x ∈ Mx

i,t−1 and y ∈ My
i,t−1. Additionally, the local computational

memories Mcomp,x
i,t and Mcomp,y

i,t satisfy Mcomp,x
i,t = Span

(
{x,∇xfi,j(x,y) : x ∈ Mx

i,t−1}
)

and Mcomp,y
i,t = Span

(
{y,∇yfi,j(x,y) : y ∈ My

i,t−1}
)
.

• Local communication: At time t, each node i can communicate with its neighbours N (i). For
all i ∈ [m], the communication memories are defined as Mcomm,x

i,t = Span(
⋃

j∈N (i),τ Mx
j,t−τ ),

and Mcomm,y
i,t = Span(

⋃
j∈N (i),τ M

y
j,t−τ ), where τ is a delay parameter satisfying τ < t.

• Output value: Each node i specifies local outputs from its memory at time t, that is, for all i ∈ [m],
we have xt

i ∈ Mx
i,t and yt

i ∈ My
i,t.

The definition of the above algorithm class follows the standard settings in the studies of decentralized
optimization [8, 28, 44, 48, 66]. Compared with the algorithm classes defined by Kovalev et al.
[39], we remove the requirement that all nodes must access their stochastic local gradients with the
identical mini-batch size per iteration, so our algorithm class also contains the partial participated
computation schemes.

The lower complexity bounds on the LIFO calls, the computation rounds, and the communication
rounds are presented in the following three theorems.

Theorem 4.2. For the parameters L̄ ≥ L, L/µ > 2, and ϵ < 0.003, there exists hard instances
satisfying Assumptions 2.1–2.4. In order to find an ϵ-suboptimal solution, the LIFO calls of any LIFO
algorithm is lower bounded by Ω(mn+min{mnL,

√
mnL̄}/µ log(1/ϵ)).

Theorem 4.3. For the parameters L̄ ≥ L, L/µ > 2, and ϵ < 0.003, there exists hard instances
satisfying Assumptions 2.1–2.4. In order to find an ϵ-suboptimal solution, the computation rounds of
any LIFO algorithm is lower bounded by Ω(n+ (L/µ+min{nL,

√
n/mL̄}/µ) log(1/ϵ)).

Theorem 4.4. For the parameters L̄ ≥ L ≥ 2µ > 0, and m ≥ 2, n ∈ N, there exists a hard instance
satisfying Assumptions 2.1–2.4 with λ2(W) ∈ [0, cos(π/m)]. In order to find an ϵ-suboptimal
solution, the communication rounds of any LIFO algorithm is lower bounded by Ω(

√
χL/µ log(1/ϵ)).
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Figure 1: Performance comparison with respect to LIFO calls across different datasets.
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Figure 2: Performance comparison with respect to computation rounds across different datasets.
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Figure 3: Performance comparison with respect to communication rounds across different datasets.

The above theorems indicate that the upper complexity bounds provided in Theorem 3.7 are optimal
(up to a logarithmic factor). Our lower bounds hold for the decentralized finite-sum minimax
optimization under the general smoothness settings. Specifically, the results in Theorems 4.2–4.4
hold for all L and L̄ such that 0 < L ≤ L̄. In contrast, the existing lower bounds [39] consider the
local smoothness parameters Ll and L̄l (see Section 2.1), and their analysis requires the additional
condition

√
nLl = L̄l.

5 Numerical Experiments

In this section, numerical experiments are conducted to evaluate the performance of Algorithm 2. We
consider the problem of robust regularized linear regression [12, 27, 39, 50], which is formulated as

min
x∈Rd

max
y∈Rd

1

2N

N∑
i=1

(
x⊤(ai + y)− bi

)2
+

r1
2
∥x∥2 − r2

2
∥y∥2,

where x is the weight of the model, y is the adversarial noise, {(ai, bi)}Ni=1 is the training dataset, and
r1, r2 are regularization parameters. We consider the undirected ring network with m = 50 nodes and
each node has n training samples. Therefore, the total number of samples is N = mn. The mixing
matrix with Metropolis–Hastings weights [80] is used for communication steps. The regularization
parameters are set to be r1 = r2 = 0.2. The numerical experiments are conducted on datasets a9a,
w8a, ijcnn1, and cod-rna, from the LIBSVM repository [14]. We compare the proposed DIVERSE
(Algorithm 2) with the baseline methods including GT-EG [55], MC-SVRE [46], and OADSVI [39,
Algorithm 1]. The parameters of these algorithms are set according to the theoretical analysis or the
recommended settings by the authors [39, 46, 55]. Specifically, the parameter b in the DIVERSE is
set to be 128 and the fixed batch size for each node in OADSVI is set to be 3. The best performance
step sizes from {0.1, 0.05, 0.01} are used, up to the algorithms and the datasets.

The experimental results are shown in Figures 1-3. It can be observed that the proposed DIVERSE
outperforms all the tested methods in terms of LIFO calls, the computation rounds, and the communi-
cation rounds, which validates our theoretical results. The deterministic method GT-EG [55] and the

9



stochastic method MC-SVRE [46] require much more communication rounds than other methods.
This is because GT-EG does not include Chebyshev acceleration in its communication protocol and
MC-SVRE cannot benefit from the communication efficiency by the mini-batch sampling. Addition-
ally, the LIFO complexity of DIVERSE is significantly superior to all the baselines, since it is the
only one that uses stochastic mini-batch sizes, benefiting from partially participated computations.

6 Conclusion

This paper proposes variance-reduced optimistic gradient method with stochastic mini-batch sizes for
decentralized convex-concave finite-sum minimax problem. We establish the linear convergence rate
with global smoothness parameters dependency for the strongly-convex-strongly-concave objective,
which is shaper than existing results that only consider the local smoothness. Lower complexity
bounds are constructed to show the near optimality of our method. The efficiency of the proposed
method is also validated through numerical experiments. For future direction, we would like to extend
the ideas to solve the decentralized minimax problem with different constants of strong convexity
and strong concavity [26, 36, 42, 47, 53, 70, 76, 84]. We can also study the global smoothness
dependency in decentralized nonconvex minimax optimization [17, 23, 30, 72, 79, 83, 91–93].
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[9] Tamer Başar and Geert Jan Olsder. Dynamic noncooperative game theory. SIAM, 1998.

[10] Aharon Ben-Tal, Arkadi Nemirovski, and Laurent El Ghaoui. Robust optimization. Princeton
university press, 2009.

[11] Michel Benaım and Morris W. Hirsch. Mixed equilibria and dynamical systems arising from
fictitious play in perturbed games. Games and Economic Behavior, 29(1-2):36–72, 1999.

10



[12] Aleksandr Beznosikov, Gesualdo Scutari, Alexander Rogozin, and Alexander Gasnikov. Dis-
tributed saddle-point problems under data similarity. In Advances in Neural Information
Processing Systems, pages 8172–8184, 2021.

[13] Aleksandr Beznosikov, Pavel Dvurechenskii, Anastasiia Koloskova, Valentin Samokhin, Se-
bastian U. Stich, and Alexander Gasnikov. Decentralized local stochastic extra-gradient for
variational inequalities. In Advances in Neural Information Processing Systems, pages 38116–
38133, 2022.

[14] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for support vector machines. ACM
Transactions on Intelligent Systems and Technology, 2(3):1–27, 2011.

[15] Patrick Chareka, Ottilia Chareka, and Sarah Kennendy. Locally sub-Gaussian random variable
and the strong law of large numbers. Atlantic Electronic Journal of Mathematics, 1(1):75–81,
2006.

[16] Tatjana Chavdarova, Gauthier Gidel, François Fleuret, and Simon Lacoste-Julien. Reducing
noise in GAN training with variance reduced extragradient. In Advances in Neural Information
Processing Systems, pages 391–401, 2019.

[17] Lesi Chen, Haishan Ye, and Luo Luo. An efficient stochastic algorithm for decentralized
nonconvex-strongly-concave minimax optimization. In International Conference on Artificial
Intelligence and Statistics, pages 1990–1998, 2024.

[18] Christoph Dann, Gerhard Neumann, and Jan Peters. Policy evaluation with temporal differences:
A survey and comparison. Journal of Machine Learning Research, 15(1):809–883, 2014.

[19] Constantinos Daskalakis, Andrew Ilyas, Vasilis Syrgkanis, and Haoyang Zeng. Training GANs
with optimism. In International Conference on Learning Representations, 2018.

[20] Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. SAGA: A fast incremental gradient
method with support for non-strongly convex composite objectives. In Advances in Neural
Information Processing Systems, pages 1646–1654, 2014.

[21] Ding-Zhu Du and Panos M. Pardalos. Minimax and applications, volume 4. Springer Science
& Business Media, 1995.

[22] John C. Duchi, Alekh Agarwal, and Martin J. Wainwright. Dual averaging for distributed
optimization: Convergence analysis and network scaling. IEEE Transactions on Automatic
control, 57(3):592–606, 2011.

[23] Hongchang Gao. Decentralized stochastic gradient descent ascent for finite-sum minimax
problems. arXiv preprint arXiv:2212.02724, 2022.

[24] Gauthier Gidel, Hugo Berard, Gaëtan Vignoud, Pascal Vincent, and Simon Lacoste-Julien.
A variational inequality perspective on generative adversarial networks. In International
Conference on Learning Representations, 2019.

[25] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in Neural
Information Processing Systems, pages 2672–2680, 2014.

[26] Yuze Han, Guangzeng Xie, and Zhihua Zhang. Lower complexity bounds of finite-sum
optimization problems: The results and construction. Journal of Machine Learning Research,
25(2):1–86, 2024.

[27] Hadrien Hendrikx, Lin Xiao, Sebastien Bubeck, Francis Bach, and Laurent Massoulie. Statisti-
cally preconditioned accelerated gradient method for distributed optimization. In International
conference on machine learning, pages 4203–4227, 2020.

[28] Hadrien Hendrikx, Francis Bach, and Laurent Massoulie. An optimal algorithm for decentralized
finite-sum optimization. SIAM Journal on Optimization, 31(4):2753–2783, 2021.

11



[29] Zhe Hong, Kwan Deok Bae, and Do Sang Kim. Minimax programming as a tool for studying
robust multi-objective optimization problems. Annals of Operations Research, 319(2):1589–
1606, 2022.

[30] Feihu Huang and Songcan Chen. Near-optimal decentralized momentum method for nonconvex-
PL minimax problems. arXiv preprint arXiv:2304.10902, 2023.
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results?
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• The method for calculating the error bars should be explained (closed form formula,
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• It should be clear whether the error bar is the standard deviation or the standard error
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• The answer NA means that the paper does not include experiments.
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or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute
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didn’t make it into the paper).

9. Code of ethics
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Answer: [Yes]

Justification: The research conducted in the paper conform with the NeurIPS Code of Ethics.
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a
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• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The paper focuses on optimization theory, so the work does not have direct
societal impacts.
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The datasets used in the numerical experiments are properly cited in Section 5.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

In Appendix A, we construct examples that smoothness parameters are significantly different. In
Appendix B, we present some basic results, including the non-negativity of the Lyapunov functions
and several useful lemmas. The proofs of the lemmas and Theorem 3.7 in Section 3 are provided in
Appendix C, and Appendix D contains the proofs of Theorems 4.2, 4.3 and 4.4 in Section 4.

A Examples of Differences among Smoothness Parameters

In this section, we provide two specific examples to show that the smoothness parameters can differ
significantly. We first construct an instance where the local smoothness parameters Ll, L̄l, and Lmax

are a factor of Θ(
√
m) larger than the global parameters L and L̄.

Example A.1. For simplicity, assume dx = dy and n = 1. Define the function

h(x,y) =
√

(L2 − µ2)x⊤y +
µ

2
∥x∥2 − µ

2
∥y∥2, (4)

and denote its gradient operator by gh(z). It can be verified that for any z, z′ ∈ Rdz ,

∥gh(z)− gh(z
′)∥2

= ∥∇xh(x,y)−∇xh(x
′,y′)∥2 + ∥∇yh(x,y)−∇yh(x

′,y′)∥2

= ∥
√
(L2 − µ2)(y − y′) + µ(x− x′)∥2 + ∥

√
(L2 − µ2)(x− x′)− µ(y − y′)∥2

= L2
(
∥x− x′∥2 + ∥y − y′∥2

)
= L2∥z− z′∥2,

indicating that h(x,y) is L-smooth, and the constant L is tight.

We now define the local objective functions as

fi(x,y) =


(1 +

√
m)h(x,y), if i = 1,

(1−
√
m)h(x,y), if i = 2,

h(x,y), otherwise.

Then the global objective f(x,y) = 1
m

∑m
i=1 fi(x,y) = h(x,y) remains L-smooth. The global

mean-squared smoothness parameter L̄ can be computed as

1

m

m∑
i=1

∥gi(z)− gi(z
′)∥2 =

1

m

(
(1 +

√
m)2 + (1−

√
m)2 +m− 2

)
∥gh(z)− gh(z

′)∥2

= 3L2∥z− z′∥2.

Meanwhile, the local smoothness parameters Ll, L̄l, and Lmax are all determined by f1, since for
any i ∈ [m],

∥gi(z)− gi(z
′)∥2 ≤ ∥g1(z)− g1(z

′)∥2

= (1 +
√
m)2∥gh(z)− gh(z

′)∥2

= (1 +
√
m)2L2∥z− z′∥2.

Thus, we conclude that L̄ =
√
3L and Ll = L̄l = Lmax = (1 +

√
m)L.

