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Abstract
We address the challenge of achieving angular
super-resolution in multi-antenna radar systems
that are widely used for localization, navigation,
and automotive perception. A multi-antenna radar
achieves very high resolution by computationally
creating a large virtual sensing system using very
few physical antennas. However, practical con-
straints imposed by hardware, noise, and a limited
number of antennas can impede its performance.
Conventional supervised learning models that rely
on extensive pre-training with large datasets, of-
ten exhibit poor generalization in unseen environ-
ments. To overcome these limitations, we pro-
pose NEAR, an untrained implicit neural repre-
sentation (INR) framework that predicts radar re-
sponses at unseen locations from sparse measure-
ments, by leveraging latent harmonic structures
inherent in radar wave propagation. We establish
new theoretical results linking antenna array re-
sponse to expressive power of INR architectures,
and develop a novel physics-informed and latent
geometry-aware regularizer. Our approach inte-
grates classical signal representation with modern
implicit neural learning, enabling high-resolution
radar sensing that is both interpretable and gen-
eralizable. Extensive simulations and real-world
experiments using radar platforms demonstrate
NEAR’s effectiveness and its ability to adapt to
unseen environments.

1. Introduction
In addition to Lidar and RGB-cameras, Radar has emerged
as a crucial sensing modality for advanced sensing tasks
such as driver assistance systems (ADAS) and autonomous
vehicles (Bijelic et al., 2020; Caesar et al., 2020), especially
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due to its robustness to adverse weather conditions (e.g.
fog, snow, rain). Multiple-Input-Multiple-Output (MIMO)
radar (Li & Stoica, 2008) employs an array of transmit (Tx)
antennas which generate signals that are reflected by tar-
gets of interest, and received at a receiving (Rx) antenna
array. The distance and velocity of these targets are char-
acterized by using the radar’s Range-Doppler (RD) map,
which is computed by applying Discrete-Time Fast Fourier
Transform (FFT) on digitized receiver signals after Analog-
to-Digital Conversion (ADC) (Sun et al., 2020). Direction-
of-Arrival (DOA) estimation is then performed exclusively
on peaks that pass the constant false alarm rate (CFAR) de-
tector (Scharf & Demeure, 1991) to determine the angular
orientation of objects. The angular resolution of MIMO
radar, which reveals how well it can identify two or more
closely spaced sources, is fundamentally constrained by the
number and configuration of the antenna array. For instance,
a device equipped with eight uniformly filled antenna ar-
rays achieves at most an angular resolution of about 15◦

(Instruments, 2017). Thus, it is important to develop innova-
tive technologies to enhance the angular resolution of radar
sensing, without incurring substantial hardware costs.

For MIMO radar, range and Doppler resolution can be im-
proved by adjusting signal bandwidth and frame time, which
correspond to the frequency range and duration of signal
pulses, respectively (Li et al., 2023). However, angular
resolution is strictly dependent on the radar hardware speci-
fications, and cannot be improved through parameter adjust-
ments. Achieving higher angular resolution in both azimuth
and elevation requires a large aperture in both horizontal
and vertical directions, which, for uniformly filled arrays,
necessitates a significant number of antennas, resulting in
high hardware costs. Some works propose to use sparse
arrays (Pal & Vaidyanathan, 2010; Qin et al., 2015), which
deploy a reduced number of transmit and receive antennas to
achieve the same array aperture but the inter-element spac-
ing of the corresponding virtual array is larger than that of
uniformly filled array. However, naive processing of sparse
array outputs using traditional methods, can suffer from
high sidelobes and degrade DOA estimation accuracy (Sun
& Zhang, 2021). Thus, achieving super-resolution angular
resolution with low hardware cost and irregular sampling
geometries, remains a continuing challenge.

In this work, we introduce a machine learning framework
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that tackles the challenge of angular super-resolution at low
hardware cost using sparse measurements that employ only
a few antennas. Our goal is to predict complex-valued re-
sponses at any desired location (that can potentially be used
for DOA estimation) within the 2D virtual antenna array
domain using only a sparse set of responses. One straight-
forward approach to accomplish this is to train a machine
learning model that maps a spatial location to the corre-
sponding antenna response. However, this approach may
fail to incorporate the underlying physics of wave signal
propagation, and thus still require very dense measurements
to achieve reasonable performance. As one of the important
breakthroughs in computer vision, NeRF (Mildenhall et al.,
2021) has achieved remarkable success in 3D reconstruc-
tion and view synthesis tasks by learning a scene’s radiance
field from a set of input images and generating photoreal-
istic renderings from novel viewpoints. At its core, NeRF
utilizes implicit neural representations (INRs) (Sitzmann
et al., 2020; Tancik et al., 2020) to parameterize the radi-
ance field as a continuous function, modeled by a multilayer
perceptron (MLP) that maps 3D spatial coordinates to RGB
color and volume density. Leveraging volume-rendering
techniques to synthesize images, NeRF incorporates the
underlying physics of light propagation.

Inspired by recent advances in NeRF and INRs, we pro-
pose Neural Electromagnetic Array Response (NEAR), a
framework utilizing INR, that maps 2D spatial coordinates
to complex-valued antenna response at those locations. Sev-
eral distinguishing features differentiate our task from tradi-
tional NeRF applications, particularly due to fundamental
differences between the ways in which visible light and
radar signals are processed (Zhao et al., 2023). Firstly, we
have access to a limited number of complex-valued mea-
surements, proportional to the number of deployed anten-
nas. Apparently, this conveys significantly less information
compared to an image comprising thousands of pixels. As
a consequence, training a model using off-the-shelf INR-
based algorithms with a limited number of antennas can
fail to reliably predict unseen array response at arbitrary
spatial locations. Secondly, while optical NeRF frameworks
rely solely on light intensity (amplitude), radar signals at
millimeter wavelengths necessitate consideration of phase
information. Unlike visible light, where the phase is often
neglected, the phase in radar signals is crucial for capturing
fine-grained details of wave propagation, such as target lo-
cations. Ignoring phase would result in a significant loss of
critical information. Finally, despite the increasing adoption
of INRs in various domains, the theoretical understanding
of their properties and their implications in specific appli-
cations remain limited. Key aspects, such as the behavior
of deep layers in these networks and role of positional en-
coding (PE) in representing complex signals, are not yet
well-understood.
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Figure 1. Left: Illustration of the target position in Spherical coor-
dinate system. Right: One sub-Nyquist sampling pattern with ✕

indicating missing virtual element response.

To address these challenges, our work makes the following
contributions:

• We propose NEAR, the first electromagnetic array re-
sponse prediction framework that implicitly integrates
signal propagation characteristics into INRs. Our ap-
proach enables prediction of array response at unseen
receiver locations, facilitating super-resolution angular
estimation with low hardware requirements.

• We provide tight characterization of the class of func-
tions that INR’s can represent with certain choices
of positional encoding and activation functions. Our
results improve upon existing theoretical analysis of
INRs.

• We evaluate NEAR through both simulation studies
and real-world experiments, achieving superior perfor-
mance in antenna array response prediction and other
downstream tasks such as super-resolution angular esti-
mation compared to existing model-based and machine
learning methods.

Overall, we believe our findings contribute to advancing
research in INRs and their unique applications in radar sens-
ing. Our work also marks the first step towards leveraging
INRs for predicting unseen antenna responses in radar sens-
ing, paving the way for new opportunities to enhance the
performance of future sensing and localization systems.

2. Preliminaries
In this section, we provide background knowledge on
MIMO radar, virtual array, and implicit neural represen-
tation.

MIMO Radar. We consider targets in three-dimensional
Euclidean space, represented by spherical coordi-
nates as depicted in Figure 1. We consider a L-
shaped MIMO radar system (consistent with our
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hardware) with Nt physical Tx antennas located at
{(xT,1, 0, 0), · · · , (xT,Nt , 0, 0)} and Nr physical Rx
antennas located at {(0, yR,1, 0), · · · , (0, yR,Nr , 0)}. The
Tx antennas emit a set of Nt orthogonal waveforms, which
are reflected byK targets and their superposition is received
at the Rx antenna array. Each Rx antenna of a MIMO
radar is equipped with a bank of Nt matched filters, each
matched to one of the Nt orthogonal waveforms. This
yields a total of NtNr measurements at the output of NtNr

matched filters, which can be used to perform different
spatial sensing tasks such as localization, beamforming and
so forth (Li & Stoica, 2008).

Virtual Array. One of the key features of a MIMO radar is
that by using only Nt +Nr physical Tx and Rx antennas,
it can create the effect of a much larger antenna array with
NtNr virtual sensing elements at the output of the NtNr

matched filters. Consider a far-field point target at direction
(θ, ϕ). It can be shown that the noiseless array response at
the m-th matched filter output in the n-th receiving antenna
can be expressed as

xej
2π
λ (xT,m sinϕk cos θk+yR,n sinϕk sin θk), (1)

where x is the unknown amplitude of the signal reflected by
the target and λ is the wavelength at which the narrowband
radar operates. Therefore, the array response in (1) is the
same as that of a (fictitious) two-dimensional receiving array
with NtNr antenna elements located at

{(xT,m, 0, 0) + (0, xR,n, 0), 1 ≤ m ≤ Nt, 1 ≤ n ≤ Nr}.

This two-dimensional antenna array with NtNm elements
is known as the virtual array (Chen & Vaidyanathan, 2008).
Figure 1 shows a physical Tx-Rx antenna pair and the asso-
ciated two-dimensional virtual array. Notice that depending
on the geometry of the Tx-Rx pair, the 2D virtual array need
not comprise of elements on consecutive locations over a
uniform grid, and there can be missing elements (or holes)
the virtual array, as indicated in Figure 1.

Consider K targets in the far field, with azimuth angle θk
and elevation angle ϕk, 1 ≤ k ≤ K. Without loss of gen-
erality, let the reference virtual antenna be located at the
origin of the coordinate system. The array response at a
coordinate (r1, r2)

1 (which may be a virtual array element
location, or the location of a missing sensor), due to signals
impinging from the K targets in absence of noise can be
expressed as:

yr1,r2 =

K∑
k=1

xke
j 2π

λ (r1 sinϕk cos θk+r2 sinϕk sin θk), (2)

where xk is the unknown complex-valued reflection coef-
ficient of k-th target. Various algorithms, such as beam-
forming (Van Trees, 2002) and subspace-based methods

1In our setting, the 2D virtual array is located in the xy-plane.

(Schmidt, 1986; Roy & Kailath, 1989), can be applied to
estimate {θk}Kk=1 and {ϕk}Kk=1.

Implicit Neural Representations (INR). INRs are used
to model a continuous function g : Rdin → Rdout using
a neural network fΘ : Rdin → Rdout , parameterized by
weights Θ, which map input coordinates r ∈ Rdin to signal
values g(r) ∈ Rdout . A significant challenge for INRs is
to accurately reconstruct high-frequency details, which is
needed for radar super-resolution. Classical neural network
architectures are known to exhibit strong spectral bias (Ra-
haman et al., 2019) towards lower frequencies. Recently,
Tancik et al. (2020); Sitzmann et al. (2020) have proposed ar-
chitectural solutions to overcome this spectral bias allowing
faster convergence and higher accuracy of INRs.