Based on Example A.1 and Table 1 (ignoring all log term), DIVERSE achieves the LIFO calls
complexity of Õ(m+

√
mL/µ), computation rounds complexity of Õ(L/µ), and communication

complexity of Õ(
√
χL/µ). In contrast, the existing state-of-the-art method OADSVI requires the

LIFO calls complexity of Õ(m+m3/2L/µ), computation rounds complexity of Õ(
√
mL/µ), and

communication complexity of Õ(
√
mχL/µ).

If the heterogeneity among nodes further increases, the local smoothness parameters may exceed
Ω(

√
m) relative to L, as demonstrated by the following example. (In fact, the local smoothness

parameters can be arbitrarily large relative to L.)
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Example A.2. Using the same definition of h(x,y) as in equation (4), define the local functions as

fi(x,y) =


(1 +m2)h(x,y), if i = 1,

(1−m2)h(x,y), if i = 2,

h(x,y), otherwise.

Then the global objective remains f(x,y) = h(x,y), which is L-smooth. Following the calculation
as in Example A.1, it is straightforward to verify that L̄ =

√
1 +m3L and Ll = L̄l = Lmax =

(1 +m2)L.

For Example A.2, DIVERSE achieves the LIFO calls complexity of Õ(m + mL/µ), computa-
tion rounds complexity of Õ(L/µ), and communication complexity of Õ(

√
χL/µ), while existing

methods require the LIFO calls complexity of Õ(m+m3L/µ), computation rounds complexity of
Õ(m2L/µ), and communication complexity of Õ(m2√χL/µ).

B Some Basic Results

In this section, we establish the non-negativity of the Lyapunov functions, and then present some
useful lemmas.

B.1 The Non-Negativity of Lyapunov Functions

In this section, we prove that the defined Lyapunov functions Φ and Ψ are non-negative when
η ≤ 1/(4L). Recalling the definition of Φk, we have

Φk =

(
1

η
+

3µ

2

)
∥z̄k − z∗∥2 + β

η
∥z̄k − v̄k−1∥2 + 1

8η
∥z̄k − z̄k−1∥2

+ 2⟨g(z̄k−1)− g(z̄k), z̄k − z∗⟩+ β + ηµ

pη
∥v̄k − z∗∥2

≥ 1

2η
∥z̄k − z∗∥2 + 2

〈
g(z̄k−1)− g(z̄k), z̄k − z∗

〉
+

1

8η
∥z̄k − z̄k−1∥2

≥ 1

2η
∥z̄k − z∗∥2 − 1

8ηL2
∥g(z̄k)− g(z̄k−1)∥2 − 8ηL2∥z̄k − z∗∥2 + 1

8η
∥z̄k − z̄k−1∥2

≥ 1

2η
∥z̄k − z∗∥2 − 1

8η
∥z̄k − z̄k−1∥2 − 8ηL2∥z̄k − z∗∥2 + 1

8η
∥z̄k − z̄k−1∥2

=

(
1

2η
− 8ηL2

)
∥z̄k − z∗∥2

≥ 0,

where the third inequality holds by Assumption 2.2 and the last inequality is based on η ≤ 1/(4L).

Similarly, for Ψk, we have

Ψk =

(
1

η
+

3µ

2

)
∥z̄k − z∗∥2 + 3

4η
∥z̄k − z̄k−1∥2 + 2⟨g(z̄k−1)− g(z̄k), z̄k − z∗⟩

≥ 1

2η
∥z̄k − z∗∥2 + 2

〈
g(z̄k−1)− g(z̄k), z̄k − z∗

〉
+

1

8η
∥z̄k − z̄k−1∥2

≥ 0.

B.2 Useful Lemmas

In this section, we present basic lemmas that will be used in the subsequent proofs. Firstly, based on
Assumption 2.3, we can derive the following lemma.
Lemma B.1. Under Assumption 2.3, we have

∥gi,j(z)− gi,j(z
′)∥2 ≤ mnL̄2∥z− z′∥2, (5)
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and

∥gi(z)− gi(z
′)∥2 ≤ mL̄2∥z− z′∥2, (6)

for all z, z′ ∈ Rdz , i ∈ [m], and j ∈ [n].

Proof. For equation (5), it holds because

∥gi,j(z)− gi,j(z
′)∥2 ≤

m∑
i=1

n∑
j=1

∥gi,j(z)− gi,j(z
′)∥2 ≤ mnL̄2∥z− z′∥2,

where the last inequality is based on Assumption 2.3. Equation (6) is due to the fact that

∥gi(z)− gi(z
′)∥2 = ∥ 1

n

n∑
j=1

(gi,j(z)− gi,j(z
′)) ∥2

≤ 1

n

n∑
j=1

∥gi,j(z)− gi,j(z
′)∥2

≤ 1

n

m∑
i=1

n∑
j=1

∥gi,j(z)− gi,j(z
′)∥2

≤ mL̄2∥z− z′∥2.

This completes the proof.

The following proposition [87] characterizes the convergence of Algorithm 1.
Proposition B.2 (Ye et al. [87, Proposition 1]). Under Assumption 2.4, Algorithm 1 holds that

1

m
1⊤UR = ū0

and

∥UR − 1ū0∥ ≤ c1
(
1− c2

√
1− λ2(W)

)R∥U0 − 1ū0∥,

where ū0 = 1
m1⊤U0, c1 =

√
14, and c2 = 1− 1/

√
2.

The following lemma shows a crucial property of gradient tracking.
Lemma B.3. For Algorithm 2, it holds that

s̄k = δ̄k. (7)

Proof. From Proposition B.2, combined with the update of Sk in Algorithm 2 (Line 8), we have

s̄k =
1

m
1⊤Sk

=
1

m
1⊤FastMix(Sk−1 +∆k −∆k−1,W, R)

= s̄k−1 + δ̄k − δ̄k−1.

Note that s̄0 = δ̄0. By induction, it is straightforward to verify that s̄k = δ̄k holds for k ≥ 0.

C The Proofs for Section 3

In this section, we prove the lemmas and Theorem 3.7 in Section 3. Specifically, it is organized as
follows:

• In Appendix C.1, we prove Lemma 3.1, which provides an upper bound for the Lyapunov
function Φ.
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• In Appendix C.2, we provide the proof of Lemma 3.2, which bounds the consensus errors of
Z and V.

• In Appendix C.3, Lemma 3.3 is established, bounding the consensus error of S.

• In Appendix C.4, we prove Lemma 3.5 by applying Lemmas 3.1–3.3 and induction.

• In Appendix C.5, Lemma 3.6 is established using a similar approach to Lemma 3.5.

• Theorem 3.7 is proved in Appendix C.6.

C.1 The Proof of Lemma 3.1

It follows from Line 9 of Algorithm 2 and equation (7) that

z̄k+1 =
1

m
1⊤Zk+1

=
1

m
1⊤FastMix

(
(1− β)Zk + βVk − ηSk,W, R

)
= (1− β)z̄k + βv̄k − ηs̄k

= (1− β)z̄k + βv̄k − ηδ̄k,

which implies

z̄k+1 − z̄k = β
(
v̄k − z̄k

)
− ηδ̄k.

We have

∥z̄k+1 − z∗∥2 =∥z̄k+1 − z̄k + z̄k − z∗∥2

=∥z̄k − z∗∥2 + 2⟨z̄k+1 − z̄k, z̄k − z∗⟩+ ∥z̄k+1 − z̄k∥2

=∥z̄k − z∗∥2 + 2⟨z̄k+1 − z̄k, z̄k+1 − z∗⟩ − ∥z̄k+1 − z̄k∥2

=∥z̄k − z∗∥2 + 2β⟨v̄k − z̄k, z̄k+1 − z∗⟩
− 2η⟨δ̄k − g(z∗), z̄k+1 − z∗⟩ − ∥z̄k+1 − z̄k∥2

=∥z̄k − z∗∥2 + 2β⟨v̄k − z∗, z̄k+1 − z∗⟩ − 2β⟨z̄k − z∗, z̄k+1 − z∗⟩
− 2η⟨δ̄k − g(z∗), z̄k+1 − z∗⟩ − ∥z̄k+1 − z̄k∥2

=∥z̄k − z∗∥2 − β
(
∥z̄k+1 − v̄k∥2 − ∥v̄k − z∗∥2 − ∥z̄k+1 − z∗∥2

)
+ β

(
∥z̄k+1 − z̄k∥2 − ∥z̄k − z∗∥2 − ∥z̄k+1 − z∗∥2

)
− ∥z̄k+1 − z̄k∥2 − 2η⟨δ̄k − g(z∗), z̄k+1 − z∗⟩

=(1− β)∥z̄k − z∗∥2 − β∥z̄k+1 − v̄k∥2 + β∥v̄k − z∗∥2 − (1− β)∥z̄k+1 − z̄k∥2

− 2η⟨δ̄k − g(z∗), z̄k+1 − z∗⟩. (8)

Then we bound the term E
[
⟨δ̄k − g(z∗), z̄k+1 − z∗⟩

]
. Note that

E
[
⟨δ̄k − g(z∗), z̄k+1 − z∗⟩

]
= E

[
⟨δ̄k − Eξk [δ̄

k], z̄k − z∗⟩
]
+ E

[
⟨δ̄k − Eξk [δ̄

k], z̄k+1 − z̄k⟩
]

+ E
[
⟨Eξk [δ̄

k]− g(z∗), z̄k+1 − z∗⟩
]
,

(9)
where Eξk denotes the expectation taken over random variables {ξki,j}

m,n
i,j=1.

For the first term of equation (9), we have

E
[
⟨δ̄k − Eξk [δ̄

k], z̄k − z∗⟩
]
= E

[
Eξk

[
⟨δ̄k − Eξk [δ̄

k], z̄k − z∗⟩
]]

= 0. (10)

For the second term of equation (9), we aim to obtain its lower bound, which is equivalent to finding
an upper bound for E

[
⟨δ̄k − Eξk [δ̄

k], z̄k − z̄k+1⟩
]
. By Young’s inequality, we have

E
[
⟨δ̄k − Eξk [δ̄

k], z̄k − z̄k+1⟩
]
≤ ηE

[
∥δ̄k − Eξk [δ̄

k]∥2
]
+

1

4η
E
[
∥z̄k+1 − z̄k∥2

]
. (11)
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Recalling the definition that

δ̄k =
1

m

m∑
i=1

gi(v
k−1
i ) +

1

mn

m∑
i=1

n∑
j=1

ξki,j
q

(
gi,j(z

k
i )− gi,j(v

k−1
i ) + α(gi,j(z

k
i )− gi,j(z

k−1
i ))

)
,

we have

Eξk
[
∥δ̄k − Eξk [δ̄

k]∥2
]
≤ 2Eξk


∥∥∥∥∥∥ 1

mn

m∑
i=1

n∑
j=1

(
ξki,j
q

− 1

)(
gi,j(z

k
i )− gi,j(v

k−1
i )

)∥∥∥∥∥∥
2


+ 2Eξk


∥∥∥∥∥∥ α

mn

m∑
i=1

n∑
j=1

(
ξki,j
q

− 1

)(
gi,j(z

k
i )− gi,j(z

k−1
i )

)∥∥∥∥∥∥
2
 .

(12)

By Yong’s inequality, the first term of equation (12) can be bounded by

2Eξk


∥∥∥∥∥∥ 1

mn

m∑
i=1

n∑
j=1

(
ξki,j
q

− 1

)(
gi,j(z

k
i )− gi,j(v

k−1
i )

)∥∥∥∥∥∥
2


= 2Eξk

∥∥∥∥∥ 1

mn

m∑
i=1

n∑
j=1

(
ξki,j
q

− 1

)(
gi,j(z

k
i )− gi,j(z̄

k)
)

− 1

mn

m∑
i=1

n∑
j=1

(
ξki,j
q

− 1

)(
gi,j(v

k−1
i )− gi,j(v̄

k−1)
)

+
1

mn

m∑
i=1

n∑
j=1

(
ξki,j
q

− 1

)(
gi,j(z̄

k)− gi,j(v̄
k−1)

) ∥∥∥∥∥
2


≤ 6Eξk

∥∥∥∥∥ 1

mn

m∑
i=1

n∑
j=1

(
ξki,j
q

− 1

)(
gi,j(z

k
i )− gi,j(z̄

k)
) ∥∥∥∥∥

2


+ 6Eξk

∥∥∥∥∥ 1

mn

m∑
i=1

n∑
j=1

(
ξki,j
q

− 1

)(
gi,j(v

k−1
i )− gi,j(v̄

k−1)
) ∥∥∥∥∥

2
 (13)

+ 6Eξk

∥∥∥∥∥ 1

mn

m∑
i=1

n∑
j=1

(
ξki,j
q

− 1

)(
gi,j(z̄

k)− gi,j(v̄
k−1)

) ∥∥∥∥∥
2
 .

For the first term of equation (13), we have

Eξk


∥∥∥∥∥∥ 1

mn

m∑
i=1

n∑
j=1

(
ξki,j
q

− 1

)(
gi,j(z

k
i )− gi,j(z̄

k)
)∥∥∥∥∥∥

2


=
1

m2n2

m∑
i=1

n∑
j=1

1− q

q

∥∥(gi,j(z
k
i )− gi,j(z̄

k)
)∥∥2

≤ 1

m2n2q

m∑
i=1

n∑
j=1

∥∥(gi,j(z
k
i )− gi,j(z̄

k)
)∥∥2

≤ L̄2

mnq

m∑
i=1

n∑
j=1

∥∥zki − z̄k
∥∥2

=
nL̄2

b

∥∥Zk − 1z̄k
∥∥2 ,
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where the second inequality holds by equation (5).

Similarly, it holds that

Eξk


∥∥∥∥∥∥ 1

mn

m∑
i=1

n∑
j=1

(
ξki,j
q

− 1

)(
gi,j(v

k−1
i )− gi,j(v̄

k−1)
)∥∥∥∥∥∥

2
 ≤ nL̄2

b

∥∥Vk−1 − 1v̄k−1
∥∥2 .

For the third term of equation (13),

Eξk


∥∥∥∥∥∥ 1

mn

m∑
i=1

n∑
j=1

(
ξki,j
q

− 1

)(
gi,j(z̄

k)− gi,j(v̄
k−1)

)∥∥∥∥∥∥
2


=
1

m2n2

m∑
i=1

n∑
j=1

1− q

q

∥∥(gi,j(z̄
k)− gi,j(v̄

k−1)
)∥∥2

≤ 1

m2n2q

m∑
i=1

n∑
j=1

∥∥(gi,j(z̄
k)− gi,j(v̄

k−1)
)∥∥2

≤ L̄2

mnq

∥∥z̄k − v̄k−1
∥∥2

=
L̄2

b

∥∥z̄k − v̄k−1
∥∥2 ,

where the second inequality holds by Assumption 2.3.

Thus, an upper bound for equation (13) is given by

2Eξk


∥∥∥∥∥∥ 1

mn

m∑
i=1

n∑
j=1

(
ξki,j
q

− 1

)(
gi,j(z

k
i )− gi,j(v

k−1
i )

)∥∥∥∥∥∥
2


≤ 6nL̄2

b

∥∥Zk − 1z̄k
∥∥2 + 6nL̄2

b

∥∥Vk−1 − 1v̄k−1
∥∥2 + 6L̄2

b

∥∥z̄k − v̄k−1
∥∥2 .

Similarly, the second term of equation (12) can be bounded by

Eξk

[∥∥∥∥ α

mn

m∑
i=1

n∑
j=1

(
ξki,j
q

− 1

)(
gi,j(z

k
i )− gi,j(z

k−1
i )

) ∥∥∥∥2]

≤ α2

(
6nL̄2

b
∥Zk − 1z̄k∥2 + 6nL̄2

b
∥Zk−1 − 1z̄k−1∥2 + 6L̄2

b
∥z̄k − z̄k−1∥2

)
=

6nL̄2α2

b
∥Zk − 1z̄k∥2 + 6nL̄2α2

b
∥Zk−1 − 1z̄k−1∥2 + 6L̄2α2

b
∥z̄k − z̄k−1∥2.

Consequently, an upper bound for equation (11) is

E
[
⟨δ̄k − Eξk [δ̄

k], z̄k − z̄k+1⟩
]

≤ ηE
[
∥δ̄k − Eξk [δ̄

k]∥2
]
+

1

4η
E
[
∥z̄k+1 − z̄k∥2

]
≤
(
6ηnL̄2

b
+

6ηnL̄2α2

b

)
E
[
∥Zk − 1z̄k∥2

]
+

6ηnL̄2

b
E
[
∥Vk−1 − 1v̄k−1∥2

]
+

6ηnL̄2α2

b
E
[
∥Zk−1 − 1z̄k−1∥2

]
+

6ηL̄2

b
E
[
∥z̄k − v̄k−1∥2

]
+

6ηL̄2α2

b
E
[
∥z̄k − z̄k−1∥2

]
+

1

4η
E
[
∥z̄k+1 − z̄k∥2

]
. (14)
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For the third term of equation (9), we have

E
[〈
Eξk [δ̄

k]− g(z∗), z̄k+1 − z∗
〉]

= E

[〈
1

m

m∑
i=1

gi(z
k
i ) + α

(
1

m

m∑
i=1

gi(z
k
i )−

1

m

m∑
i=1

gi(z
k−1
i )

)
− g(z∗), z̄k+1 − z∗

〉]

= E

[〈
1

m

m∑
i=1

gi(z
k
i ) + α

(
1

m

m∑
i=1

gi(z
k
i )−

1

m

m∑
i=1

gi(z
k−1
i )

)
− g(z̄k)− α

(
g(z̄k)− g(z̄k−1)

)
, z̄k+1 − z∗

〉]
+ E

[〈
g(z̄k) + α

(
g(z̄k)− g(z̄k−1)

)
− g(z∗), z̄k+1 − z∗

〉]
≥ − 1

µ
E

∥∥∥∥∥ 1

m

m∑
i=1

gi(z
k
i ) + α

(
1

m

m∑
i=1

gi(z
k
i )−

1

m

m∑
i=1

gi(z
k−1
i )

)
− g(z̄k)− α

(
g(z̄k)− g(z̄k−1)

)∥∥∥∥∥
2


− µ

4
E
[
∥z̄k+1 − z∗∥2

]
+ E

[〈
g(z̄k) + α

(
g(z̄k)− g(z̄k−1)

)
− g(z∗), z̄k+1 − z∗

〉]
≥ − 3

µ
E

∥∥∥∥∥ 1

m

m∑
i=1

gi(z
k
i )− g(z̄k)

∥∥∥∥∥
2
− 3

µ
E

∥∥∥∥∥ αm
m∑
i=1

gi(z
k
i )− g(z̄k)

∥∥∥∥∥
2


− 3

µ
E

∥∥∥∥∥ αm
m∑
i=1

gi(z
k−1
i )− g(z̄k−1)

∥∥∥∥∥
2
− µ

4
E
[
∥z̄k+1 − z∗∥2

]
+ E

[〈
g(z̄k) + α

(
g(z̄k)− g(z̄k−1)

)
− g(z∗), z̄k+1 − z∗

〉]
, (15)

where the inequalities hold by Young’s inequality.

Note that ∥∥∥∥∥ 1

m

m∑
i=1

gi(z
k
i )− gi(z̄

k)

∥∥∥∥∥
2

≤ 1

m

m∑
i=1

∥∥gi(z
k
i )− gi(z̄

k)
∥∥2

≤ 1

mn

m∑
i=1

n∑
j=1

∥∥gi,j(z
k
i )− gi,j(z̄

k)
∥∥2

≤ 1

mn

m∑
i=1

n∑
j=1

mnL̄2
∥∥zki − z̄k

∥∥2
= nL̄2

∥∥Zk − 1z̄k
∥∥2 ,

where the first inequality is based on the fact
∥∥ 1
m

∑m
i=1 ai

∥∥2 ≤ 1
m

∑m
i=1 ∥ai∥2; the second inequality

follows similarly; the third inequality is based on equation (5), and〈
g(z̄k) + α

(
g(z̄k)− g(z̄k−1)

)
− g(z∗), z̄k+1 − z∗

〉
=
〈
g(z̄k)− g(z̄k+1), z̄k+1 − z∗

〉
− α

〈
g(z̄k−1)− g(z̄k), z̄k+1 − z̄k

〉
− α

〈
g(z̄k−1)− g(z̄k), z̄k − z∗

〉
+
〈
g(z̄k+1)− g(z∗), z̄k+1 − z∗

〉
≥
〈
g(z̄k)− g(z̄k+1), z̄k+1 − z∗

〉
− α

2

(
4ηα∥g(z̄k)− g(z̄k−1)∥2 + 1

4ηα
∥z̄k+1 − z̄k∥2

)
− α

〈
g(z̄k−1)− g(z̄k), z̄k − z∗

〉
+ µ∥z̄k+1 − z∗∥2

≥
〈
g(z̄k)− g(z̄k+1), z̄k+1 − z∗

〉
− 2ηα2L2∥z̄k − z̄k−1∥2 − 1

8η
∥z̄k+1 − z̄k∥2

− α
〈
g(z̄k−1)− g(z̄k), z̄k − z∗

〉
+ µ∥z̄k+1 − z∗∥2,

where the first inequality holds due to Young’s inequality and Assumption 2.1 (equivalently, the
strong monotonicity), while the second inequality follows from Assumption 2.2. The lower bound of
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equation (15) can be further expressed as

E
[
⟨Eξk [δ̄

k]− g(z∗), z̄k+1 − z∗⟩
]

≥ −3nL̄2

µ
(1 + α2)E

[
∥Zk − 1z̄k∥2

]
− 3nL̄2α2

µ
E
[
∥Zk−1 − 1z̄k−1∥2

]
+ E

[
⟨g(z̄k)− g(z̄k+1), z̄k+1 − z∗⟩

]
− 2ηα2L2E

[
∥z̄k − z̄k−1∥2

]
− 1

8η
E
[
∥z̄k+1 − z̄k∥2

]
− αE

[
⟨g(z̄k−1)− g(z̄k), z̄k − z∗⟩

]
+

3µ

4
E
[
∥z̄k+1 − z∗∥2

]
.

(16)

Combining the results of equations (8), (9), (10), (14), and (16), we obtain the upper bound of
E
[
∥z̄k+1 − z∗∥2

]
:

E
[
∥z̄k+1 − z∗∥2

]
= (1− β)E

[
∥z̄k − z∗∥2

]
− βE

[
∥z̄k+1 − v̄k∥2

]
+ βE

[
∥v̄k − z∗∥2

]
− (1− β)E

[
∥z̄k+1 − z̄k∥2

]
− 2ηE

[
⟨δ̄k − g(z∗), z̄k+1 − z∗⟩

]
≤ (1− β)E

[
∥z̄k − z∗∥2

]
− βE

[
∥z̄k+1 − v̄k∥2

]
+ βE

[
∥v̄k − z∗∥2

]
− (1− β)E

[
∥z̄k+1 − z̄k∥2

]
+

1

2
E
[
∥z̄k+1 − z̄k∥2

]
+

12η2nL̄2(1 + α2)

b
E
[
∥Zk − 1z̄k∥2

]
+

12η2nL̄2

b
E
[
∥Vk−1 − 1v̄k−1∥2

]
+

12η2nL̄2α2

b
E
[
∥Zk−1 − 1z̄k−1∥2

]
+

12η2L̄2

b
E
[
∥z̄k − v̄k−1∥2

]
+

12η2L̄2α2

b
E
[
∥z̄k − z̄k−1∥2

]
+

6ηnL̄2

µ
(1 + α2)E

[
∥Zk − 1z̄k∥2

]
+

6ηnL̄2α2

µ
E
[
∥Zk−1 − 1z̄k−1∥2

]
− 2ηE

[
⟨g(z̄k)− g(z̄k+1), z̄k+1 − z∗⟩

]
+ 2ηαE

[
⟨g(z̄k−1)− g(z̄k), z̄k − z∗⟩

]
+ 4η2α2L2E

[
∥z̄k − z̄k−1∥2

]
+

1

4
E
[
∥z̄k+1 − z̄k∥2

]
− 3

2
µηE

[
∥z̄k+1 − z∗∥2

]
.

Rearranging the above equations yields(
1

η
+

3

2
µ

)
E
[
∥z̄k+1 − z∗∥2

]
+

β

η
E
[
∥z̄k+1 − v̄k∥2

]
+

(
1

4η
− β

η

)
E
[
∥z̄k+1 − z̄k∥2

]
+ 2E

[
⟨g(z̄k)− g(z̄k+1), z̄k+1 − z∗⟩

]
≤
(
1

η
− β

η

)
E
[
∥z̄k − z∗∥2

]
+

β

η
E
[
∥v̄k − z∗∥2

]
+

12ηL̄2

b
E
[
∥z̄k − v̄k−1∥2

]
+

(
12ηL̄2α2

b
+ 4ηα2L2

)
E
[
∥z̄k − z̄k−1∥2

]
+ 2αE

[
⟨g(z̄k−1)− g(z̄k), z̄k − z∗⟩

]
+

(
12ηnL̄2

b
+

6nL̄2

µ

)
(1 + α2)E

[
∥Zk − 1z̄k∥2

]
+

12ηnL̄2

b
E
[
∥Vk−1 − 1v̄k−1∥2

]
+

(
12ηnL̄2α2

b
+

6nL̄2α2

µ

)
E
[
∥Zk−1 − 1z̄k−1∥2

]
.

(17)

According to the update rule (Line 10) in Algorithm 2, we have

β + ηµ

pη
E
[
∥v̄k+1 − z∗∥2

]
=

β + ηµ

η
E
[
∥z̄k − z∗∥2

]
+ (1− p)

β + ηµ

pη
E
[
∥v̄k − z∗∥2

]
. (18)

30



By adding equation (18) to both sides of equation (17) and rearranging the terms, we obtain(
1

η
+

3

2
µ

)
E
[
∥z̄k+1 − z∗∥2

]
+

β

η
E
[
∥z̄k+1 − v̄k∥2

]
+

(
1

4η
− β

η

)
E
[
∥z̄k+1 − z̄k∥2

]
+ 2E

[
⟨g(z̄k)− g(z̄k+1), z̄k+1 − z∗⟩

]
+

β + ηµ

pη
E
[
∥v̄k+1 − z∗∥2

]
≤
(
1

η
+ µ

)
E
[
∥z̄k − z∗∥2

]
+

12ηL̄2

b
E
[
∥z̄k − v̄k−1∥2

]
+

(
12ηL̄2α2

b
+ 4ηα2L2

)
E
[
∥z̄k − z̄k−1∥2

]
+ 2αE

[
⟨g(z̄k−1)− g(z̄k), z̄k − z∗⟩

]
+

(
1− pηµ

β + ηµ

)
β + ηµ

pη
E
[
∥v̄k − z∗∥2

]
+

(
12ηnL̄2

b
+

6nL̄2

µ

)
(1 + α2)E

[
∥Zk − 1z̄k∥2

]
+

12ηnL̄2

b
E
[
∥Vk−1 − 1v̄k−1∥2

]
+

(
12ηnL̄2α2

b
+

6nL̄2α2

µ

)
E
[
∥Zk−1 − 1z̄k−1∥2

]
.