Following the formulation of (Yüce et al., 2022), most INR
architectures can be decomposed into a mapping function
γ : RD → RT followed by a MLP, with weights W (ℓ) ∈
RFℓ×Fℓ−1 , bias b(ℓ) ∈ RFℓ , and activation function ρ(ℓ) :
R → R applied element-wise at each layer ℓ = 1, . . . , L−1.
Suppose z(ℓ) represents the post activation output at layer ℓ.
The INR input-output relationship is given by

z(0) = γ(r),

z(ℓ) = ρ(ℓ)
(
W (ℓ)z(ℓ−1) + b(ℓ)

)
, ℓ = 1, . . . , L− 1,

fΘ(r) = W (L)z(L−1) + b(L).
(3)

Tancik et al. (2020) introduced Fourier feature networks
(FFNs), which use Fourier-based positional encoding
γ(r) = sin(Ωr + ϕ), with parameters Ω ∈ RT×D and
ϕ ∈ RT followed by an MLP with ρ(ℓ) = ReLU. They
demonstrated that by initializing Ωi,j ∼ N (0, σ2) with ran-
dom Fourier features, and choosing large values of σ, one
can drive the network response towards realizing higher fre-
quencies. SIREN (Sitzmann et al., 2020) can also mitigate
spectral bias in a similar way by choosing a different (sinu-
soidal) activation function and rescaling certain parameters
at initialization.

3. Related Work
Hallucinated Antenna Interpolation/Extrapolation. To
mitigate the high sidelobes introduced by the sparse arrays
and enhance the SNR of antenna array response, Sun &
Zhang (2021) propose to recover missing elements or holes
in the sparse arrays by completing a low-rank (Block) Han-
kel matrix (Chen & Chi, 2013). However, the nuclear norm
minimization that they employed often suffers from subop-
timal recovery performance (Lu et al., 2015) and exhibits
sensitivity to the sampling pattern and noise. Furthermore,
their approach is limited in its applicability to cases involv-
ing non-integer-multiple sampling. To enhance the azimuth
resolution of MIMO radar, Li et al. (2023) proposed Analog-
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to-Digital super-resolution model (ADC-SR) that predicts
or hallucinates additional radar signals using signals from
only a few receivers, essentially implementing a uniformly
filled array extrapolation framework. However, their ap-
proach is restricted to 1D MIMO configurations and relies
on a large training dataset, potentially limiting its generaliza-
tion capability. In contrast, our method implicitly leverages
the underlying physics of signal propagation and requires
only single-snapshot sparse measurements, eliminating the
dependence on extensive training data.

Expressive power of INRs. INRs have emerged as a ver-
satile set of neural architectures for representing and pro-
cessing signals on low-dimensional spaces. Understanding
the function class that an INR architecture can represent is
essential for their application to practical problems. Recog-
nizing that polynomials of sinusoids generate linear combi-
nations of integer harmonics of said sinusoids, Yüce et al.
(2022) analyzed the expressivity of FFN, SIREN and re-
lated architectures in (Fathony et al., 2020). Subsequently
Roddenberry et al. (2023) developed a broader theoretical
understanding of INR architectures with a wider class of
activation functions and provided a superset to which the
integer harmonic frequencies characterizing INR functions
belong. While their superset results provide valuable theo-
retical insights, our work refines this analysis and derives
the exact set (and not a superset) of integer harmonics which
describe the expressive power of INRs, delivering a tight
characterization.

Neural Radio-Frequency Field Reconstruction. Building
on the fact that light is a kind of electro magnetic (EM)
wave, Zhao et al. (2023) and (Lu et al.) proposed two
NeRF-based frameworks, named NeRF2 and NeWRF, re-
spectively, for wireless channel modeling based on implicit
wireless radiation field reconstruction. Chen et al. (2024)
further developed a hybrid model that integrates NeRF-like
object representation with physics-based ray tracing models.
These models enable accurate characterization and predic-
tion of channel properties. Building on the principles of
planar wave propagation, we propose a novel framework
for reconstructing 2D MIMO virtual antenna array response
fields using implicit neural representations. In contrast to
aforementioned approaches that employ ray tracing for EM
waves, our method employs a straightforward yet effective
regularization strategy specifically designed to leverage the
spectral sparsity of antenna array measurements and the
characteristics of planar wave propagation.

4. Neural Electromagnetic Array Response
In this section, we present the design of NEAR. Section 4.1
outlines our problem formulation, followed by theoretical
results on the expressive power of INRs and their connection
to Fourier series in Section 4.2 elucidating why and how

array response function in (2) can be effectively learned.
Section 4.3 details our novel implicit regularization strategy
that integrates signal propagation model while harnessing
harmonic structure. Finally, we describe the response pre-
diction process of NEAR in Section 4.4.

4.1. Problem Formulation

We consider a environment where all objects are located
in the far-field relative to the radar antenna array. In this
setup, the propagation of wireless signals can be modeled
as planar waves that are emitted from the Tx array, reflected
by objects and finally captured by the Rx array. Let Sx and
Sy represent the sparse sets of physical Tx and Rx antennas,
respectively. The coordinate set of available virtual antennas
is given by {(rx, ry)}rx∈Sx,ry∈Sy as explained in Section 2.
We define the domain of antenna array response field as
D = {(x, y) | 0 ≤ x ≤ max(Sx), 0 ≤ y ≤ max(Sy)}. We
represent the continuous complex-valued response field as a
function y : D → C, where the input is a 2D coordinate r =
[r1, r2]

⊤ within the domain D, and the output is a complex-
valued response yr1,r2 that adheres to the signal model in
(2). To approximate this continuous 2D response field, we
employ an INR model that maps the input 2D coordinates to
a vector in R2, where the two components correspond to the
real and imaginary parts of the complex-valued response,
respectively. Specifically, the model is defined as fΘ :
R2 → R2, and the parameters Θ are optimized to map
each input 2D coordinate to its corresponding response. The
goal of this paper is to learn the function fΘ solely from
physical antenna measurements (without using any offline
training data), by exploiting the harmonic structure of array
response in (2). Once the response function is learned, it
enables the prediction of array responses at any unseen
locations within D, facilitating downstream tasks such as
angle estimation and localization.

4.2. Representational Ability of INRs

While substantial empirical evidence demonstrates the ef-
fectiveness of INRs in representing scenes and various vi-
sual signals, the theoretical underpinnings of their ability
to approximate continuous functions remain underexplored.
In this subsection, we establish that many contemporary
INRs inherently build upon similar underlying structures
and shared fundamental principles, enabling them to repre-
sent a certain class of signals.

To rigorously analyze the expressive power of INRs, we
follow the formulation outlined in (3). Following (Yüce
et al., 2022; Roddenberry et al., 2023; Mehmeti-Göpel et al.,
2020), we restrict our investigation to polynomial activation
functions of the form ρ(x) =

∑Q
q=0 αqx

q , a widely adopted
approach in the study of the expressive capacity of INRs.

Theorem 4.1. Let fΘ : RD → R be an INR given by

4



NEAR: Neural Electromagnetic Array Response

(3), where the activation function for layers ℓ > 1 is given
by ρ(ℓ)(z) =

∑Q
q=0 αqz

q. Let ΩT = [ω1, . . . ,ωT ]
⊤ ∈

RT×D represent the frequency matrix and ϕT ∈ RT the
phase vector used to map the input coordinate r ∈ RD

into the feature space via the mapping γ(r) = sin(ΩT r +
ϕT ). The resulting architecture is capable of representing
functions of the form:

fΘ(r) =
∑
s∈ST

cs sin
(
⟨Ω⊤

T s, r⟩+ ϕs
)
, (4)

where

ST =

{
[s1, s2, . . . , sT ]

⊤

∣∣∣∣∣ st ∈ Z,
T∑

t=1

|st| ≤ QL−1

}
.

Theorem 4.1 gives an exact characterization of the set ST of
all possible integer harmonics of the feature mapping γ(r).
In contrast, Yüce et al. (2022); Roddenberry et al. (2023)
only provide a superset to which ST belongs.
Remark 4.2. Let yR and yI denote the real and imaginary
parts of the response field function (2), respectively. The
function yR(r) can be equivalently represented as (4) by
applying Theorem 4.1 with the following parameterization:

ΩT =
2π

λ
[sinϕk cos θk sinϕk sin θk]1≤k≤K ∈ RK×2,

c2k−1 = Re(xk), c2k = −Im(xk), ϕ2k−1 =
π

2
,

ϕ2k = 0, sk = ek ∈ RK , ST = {ek}1≤k≤K .

Under this parameterization,

yR(r) =

K∑
k=1

c2k−1 sin
(
⟨Ω⊤

T sk, r⟩+ ϕ2k−1

)
+ c2k sin

(
⟨Ω⊤

T sk, r⟩+ ϕ2k
)
.

A similar representation also holds for yI.

This shows that our desired array response indeed belongs to
the class of functions representable by INRs. Although the
resulting INR architecture appears deceptively simple, it is
to be noted that the positional encoding requires the ground-
truth DOA and amplitude of each target, which are never
available in practice. Hence it is important to investigate the
class of functions that INR can approximate using a given
mapping γ(r), such as the type of fixed sinusoid positional
encodings employed in NeRF (Mildenhall et al., 2021):

γ(r) =

[
sin(Ωr)
cos(Ωr)

]
, with (5)

Ω =

[
20π 0 21π 0 · · · 2T−1π 0
0 20π 0 21π · · · 0 2T−1π

]⊤
.

Consider a non-periodic function g : Rdin → Rdout defined
over a bounded domain D (e.g. the height and width of a
image, the aperture of 2D-MIMO array). We can define
its periodic extension g̃ : Rdin → Rdout with period p as
follows (Benbarka et al., 2022):

g̃(x+ n ◦ p) = g(x) ∀x ∈ D, ∀n ∈ Zdin , (6)

where ◦ denotes the Hadamard product. By normalizing the
input domain to its respective bounds, we assume a period
of 2 for each variable, i.e., within the range [−1, 1). The
Fourier series expansion for a periodic extension g̃ : R2 →
R of period 2 is given by (Oppenheim et al., 2010):

∞∑
m,n=−∞

Am,n cos(π(mx+ny))+Bm,n sin(π(mx+ny)).

(7)
It can be shown that if the frequency matrix Ω ∈ R2T×2

of the INR described in Theorem 4.1 is chosen according
to (5), then as the number (L) of layers of the MLP/INR
increases, fΘ approximates to certain period-2 functions g̃
of the form (7). See Appendix A.7 for more details.