(19)

Based on the choice of parameters, it follows that

1

η
+ µ ≤

(
1− µη

4

)(1

η
+

3

2
µ

)
,

12ηL̄2

b
≤ αβ

η
,

1

4η
− β

η
≥ 1

8η
, and

12ηL̄2α2

b
+ 4ηα2L2 ≤ α

8η
.

Thus, equation (19) implies that(
1

η
+

3

2
µ

)
E
[
∥z̄k+1 − z∗∥2

]
+

β

η
E
[
∥z̄k+1 − v̄k∥2

]
+

1

8η
E
[
∥z̄k+1 − z̄k∥2

]
+ 2E

[
⟨g(z̄k)− g(z̄k+1), z̄k+1 − z∗⟩

]
+

β + ηµ

pη
E
[
∥v̄k+1 − z∗∥2

]
≤
(
1− µη

4

)(1

η
+

3

2
µ

)
E
[
∥z̄k − z∗∥2

]
+ α · β

η
E
[
∥z̄k − v̄k−1∥2

]
+ α · 1

8η
E
[
∥z̄k − z̄k−1∥2

]
+ 2αE

[
⟨g(z̄k−1)− g(z̄k), z̄k − z∗⟩

]
+

(
1− pηµ

β + ηµ

)
β + ηµ

pη
E
[
∥v̄k − z∗∥2

]
+

(
12ηnL̄2

b
+

6nL̄2

µ

)
(1 + α2)

(
E
[
∥Zk − 1z̄k∥2

]
+ E

[
∥Zk−1 − 1z̄k−1∥2

]
+ E

[
∥Vk−1 − 1v̄k−1∥2

])
.

Recalling

α = max

{
1− µη

4
, 1− pηµ

β + ηµ

}
, C1 =

(
12ηnL̄2

b
+

6nL̄2

µ

)
(1 + α2),

we thereby complete the proof of Lemma 3.1.

C.2 The proof of Lemma 3.2

Based on the update rule for Zk+1 in Algorithm 2, we obtain

E
[
∥Zk+1 − 1z̄k+1∥2

]
= E

[∥∥FastMix ((1− β)Zk + βVk − ηSk,W, R
)

− 1

m
11⊤FastMix

(
(1− β)Zk + βVk − ηSk,W, R

) ∥∥2]
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≤ ρ2E
[∥∥(1− β)Zk + βVk − ηSk − 1

(
(1− β)z̄k + βv̄k − ηs̄k

)∥∥2]
≤ 3ρ2(1− β)2E

[
∥Zk − 1z̄k∥2

]
+ 3ρ2β2E

[
∥Vk − 1v̄k∥2

]
+ 3ρ2η2E

[
∥Sk − 1s̄k∥2

]
, (20)

where the first inequality follows from Proposition B.2, and the second inequality is due to Young’s
inequality.

For the consensus error of Vk+1, we have
E
[
∥Vk+1 − 1v̄k+1∥2

]
= pE

[∥∥∥∥FastMix (Zk,W, R
)
− 1

m
11⊤FastMix

(
Zk,W, R

)∥∥∥∥2
]
+ (1− p)E

[
∥Vk − 1v̄k∥2

]
≤ pρ2E

[
∥Zk − 1z̄k∥2

]
+ (1− p)E

[
∥Vk − 1v̄k∥2

]
,

where the inequality holds by Proposition B.2.

C.3 The proof of Lemma 3.3

According to the update rule for Sk+1 in Algorithm 2, we have

∥Sk+1 − 1s̄k+1∥2

=

∥∥∥∥FastMix (Sk +∆k+1 −∆k,W, R
)
− 1

m
11⊤FastMix

(
Sk +∆k+1 −∆k,W, R

)∥∥∥∥2
≤ ρ2

∥∥∥∥Sk +∆k+1 −∆k − 1

m
11⊤ (Sk +∆k+1 −∆k

)∥∥∥∥2
≤ 2ρ2∥Sk − 1s̄k∥2 + 2ρ2∥∆k+1 −∆k − 1

m
11⊤(∆k+1 −∆k)∥2

≤ 2ρ2∥Sk − 1s̄k∥2 + 2ρ2∥∆k+1 −∆k∥2, (21)
where the second inequality holds due to Young’s inequality, and the last inequality follows from the
fact that ∥A− 1

m11⊤A∥ ≤ ∥A∥ for any A ∈ Rm×dz .

Next, we bound the term E
[
∥∆k+1 −∆k∥2

]
. It follows that

E
[
∥∆k+1 −∆k∥2

]
=

m∑
i=1

E
[
∥δk+1

i − δki ∥2
]

=

m∑
i=1

E

[∥∥∥∥∥gi(v
k
i )− gi(v

k−1
i ) +

1

n

n∑
j=1

ξki,j
q

((
gi,j(z

k+1
i )− gi,j(v

k
i )
)
+ α

(
gi,j(z

k+1
i )− gi,j(z

k
i )
))

− 1

n

n∑
j=1

ξk−1
i,j

q

((
gi,j(z

k
i )− gi,j(v

k−1
i )

)
+ α

(
gi,j(z

k
i )− gi,j(z

k−1
i )

))∥∥∥∥∥
2]

≤ 5

m∑
i=1

E
[
∥gi(v

k
i )− gi(v

k−1
i )∥2

]
+ 5

m∑
i=1

E

[∥∥∥∥∥ 1n
n∑

j=1

ξki,j
q

(
gi,j(z

k+1
i )− gi,j(v

k
i )
)∥∥∥∥∥

2]
(22)

+ 5

m∑
i=1

E


∥∥∥∥∥∥αn

n∑
j=1

ξki,j
q

(
gi,j(z

k+1
i )− gi,j(z

k
i )
)∥∥∥∥∥∥

2


+ 5

m∑
i=1

E


∥∥∥∥∥∥ 1n

n∑
j=1

ξk−1
i,j

q

(
gi,j(z

k
i )− gi,j(v

k−1
i )

)∥∥∥∥∥∥
2


+ 5

m∑
i=1

E


∥∥∥∥∥∥αn

n∑
j=1

ξk−1
i,j

q

(
gi,j(z

k
i )− gi,j(z

k−1
i )

)∥∥∥∥∥∥
2
 .
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For the first term of equation (22), it holds that

E
[
∥gi(v

k
i )− gi(v

k−1
i )∥2

]
≤ mL̄2E

[
∥vk

i − vk−1
i ∥2

]
≤ 3mL̄2E

[
∥vk

i − v̄k∥2
]
+ 3mL̄2E

[
∥v̄k − v̄k−1∥2

]
+ 3mL̄2E

[
∥vk−1

i − v̄k−1∥2
]
,

(23)

where the first inequality holds by equation (6) and the second inequality is due to Young’s inequality.

For the other terms in equation (22), Note that

Eξk


∥∥∥∥∥∥ 1n

n∑
j=1

ξki,j
q

(
gi,j(z

k+1
i )− gi,j(v

k
i )
)∥∥∥∥∥∥

2


≤ 1

n

n∑
j=1

Eξk

∥∥∥∥∥ξki,jq (
gi,j(z

k+1
i )− gi,j(v

k
i )
)∥∥∥∥∥

2


=
1

nq

n∑
j=1

∥gi,j(z
k+1
i )− gi,j(v

k
i )∥2

≤ mnL̄2

q
∥zk+1

i − vk
i ∥2

≤ 3m2n2L̄2

b
∥zk+1

i − z̄k+1∥2 + 3m2n2L̄2

b
∥z̄k+1 − v̄k∥2 + 3m2n2L̄2

b
∥vk

i − v̄k∥2,

where the first inequality is based on the fact that
∥∥ 1
n

∑n
i=1 ai

∥∥2 ≤ 1
n

∑n
i=1 ∥ai∥2; the second

inequality is based on equation (5); the last inequality holds by Young’s inequality. Further, we obtain

E

[∥∥∥∥∥ 1

n

n∑
j=1

ξki,j
q

(
gi,j(z

k+1
i )− gi,j(v

k
i )
)∥∥∥∥∥

2]

≤ 3m2n2L̄2

b
E
[
∥zk+1

i − z̄k+1∥2
]
+

3m2n2L̄2

b
E
[
∥z̄k+1 − v̄k∥2

]
+

3m2n2L̄2

b
E
[
∥vk

i − v̄k∥2
]
. (24)

Similarly, for the third term in equation (22), we have

E

[∥∥∥∥∥αn
n∑

j=1

ξki,j
q

(
gi,j(z

k+1
i )− gi,j(z

k
i )
)∥∥∥∥∥

2]

≤ 3m2n2L̄2α2

b
E
[
∥zk+1

i − z̄k+1∥2
]
+

3m2n2L̄2α2

b
E
[
∥z̄k+1 − z̄k∥2

]
+

3m2n2L̄2α2

b
E
[
∥zki − z̄k∥2

]
.

(25)

For the fourth term, it follows that

E

[∥∥∥∥∥ 1

n

n∑
j=1

ξk−1
i,j

q

(
gi,j(z

k
i )− gi,j(v

k−1
i )

)∥∥∥∥∥
2]

≤ 3m2n2L̄2

b
E
[
∥zki − z̄k∥2

]
+

3m2n2L̄2

b
E
[
∥z̄k − v̄k−1∥2

]
+

3m2n2L̄2

b
E
[
∥vk−1

i − v̄k−1∥2
]
. (26)

For the fifth term, it holds that

E

[∥∥∥∥∥αn
n∑

j=1

ξk−1
i,j

q

(
gi,j(z

k
i )− gi,j(z

k−1
i )

)∥∥∥∥∥
2]

≤ 3m2n2L̄2α2

b
E
[
∥zki − z̄k∥2

]
+

3m2n2L̄2α2

b
E
[
∥z̄k − z̄k−1∥2

]
+

3m2n2L̄2α2

b
E
[
∥zk−1

i − z̄k−1∥2
]
.

(27)
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Substituting the results of equations (23), (24), (25), (26), and (27) into equation (22), we finally
obtain an upper bound for E

[
∥∆k+1 −∆k∥2

]
as

E
[
∥∆k+1 −∆k∥2

]
≤ 15mL̄2E

[
∥Vk − 1v̄k∥2

]
+ 15m2L̄2E

[
∥v̄k − v̄k−1∥2

]
+ 15mL̄2E

[
∥Vk−1 − 1v̄k−1∥2

]
+

15m2n2L̄2

b
E
[
∥Zk+1 − 1z̄k+1∥2

]
+

15m3n2L̄2

b
E
[
∥z̄k+1 − v̄k∥2

]
+

15m2n2L̄2

b
E
[
∥Vk − 1v̄k∥2

]
+

15m2n2L̄2α2

b
E
[
∥Zk+1 − 1z̄k+1∥2

]
+

15m3n2L̄2α2

b
E
[
∥z̄k+1 − z̄k∥2

]
+

15m2n2L̄2α2

b
E
[
∥Zk − 1z̄k∥2

]
+

15m2n2L̄2

b
E
[
∥Zk − 1z̄k∥2

]
+

15m3n2L̄2

b
E
[
∥z̄k − v̄k−1∥2

]
+

15m2n2L̄2

b
E
[
∥Vk−1 − 1v̄k−1∥2

]
+

15m2n2L̄2α2

b
E
[
∥Zk − 1z̄k∥2

]
+

15m3n2L̄2α2

b
E
[
∥z̄k − z̄k−1∥2

]
+

15m2n2L̄2α2

b
E
[
∥Zk−1 − 1z̄k−1∥2

]
≤ 30m2n2L̄2E

[
∥Vk − 1v̄k∥2

]
+ 15m2L̄2E

[
∥v̄k − v̄k−1∥2

]
+ 30m2n2L̄2E

[
∥Vk−1 − 1v̄k−1∥2

]
+ 30m2n2L̄2E

[
∥Zk+1 − 1z̄k+1∥2

]
+ 45m2n2L̄2E

[
∥Zk − 1z̄k∥2

]
+ 15m2n2L̄2α2E

[
∥Zk−1 − 1z̄k−1∥2

]
+ 15m3n2L̄2E

[
∥z̄k+1 − v̄k∥2

]
+ 15m3n2L̄2α2E

[
∥z̄k+1 − z̄k∥2

]
+ 15m3n2L̄2E

[
∥z̄k − v̄k−1∥2

]
+ 15m3n2L̄2α2E

[
∥z̄k − z̄k−1∥2

]
≤ 30m2n2L̄2E

[
∥Vk − 1v̄k∥2

]
+ 15m2L̄2E

[
∥v̄k − v̄k−1∥2

]
+ 30m2n2L̄2E

[
∥Vk−1 − 1v̄k−1∥2

]
+ 30m2n2L̄2

(
3ρ2(1− β)2E

[
∥Zk − 1z̄k∥2

]
+ 3ρ2β2E

[
∥Vk − 1v̄k∥2

]
+ 3ρ2η2E

[
∥Sk − 1s̄k∥2

])
+ 45m2n2L̄2E

[
∥Zk − 1z̄k∥2

]
+ 15m2n2L̄2α2E

[
∥Zk−1 − 1z̄k−1∥2

]
+ 15m3n2L̄2E

[
∥z̄k+1 − v̄k∥2

]
+ 15m3n2L̄2α2E

[
∥z̄k+1 − z̄k∥2

]
+ 15m3n2L̄2E

[
∥z̄k − v̄k−1∥2

]
+ 15m3n2L̄2α2E

[
∥z̄k − z̄k−1∥2

]
≤ 120m2n2L̄2E

[
∥Vk − 1v̄k∥2

]
+ 15m2L̄2E

[
∥v̄k − v̄k−1∥2

]
+ 30m2n2L̄2E

[
∥Vk−1 − 1v̄k−1∥2

]
+ 135m2n2L̄2E

[
∥Zk − 1z̄k∥2

]
+ 15m2n2L̄2α2E

[
∥Zk−1 − 1z̄k−1∥2

]
+ 90m2n2L̄2η2E

[
∥Sk − 1s̄k∥2

]
+ 15m3n2L̄2E

[
∥z̄k+1 − v̄k∥2

]
+ 15m3n2L̄2α2E

[
∥z̄k+1 − z̄k∥2

]
+ 15m3n2L̄2E

[
∥z̄k − v̄k−1∥2

]
+ 15m3n2L̄2α2E

[
∥z̄k − z̄k−1∥2

]
,

where the second inequality holds because b,m, n ≥ 1 and α ≤ 1; the third inequality follows from
equation (20); the last inequality is due to ρ < 1 and β ∈ [0, 1].

Substituting the above results into equation (21), we have

E
[
∥Sk+1 − 1s̄k+1∥2

]
≤ 2ρ2E

[
∥Sk − 1s̄k∥2

]
+ 2ρ2E

[
∥∆k+1 −∆k∥2

]
≤ 240m2n2L̄2ρ2E

[
∥Vk − 1v̄k∥2

]
+ 30m2L̄2ρ2E

[
∥v̄k − v̄k−1∥2

]
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+ 60m2n2L̄2ρ2E
[
∥Vk−1 − 1v̄k−1∥2

]
+ 270m2n2L̄2ρ2E

[
∥Zk − 1z̄k∥2

]
+ 30m2n2L̄2α2ρ2E

[
∥Zk−1 − 1z̄k−1∥2

]
+ (180m2n2L̄2η2ρ2 + 2ρ2)E

[
∥Sk − 1s̄k∥2

]
+ 30m3n2L̄2ρ2E

[
∥z̄k+1 − v̄k∥2

]
+ 30m3n2L̄2α2ρ2E

[
∥z̄k+1 − z̄k∥2

]
+ 30m3n2L̄2ρ2E

[
∥z̄k − v̄k−1∥2

]
+ 30m3n2L̄2α2ρ2E

[
∥z̄k − z̄k−1∥2

]
≤ 270m2n2L̄2ρ2

(
E
[
∥Zk − 1z̄k∥2

]
+ E

[
∥Zk−1 − 1z̄k−1∥2

]
+ E

[
∥Vk − 1v̄k∥2

]
+ E

[
∥Vk−1 − 1v̄k−1∥2

] )
+ (180m2n2L̄2η2 + 2)ρ2E

[
∥Sk − 1s̄k∥2

]
+ 60m2L̄2ρ2

(
E
[
∥v̄k − v̄∗∥2

]
+ E

[
∥v̄k−1 − v̄∗∥2

])
+ 30m3n2L̄2ρ2

(
E
[
∥z̄k+1 − v̄k∥2

]
+ E

[
∥z̄k+1 − z̄k∥2

]
+ E

[
∥z̄k − v̄k−1∥2

]
+ E

[
∥z̄k − z̄k−1∥2

] )
. (28)

With the choice of parameters β = p, it holds that

Φk ≥ β

η
∥z̄k − v̄k−1∥2 + 1

16η
∥z̄k − z̄k−1∥2 + 1

η
∥v̄k − z∗∥2.

Therefore,

∥z̄k − v̄k−1∥2 + ∥z̄k − z̄k−1∥2 + ∥v̄k − z∗∥2 ≤
(
16η +

η

β

)
Φk. (29)

Combining the results of equations (28) and (29), we obtain

E
[
∥Sk+1 − 1s̄k+1∥2

]
≤ C2ρ

2
(
E
[
∥Zk − 1z̄k∥2

]
+ E

[
∥Zk−1 − 1z̄k−1∥2

]
+ E

[
∥Vk − 1v̄k∥2

]
+ E

[
∥Vk−1 − 1v̄k−1∥2

] )
+ C3ρ

2E
[
∥Sk − 1s̄k∥2

]
+ C4ρ

2
(
E
[
Φk+1

]
+ E

[
Φk

]
+ E

[
Φk−1

])
,

where C2 = 270m2n2L̄2, C3 = 180m2n2L̄2η2 + 2, C4 = 60(16η + η/β)m3n2L̄2, and Φ−1 = 0.

C.4 The proof of Lemma 3.5

From the definition of ρ, it follows that

ρ2 = 14(1− (1− 1/
√
2)
√
1− λ2(W))2R ≤ 14 exp

(
−2(1− 1/

√
2)
√

1− λ2(W))R
)
, (30)

where the inequality holds by the fact that 1− x ≤ e−x.

Therefore, when

R =

⌈
2 +

√
2

2
√
1− λ2(W)

log

(
14max

{
3C3

α̃
,
12η2C2

α̃2
,

36η2C1C4

(1− α̃)α̃3
,
9

α̃
,

p

1− α̃
,
8C1η

2
(
m2L̄2∥z0 − z∗∥2 +

∑m
i=1 ∥gi(z

∗)∥2
)

(1− α̃)α̃Φ0

})⌉
,

(31)
it holds that

ρ2 ≤ min

{
α̃

3C3
,

α̃2

12η2C2
,
(1− α̃)α̃3

36η2C1C4
,
α̃

9
,
1− α̃

p
,

(1− α̃)α̃Φ0

8C1η2
(
m2L̄2∥z0 − z∗∥2 +

∑m
i=1 ∥gi(z∗)∥2

)} .

(32)
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We will use induction to prove that the following results hold for k ≥ 0:

E
[
Φk
]
≤ α̃kΦ0,

E
[
∥Zk − 1z̄k∥2

]
≤ 1− α̃

4C1
α̃k+1Φ0,

E
[
∥Vk − 1v̄k∥2

]
≤ 1− α̃

4C1
α̃k+1Φ0,

E
[
∥Sk − 1s̄k∥2

]
≤ 1− α̃

4η2C1
α̃k+1Φ0,

(33)

where α̃ = max
{
1− µη

8
, 1− pηµ

2(β + ηµ)

}
.

For k = 0, since ∥Z0 − 1z̄0∥2 = ∥V0 − 1v̄0∥2 = 0, it is straightforward to verify that the first three
inequalities hold. Next, we verify that ∥S0 − 1s̄0∥2 also satisfies the inequality in (33). It holds that

∥S0 − 1s̄0∥2 = ∥FastMix(∆0,W, R)− 1

m
11⊤FastMix(∆0,W, R)∥2

≤ ρ2∥∆0 − 1

m
11⊤∆0∥2

≤ ρ2∥∆0∥2

= ρ2
m∑
i=1

∥gi(z
0)∥2

≤ 2ρ2
m∑
i=1

∥gi(z
0)− gi(z

∗)∥2 + 2ρ2
m∑
i=1

∥gi(z
∗)∥2

≤ 2ρ2m2L̄2∥z0 − z∗∥2 + 2ρ2
m∑
i=1

∥gi(z
∗)∥2,

where the first inequality holds by Proposition B.2, the second inequality follows from the fact that
∥A − 1

m11⊤A∥ ≤ ∥A∥ for any A ∈ Rm×dz , the third inequality is based on Young’s inequality,
and the last inequality holds due to Assumption 2.3.

From the upper bound of ρ2 in equation (32), we have

∥S0 − 1s̄0∥2 ≤ 1− α̃

4η2C1
α̃Φ0.

For k = 1, according to Lemma 3.1,

E
[
Φ1
]
≤ max

{
1− µη

4
, 1− pηµ

β + ηµ

}
Φ0

≤ max

{
1− µη

8
, 1− pηµ

2(β + ηµ)

}
Φ0.

From Lemmas 3.2 and 3.3, together with equation (32), we have

E
[
∥Z1 − 1z̄1∥2

]
≤ 3ρ2η2E

[
∥S0 − 1s̄0∥2

]
≤ 1− α̃

4C1
α̃2Φ0,

E
[
∥V1 − 1v̄1∥2

]
= pE

[
∥Z0 − 1z̄0∥2

]
+ (1− p)E

[
∥V0 − 1v̄0∥2

]
= 0,

and

E
[
∥S1 − 1s̄1∥2

]
≤ C3ρ

2E
[
∥S0 − 1s̄0∥2

]
+ C4ρ

2
(
E
[
Φ1
]
+ E

[
Φ0
])

≤ C3 ·
α̃

3C3
· 1− α̃

4η2C1
α̃Φ0 + C4 ·

(1− α̃)α̃3

36η2C1C4
· (α̃+ 1)Φ0

≤ 1− α̃

4η2C1
α̃2Φ0.
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Assume that the conclusion of equation (33) holds for k ≤ t. Then, for k = t+ 1, by Lemma 3.1, we
have

E
[
Φt+1

]
≤ αE

[
Φt
]
+ C1

(
E
[
∥Zt − 1z̄t∥2

]
+ E

[
∥Zt−1 − 1z̄t−1∥2

]
+ E

[
∥Vt−1 − 1v̄t−1∥2

] )
≤ α · α̃tΦ0 + C1

(
1− α̃

4C1
α̃t+1Φ0 +

1− α̃

4C1
α̃tΦ0 +

1− α̃

4C1
α̃tΦ0

)
≤ max

{
1− µη

4
, 1− pηµ

β + ηµ

}(
max

{
1− µη

8
, 1− pηµ

2(β + ηµ)

})t

Φ0

+ 3min

{
µη

32
,

pηµ

8(β + ηµ)

}(
max

{
1− µη

8
, 1− pηµ

2(β + ηµ)

})t

Φ0

=

(
max

{
1− µη

4
, 1− pηµ

β + ηµ

}
+min

{
3µη

32
,

3pηµ

8(β + ηµ)

})(
max

{
1− µη

8
, 1− pηµ

2(β + ηµ)

})t

Φ0

≤
(
max

{
1− µη

8
, 1− pηµ

2(β + ηµ)

})t+1

Φ0

= α̃t+1Φ0, (34)

where the second inequality is derived using the inductive hypothesis.

For E
[
∥Zt+1 − 1z̄t+1∥2

]
, by Lemma 3.2, it holds that

E
[
∥Zt+1 − 1z̄t+1∥2

]
≤ 3ρ2

(
E
[
∥Zt − 1z̄t∥2

]
+ E

[
∥Vt − 1v̄t∥2

]
+ η2E

[
∥St − 1s̄t∥2

])
≤ 3ρ2

(
1− α̃

4C1
α̃t+1Φ0 +

1− α̃

4C1
α̃t+1Φ0 + η2 · 1− α̃

4η2C1
α̃t+1Φ0

)
≤ 3 · α̃

9
· 3 · 1− α̃

4C1
α̃t+1Φ0

=
1− α̃

4C1
α̃t+2Φ0,

where the second inequality holds by the inductive hypothesis, and the third inequality follows
equation (32).

For E
[
∥Vt+1 − 1v̄t+1∥2

]
, note that

1− p ≤ 1− pηµ

β + ηµ
≤ max

{
1− µη

4
, 1− pηµ

β + ηµ

}
= α. (35)

By Lemma 3.2, we obtain

E
[
∥Zt+1 − 1z̄t+1∥2

]
≤ pρ2E

[
∥Zk − 1z̄k∥2

]
+ (1− p)E

[
∥Vk − 1v̄k∥2

]
≤ pρ2

1− α̃

4C1
α̃t+1Φ0 + (1− p)

1− α̃

4C1
α̃t+1Φ0

≤ p · 1− α̃

p
· 1− α̃

4C1
α̃t+1Φ0 + α · 1− α̃

4C1
α̃t+1Φ0

= (1− α̃+ α)
1− α̃

4C1
α̃t+1Φ0

=
1− α̃

4C1
α̃t+2Φ0,

where the second inequality holds by the inductive hypothesis; the third inequality follows equa-
tion (32) and equation (35); the last equality is based on the fact that 1− α̃+ α = α̃.

For E
[
∥St+1 − 1s̄t+1∥2

]
, by Lemma 3.3, it follows that

E
[
∥St+1 − 1s̄t+1∥2

]
≤ C2ρ

2
(
E
[
∥Zt − 1z̄t∥2

]
+ E

[
∥Zt−1 − 1z̄t−1∥2

]
+ E

[
∥Vt − 1v̄t∥2

]
+ E

[
∥Vt−1 − 1v̄t−1∥2

] )
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+ C3ρ
2E
[
∥St − 1s̄t∥2

]
+ C4ρ

2
(
E
[
Φt+1

]
+ E

[
Φt
]
+ E

[
Φt−1

])
≤ C2ρ

2 · 4 · 1− α̃

4C1
α̃tΦ0 + C3ρ

2 · 1− α̃

4η2C1
α̃t+1Φ0 + C4ρ

2 · 3 · α̃t−1Φ0

≤ α̃2

12η2C2
· 4C2 ·

1− α̃

4C1
α̃tΦ0 +

α̃

3C3
· C3 ·

1− α̃

4η2C1
α̃t+1Φ0 +

(1− α̃)α̃3

36η2C1C4
· 3C4 · α̃t−1Φ0

=
1− α̃

4η2C1
α̃t+2Φ0,

where the second inequality follows from the inductive hypothesis and equation (34), while the third
inequality holds due to equation (32).

This completes the proof for the case k = t + 1. The conclusion of Lemma 3.5 is established by
induction.

C.5 The proof of Lemma 3.6

Under the parameter settings of Lemma 3.6, it follows from equation (8) that

∥z̄k+1 − z∗∥2 = ∥z̄k − z∗∥2 − ∥z̄k+1 − z̄k∥2 − 2η⟨δ̄k − g(z∗), z̄k+1 − z∗⟩.