4.3. Physics-Informed Implicit Regularization

To model the antenna array response field, we discretize
the domain of interest into a finite set of points in the 2D
plane. Let [0, U1] × [0, U2] represent the antenna array
response field with bounded domain positioned in the x− y
plane, consider a general case of a uniform sampling grid of
dimensions M1 ×M2, with spacing d1 = U1

M1−1 ≤ λ
2 and

d2 = U2

M2−1 ≤ λ
2 . Supposing an array snapshot containing

K targets with azimuth angle θk and elevation angle ϕk
(k = 1, · · · ,K), and leveraging planar wave propagation
(2), the (m1,m2) th element of the response with respect to
K targets in the absence of noise can be written as

ym1,m2

=

K∑
k=1

xke
j 2π

λ ((m1−1)d1 sinϕk cos θk+(m2−1)d2 sinϕk sin θk)

(8)
for 1 ≤ m1 ≤M1 and 1 ≤ m2 ≤M2. Notably, when d1 =
d2 = λ

2 , the sampling pattern aligns with the Nyquist sam-
pling. Let Y = [ym1,m2 ]1≤m1≤M1,1≤m2≤M2 ∈ CM1×M2

be the ground truth response matrix with entries as the an-
tenna array response defined in (8).
Definition 4.3. Given Y = [ym1,m2 ] ∈ CM1×M2 for
1 ≤ m1 ≤M1, 1 ≤ m2 ≤M2, a Block Hankel matrix of
Y, 1 ≤ N1 ≤M1, 1 ≤ N2 ≤M2 can be constructed as:

HN1,N2
(Y)

=


HN2(y1) HN2(y2) · · · HN2(yM1−N1+1)
HN2(y2) HN2(y3) · · · HN2(yM1−N1+2)

...
...

. . .
...

HN2
(yN1

) HN2
(yN1+1) · · · HN2

(yM1
)

 ,
5
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where HN2
(ym), 1 ≤ m ≤M1 is defined as:

HN2
(ym) =


ym,1 ym,2 · · · ym,M2−N2+1

ym,2 ym,3 · · · ym,M2−N2+2

...
...

. . .
...

ym,N2
ym,N2+1 · · · ym,M2

 .
Remark 4.4. Definition 4.3 defines the block Hankel ma-
trix constructed along the row direction. Similarly, a block
Hankel matrix can also be constructed along the column
direction, denoted as H̃Ñ1,Ñ2

(Y) (see definition in Ap-
pendix B.1). Moreover, the rank property remains consistent
for block Hankel matrices constructed along both the row
and column directions.

We emphasize that the number of targets in the same range-
Doppler bin that need angle estimation is small since the
targets are first separated in range-Doppler domain (Sun
et al., 2020). In other words, the targets are sparsely present
in the angular domain and, as a result, HN1,N2

(Y) and
H̃Ñ1,Ñ2

(Y) exhibit low rank, with rank equal to K for
appropriate choice of N1, N2, Ñ1, Ñ2 (see Lemma B.1 in
Appendix). To characterize such a property, numerous
convex/non-convex rank surrogate functions have been ex-
plored in the literature, which include but are not limited
to nuclear norm (Candes & Recht, 2012), schatten-p norm
(Mohan & Fazel, 2012) and truncated nuclear norm (Hu
et al., 2012). However, all of these surrogate functions are
explicit and requires singular value decomposition (SVD),
which can be not only computational expensive but also
sub-optimal. In this work, we propose a novel implicit regu-
larizer that exploits the structure of the block Hankel matrix
and its latent representation. To further justify the effec-
tiveness, we establish the algebraic properties of the block
Hankel matrix corresponding to the ground truth response
Y using its harmonic structure.

Theorem 4.5. Consider the ground truth response matrix
Y as defined in (8). For K ≤ min(⌈M1

2 ⌉, ⌈M2

2 ⌉), there
exists vectors mo

1 ∈ CK and mo
2 ∈ CK such that the last

column of HM1,M2−K(Y) can be uniquely represented in
terms of the first K columns of HM1,M2−K(Y) using the
corresponding coefficient vectors mo

1, i.e.

∥HM1,M2−K(Y)Smo
1 −HM1,M2−K(Y)b∥2 = 0,

where S = [IK×K 0K ]
⊤ ∈ R(K+1)×K , and b =[

0⊤
K 1
]⊤ ∈ R(K+1)×1. Similarly, an equivalent property

holds for H̃M2,M1−K(Y), given by

∥H̃M2,M1−K(Y)Smo
2 − H̃M2,M1−K(Y)b∥2 = 0.

Building upon the planar wave signal propagation model,
Theorem 4.5 establishes a connection between rank property
and least squares by leveraging harmonic structure of Block

Hankel matrix. However, the global optimizer mo
1 and mo

2

are intrinsically dependent on parameters {(θk, ϕk)}Kk=1

(see Lemma B.3 in Appendix), which are part of the radar
sensing task and not known in advance. To address this, as
detailed in the next subsection, we integrate the least squares
term into the loss function and parameterize the unknown
coefficients, enabling them to be learned adaptively.

4.4. Optimizing NEAR

In practice, the model predicts the real and imaginary parts
of the response signal (ℜ{yr1,r2},ℑ{yr1,r2}), instead of
amplitude and phase (A(yr1,r2), ψ(yr1,r2)). This is because
phase is modulo against 2π, which is not differentiable.
We perform uniform inference for fΘ(·) over the bounded
domain, using a pre-chosen grid of M1 ×M2 data points.
Denote the predicted response at the (m1,m2) th element
as ŷm1,m2

= fΘ((m1 − 1) U1

M1−1 , (m2 − 1) U2

M2−1 ), and let
Ŷ represent the predicted response matrix. All the other
notations remain consistent with those introduced in Section
4.3, with an additional ˆ to distinguish predicted quantities.
Consider two sparse sampling pattern Sx,Sy, where the
observed noisy response ỹrx,ry is only available at locations
r = [rx, ry] ∀rx ∈ Sx,∀ry ∈ Sy . The overall loss function
is defined as

L(Θ,m1,m2) = Ld + λLr, (9)

with

Ld =
∑
j∈Sy

∑
i∈Sx

∥fΘ(i, j)− ỹi,j∥2,

Lr =∥(HM1,M2−K(Ŷ)Sm1 −HM1,M2−K(Ŷ)b∥2
+ ∥(H̃M2,M1−K(Ŷ)Sm2 − H̃M2,M1−K(Ŷ)b∥2,

Ŷ = [fΘ(i, j)]1≤i≤M1,1≤j≤M2
.

(10)
Specifically, Ld represents data fitting term, which quanti-
fies the gap between the predicted and acquired responses at
observed locations; Lr corresponds to regularization term,
as elaborated in Section 4.3 and Appendix B. Parameters
are optimized by minimizing the total loss function

Θo,mo
1,m

o
2 = arg min

Θ,m1,m2

Ld + λLr. (11)

Using the optimal parameters Θo, the predicted array re-
sponse can be computed by ŷi,j = fΘo(i, j), ∀i, j ∈ D.

5. Experiments
We evaluate the performance of NEAR on both simulated
(Section 5.1) and real-world (Section 5.2) tasks. All ex-
periments are run on a laptop with CPU AMD Ryzen 9
5900 HS with Radeon Graphics and GPU NVIDIA GeForce

6
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RTX 3050 Ti Laptop. See Appendix C for more ex-
perimental results. The codes are available at: https:
//github.com/J1mmyYu1/NEAR.

Baselines and Benchmark. We compare NEAR against
four representative baselines: Enhanced Matrix Completion
(EMaC) (Chen & Chi, 2013), SIREN (Sitzmann et al., 2020),
NeRF2 (Zhao et al., 2023), and NEAR without Regulariza-
tion (NEAR w/o R), more implementation details and analy-
sis of these baseline methods can be found in Appendix C.2.
For a fair comparison, we adopt the hyperparameters recom-
mended by the original authors. Additionally, we include a
20× 20 full virtual array response (noisy) as a benchmark
reference.

NEAR Architecture. In both simulated and real-world
settings, we employ the architecture described in Equa-
tion (3), with a depth of L = 4, ReLU activation function
ρ(·) = ReLU(·), and positional encoding γ(r) following
NeRF’s formulation in Equation (5) with T = 10. The
hidden layer dimension is set to 256. Additional imple-
mentation details and hyperparameter configurations are
provided in Appendix C.1.

5.1. Simulation Tasks

Response Recovery. We evaluate the response recovery
performance of NEAR against baseline methods and the
full virtual array benchmark, as summarized in Tables 1
- 3. The evaluation metric is the Normalized Root Mean
Square Error (NRMSE), defined as 1

N

∑N
n=1

∥Ŷn−Yn∥F

∥Yn∥F
,

where Ŷn and Yn denote the predicted array response and
the (noiseless) ground truth full virtual array response at
n-th realization, respectively, with ∥ · ∥F representing the
Frobenius norm. Our method consistently outperforms all
baselines across different evaluation settings, demonstrating
superior generalization in response recovery tasks. Notably,
NEAR achieves even lower error than the 20× 20 full vir-
tual array benchmark across different SNR levels with a
fixed sampling number (Table 1). This can be attributed to
the inherent denoising ability of our regularizer that exploits
low-dimensional structure of array response and provides
a cleaner estimate of at a given coordinate, compared to
actual noisy measurement at the same location. The poor
performance of SIREN and NEAR w/o R across all settings
suggests that these models struggle to learn the appropriate
continuous response function in the absence of physics-
informed regularization. This highlights the importance of
incorporating prior knowledge into implicit neural repre-
sentations for structured signal recovery. A more detailed
analysis is provided in the Ablation Study.

Angular Resolution. The resolution probability (defined
in Appendix C.1.2) of NEAR compared to baselines and
the full virtual array benchmark is illustrated in Figure 2.

Table 1. Averaged NRMSE of response at different SNR level.
8×8 sampling is employed for NEAR, EMaC, NEAR w/O R and
SIREN.

METHOD 10 dB 20 dB 30 dB

BENCHMARK 0.2608 0.0825 0.0261
NEAR 0.2248 0.0495 0.0189
EMAC 0.3537 0.1889 0.0921
NEAR W/O R 1.0663 1.0504 1.0485
SIREN 1.0512 1.0277 1.0244

Table 2. Averaged NRMSE of response for different sampling num-
ber at 20 dB with 2 targets.

METHOD 6X6 8X8 10X10

NEAR 0.1884 0.0495 0.0362
EMAC 0.5306 0.1889 0.0724
NEAR W/O R 1.0689 1.0504 1.0030
SIREN 1.0656 1.0277 0.9860

Our method consistently achieves the highest resolution
probability among baselines and closely follows the full
benchmark. While EMaC achieves comparable resolution
probability for larger angle separations, its performance
degrades significantly as the angle separation decreases.
This is because convex relaxation techniques, such as the
Nuclear Norm used in EMaC, impose separation conditions
that inherently limit resolution (even in noise-free scenarios)
(Dai & Milenkovic, 2009). In contrast, NEAR demonstrates
robust resolution across different separations.
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Figure 2. Angular resolution
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racy vs. different number of tar-
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DOA Estimation. The DOA estimation error of NEAR,
compared to baselines and the full virtual array bench-
mark, is presented in Figure 3. Both NEAR and EMaC
achieve similar performance to the benchmark when esti-
mating the DOA of a single target. However, for multiple
targets, NEAR significantly outperforms EMaC, demonstrat-
ing superior robustness in resolving closely spaced sources.
Notably, EMaC’s performance deteriorates as the number
of targets increases, whereas NEAR maintains a lower esti-
mation error, showing its capacity to generalize effectively
to more complex scenarios.

Ablation Study. Tables 1 - 3 present a comprehensive ab-
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Figure 4. Radar active sensing workflow.

Table 3. Averaged NRMSE of response for different number of
targets at 20 dB. 8×8 sampling is employed for all methods.

METHOD 1 TARGET 2 TARGETS 3 TARGETS

NEAR 0.0382 0.0461 0.0860
EMAC 0.1454 0.1941 0.2503
NEAR W/O R 1.0399 1.0501 1.0308
SIREN 1.0077 1.0262 1.0543

lation study assessing the impact of the physics-informed
regularizer on NEAR. Without this regularizer, implicit neu-
ral representations (INRs) merely perform data fitting on
the observed array responses but fail to capture the inher-
ent low-rank structure in the Hankel matrix of the noise-
less full virtual array response. This limitation severely
affects the model’s ability to generalize beyond observed
data. The findings confirm that leveraging physics-informed
constraints allows NEAR to achieve superior signal recon-
struction and DOA estimation accuracy, particularly in chal-
lenging multi-target scenarios.

5.2. Real-world Experiments

Figure 5. Left: 2D MIMO radar platform. Right: Real-world
experimental setup.

We further conduct experiments using a commercial MIMO
radar platform (IMAGEVK-74) as shown in Figure 5.
IMAGEVK-74 employs 20 Tx antennas on a vertical line
and 20 Rx antennas on a horizontal line, resulting in a vir-

tual array of 20 × 20. IMAGEVK-74 transmits a Stepped-
Frequency Continuous Wave (SFCW) waveform and the
bandwidth is set to be 67–69 GHz. The antenna spacing
is roughly half of the wavelength. After collecting the 20
× 20 full array response matrix, we select a subset of data
and treat it as a sparse set of measurements. Our proce-
dure for active sensing using NEAR is depicted in Figure 4.
Additional details on radar data processing (such as analog-
to-digital conversion) across range and Doppler cells are
included in the Appendix C.3.

Angular resolution. To measure the angular resolution, we
put two corner reflectors at the boresight of the radar and
gradually reduced the spacing between them. We employ
the same signal processing pipeline (e.g., beamforming) and
record the angular separation when the two targets merge
in the radar angular spectrum. Table 4 shows the measured
angular resolution with different setups. As the distance
increases, the SNR reduces, and the reflected signal becomes
weaker. NEAR achieves similar performance as the full
array across all the range settings, confirming its robustness
at lower SNR conditions in real-world environments.

Table 4. Smallest angular separation that can be resolved across
various distance (SNR).

METHOD 2M 3M 4.5M

BENCHMARK 5.7248◦ 6.6769◦ 6.9941◦

NEAR 5.7248◦ 6.6769◦ 6.9941◦

EMAC 8.5783◦ 9.5273◦ 10.1592◦

NERF2 8.5783◦ 8.5783◦ 8.8948◦

Target localization. We put several corner reflectors (1 –
4) in random positions in the field view of the radar and
perform radar localization. The location of the reflectors
spans 1 to 4 m in range, -45◦ to 45◦ in the azimuth angle,
and -20◦ to 20◦ in the elevation angle. A total of 70 loca-
tion samples are collected and their localization errors are
calculated. Table 5 shows that NEAR outperforms the full
array baseline, NeRF2 and EMaC in terms of mean absolute
error. NEAR exhibits a denoising effect that improves the
localization accuracy compared with the full array baseline.
This denoising was achieved by using only an upper bound
(and not the exact value) on the number of targets to de-
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sign the regularizer. The results further confirm NEAR’s
capability to work in a complicated real-world environment
with multiple reflectors. See more experimental results in
Appendix C.4.

Table 5. Localization accuracy for different number of targets (K)
in the environment.

METHOD K = 1 K = 2 K = 3 K = 4

BENCHMARK 0.0827 0.0903 0.0965 0.0964
NEAR 0.0744 0.0770 0.0762 0.0718
EMAC 0.1062 0.1158 0.1170 0.1157
NERF2 0.4902 0.5096 0.4346 0.3898

Computation Time. Table 6 reports the averaged running
times: NEAR (our approach) finishes in roughly 9 minutes,
whereas EMaC and NeRF2 require about 20 and 21 minutes,
respectively. These results highlight the potential for real-
time implementation of our approach with future advances
in algorithms and computing hardware.

Table 6. Computation time comparison.

METHOD NEAR NERF2 EMAC

AVERAGED TIME COST (S) 550.83 1278.31 1226.15

6. Conclusions and Future Work
We proposed NEAR, the first framework that leverages Im-
plicit Neural Representations to model and predict antenna
array responses with sparse measurements without training
data. By integrating harmonic signal structure and planar
wave propagation models, NEAR effectively enables en-
hanced angular resolution and robustness in radar sensing
applications. We believe NEAR represents the first step
towards bridging the gap between deep learning-based neu-
ral fields and classical electromagnetic sensing and signal
processing, unlocking new possibilities for super-resolution
radar, wireless and autonomous sensing applications. Future
work will focus on addressing the following challenges and
improvements:

Computational Efficiency. Optimizing the framework for
real-time inference on embedded radar hardware, reducing
computational overhead while maintaining accuracy.

Multi-Modal Sensor Fusion. Integrating NEAR with Li-
DAR, camera, and RF-based sensing to enhance robustness
in complex environmental conditions.
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Benbarka, N., Höfer, T., Zell, A., et al. Seeing implicit

neural representations as fourier series. In Proceedings
of the IEEE/CVF Winter Conference on Applications of
Computer Vision, pp. 2041–2050, 2022.

Bijelic, M., Gruber, T., Mannan, F., Kraus, F., Ritter, W.,
Dietmayer, K., and Heide, F. Seeing through fog without
seeing fog: Deep multimodal sensor fusion in unseen
adverse weather. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp.
11682–11692, 2020.

Caesar, H., Bankiti, V., Lang, A. H., Vora, S., Liong, V. E.,
Xu, Q., Krishnan, A., Pan, Y., Baldan, G., and Beijbom, O.
nuscenes: A multimodal dataset for autonomous driving.
In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 11621–11631, 2020.

Candes, E. and Recht, B. Exact matrix completion via
convex optimization. Communications of the ACM, 55
(6):111–119, 2012.

Chen, C.-Y. and Vaidyanathan, P. P. Mimo radar space–
time adaptive processing using prolate spheroidal wave
functions. IEEE Transactions on Signal Processing, 56
(2):623–635, 2008.

Chen, X., Feng, Z., Sun, K., Qian, K., and Zhang, X. Rf-
Canvas: Modeling RF channel by fusing visual priors
and few-shot RF measurements. In Proceedings of the
22nd ACM Conference on Embedded Networked Sensor
Systems, 2024.

Chen, Y. and Chi, Y. Spectral compressed sensing via
structured matrix completion. In International conference
on machine learning, pp. 414–422. PMLR, 2013.

CVX Research, I. CVX: Matlab software for disciplined
convex programming, version 2.0. https://cvxr.
com/cvx, August 2012.

9

https://cvxr.com/cvx
https://cvxr.com/cvx


NEAR: Neural Electromagnetic Array Response

Dai, W. and Milenkovic, O. Subspace pursuit for compres-
sive sensing signal reconstruction. IEEE transactions on
Information Theory, 55(5):2230–2249, 2009.

Ding, F., Wen, X., Zhu, Y., Li, Y., and Lu, C. X. Radarocc:
Robust 3d occupancy prediction with 4d imaging radar.
arXiv preprint arXiv:2405.14014, 2024.

Fathony, R., Sahu, A. K., Willmott, D., and Kolter, J. Z. Mul-
tiplicative filter networks. In International Conference
on Learning Representations, 2020.

Grant, M. and Boyd, S. Graph implementations for nons-
mooth convex programs. In Blondel, V., Boyd, S., and
Kimura, H. (eds.), Recent Advances in Learning and Con-
trol, Lecture Notes in Control and Information Sciences,
pp. 95–110. Springer-Verlag Limited, 2008. http:
//stanford.edu/˜boyd/graph_dcp.html.

Hu, Y., Zhang, D., Ye, J., Li, X., and He, X. Fast and
accurate matrix completion via truncated nuclear norm
regularization. IEEE transactions on pattern analysis and
machine intelligence, 35(9):2117–2130, 2012.

Hua, Y. Estimating two-dimensional frequencies by matrix
enhancement and matrix pencil. IEEE Transactions on
Signal Processing, 40(9):2267–2280, 1992.

IMAGEVK-74. Mini-circuits vk-74 product
page. https://www.minicircuits.com/
WebStore/imagevk_74.html. [Online; accessed
29-January-2025].

Instruments, T. Short range radar reference design using
awr1642. Technical report, Technical Report, 2017.

Kramer, A., Harlow, K., Williams, C., and Heckman, C.
Coloradar: The direct 3d millimeter wave radar dataset.
The International Journal of Robotics Research, 41(4):
351–360, 2022.

Li, J. and Stoica, P. MIMO radar signal processing. John
Wiley & Sons, 2008.

Li, Y.-J., Hunt, S., Park, J., O’Toole, M., and Kitani, K.
Azimuth super-resolution for fmcw radar in autonomous
driving. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 17504–
17513, 2023.

Lu, C., Tang, J., Yan, S., and Lin, Z. Nonconvex nonsmooth
low rank minimization via iteratively reweighted nuclear
norm. IEEE Transactions on Image Processing, 25(2):
829–839, 2015.

Lu, H., Vattheuer, C., Mirzasoleiman, B., and Abari, O.
Newrf: A deep learning framework for wireless radiation
field reconstruction and channel prediction. In Forty-first
International Conference on Machine Learning.
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A. Proof of Theorem 4.1
A.1. Notations and Definitions

Let A,B ⊆ Rn be two sets in n-dimensional Euclidean space. The Minkowski sum or difference of A and B is denoted by
A+B, A−B respectively, and defined as:

A+B = {a+ b | a ∈ A, b ∈ B}, A−B = {a− b | a ∈ A, b ∈ B}

Additionally, we define D(A,B) as the union of the Minkowski sum and difference of A and B, given by:

D(A,B) := (A+B) ∪ (A−B).

We define U (q) and B(q) as follows:

U (q) =

{
s(q) =

[
s
(q)
1 , · · · , s(q)T

]⊤ ∣∣∣∣∣ s(q)t ∈ Z,
T∑

t=1

|s(q)t | ≤ q

}
,

B(q) =

{
s(q) =

[
s
(q)
1 , · · · , s(q)T

]⊤ ∣∣∣∣∣ s(q)t ∈ Z,
T∑

t=1

|s(q)t | = q

}
.