Note that δ̄k = Eξk
[
δ̄k
]
, by equation (16), we have

⟨δ̄k − g(z∗), z̄k+1 − z∗⟩

≥ −3nL̄2

µ
(1 + α2)∥Zk − 1z̄k∥2 − 3nL̄2α2

µ
∥Zk−1 − 1z̄k−1∥2

+ ⟨g(z̄k)− g(z̄k+1), z̄k+1 − z∗⟩ − 2ηα2L2∥z̄k − z̄k−1∥2 − 1

8η
∥z̄k+1 − z̄k∥2

− α⟨g(z̄k−1)− g(z̄k), z̄k − z∗⟩+ 3µ

4
∥z̄k+1 − z∗∥2.

Therefore, it holds that

∥z̄k+1 − z∗∥2 ≤ ∥z̄k − z∗∥2 − ∥z̄k+1 − z̄k∥2 + 6ηnL̄2

µ
(1 + α2)∥Zk − 1z̄k∥2

+
6ηnL̄2α2

µ
∥Zk−1 − 1z̄k−1∥2 − 2η⟨g(z̄k)− g(z̄k+1), z̄k+1 − z∗⟩

+ 2ηα⟨g(z̄k−1)− g(z̄k), z̄k − z∗⟩+ 4η2α2L2∥z̄k − z̄k−1∥2

+
1

4
∥z̄k+1 − z̄k∥2 − 3

2
µη∥z̄k+1 − z∗∥2.

Rearranging the above equation, we obtain(
1

η
+

3µ

2

)
∥z̄k+1 − z∗∥2 + 3

4η
∥z̄k+1 − z̄k∥2 + 2⟨g(z̄k)− g(z̄k+1), z̄k+1 − z∗⟩

≤ 1

η
∥z̄k − z∗∥2 + 4ηα2L2∥z̄k − z̄k−1∥2 + 2α⟨g(z̄k−1)− g(z̄k), z̄k − z∗⟩

+
6nL̄2

µ
(1 + α2)∥Zk − 1z̄k∥2 + 6nL̄2α2

µ
∥Zk−1 − 1z̄k−1∥2.

Based on the parameter settings, we have

1

η
≤ (1− µη)

(
1

η
+

3µ

2

)
and 4ηα2L2 ≤ 3

4η
α.

Thus, the following inequality holds:(
1

η
+

3µ

2

)
∥z̄k+1 − z∗∥2 + 3

4η
∥z̄k+1 − z̄k∥2 + 2⟨g(z̄k)− g(z̄k+1), z̄k+1 − z∗⟩

38



≤ (1− µη)

(
1

η
+

3µ

2

)
∥z̄k − z∗∥2 + α

3

4η
∥z̄k − z̄k−1∥2 + 2α⟨g(z̄k−1)− g(z̄k), z̄k − z∗⟩

+
12nL̄2

µ

(
∥Zk − 1z̄k∥2 + ∥Zk−1 − 1z̄k−1∥2

)
,

that is,

Ψk+1 ≤ αΨk +
12nL̄2

µ

(
∥Zk − 1z̄k∥2 + ∥Zk−1 − 1z̄k−1∥2

)
. (36)

Next, we bound the consensus errors. For ∥Zk+1 − 1z̄k+1∥2, similar to equation (20), we have

∥Zk+1 − 1z̄k+1∥2 ≤ 2ρ2∥Zk − 1z̄k∥2 + 2ρ2η2∥Sk − 1s̄k∥2. (37)

For ∥Sk+1 − 1s̄k+1∥2, according to equation (21), we have

∥Sk+1 − 1s̄k+1∥2 ≤ 2ρ2∥Sk − 1s̄k∥2 + 2ρ2∥∆k+1 −∆k∥2.

Note that∥∥gi(z
k+1
i )− α

(
gi(z

k+1
i )− gi(z

k
i )
)
−
(
gi(z

k
i )− α

(
gi(z

k
i )− gi(z

k−1
i )

))∥∥2
≤ 3∥gi(z

k+1
i )− gi(z

k
i )∥2 + 3α2∥gi(z

k+1
i )− gi(z

k
i )∥2 + 3α2∥gi(z

k
i )− gi(z

k−1
i )∥2

≤ 6mL̄2∥zk+1
i − zki ∥2 + 3mL̄2∥zki − zk−1

i ∥2

≤ 18mL̄2∥zk+1
i − z̄k+1∥2 + 18mL̄2∥zki − z̄k∥2 + 18mL̄2∥z̄k+1 − z̄k∥2

+ 9mL̄2∥zki − z̄k∥2 + 9mL̄2∥zk−1
i − z̄k−1∥2 + 9mL̄2∥z̄k − z̄k−1∥2,

where the first and third inequalities hold due to Young’s inequality, while the second inequality
follows from equation (6).

The term ∥∆k+1 −∆k∥2 can be upper bounded by

∥∆k+1 −∆k∥2

=

m∑
i=1

∥∥gi(z
k+1
i )− α

(
gi(z

k+1
i )− gi(z

k
i )
)
−
(
gi(z

k
i )− α

(
gi(z

k
i )− gi(z

k−1
i )

))∥∥2
≤ 18mL̄2∥Zk+1 − 1z̄k+1∥2 + 18mL̄2∥Zk − 1z̄k∥2 + 18m2L̄2∥z̄k+1 − z̄k∥2

+ 9mL̄2∥Zk − 1z̄k∥2 + 9mL̄2∥Zk−1 − 1z̄k−1∥2 + 9m2L̄2∥z̄k − z̄k−1∥2

≤ 18mL̄2
(
2ρ2∥Zk − 1z̄k∥2 + 2ρ2η2∥Sk − 1s̄k∥2

)
+ 27mL̄2∥Zk − 1z̄k∥2

+ 9mL̄2∥Zk−1 − 1z̄k−1∥2 + 18m2L̄2∥z̄k+1 − z̄k∥2 + 9m2L̄2∥z̄k − z̄k−1∥2

≤ 63mL̄2∥Zk − 1z̄k∥2 + 9mL̄2∥Zk−1 − 1z̄k−1∥2 + 36η2mL̄2∥Sk − 1s̄k∥2

+ 18m2L̄2∥z̄k+1 − z̄k∥2 + 9m2L̄2∥z̄k − z̄k−1∥2,

where the second inequality is based on equation (37). Recalling the definition of Ψ, it holds that
Ψk ≥ 1/(2η)∥z̄k − z̄k−1∥2.

Thus, the consensus error ∥Sk+1 − 1s̄k+1∥2 has the following bound:

∥Sk+1 − 1s̄k+1∥2 ≤ 2ρ2∥Sk − 1s̄k∥2 + 2ρ2∥∆k+1 −∆k∥2

≤ 126mL̄2ρ2
(
∥Zk − 1z̄k∥2 + ∥Zk−1 − 1z̄k−1∥2

)
+
(
72η2mL̄2 + 2

)
ρ2∥Sk − 1s̄k∥2 + 72ηm2L̄2ρ2

(
Ψk+1 +Ψk

)
.

(38)
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Similar to Lemma 3.5, we proceed to prove the conclusion of Lemma 3.6 using induction. Letting

R =

⌈
2 +

√
2

2
√
1− λ2(W)

log

(
14max

{
3
(
72η2mL̄2 + 2

)
1− µη

2

,
20736η2m2nL̄4

µ2
(
1− µη

2

)2 ,
4

1− µη
2

,

756η2mL̄2(
1− µη

2

)2 , 96ηnL̄2
(
m2L̄2∥z0 − z∗∥2 +

∑m
i=1 ∥gi(z

∗)∥2
)

µ2
(
1− µη

2

)
Ψ0

})⌉
,

(39)
it holds that

ρ2 ≤ min

{
1− µη

2

3
(
72η2mL̄2 + 2

) , µ2
(
1− µη

2

)2
20736η2m2nL̄4

,
1− µη

2

4
,

(
1− µη

2

)2
756η2mL̄2

,
µ2
(
1− µη

2

)
Ψ0

96ηnL̄2
(
m2L̄2∥z0 − z∗∥2 +

∑m
i=1 ∥gi(z∗)∥2

)}.
(40)

For k = 0, we have

∥S0 − 1s̄0∥2 ≤ ρ2∥∆0∥2 ≤ 2ρ2m2L̄2∥z0 − z∗∥2 + 2ρ2
m∑
i=1

∥gi(z
∗)∥2 ≤ µ2

48ηnL̄2

(
1− µη

2

)
Ψ0.

For k = 1, we have

Ψ1 ≤ (1− µη)Ψ0 ≤
(
1− µη

2

)
Ψ0,

∥Z1 − 1z̄1∥2 ≤ 2ρ2η2∥S0 − 1s̄0∥2 ≤ µ2η

48nL̄2

(
1− µη

2

)2
Ψ0,

and

∥S1 − 1s̄1∥2 ≤
(
72η2mL̄2 + 2

)
ρ2∥S0 − 1s̄0∥2 + 72ηm2L̄2ρ2

(
Ψ1 +Ψ0

)
≤
(
72η2mL̄2 + 2

)
·

(
1− µη

2

)
3
(
72η2mL̄2 + 2

) · µ2

48ηnL̄2

(
1− µη

2

)
Ψ0

+ 72ηm2L̄2 ·
µ2
(
1− µη

2

)2
20736η2m2nL̄4

· 2Ψ0

≤ µ2

48ηnL̄2

(
1− µη

2

)2
Ψ0.

Assume that

Ψk ≤
(
1− µη

2

)k
Ψ0,

∥Zk − 1z̄k∥2 ≤ µ2η

48nL̄2

(
1− µη

2

)k+1

Ψ0,

∥Sk − 1s̄k∥2 ≤ µ2

48ηnL̄2

(
1− µη

2

)k+1

Ψ0,

holds for all k ≤ t. Then for k = t+ 1, we have

Ψt+1 ≤ (1− µη)Ψt +
12nL̄2

µ

(
∥Zt − 1z̄t∥2 + ∥Zt−1 − 1z̄t−1∥2

)
≤ (1− µη)

(
1− µη

2

)t
Ψ0 +

12nL̄2

µ
· 2 · µ2η

48nL̄2

(
1− µη

2

)t
Ψ0

=
(
1− µη

2

)t+1

Ψ0,
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where the first inequality is based on equation (36) and the second inequality is due to the induction
hypothesis.

For ∥Zk − 1z̄k∥2, it holds that

∥Zk+1 − 1z̄k+1∥2

≤ 2ρ2∥Zk − 1z̄k∥2 + 2ρ2η2∥Sk − 1s̄k∥2

≤ 2 ·
(
1− µη

2

)
4

· µ2η

48nL̄2

(
1− µη

2

)t+1

Ψ0 + 2 ·
(
1− µη

2

)
4

· η2 · µ2

48ηnL̄2

(
1− µη

2

)t+1

Ψ0

=
µ2η

48nL̄2

(
1− µη

2

)t+2

Ψ0,

where the first inequality is based on equation (37) and the second inequality is due to the induction
hypothesis and equation (40).

For ∥St+1 − 1s̄t+1∥2, it holds that

∥St+1 − 1s̄t+1∥2

≤ 126mL̄2ρ2
(
∥Zk − 1z̄k∥2 + ∥Zk−1 − 1z̄k−1∥2

)
+
(
72η2mL̄2 + 2

)
ρ2∥Sk − 1s̄k∥2 + 72ηm2L̄2ρ2

(
Ψk+1 +Ψk

)
≤ 126mL̄2 ·

(
1− µη

2

)2
756η2mL̄2

· 2 · µ2η

48nL̄2

(
1− µη

2

)t
Ψ0

+
(
72η2mL̄2 + 2

)
·

(
1− µη

2

)
3
(
72η2mL̄2 + 2

) · µ2

48ηnL̄2

(
1− µη

2

)t+1

Ψ0

+ 72ηm2L̄2 ·
µ2
(
1− µη

2

)2
20736η2m2nL̄4

· 2 ·
(
1− µη

2

)t
Ψ0

=
µ2

48ηnL̄2

(
1− µη

2

)t+2

Ψ0,

where the first inequality is based on equation (38) and the second inequality is due to the induction
hypothesis and equation (40).

Thus, the conclusion of Lemma 3.6 holds by induction.

C.6 The proof of Theorem 3.7

In this section, the upper bounds in Theorem 3.7 are proved based on the linear convergence of the
Lyapunov functions and the consensus errors established in Lemmas 3.5 and 3.6.

Case I: L̄ ≤
√
mnL.

By Young’s inequality, for any i ∈ [m], it holds that

∥zKi − z∗∥2 ≤ 2∥zKi − z̄K∥2 + 2∥z̄K − z∗∥2.
According to Lemma 3.5, we have
1

2η
E
[
∥z̄K − z∗∥2

]
≤ E

[
ΦK
]

≤
(
max

{
1− µη

8
, 1− pηµ

2(β + ηµ)

})K (
1

η
+

3µ

2
+

β + ηµ

pη

)
∥z̄0 − z∗∥2,

and

E
[
∥zKi − z̄K∥2

]
≤ E

[
∥ZK − 1z̄K∥2

]
≤ 1− α̃

4C1
α̃K+1Φ0

≤ 2ηΦ0

3

(
max

{
1− µη

8
, 1− pηµ

2(β + ηµ)

})K

,

41



where the last inequality holds by C1 ≥ 3/(8η).

Therefore, for any i ∈ [m],

E
[
∥zKi − z∗∥2

]
= O

((
max

{
1− µη

8
, 1− pηµ

2(β + ηµ)

})K
)
.