Recall that we are interested in analyzing the expressive power of INR architectures, which consist of a mapping function
γ : RD → RT (positional encoding) followed by a multilayer perceptron (MLP). The MLP is parameterized by weights
W (ℓ) ∈ RFℓ×Fℓ−1 , biases b(ℓ) ∈ RFℓ , and activation functions ρ(ℓ) : R → R applied elementwise at each layer
ℓ = 1, . . . , L− 1. Specifically, denoting the post-activation output of each layer as z(ℓ), most INR architectures compute:

z(0) = γ(r),

z(ℓ) = ρ(ℓ)
(
W (ℓ)z(ℓ−1) + b(ℓ)

)
, ℓ = 1, . . . , L− 1,

fΘ(r) = W (L)z(L−1) + b(L),

where r ∈ RD is the input coordinate. As it is plausible to normalize the inputs (r) to their bounds, we assume that each
variable’s period is 1 (normalized to [0, 1)) or 2 (normalized to [−1, 1)).

A.2. Lemma A.1 and Proof

Lemma A.1. Let Ω = [ω1, . . . ,ωT ]
⊤ ∈ RT×D be a frequency matrix, and let S1,S2 ⊆ RT denote two sets of weights

corresponding to these frequencies. Additionally, let {ϕs1
∈ R | s1 ∈ S1} and {ϕs2

∈ R | s2 ∈ S2} represent two
collections of scalar phases, and {βs1

∈ R | s1 ∈ S1} and {βs2
∈ R | s2 ∈ S2} two corresponding sets of scalar

coefficients. For any r ∈ RD, the following holds:

( ∑
s1∈S1

βs1 cos
(
⟨Ω⊤s1, r⟩+ ϕs1

))( ∑
s2∈S2

βs2 cos
(
⟨Ω⊤s2, r⟩+ ϕs2

))
=

∑
s′∈D(S1,S2)

β̃s′ cos
(
⟨Ω⊤s′, r⟩+ ϕ̃s′

)
,

(12)
where

D(S1,S2) = (S1 + S2) ∪ (S1 − S2) , (13)

and {ϕ̃s′ ∈ R | s′ ∈ D(S1,S2)} and {β̃s′ ∈ R | s′ ∈ D(S1,S2)} denote the resulting scalar phases and coefficients,
respectively.
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Proof. ( ∑
s1∈S1

βs1 cos
(
⟨Ω⊤s1, r⟩+ ϕs1

))( ∑
s2∈S2

βs2 cos
(
⟨Ω⊤s2, r⟩+ ϕs2

))
=
∑

s1∈S1

∑
s2∈S2

βs1
βs2

cos
(
⟨Ω⊤s1, r⟩+ ϕs1

)
cos
(
⟨Ω⊤s2, r⟩+ ϕs2

)
=
∑

s1∈S1

∑
s2∈S2

βs1βs2

1

2

(
cos
(
⟨Ω⊤(s1 + s2), r⟩+ ϕs1 + ϕs2

)
+ cos

(
⟨Ω⊤(s1 − s2), r⟩+ ϕs1 − ϕs2

))
=

∑
s′∈D(S1,S2)

β̃s′ cos
(
⟨Ω⊤s′, r⟩+ ϕ̃s′

)
.

The last equality combines terms with the same frequency, where β̃s′ and ϕ̃s′ represent the resultant magnitude and phase,
respectively, obtained through phasor addition after grouping. This technique will be used repeatedly in the following
subsections to simplify analogous expressions.

A.3. Lemma A.2 and Proof

Lemma A.2. Let Ω = [ω1, . . . ,ωT ]
⊤ ∈ RT×D be a frequency matrix, and letET = {et ∈ RT | t ∈ Z, 1 ≤ t ≤ T} denote

the set of canonical basis vectors of RT . Define S(1) as the augmented set of ET , given by S(1) = {et,−et | et ∈ ET }.
Additionally, let {ϕs(1) ∈ R | s(1) ∈ S(1)} be a collection of scalar phases, and {βs(1) ∈ R | s(1) ∈ S(1)} the corresponding
set of scalar coefficients. For any r ∈ RD and q ∈ N, the following equality holds:

 ∑
s(1)∈S(1)

βs(1) cos
(
⟨Ω⊤s(1), r⟩+ ϕs(1)

)q

=
∑

s(q)∈S(q)

β̃s(q) cos
(
⟨Ω⊤s(q), r⟩+ ϕ̃s(q)

)
, (14)

where

S(q) := D(S(q−1),S(1)), B(q) ⊆ S(q) ⊆ U (q), (15)

for some {ϕ̃s(q) ∈ R | s(q) ∈ S(q)} and {β̃s(q) ∈ R | s(q) ∈ S(q)}.

Proof. We will use induction to prove our statement. The statement trivially holds for q = 1 since B(1) = S(1) ⊆ U (1).
Assume it also holds for q > 1, we first show that S(q+1) ⊆ U (q+1). Using the induction hypothesis and Lemma A.1, we
have:  ∑

s(1)∈S(1)

βs(1) cos
(
⟨Ω⊤s(1), r⟩+ ϕs(1)

)q+1

=

 ∑
s(1)∈S(1)

βs(1) cos
(
⟨Ω⊤s(1), r⟩+ ϕs(1)

)q ∑
s(1)∈S(1)

βs(1) cos
(
⟨Ω⊤s(1), r⟩+ ϕs(1)

)
=

 ∑
s(q)∈S(q)

β̃s(q) cos
(
⟨Ω⊤s(q), r⟩+ ϕ̃s(q)

) ∑
s(1)∈S(1)

βs(1) cos
(
⟨Ω⊤s(1), r⟩+ ϕs(1)

)
=

∑
s(q+1)∈D(S(q),S(1))

β′
s(q+1) cos

(
⟨Ω⊤s(q+1), r⟩+ ϕ′s(q+1)

)
=

∑
s(q+1)∈S(q+1)

β′
s(q+1) cos

(
⟨Ω⊤s(q+1), r⟩+ ϕ′s(q+1)

)
13
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Moreover,

S(q+1) = D{S(q),S(1)} =
{
s(q+1) = s(q) ± s(1)

∣∣∣ s(q) ∈ S(q), s(1) ∈ S(1)
}

⊆
{
s(q+1) = s(q) ± s(1)

∣∣∣ s(q) ∈ U (q), s(1) ∈ S(1)
}

=

{
s(q+1) =

[
s
(q)
1 , · · · , s(q)T

]⊤
± et

∣∣∣∣∣ s(q)t ∈ Z,
T∑

t=1

|s(q)t | ≤ q, et ∈ S(1)

}

⊆

{
s(q+1) =

[
s
(q+1)
1 , · · · , s(q+1)

T

]⊤ ∣∣∣∣∣ s(q+1)
t ∈ Z,

T∑
t=1

|s(q+1)
t | ≤ q + 1

}
= U (q+1),

where the last line follows from triangle inequality. Next, we show that given the assumption, we have B(q+1) ⊆ S(q+1):

S(q+1) = D{S(q),S(1)} =
{
s(q+1) = s(q) ± s(1)

∣∣∣ s(q) ∈ S(q), s(1) ∈ S(1)
}

⊇
{
s(q+1) = s(q) ± s(1)

∣∣∣ s(q) ∈ B(q), s(1) ∈ S(1)
}

=

{
s(q+1) =

[
s
(q)
1 , · · · , s(q)T

]⊤
± et

∣∣∣∣∣ s(q)t ∈ Z,
T∑

t=1

|s(q)t | = q, et ∈ S(1)

}

⊇

{
s(q+1) =

[
s
(q+1)
1 , · · · , s(q+1)

T

]⊤ ∣∣∣∣∣ s(q+1)
t ∈ Z,

T∑
t=1

|s(q+1)
t | = q + 1

}
= B(q+1).

Therefore we have B(q+1) ⊆ S(q+1) ⊆ U (q+1). Thus by induction (14) holds ∀ q ∈ N.

A.4. Lemma A.3 and Proof

Lemma A.3. Let Ω = [ω1, . . . ,ωT ]
⊤ ∈ RT×D be a frequency matrix, and letET = {et ∈ RT | t ∈ Z, 1 ≤ t ≤ T} denote

the set of canonical basis vectors of RT . Define S(1) as the augmented set of ET , given by S(1) = {et,−et | et ∈ ET }.
Additionally, let {ϕs(1) ∈ R | s(1) ∈ S(1)} be a collection of scalar phases, and {βs(1) ∈ R | s(1) ∈ S(1)} the corresponding
set of scalar coefficients. For any r ∈ RD, Q ∈ N and αq ∈ R (q = 1, · · · , Q), the following equality holds:

Q∑
q=0

αq

 ∑
s(1)∈S(1)

βs(1) cos
(
⟨Ω⊤s(1), r⟩+ ϕs(1)

)q

=
∑

s̄(Q)∈S̄(Q)

˜̃
βs̄(Q) cos

(
⟨Ω⊤s̄(Q), r⟩+ ˜̃

ϕs̄(Q)

)
, (16)

where

S̄(Q) =

Q⋃
q=1

S(q) =

{
s̄(Q) =

[
s̄
(Q)
1 , · · · , s̄(Q)

T

]⊤ ∣∣∣∣∣ s̄(Q)
t ∈ Z ∧

T∑
t=1

|s̄(Q)
t | ≤ Q

}
= U (Q) (17)

for some { ˜̃ϕs̄(Q) ∈ R | s̄(Q) ∈ S̄(Q)} and { ˜̃βs̄(Q) ∈ R | s̄(Q) ∈ S̄(Q)}.

Proof. According to Lemma A.2, we have:

Q∑
q=0

αq

 ∑
s(1)∈S(1)

βs(1) cos
(
⟨Ω⊤s(1), r⟩+ ϕs(1)

)q

=

Q∑
q=0

αq

∑
s(q)∈S(q)

β̃s(q) cos
(
⟨Ω⊤s(q), r⟩+ ϕ̃s(q)

)
=

∑
s̄(Q)∈S̄(Q)

˜̃
βs̄(Q) cos

(
⟨Ω⊤s̄(Q), r⟩+ ˜̃

ϕs̄(Q)

)
,

where S̄(Q) =
⋃Q

q=1 S(q). Since B(q) ⊆ S(q) ⊆ U (q) for q ∈ N, we then have:

Q⋃
q=1

B(q) ⊆ S̄(Q) ⊆
Q⋃

q=1

U (q).

14
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According to the definition of B(q) and U (q), we have:

Q⋃
q=1

B(q) =

Q⋃
q=1

{
s(q) =

[
s
(q)
1 , · · · , s(q)T

]⊤ ∣∣∣∣∣ s(q)t ∈ Z,
T∑

t=1

|s(q)t | = q

}

=

{
s(Q) =

[
s
(Q)
1 , · · · , s(Q)

T

]⊤ ∣∣∣∣∣ s(Q)
t ∈ Z,

T∑
t=1

|s(Q)
t | ∈ {1, 2, · · · , Q}

}
;

Q⋃
q=1

U (q) =

Q⋃
q=1

{
s(q) =

[
s
(q)
1 , · · · , s(q)T

]⊤ ∣∣∣∣∣ s(q)t ∈ Z,
T∑

t=1

|s(q)t | ≤ q

}

=

{
s(q) =

[
s
(q)
1 , · · · , s(q)T

]⊤ ∣∣∣∣∣ s(q)t ∈ Z,
T∑

t=1

|s(q)t | ≤ Q

}
= U (Q).

Moreover, S̄(Q) ⊃ B(0) =

{
s(0) =

[
s
(0)
1 , · · · , s(0)T

]⊤ ∣∣∣∣ s(0)t ∈ Z,
∑T

t=1|s
(0)
t | = 0

}
since it is easy to verify that S(2) ⊃

B(0). Therefore, we have

U (Q) =

Q⋃
q=1

B(q) ∪ B(0) ⊆ S̄(Q) ⊆ U (Q) =⇒ S̄(Q) = U (Q).

A.5. Lemma A.4 and Proof

Lemma A.4. Let Ω = [ω1, . . . ,ωT ]
⊤ ∈ RT×D be a frequency matrix, and letET = {et ∈ RT | t ∈ Z, 1 ≤ t ≤ T} denote

the set of canonical basis vectors of RT . Define S(1) as the augmented set of ET , given by S(1) = {et,−et | et ∈ ET }.
Additionally, let {ϕs(1) ∈ R | s(1) ∈ S(1)} be a collection of scalar phases, and {βs(1) ∈ R | s(1) ∈ S(1)} the corresponding
set of scalar coefficients. For any r ∈ RD and q, p ∈ N, the following equality holds:

 ∑
s(p)∈U(p)

βs(p) cos
(
⟨Ω⊤s(p), r⟩+ ϕs(p)

)q

=

 ∑
s(qp)∈U(qp)

β̃s(qp) cos
(
⟨Ω⊤s(qp), r⟩+ ϕ̃s(qp)

) , (18)

for some {β̃s(qp) ∈ R | s(qp) ∈ U (qp)} and {ϕ̃s(qp) ∈ R | s(qp) ∈ U (qp)}.

Proof. Again we will use induction to prove the statement. The statement trivially holds for q = 1. Assume it also holds for
q > 1, then  ∑

s(p)∈U(p)

βs(p) cos
(
⟨Ω⊤s(p), r⟩+ ϕs(p)

)q+1

=

 ∑
s(p)∈U(p)

βs(p) cos
(
⟨Ω⊤s(p), r⟩+ ϕs(p)

)q ∑
s(p)∈U(p)

βs(p) cos
(
⟨Ω⊤s(p), r⟩+ ϕs(p)

)
=

 ∑
s(qp)∈U(qp)

βs(qp) cos
(
⟨Ω⊤s(qp), r⟩+ ϕs(qp)

) ∑
s(p)∈U(p)

βs(p) cos
(
⟨Ω⊤s(p), r⟩+ ϕs(p)

)
=

 ∑
s′∈D(U(qp), U(p))

β̃s′ cos
(
⟨Ω⊤s′, r⟩+ ϕ̃s′

) ,

15
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where the second equality holds by assumption, and the last equality holds by Lemma A.1. Moreover, we have

D{U (qp),U (p)} =
{
s′ = s(qp) + s(p)

∣∣∣ s(qp) ∈ U (qp), s(p) ∈ U (p)
}

=

{
s′ =

[
s
(qp)
t

]⊤
1≤t≤T

+
[
s
(p)
t

]⊤
1≤t≤T

∣∣∣∣∣ s(qp)t , s
(p)
t ∈ Z ∧

T∑
t=1

|s(qp)t | ≤ qp ∧
T∑

t=1

|s(p)t | ≤ p

}

⊆

{
s′ = [s′t]

⊤
1≤t≤T

∣∣∣∣∣ s′t ∈ Z ∧
T∑

t=1

|s′t| ≤ (q + 1)p

}
= U ((q+1)p),

where the third line follows from triangle inequality. Next, we will show that U ((q+1)p) ⊆ D{U (qp),U (p)}. For
u = [u1, · · · , uT ]⊤ ∈ U ((q+1)p), we would like to construct two vectors such that v = [v1, · · · , vT ]⊤ ∈ U (qp),
w = [w1, · · · , wT ]

⊤ ∈ U (p), and u = v +w.

Let ũ =
∑T

t=1|ut| and ṽ = min(ũ, qp). It is easy to see ũ ≤ (q + 1)p by definition. Suppose t′ ≤ T is the largest integer
that satisfies

∑t′

t=1|ut| ≤ ṽ. If t′ = T , it follows that v = u,w = 0, and hence the statement holds. If t′ < T , we can

argue that |ut′+1| > ṽ −
∑t′

t=1|ut|
△
= u′, otherwise

∑t′+1
t=1 |ut| ≤ ṽ contradicts the assumption that t′ ≤ T is the largest

integer that satisfies
∑t′

t=1|ut| ≤ ṽ. Thus, we can construct such v and w as:

vt = 1{t≤t′}ut + 1{t=t′+1} sgn(ut′+1)u
′ ∀t ∈ N+, t ≤ T

wt = 1{t=t′+1} sgn(ut′+1)(|ut′+1| − u′) + 1{t>t′+1}ut ∀t ∈ N+, t ≤ T,

where 1{·} denotes the indicator function and sgn(·) represents the sign function. It is easy to follow that ṽ =
∑T

t=1|vt| and

ũ = ṽ+
∑T

t=1|wt|. Then we will verify that v ∈ U (qp) and w ∈ U (p). By construction,
∑T

t=1|vt| =
∑t′

t=1|ut|+u′ = ṽ ≤
min(ũ, qp) ≤ qp, and

∑T
t=1|wt| = ũ− ṽ = ũ−min(ũ, qp) = max(0, ũ− qp) ≤ p since ũ ≤ (q + 1)p, which completes

the construction rule. Therefore, we have U ((q+1)p) ⊆ D{U (qp),U (p)}, and hence U ((q+1)p) = D{U (qp),U (p)}.

A.6. Main Proof of Theorem 4.1

Proof. To begin with the proof of Theorem 4.1, we will prove the following two statements first.

Define z̃(1) = W (1)z(0) + b(1) as the pre-activation output of the first layer, where z(0) = γ(r) = sin(ΩT r + ϕT ). Let
{ϕs(1) ∈ R | s(1) ∈ S(1)} be a collection of scalar phases, and {βs(1) ∈ R | s(1) ∈ S(1)} the corresponding set of scalar
coefficients. Let z̃(1)i and b(1)i denote the ith entries of z̃(1) and b(1), respectively, and let W (1)

i represent the ith row of
W (1). We first would like to show that given {ϕs(1) ∈ R | s(1) ∈ S(1)} and {βs(1) ∈ R | s(1) ∈ S(1)} (S(1) is defined in
Lemma A.2): ∑

s(1)∈S(1)

βs(1) cos
(
⟨Ω⊤

T s
(1), r⟩+ ϕs(1)

)
+ ζ = z̃

(1)
i = W

(1)
i sin(ΩT r + ϕT ) + b

(1)
i

for some W
(1)
i ∈ R1×T and b(1)i ∈ R. Note that adding constant does not affect frequency and interchanging sines with

cosines only affects the phase terms. We can express the summation as follows:

∑
s(1)∈S(1)

βs(1) cos
(
⟨Ω⊤

T s
(1), r⟩+ ϕs(1)

)
=

T∑
t=1

βt cos(⟨ωt, r⟩+ ϕt) + β−t cos(⟨−ωt, r⟩+ ϕ−t)

=

T∑
t=1

βt sin
(
⟨ωt, r⟩+ ϕt +

π

2

)
+ β−t cos (⟨ωt, r⟩ − ϕ−t)

=

T∑
t=1

Rt sin (⟨ωt, r⟩+ ϕ′t) .
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The final line follows from the Auxiliary Angle Formula, with:

Rt =
√
A2

t +B2
t , ϕ

′
t = arctan

(
Bt

At

)
,

At = βt cos(ϕt +
π

2
) + β−t sin(ϕ−t), Bt = βt sin(ϕt +

π

2
) + β−t cos(ϕ−t),

where we assume At > 0 for all t = 1, 2, . . . , T , Rt represents the magnitude, and ϕ′t is the adjusted phase angle. For the
case where At ≤ 0, we leave the derivation as an exercise for the reader. Let W (1)

i = [Rt]
⊤
1≤t≤T , ϕT = [ϕ′t]1≤t≤T , and

b
(1)
i = ζ. Then, we can conclude that the statement holds for i = 1, . . . , F1. Second, we would like to show that given
W

(1)
i ∈ R1×T and b(1)i ∈ R,

W
(1)
i sin(ΩT r + ϕT ) + b

(1)
i = z̃

(1)
i =

∑
s(1)∈S(1)

βs(1) cos
(
⟨Ω⊤

T s
(1), r⟩+ ϕs(1)

)
+ ζ

for some {βs(1)} , {ϕs(1)} with cardinality 2T and ζ. We can re-express the summation as follows:

W
(1)
i sin(ΩT r + ϕT ) + b

(1)
i = W

(1)
i cos(ΩT r + ϕT −

π

2
) + b

(1)
i

=

T∑
t=1

[W
(1)
i ]t cos(⟨ωt, r⟩+ ϕt −

π

2
) + b

(1)
i

=

T∑
t=1

([W
(1)
i ]t − ξ) cos(⟨ωt, r⟩+ ϕt −

π

2
) +

T∑
t=1

ξ cos(⟨−ωt, r⟩ − ϕt +
π

2
) + b

(1)
i

for ∀ ξ ∈ R. Let ζ = b
(1)
i , {βs(1) ∈ R | s(1) ∈ S(1)} = {ξ, · · · , ξ, [W (1)

i ]1 − ξ, · · · , [W (1)
i ]T − ξ} and {ϕs(1) ∈ R |

s(1) ∈ S(1)} = {−ϕ1 + π
2 , · · · ,−ϕT + π

2 , ϕ1 −
π
2 , · · · , ϕT − π

2 } be two ordered sets. Then, we can conclude that the
statement holds for i = 1, . . . , F1.

Next, we will prove Theorem 4.1 by induction using the previous statement.

Base case Let us denote the pre-activation vector at layer ℓ as z̃(ℓ), i.e., z(ℓ) = ρ(ℓ)(z̃(ℓ)). Consider the pre-activation of a
node at the first layer of the neural network for any mapping of the form in (3). Then

z̃
(1)
i = W

(1)
i γ(r) =

T∑
t=1

wit cos (⟨ωt, r⟩+ ϕt) ,

with some wit ∈ R depending on the first layer weights connected to that node and ϕt ∈ R. Also note that interchanging
sines with cosines only affects the phase terms. After applying the activation function, and using the previous statement and
the result of Lemma A.3, the output of each node at the first layer is given by

z
(1)
i = ρ(1)

(
z̃
(1)
i

)
=

Q∑
q=0

αq

(
z̃
(1)
i

)q
=

Q∑
q=0

αq

(
T∑

t=1

wit cos (⟨ωt, r⟩+ ϕt)

)q

=
∑

s̄(Q)∈S̄(Q)

β̃s̄(Q) cos
(
⟨Ω⊤

T s̄
(Q), r⟩+ ϕ̃s̄(Q)

)
,

where S̄(Q) =
⋃Q

q=1 S(q) = U (Q) is defined in Lemma A.3. Therefore, the statement trivially holds, i.e.,

S̄(Q) =

{[
s̄
(Q)
1 , · · · , s̄(Q)

T

]⊤ ∣∣∣∣∣ s̄(Q)
t ∈ Z ∧

T∑
t=1

|s̄(Q)
t | ≤ Q

}
.