By the fact that 1− x ≤ e−x, the number of iterations for E
[
∥zKi − z∗∥2

]
≤ ϵ is

K = O
((

1

µη
+

β + µη

pµη

)
log

(
1

ϵ

))
= O

((
1

µη
+

1

p

)
log

(
1

ϵ

))
= O

(
L

µ
log

(
1

ϵ

))
. (41)

LIFO Calls: Under the parameter settings of Lemma 3.1, the expected LIFO calls have the upper
bound:

O (mn+ (pmn+ (1− p)b)K)

= O (mn+ (pmn+ b)K)

= O
(
mn+

(
mn

L̄

L
max

{
µ

L̄
,

1√
mn

}
+

⌈
L̄

L
min

{
L̄

µ
,
√
mn

}⌉)
L

µ
log

(
1

ϵ

))
= O

((
mn+

√
mn

L̄

µ

)
log

(
1

ϵ

))
.

(42)

Computation Rounds: In each iteration, the number of computation rounds depends on the node
with the maximum computation rounds, that is, maxi∈[m]

∑n
j=1 ξ

k
i,j . Therefore, we first bound

E[maxi∈[m]

∑n
j=1 ξ

k
i,j ].

Lemma C.1. Let Yi =
∑n

j=1 ξij , where ξij ∼ Bernoulli(q) are i.i.d. random variables, so that
Yi ∼ Binomial(n, q). It holds that

E
[
max
i∈[m]

Yi

]
≤ 2nq + logm.

Proof. Firstly, we show that Yi is locally sub-Gaussian [15]. For all t ∈ [−1, 1], the moment
generating function of Yi satisfies

E
[
etYi

]
= E

[
et

∑n
j=1 ξij

]
=
(
(1− q) + qet

)n
≤
(
(1− q) + q(1 + t+ t2)

)n
=
(
1 + qt+ qt2

)n
≤ enqt+nqt2 .

where the first inequality holds due to ex ≤ 1 + x + x2, x ∈ [−1, 1], and the second inequality
follows 1 + x ≤ ex.

Then we have

exp

(
E
[
tmax
i∈[m]

Yi

])
≤ E

[
exp

(
tmax
i∈[m]

Yi

)]
= E

[
max
i∈[m]

etYi

]
≤

m∑
i=1

E
[
etYi

]
≤ menqt+nqt2 ,

where the first inequality is based on Jensen’s inequality.

Letting t = 1 and taking the logarithm of the inequality, we have

E
[
max
i∈[m]

Yi

]
≤ 2nq + logm.

This completes the proof.
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We now derive the upper bound for the expected computation rounds:

O

n+

pn+ (1− p)E

max
i∈[m]

n∑
j=1

ξki,j

K


= O (n+ (pn+ 2nq + logm)K)

= O
(
n+

(
pn+

b

m
+ logm

)
K

)
= O

(
n+

(
n
L̄

L
max

{
µ

L̄
,

1√
mn

}
+

1

m

⌈
L̄

L
min

{
L̄

µ
,
√
mn

}⌉
+ logm

)
L

µ
log

(
1

ϵ

))
= O

((
n+

√
n

m

L̄

µ
+

L

µ
logm

)
log

(
1

ϵ

))
= Õ

((
n+

√
n

m

L̄

µ
+

L

µ

)
log

(
1

ϵ

))
,

(43)

where the first step follows from Lemma C.1 and 1− p ≤ 1, the second step from q = b/mn, and
the third step from the choice of parameters p and b.

Communication Rounds: Based on the value of R in equation (31), we have

R = Õ

(
1√

1− λ2(W)

)
= Õ (

√
χ) .

Therefore, the communication rounds can be upper bounded by

KR = Õ (
√
χK) = Õ

(√
χL

µ
log

(
1

ϵ

))
. (44)

Case II: L̄ ≥
√
mnL.

When L̄ ≥
√
mnL, similar to the proof of equation (41), we can upper bound the number of iterations

based on Lemma 3.6. Specifically, the number of iterations for ∥zKi − z∗∥2 ≤ ϵ is

K = O
((

1

µη

)
log

(
1

ϵ

))
= O

(
L

µ
log

(
1

ϵ

))
. (45)

LIFO Calls: Under the parameter settings of Lemma 3.6, the LIFO calls required for each iteration
are O(mn). Therefore, the total LIFO calls can be upper bounded by

O (mnK) = O
(
mnL

µ
log

(
1

ϵ

))
. (46)

Computation Rounds: For each iteration, the computation rounds per node are O(n), and thus the
total computation rounds are bounded by

O (nK) = O
(
nL

µ
log

(
1

ϵ

))
. (47)

Communication Rounds: Under the parameter settings of Lemma 3.6, it holds that R = Õ
(√

χ
)
.

The communication rounds are bounded by

KR = Õ (
√
χK) = Õ

(√
χL

µ
log

(
1

ϵ

))
. (48)

Finally, combining the results of Case I and Case II, we obtain that for any 0 < L ≤ L̄, running
Algorithm 2 with appropriate parameter settings can find an ϵ-suboptimal solution at each node, with
the expected LIFO complexity of

O
((

mn+
min{mnL,

√
mnL̄}

µ

)
log

(
1

ϵ

))
,
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the expected computation rounds of

Õ

((
n+

L

µ
+

min{nL,
√
n/mL̄}

µ

)
log

(
1

ϵ

))
,

and the communication rounds of

Õ
(√

χL

µ
log

(
1

ϵ

))
.

D The Proofs for Section 4

In this section, we will establish the complexity lower bounds presented in Section 4. The proofs of
Theorems 4.2, 4.3 and 4.4 are provided in Appendix D.1, D.2 and D.3, respectively.

D.1 The Proof of Theorem 4.2

Luo et al. [47] established the LIFO complexity lower bound for the single-machine finite-sum
problem. We extend this result to the decentralized setting and derive lower bounds with respect to
the smoothness parameters L and L̄.

Let dx = dy = d and N = mn. Without loss of generality, the algorithm can be assumed to start at
(x0,y0) = (0,0). Following Luo et al. [47], we consider the function H : Rd × Rd → R defined as

H(x,y; γ, d) =
γ

2
∥x∥2 + x⊤(By − c)− γ

2
∥y∥2 , (49)

where

B =


1
−1 1

. . . . . .
−1 1

−1
√
γω

 ∈ Rd×d,

c = (ω, 0, 0, . . . , 0)
⊤ and ω = (

√
γ2 + 4− γ)/2.

To characterize the zero-chain property [58] of H , we define subspaces Fk as

Fk =

{
span{e1, e2, . . . , ek}, k = 1, . . . , d,

{0d}, k = 0,

where {e1, . . . , ed} is the standard basis of Rd.

Following lemma characterizes the properties of H .
Lemma D.1 (Luo et al. [47, Lemma 13]). The function H has following properties:

1. H is
√
8 + 2γ2-smooth.

2. For k < d, if (x,y) ∈ Fk ×Fk, then (∇xH(x,y),∇yH(x,y)) ∈ Fk+1 ×Fk+1.

3. Let r = (2 + γ2 − γ
√

γ2 + 4)/2. The saddle point of H isx∗ = (r, r2, . . . , rd)⊤,

y∗ = ω
(
r, r2, . . . , rd−1, 1√

1−r
rd
)⊤

.

4. For k ≤ d/2 and (x,y) ∈ Fk ×Fk, it holds that

∥x− x∗∥2 + ∥y − y∗∥2

∥x∗∥2 + ∥y∗∥2
≥ 1

2
r2k.
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Lemma D.2. For the parameters L̄ ≥ L, min{L̄2,mnL2}/µ2 > 10mn, and ϵ < e−5/2, there
exists a hard instance satisfying Assumptions 2.1–2.4. In order to find an ϵ-suboptimal solution, the
LIFO calls of any LIFO algorithm is lower bounded by

Ω

(
min{mnL,

√
mnL̄}

µ
log

(
1

ϵ

))
.

Proof. Recalling that N = mn, we define a matrix sequence {Ui}Ni=1 such that Ui ∈ Rd×Nd,
UiU

⊤
i = I, and UiU

⊤
j = 0 for any 1 ≤ i ̸= j ≤ N . we set parameters as

L̂2 = min{L̄2, NL2}, γ =

√
8N

L̂2/µ2 − 2N
, λ̂ =

Nµ

γ
, d =

⌊
1

γ
log

(
1

2ϵ

)⌋
− 4.

A hard instance f : RNd × RNd → R can be constructed as fi,j(x,y) = f̃(i−1)×n+j(x,y), where

f̃i(x,y) = λ̂H(Uix,Uiy).

The global objective function f(x,y) is given by

f(x,y) =
1

mn

m∑
i=1

n∑
j=1

fi,j(x,y) =
1

N

N∑
i=1

λ̂H(Uix,Uiy)

=
λ̂γ

2N
∥x∥2 − λ̂

N
x⊤

(
N∑
i=1

U⊤
i c

)
+

λ̂

N
x⊤

(
N∑
i=1

U⊤
i BUi

)
y − λ̂γ

2N
∥y∥2 .

Based on λ̂ = Nµ/γ, it is straightforward to see that f is µ-strongly-convex-µ-strongly-concave.

Then, we verify that the function satisfies the smoothness Assumptions 2.2 and 2.3.
It follows that, for any (x1,y1), (x2,y2) ∈ RNd × RNd,

∥∇xf(x1,y1)−∇xf(x2,y2)∥2 + ∥∇yf(x1,y1)−∇yf(x2,y2)∥2

=

∥∥∥∥∥ 1

N

N∑
i=1

(
∇xf̃i(x1,y1)−∇xf̃i(x2,y2)

)∥∥∥∥∥
2

+

∥∥∥∥∥ 1

N

N∑
i=1

(
∇yf̃i(x1,y1)−∇yf̃i(x2,y2)

)∥∥∥∥∥
2

=
λ̂2

N2

(∥∥∥∥∥
N∑
i=1

U⊤
i (∇xH(Uix1,Uiy1)−∇xH(Uix2,Uiy2))

∥∥∥∥∥
2

+

∥∥∥∥∥
N∑
i=1

U⊤
i (∇yH(Uix1,Uiy1)−∇yH(Uix2,Uiy2))

∥∥∥∥∥
2)

=
λ̂2

N2

N∑
i=1

(
∥∇xH(Uix1,Uiy1)−∇xH(Uix2,Uiy2)∥2

+ ∥∇yH(Uix1,Uiy1)−∇yH(Uix2,Uiy2)∥2
)

≤ λ̂2(8 + 2γ2)

N2

N∑
i=1

(
∥Ui(x1 − x2)∥2 + ∥Ui(y1 − y2)∥2

)

=
λ̂2(8 + 2γ2)

N2

(
∥x1 − x2∥2 + ∥y1 − y2∥2

)
=

L̂2

N2

(
∥x1 − x2∥2 + ∥y1 − y2∥2

)
≤ L2

(
∥x1 − x2∥2 + ∥y1 − y2∥2

)
,

where the first inequality holds by Property 1 in Lemma D.1 and the second inequality follows from
the setting of L̂.
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Meanwhile, for any (x1,y1), (x2,y2) ∈ RNd × RNd, it holds that

1

mn

m∑
i=1

n∑
j=1

(
∥∇xfi,j(x1,y1)−∇xfi,j(x2,y2)∥2 + ∥∇yfi,j(x1,y1)−∇yfi,j(x2,y2)∥2

)

=
1

N

N∑
i=1

(∥∥∥∇xf̃i(x1,y1)−∇xf̃i(x2,y2)
∥∥∥2 + ∥∥∥∇yf̃i(x1,y1)−∇yf̃i(x2,y2)

∥∥∥2)

=
λ̂2

N

N∑
i=1

(∥∥U⊤
i (∇xH(Uix1,Uiy1)−∇xH(Uix2,Uiy2))

∥∥2
+
∥∥U⊤

i (∇yH(Uix1,Uiy1)−∇yH(Uix2,Uiy2))
∥∥2)

=
λ̂2

N

N∑
i=1

(
∥∇xH(Uix1,Uiy1)−∇xH(Uix2,Uiy2)∥2

+ ∥∇yH(Uix1,Uiy1)−∇yH(Uix2,Uiy2)∥2
)

≤ λ̂2(8 + 2γ2)

N

N∑
i=1

(
∥Ui(x1 − x2)∥2 + ∥Ui(y1 − y2)∥2

)

=
λ̂2(8 + 2γ2)

N

(
∥x1 − x2∥2 + ∥y1 − y2∥2

)
= L̂2

(
∥x1 − x2∥2 + ∥y1 − y2∥2

)
≤ L̄2

(
∥x1 − x2∥2 + ∥y1 − y2∥2

)
.

For any LIFO algorithm with at most ⌊Nd/2⌋ LIFO calls, by Property 2 in Lemma D.1, the variable x
has at most ⌊Nd/2⌋ non-zero coordinates. Therefore, there exist an index i0 such that Ui0x ∈ Fd/2.
Then by Property 4 in Lemma D.1, we have

E
[
∥x− x∗∥2 + ∥y − y∗∥2

]
≥ E

[
∥Ui0(x− x∗)∥2 + ∥Ui0(y − y∗)∥2

]
≥ rd/2

2

(
∥Ui0x

∗∥2 + ∥Ui0y
∗∥2
)

≥ rd/2

2
r2

1− r2d

1− r2

≥ rd/2+2

2
,

where the third inequality holds by the Property 3 in Lemma D.1, i.e., Ui0x
∗ = (r, r2, . . . , rd)⊤.