Induction step Assume the output of the nodes at layer ℓ satisfy the following expression:

z
(ℓ)
i =

∑
s̄(Qℓ)∈S̄(Qℓ)

β̃
s̄(Qℓ),i

cos
(
⟨Ω⊤

T s̄
(Qℓ), r⟩+ ϕ̃

s̄(Qℓ)

)
,
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where

S̄(Qℓ) =

{[
s̄
(Qℓ)
1 , · · · , s̄(Q

ℓ)
T

]⊤ ∣∣∣∣∣ s̄(Qℓ)
t ∈ Z ∧

T∑
t=1

|s̄(Q
ℓ)

t | ≤ Qℓ

}
.

Then, the pre-activation of any node at the (ℓ+ 1)th layer can be expressed as:

z̃
(ℓ+1)
i =

∑
s̄(Qℓ)∈S̄(Qℓ)

˜̃
β
s̄(Qℓ),i

cos
(
⟨Ω⊤

T s̄
(Qℓ), r⟩+ ˜̃

ϕ
s̄(Qℓ)

)
,

since the sum of sines/cosines with the same frequency only result in a sine/cosine with the same frequency but with a
modified phase and amplitude. Hence, after applying the activation function, the output of the ith node at the (ℓ+ 1)th layer
can be written as:

z
(ℓ+1)
i = ρ(ℓ+1)

(
z̃
(ℓ+1)
i

)
=

Q∑
q=0

αq

 ∑
s̄(Qℓ)∈S̄(Qℓ)

˜̃
β
s̄(Qℓ),i

cos
(
⟨Ω⊤

T s̄
(Qℓ), r⟩+ ˜̃

ϕ
s̄(Qℓ)

)q

.

By using Lemma A.4, we have: ∑
s̄(Qℓ)∈S̄(Qℓ)

˜̃
β
s̄(Qℓ),i

cos
(
⟨Ω⊤

T s̄
(Qℓ), r⟩+ ˜̃

ϕ
s̄(Qℓ)

)q

=
∑

s̄(qQℓ)∈S̄(qQℓ)

β′
s̄(qQℓ),i

cos
(
⟨Ω⊤

T s̄
(qQℓ), r⟩+ ϕ′

s̄(qQℓ)

)
,

where S̄(qQℓ) =

{[
s̄
(qQℓ)
1 , · · · , s̄(qQ

ℓ)
T

]⊤ ∣∣∣∣ s̄(qQℓ)
t ∈ Z ∧

∑T
t=1 |s̄

(qQℓ)
t | ≤ qQℓ

}
.

Now, let us use the above result to complete the proof of the inductive step. In particular, we can now express z(ℓ+1)
i as:

z
(ℓ+1)
i =

Q∑
q=0

αq

∑
s̄(qQℓ)∈S̄(qQℓ)

β′
s̄(qQℓ),i

cos
(
⟨Ω⊤

T s̄
(qQℓ), r⟩+ ϕ′

s̄(qQℓ)

)
=
∑
s′∈S′

β′′
s′,i sin

(
⟨Ω⊤

T s
′, r⟩+ ϕ′′s′,i

)
,

where

S ′ :=

Q⋃
q=1

S̄(qQℓ) = S̄(QQℓ) = S̄(Qℓ+1) =

{[
s̄
(Qℓ+1)
1 , · · · , s̄(Q

ℓ+1)
T

]⊤ ∣∣∣∣∣ s̄(Qℓ+1)
t ∈ Z ∧

T∑
t=1

|s̄(Q
ℓ+1)

t | ≤ Qℓ+1

}
.

This sequence of inclusions concludes the proof of induction. Thus, considering γ(r) = sin(ΩT r + ϕT ), the INR
architecture of the form (3) can only represent functions of the form:

fΘ(r) =
∑
s∈ST

cs sin
(
⟨Ω⊤

T s, r⟩+ ϕs
)
,

where ST =
{
[s1, s2, . . . , sT ]

⊤
∣∣∣ st ∈ Z,

∑T
t=1|st| ≤ QL−1

}
.

A.7. Proof of the connection between the expressive power of INRs and certain period-2 functions.

Proof. As we previously mentioned, interchanging sines with cosines only affects the phase term, we can rewrite the
positional encoding in (5) as

γ(r) =

[
sin(Ωr)
cos(Ωr)

]
=

[
sin(Ωr)

sin(Ωr + π
212T×1)

]
= sin(Ω̃r + ϕ),
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where Ω̃ =
[
ΩT ΩT

]T ∈ R4T×2, and ϕ =
[
02T×1

T π
212T×1

T
]T

∈ R4T×1. We use the same architecture of the form (3).
Directly using the result of Theorem 4.1, the expressive power of this architecture is of the form:

fΘ(r) =
∑

s′∈S′
T

cs′ sin
(
⟨Ω̃⊤s′, r⟩+ ϕs′

)
,

where

S ′
T =

{
[s′1, s

′
2, . . . , s

′
4T ]

⊤

∣∣∣∣∣ s′t ∈ Z,
4T∑
t=1

|s′t| ≤ QL−1

}
.

Using the Trigonometric Sum and Difference Formulas, we can rewrite the above as:

fΘ(r) =
∑

s′∈S′
T

cs′ sin
(
⟨Ω̃⊤s′, r⟩+ ϕs′

)
=
∑

s′∈S′
T

cs′ cos (ϕs′) sin
(
⟨Ω̃⊤s′, r⟩

)
+ cs′ sin (ϕs′) cos

(
⟨Ω̃⊤s′, r⟩

)
=
∑

s′∈S′
T

ds′ sin
(
⟨Ω̃⊤s′, r⟩

)
+ fs′ cos

(
⟨Ω̃⊤s′, r⟩

)
.

The inner product ⟨Ω̃⊤s′, r⟩, where r = [x, y]⊤, can be expressed as a linear combination of the corresponding components,
involving coordinate x and y scaled by the respective elements of Ω̃⊤s′. Then, we have

fΘ(r) =
∑

|i|+|j|≤N,i,j∈Z

Di,j sin (π(ix+ jy)) + Fi,j cos (π(ix+ jy)) , (19)

where Di,j , Fi,j are some constants with respect to i, j, and N = O(2T−1QL−1). This can be easily verified using the idea
of binary representation, since the frequency matrix Ω only contains coordinate-wise frequencies 2tπ, t = 0, . . . , T − 1.
Hence, as the layer of MLPs/INRs goes to infinity, i.e. L→ ∞, we have fΘ(r) approaching to (7).

B. Proof of Theorem 4.5
B.1. Notations and Definitions

Consider an array snapshot containing K targets with azimuth angle θk and elevation angle ϕk (k = 1, · · · ,K). Let
[0, U1]× [0, U2] represent the antenna array response field with bounded domain positioned in the x− y plane, consider a
general case of an uniform sampling grid of dimensions M1 ×M2, with spacing d1 = U1

M1−1 ≤ λ
2 and d2 = U2

M2−1 ≤ λ
2 .

According to (2), the (m1,m2) th element of the response with respect to K targets in absence of noise can be written as

ym1,m2
=

K∑
k=1

xke
j 2π

λ ((m1−1)d1 sinϕk cos θk+(m2−1)d2 sinϕk sin θk)

for 1 ≤ m1 ≤M1 and 1 ≤ m2 ≤M2. Notably, when d1 = d2 = λ
2 , the sampling pattern aligns with the Nyquist sampling.

Let Y = [ym1,m2 ]1≤m1≤M1,1≤m2≤M2 ∈ CM1×M2 be the response matrix with entries as the antenna array response defined
in (8).

Given Y = [ym1,m2 ] ∈ CM1×M2 for 1 ≤ m1 ≤M1, 1 ≤ m2 ≤M2, a Block Hankel matrix of Y can be constructed as:

HN1,N2(Y) =


HN2(y1) HN2(y2) · · · HN2(yM1−N1+1)
HN2(y2) HN2(y3) · · · HN2(yM1−N1+2)

...
...

. . .
...

HN2
(yN1

) HN2
(yN1+1) · · · HN2

(yM1
)

 ,
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where HN2
(ym) is defined as:

HN2
(ym) =


ym,1 ym,2 · · · ym,M2−N2+1

ym,2 ym,3 · · · ym,M2−N2+2

...
...

. . .
...

ym,N2
ym,N2+1 · · · ym,M2

 .
A block Hankel matrix can also be constructed along the column direction, which is defined as:

H̃Ñ1,Ñ2
(Y) =


H̃Ñ2

(y(1)) H̃Ñ2
(y(2)) · · · H̃Ñ2

(y(M2−Ñ1+1))

H̃Ñ2
(y(2)) H̃Ñ2

(y(3)) · · · H̃Ñ2
(y(M2−Ñ1+2))

...
...

. . .
...

H̃Ñ2
(y(Ñ1)) H̃Ñ2

(y(Ñ1+1)) · · · H̃Ñ2
(y(M2))

 ,

where H̃Ñ2
(y(m)) is defined as:

H̃Ñ2
(y(m)) =


y1,m y2,m · · · yM1−Ñ2+1,m

y2,m y3,m · · · yM1−Ñ2+2,m
...

...
. . .

...
yÑ2,m

yÑ2+1,m · · · yM1,m

 .

Note that H̃N2,N1
(Y ⊤) = HN1,N2

(Y ). Moreover, we have rank(HN1,N2
(Y)) = rank(H̃Ñ1,Ñ2

(Y)) based on the condi-
tions in Lemma B.1.
For the sake of clarity, we define

S =

[
IK×K

0K

]
∈ R(K+1)×K , b =

[
0K

1

]
∈ R(K+1)×1.

The matrices S and b are column selection matrices, selecting the first K columns and the last column, respectively.

B.2. Lemma B.1, Lemma B.2, Lemma B.3 and their Proofs

Lemma B.1. For the Block Hankel matrix in Definition 4.3, if K ≤ N1 ≤M1 −K + 1 and K ≤ N2 ≤M2 −K + 1, then
we have rank(HN1,N2

(Y)) = K, and the first K columns of HN1,N2
(Y) serve as a basis of R(HN1,N2

(Y)). Similarly,
if K ≤ Ñ1 ≤ M2 −K + 1 and K ≤ Ñ2 ≤ M1 −K + 1, we have rank(H̃Ñ1,Ñ2

(Y)) = K, and the first K columns of
H̃Ñ1,Ñ2

(Y) serve as a basis of R(H̃Ñ1,Ñ2
(Y)).

Proof. Proof followed by (Hua, 1992).

Lemma B.2. For Hankel matrix HN2
(ym) (1 ≤ m ≤M1), ifK ≤ N2 ≤M2−K+1, then rank(HN2

(ym)) = K, and the
first K columns of HN2

(ym) serve as a basis of R(HN2
(ym)). Similarly, for Hankel matrix H̃Ñ2

(y(m)) (1 ≤ m ≤M2), if
K ≤ Ñ2 ≤M1−K+1, rank(H̃Ñ2

(y(m))) = K, and the firstK columns of H̃Ñ2
(y(m)) serve as a basis of R(H̃Ñ2

(y(m))).