Note that

(
d

2
+ 2) log(

1

r
) = (

d

2
+ 2) log(1 +

γ(γ +
√
γ2 + 4)

2
)

≤ (
d

2
+ 2)

γ(γ +
√
γ2 + 4)

2

< (
d

2
+ 2)γ(γ + 1),

where the first inequality follows the fact that log(1 + x) ≤ x and the second inequality
holds by

√
a+ b <

√
a +

√
b for a, b > 0. Since min{L̄2, NL2}/µ2 > 10N , we have

γ =

√
8N/(L̂2/µ2 − 2N) ≤ 1, which further implies

(
d

2
+ 2) log(1/r) < (d+ 4)γ ≤ log(1/2ϵ).
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Thus, when the number of LIFO calls is less than ⌊Nd/2⌋, we have E
[
∥x− x∗∥2 + ∥y − y∗∥2

]
> ϵ.

Then the LIFO calls to find an ϵ-suboptimal solution is lower bounded by

Nd

2
= Ω

(√
NL̂

µ
log

(
1

ϵ

))
= Ω

(
min{mnL,

√
mnL̄}

µ
log

(
1

ϵ

))
.

This completes the proof of Lemma D.2.

For the case min{L̄2,mnL2}/µ2 = O(
√
mn), we have the following lemma.

Lemma D.3. For the parameters L̄ ≥ L, L/µ > 2, and ϵ < 1/8, there exists a hard instance
satisfying Assumptions 2.1–2.4. In order to find an ϵ-suboptimal solution, the LIFO calls of any LIFO
algorithm is lower bounded by Ω(mn).

Proof. Let xi and yi denote the i-th coordinates of the vectors x and y, respectively. Consider the
functions fi,j(x,y) = f̃(i−1)×n+j(x,y), where

f̃i(x,y) =
µ

2
∥x∥2 +

√
mnL̂

2
(xi − 1)2 − µ

2
∥y∥2 −

√
mnL̂

2
(yi − 1)2

for i ∈ [mn] and L̂ =
√
L2/2− µ2. It follows that the global objective f(x,y) : Rmn ×Rmn → R

takes the form

f(x,y) =
µ

2
∥x∥2 + L̂

2
√
mn

∥x− 1∥2 − µ

2
∥y∥2 − L̂

2
√
mn

∥y − 1∥2.

It is clear that f is µ-strongly-convex-µ-strongly concave and the saddle point (x∗,y∗) satisfies

x∗ = y∗ =
L̂

L̂+
√
mnµ

1.

For any (x1,y1), (x2,y2) ∈ Rmn × Rmn, we have

1

mn

m∑
i=1

n∑
j=1

(
∥∇xfi,j(x1,y1)−∇xfi,j(x2,y2)∥2 + ∥∇yfi,j(x1,y1)−∇yfi,j(x2,y2)∥2

)
=

1

mn

mn∑
i=1

(
∥∇xf̃i(x1,y1)−∇xf̃i(x1,y1)∥2 + ∥∇yf̃i(x1,y1)−∇yf̃i(x1,y1)∥2

)
=

1

mn

mn∑
i=1

(
∥µ(x1 − x2) +

√
mnL̂eie

⊤
i (x1 − x2)∥2 + ∥µ(y1 − y2) +

√
mnL̂eie

⊤
i (y1 − y2)∥2

)
≤ 1

mn

mn∑
i=1

(
2µ2∥x1 − x2∥2 + 2mnL̂2∥eie⊤i (x1 − x2)∥2

+2µ2∥y1 − y2∥2 + 2mnL̂2∥eie⊤i (y1 − y2)∥2
)

= 2(L̂2 + µ2)
(
∥x1 − x2∥2 + ∥y1 − y2∥2

)
= L2

(
∥x1 − x2∥2 + ∥y1 − y2∥

)
.

Thus, the function set {fi,j}m,n
i,j=1 is L̄-mean-squared smooth (L ≤ L̄) and f is L-smooth.

By the zero-chain property of f , if the LIFO calls are less than mn/2, it holds that

E
[
∥x− x∗∥2 + ∥y − y∗∥2

]
≥ mn

2
· L̂2

(L̂+
√
mnµ)2

≥ mn

2
· L̂2

2L̂2 + 2mnµ2
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=
mn

2
· L2/2− µ2

L2 − 2µ2 + 2mnµ2

=
mn

4

(
1− 2mn

L2/µ2 + 2mn− 2

)
≥ mn

4(mn+ 1)
≥ 1

8
> ϵ.

Therefore, the LIFO calls to find an ϵ-suboptimal solution is lower bounded by Ω(mn).

Combing the results of Lemmas D.2 and D.3, for the parameters L̄ ≥ L, L/µ > 2, and ϵ < 0.003,
the LIFO calls of any LIFO algorithm is lower bounded by

Ω

(
mn+

min{mnL,
√
mnL̄}

µ
log

(
1

ϵ

))
.

D.2 The proof of Theorem 4.3

For any decentralized LIFO algorithm, it can perform at most m LIFO calls in each computation
round. From the conclusion of Theorem 4.2, it follows that the LIFO calls are lower bounded by

Ω

(
mn+

min
{
mnL,

√
mnL̄

}
µ

log

(
1

ϵ

))
.

Therefore, the computation rounds have the lower bound

Ω

(
1

m

(
mn+

min
{
mnL,

√
mnL̄

}
µ

log

(
1

ϵ

)))
= Ω

n+
min

{
nL,

√
n/mL̄

}
µ

log

(
1

ϵ

) .

(50)

Another instance is a direct extension of the single-machine setting [89]. For all i ∈ [m] and j ∈ [n],
define

fi,j(x,y) = f(x,y) =

√
L2 − µ2

2
x⊤Ay +

L2 − µ2

4µ
e⊤1 y +

µ

2
∥x∥2 − µ

2
∥y∥2, (51)

where

A =


1 −1

1 −1
. . . . . .

1 −1
1

 ∈ Rd×d.

It can be verified that the function defined in (51) satisfies Assumptions 2.1, 2.2 and 2.3, as all fi,j
are L-smooth. From the single-machine case [89], it is straightforward to deduce that the algorithm
requires at least Ω(L/µ log(1/ϵ)) iterations to achieve an ϵ-sub-optimal solution. Since each iteration
requires at least one computation round, this implies a lower bound on the computation rounds of

Ω

(
L

µ
log

(
1

ϵ

))
. (52)

Combining the results of equations (50) and (52), it follows that the computation rounds have a lower
bound of

Ω

(
n+

(
L

µ
+

min{nL,
√

n/mL̄}
µ

)
log

(
1

ϵ

))
.
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D.3 The proof of Theorem 4.4

The main idea of proving the lower bound on communication complexity is to extend the difficult
examples constructed by Zhang et al. [89] to the distributed setting. First, we divide all nodes into
three sets V1, V2, and V3, where |V1| = |V2| = ⌊m/3⌋, and |V3| = m−|V1|−|V2|. Let dx = dy = d,
L̂2 = (L2 − µ2)|V1|/(2m),

A1 =


1 0

1 −2
. . . . . .

1 0
1

 , A2 =


1 −2

1 0
. . . . . .

1 −2
1

 ∈ Rd×d,

and A = (A1 +A2)/2. For i = 1, 2, . . . ,m, the functions are constructed as fi,1(x,y) = · · · =
fi,n(x,y) = fi(x,y), where

fi(x,y) =



m

|V1|

(
L̂

4
x⊤A1y +

L̂2

4µ
e⊤1 y

)
+

µ

2
∥x∥2 − µ

2
∥y∥2, i ∈ V1,

m

|V2|

(
L̂

4
x⊤A2y

)
+

µ

2
∥x∥2 − µ

2
∥y∥2, i ∈ V2,

µ

2
∥x∥2 − µ

2
∥y∥2, i ∈ V3.

(53)

Then the global objective function takes the form

f(x,y) =
L̂

2
x⊤Ay +

L̂2

4µ
e⊤1 y +

µ

2
∥x∥2 − µ

2
∥y∥2.

We will prove that the constructed functions are L-mean-squared smooth, thereby satisfying Assump-
tions 2.2 and 2.3. For any x1,x2,y1,y2 ∈ Rd,

1

mn

m∑
i=1

n∑
j=1

(
∥∇xfi,j(x1,y1)−∇xfi,j(x2,y2)∥2 + ∥∇yfi,j(x1,y1)−∇yfi,j(x2,y2)∥2

)

=
1

m

m∑
i=1

(
∥∇xfi(x1,y1)−∇xfi(x2,y2)∥2 + ∥∇yfi(x1,y1)−∇yfi(x2,y2)∥2

)

=
1

m

∑
i∈V1

∥∥∥∥∥ m

|V1|
L̂

4
A1(y1 − y2) + µ(x1 − x2)

∥∥∥∥∥
2

+

∥∥∥∥∥ m

|V1|
L̂

4
A⊤

1 (x1 − x2)− µ(y1 − y2)

∥∥∥∥∥
2


+
1

m

∑
i∈V2

∥∥∥∥∥ m

|V2|
L̂

4
A2(y1 − y2) + µ(x1 − x2)

∥∥∥∥∥
2

+

∥∥∥∥∥ m

|V2|
L̂

4
A⊤

2 (x1 − x2)− µ(y1 − y2)

∥∥∥∥∥
2


+
|V3|
m

µ2

(
∥x1 − x2∥2 + ∥y1 − y2∥2

)

=
m

|V1|
L̂2

16

(
∥A1(y1 − y2)∥2 + ∥A⊤

1 (x1 − x2)∥2
)

+
m

|V2|
L̂2

16

(
∥A2(y1 − y2)∥2 + ∥A⊤

2 (x1 − x2)∥2
)

+ µ2

(
∥x1 − x2∥2 + ∥y1 − y2∥2

)

≤
(
2m

|V1|
L̂2 + µ2

)(
∥x1 − x2∥2 + ∥y1 − y2∥2

)
= L2

(
∥x1 − x2∥2 + ∥y1 − y2∥2

)
,

where the inequality holds because ∥A1∥2 ≤ 4, ∥A2∥2 ≤ 4 and |V1| = |V2|.
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For a decentralized algorithm starting at (x0,y0) = (0,0), its communication complexity depends
on the distance between V1 and V2 on the graph, which is denoted by D(V1,V2). Based on the
zero-chain property of the constructed function, the following lemma holds.
Lemma D.4. Consider the minimax problem with the objective functions (53). For any algorithm
satisfying Definition 4.1, after R communication rounds, the algorithm’s output has only the first
⌊R/D(V1,V2)⌋ coordinates non-zero, while the remaining d− ⌊R/D(V1,V2)⌋ coordinates are zero.

Proof. Initially, for a variable in V1, transmitting it to V2 requires at least D(V1,V2) communication
rounds. According to the constructed function (53), nodes in V2 will maintain x = y = 0 until
receiving values from V1. Similarly, the nodes in V1 will have at most the first coordinate non-zero
until they receive the non-zero values returned from V2. (Nodes in V3 do not contribute to increasing
the number of non-zero coordinates.) In subsequent steps, each additional non-zero coordinate
needs at least D(V1,V2) communication rounds. After R communication rounds, the output of
the algorithm will have only the first ⌊R/D(V1,V2)⌋ coordinates non-zero, while the remaining
⌊R/D(V1,V2)⌋ coordinates are zero.

The following lemma establishes a lower bound on the distance between the current point and the
optimal solution.

Lemma D.5 (Zhang et al. [89, Theorem 3.5]). For d ≥ max{4k, 2 log(ι/4
√
2)} and (x,y) ∈

Fk ×Fk, it holds that

E
[
∥x− x∗∥2 + ∥y − y∗∥2

]
≥ τk

∥y0 − y∗∥2

16
,

where τ = ((2 + ι)−
√
(2 + ι)2 − 4)/2 ∈ (0, 1) and ι = 4µ2/L̂2.

Combing the result of Lemma D.4, it holds that for any decentralized first-order algorithm satisfying
Definition 4.1, the output (xR

out,y
R
out) after R communication rounds will satisfy

E
[
∥xR

out − x∗∥2 + ∥yR
out − y∗∥2

]
≥ τ

R
D(V1,V2)

∥y0 − y∗∥2

16
. (54)

Lemma D.6 (Yuan et al. [88, Theorem 1]). For any m ≥ 2 and λ2 ∈ [0, cos(π/m)], we can always
construct a ring-lattice graph so that the mixing matrix W satisfies Assumption 2.4 and λ2(W) = λ2,
and the diameter of the graph satisfies

D(V1,V2) = Ω (
√
χ) .

With the above lemmas, we proceed to prove Theorem 4.4.

Proof of Theorem 4.4. By equation (54), to find an ϵ-suboptimal solution, communication rounds R
are lower bounded by

R ≥ D(V1,V2) log

(
∥y0 − y∗∥2

16ϵ

)
/ log

1

τ
.

For any x > 0, it holds that (log(1 + x))−1 ≥ x−1. Thus, we have(
log

1

τ

)−1

=

(
log

(
1 +

(
1

τ
− 1

)))−1

≥ τ

1− τ

=
1 + ι

2 − 1
2

√
(2 + ι)2 − 4

1
2

√
(2 + ι)2 − 4− ι

2

=

√
ι(4 + ι)

2ι
− 1

2

=
1

2

√
L̂2

4µ2

(
4 +

4µ2

L̂2

)
− 1

2
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=
1

2

√
L̂2

µ2
+ 1− 1

2

= Ω

(
L̂

µ

)
.

Based on the fact that L̂2 = (L2 − µ2)|V1|/(2m), where |V1| = ⌊m/3⌋ and L ≥ 2µ, it follows that
L̂ = Ω(L). Therefore, for any decentralized LIFO algorithm, the communication rounds have the
lower bound:

R ≥ D(V1,V2) log

(
∥y0 − y∗∥2

16ϵ

)
/ log

1

τ

= Ω

(
D(V1,V2)

L

µ
log

(
1

ϵ

))
= Ω

(√
χL

µ
log

(
1

ϵ

))
,

where the last step holds by Lemma D.6.
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