Proof. We will prove the statement for HN2(ym), while the proof for H̃Ñ2
(y(m)) follows the same way therefore omitted

here. According to (8), we have

ym =


1 1 · · · 1

ej
2π
λ d1 sinϕ1 sin θ1 ej

2π
λ d1 sinϕ2 sin θ2 · · · ej

2π
λ d1 sinϕK sin θK

...
...

. . .
...

ej
2π
λ (M2−1)d1 sinϕ1 sin θ1 ej

2π
λ (M2−1)d1 sinϕ2 sin θ2 · · · ej

2π
λ (M2−1)d1 sinϕK sin θK



x1e

j 2π
λ (m−1)d1 sinϕ1 cos θ1

x2e
j 2π

λ (m−1)d1 sinϕ2 cos θ2

...
xKe

j 2π
λ (m−1)d1 sinϕK cos θK


= AM2

(θ,ϕ)sm.
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It can be shown that HN2
(ym) admits a Vandermonde decomposition

HN2(ym) = AN2(θ,ϕ)diag(sm)(AM2−N2+1(θ,ϕ))
T ,

where AN2(θ,ϕ) and AM2−N2+1(θ,ϕ) are both Vandermonde matrix. It is easy to verify that if K ≤ N2 ≤M2 −K + 1,
rank(HN2

(ym)) = K. And the first K columns of HN2
(ym) have the form AN2

(θ,ϕ)diag(sm)(AK(θ,ϕ))T , which can
be verified to be rank-K due to the Vandermonde structure. Thus, the first K columns form a linearly independent set,
therefore serve as a basis for R(HN2

(ym)).

Lemma B.3. Consider Hankel matrix HM2−K(ym) (1 ≤ m ≤M1) generated using (8), there exists a unique m1 ∈ CK

such that
M1∑
m=1

∥HM2−K(ym)Sm1 −HM2−K(ym)b∥2 = 0. (20)

Similarly, consider Hankel matrix H̃M1−K(y(m)) (1 ≤ m ≤M2) generated using (8), there exists a unique m2 ∈ CK such
that

M2∑
m=1

∥H̃M1−K(y(m))Sm2 − H̃M1−K(y(m))b∥2 = 0. (21)

Proof. We will prove the statement for HM2−K(ym) (1 ≤ m ≤M1), while the proof for H̃M1−K(y(m)) follows the same
way therefore omitted here. According to Lemma B.2, we have rank(HM2−K(ym)) = K where its first K columns serve
as a basis of R(HM2−K(ym)). This means there exists α = [α1, · · · , αK ]T such that HM2−K(ym)Sα = HM2−K(ym)b.
Now let us analyze whether α depend on m. Using Vandermonde decomposition and explicit form of least squares solution,
we have

HM2−K(ym)S = AM2−K(θ,ϕ)diag(sm)(AK(θ,ϕ))T ,

HM2−K(ym)b = AM2−K(θ,ϕ)diag(sm)

 e
j 2π

λ Kd1 sinϕ1 sin θ1

...
ej

2π
λ Kd1 sinϕK sin θK

 ,
α =

(
(HM2−K(ym)S)H(HM2−K(ym)S)

)−1
(HM2−K(ym)S)HHM2−K(ym)b

= (AT
K(θ,ϕ))−1

 e
j 2π

λ Kd1 sinϕ1 sin θ1

...
ej

2π
λ Kd1 sinϕK sin θK

 .
And we can see that α ∈ CK does not depend onm but only depend on θ and ϕ. This means for Hankel matrix HM2−K(ym)
(1 ≤ m ≤M1), there exists a unique m1 ∈ CK such that

M1∑
m=1

∥HM2−K(ym)Sm1 −HM2−K(ym)b∥2 = 0.

B.3. Main Proof of Theorem 4.5

Proof. We will prove the statement for HN1,N2
(Y), while the proof for H̃Ñ1,Ñ2

(Y) follows the same way therefore omitted
here. Let N1 =M1 −K +1 and N2 =M2 −K, consider the matrix HM1−K+1,M2−K(Y). According to Lemma B.1, we
have rank(HM1−K+1,M2−K(Y)) = K, and its first K columns

HM1−K+1,M2−K(Y)S =


HM2−K(y1)S
HM2−K(y2)S

...
HM2−K(yM1−K+1)S


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are linear independent. If we keep appending columns at the bottom of HM1−K+1,M2−K(Y)S, the columns of the resulting
matrix

HM1,M2−K(Y)S =



HM2−K(y1)S
...

HM2−K(yM1−K+1)S
HM2−K(yM1−K+2)S

...
HM2−K(yM1

)S


is still linear independent. Using Lemma B.2 and Lemma B.3, if we add the K + 1-th column at the right of the above
matrix, the resulting matrix HM1,M2−K(Y) is still rank-K with its first K columns serve as a basis of R(HM1,M2−K(Y)).
Thus, there exists a unique global optimizer mo

1 such that

∥HM1,M2−K(Y)Smo
1 −HM1,M2−K(Y)b∥2 = 0.

C. Further Experimental Results and Details
C.1. Experimental Setup

C.1.1. SIMULATION DATA GENERATION

For the signal model in (2), we assume the reflection coefficients follow a circularly symmetric complex Gaussian distribution,
given by xk ∼ CN (0, σ2

x) with σx = 1 for k = 1, . . . ,K. The additive noise is modeled as ni,j ∼ CN (0, σ2
n), where σn is

determined by the specified SNR levels. The SNR is defined as:

SNRdB = 10 log10
Px

Pn
= 10 log10

σ2
x

σ2
n

.

For tasks with different sampling configurations, we use the following selected indices for sub-sampling:

• 6× 6: Sx = Sy = {0, 1, 2, 3, 11, 19},

• 8× 8: Sx = Sy = {0, 1, 2, 3, 4, 9, 14, 19},

• 10× 10: Sx = Sy = {0, 1, 2, 3, 4, 7, 10, 13, 16, 19}.

Remark. When the index sets are mapped to the world coordinate system, each discrete index (i, j) corresponds to the
physical position

rij =
(
i λ
2 , j

λ
2

)
,

where λ is the wavelength.

For angle resolution experiments, we define the azimuth and elevation angles of two targets as [10, 20] and [10+∆, 20+∆]
degrees, where ∆ represents the angular separation, which varies from 3 to 10 degrees. For the other tasks, the azimuth and
elevation angles of each target are randomly sampled from a uniform distribution over [−60, 60] degrees. Each experiment
is conducted with N = 50 Monte-Carlo trails.

C.1.2. EVALUATION METRICS

The Normalized Root Mean Square Error (NRMSE) is defined as:

NRMSE =
1

N

N∑
n=1

∥Ŷn − Yn∥F
∥Yn∥F

,

where Ŷ and Y denote the predicted array response and the ground truth full virtual array, respectively, and ∥ · ∥F represents
the Frobenius norm.
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The Resolution Probability is defined as:

RP =
1

N

N∑
n=1

1{Ea∧Ee},with

Ea =

{
θ̂na,1 ∈

[
θa,1 −

∆

2
, θa,1 +

∆

2

]
, θ̂na,2 ∈

[
θa,2 −

∆

2
, θa,2 +

∆

2

]}
,

Ee =

{
θ̂ne,1 ∈

[
θe,1 −

∆

2
, θe,1 +

∆

2

]
, θ̂ne,2 ∈

[
θe,2 −

∆

2
, θe,2 +

∆

2

]}
,

where θ̂n
i = [θ̂na,i, θ̂

n
e,i], i = 1, 2 denote the prediction azimuth and elevation angles for each target in n-th Monte-Carlo

trail, θi = [θa,i, θe,i], i = 1, 2 represent the ground truth azimuth and elevation angles, 1{·} is the indicator function, and

separation ∆
△
= θa,2 − θa,1 = θe,2 − θe,1.

C.1.3. OPTIMIZATION AND HYPERPARAMETERS

We optimize the loss function defined in (11) through a two-stage training process. In the initial warm-up stage, we set λ = 0
and optimize using the Adam optimizer with β = (0.9, 0.999) and a weight decay of 10−4. Letting Θ0 = argminΘ Ld, we
use the obtained parameters as the initialization for the next stage. In the adaptation/training stage, we optimize Θ, m1, and
m2 using Adam with the same configuration as in the warm-up stage. In both the simulation and real-world experiments,
we normalized the input coordinates to the range (−1, 1].

We provide detail hyperparameter settings for both simulation and real-world experiments. The model architecture remains
consistent with that described in the Experiments section. For simulation tasks, we use a learning rate of 10−4 and train for
5, 000 epochs in the warm-up stage. In the adaptation stage, we set λ = 0.5, lrΘ = 10−3, lrm1,m2

= 3× 10−3, and train
for 25, 000 epochs, with K max set to the exact number of targets for each scenario.

For real-world experiments, we adopt a learning rate of 10−4 and train for 10, 000 epochs in the warm-up stage. In the
adaptation stage, we set λ = 1, lrΘ = 10−3, lrm1,m2

= 3× 10−3, and train for 50, 000 epochs. Here, we set K max = 4
as an upper bound on the number of targets in each range bin, as typically, the number of targets within a single range bin is
very small (Sun et al., 2020).

C.2. Implementation Details and Analysis of Baseline Methods

EMaC. We adopt equation (9) from the original paper (Chen & Chi, 2013) as the optimization problem, which can be
solved using CVX (CVX Research, 2012; Grant & Boyd, 2008) toolbox.

SIREN. We adopt the same architecture and recommended hyperparameters from the original paper (Sitzmann et al., 2020).
For a fair comparison, we match NEAR’s network size, using a depth of L = 4 and a hidden layer width of 256.

NeRF2. We adopt the same architecture and recommended hyperparameters from the original paper (Zhao et al., 2023).
To match our experimental setup, the location of TX is fixed (co-located with RX), and the unknown antenna response
is inferred based on their spatial coordinates. The loss function is calculated as the mean-squared error (MSE) between
predicted array responses and observed array response, rather than using RSSI values.

Remark. The inferior performance of NeRF2 is attributed to some important distinctions between radiance-field reconstruc-
tion and our method, which are listed below:

• Our setting uses far fewer measurements (see below) in the form of a antenna array response, compared to NeRF2.
This renders measurement-heavy methods like NeRF2 somewhat inferior in our settings. Hence we need to heavily
utilize the underlying wave propagation model and the harmonic structure of measurements received at antenna arrays,
in order to successfully regularize the problem with so few measurements. This is a major contribution of our work
which sets us apart from direct use of NeRF2.

• In fact, NEAR targets a different objective than NeRF2. Our approach emphasizes more on the (super-resolution)
localization of the targets, while NeRF2 cares more about the physical property of all objects in a 3D scene in order
to model signal propagation. This also serves a crucial reason why we opt to directly predict the response from the
antenna coordinates rather than modeling all the voxels’ properties as a continuous volumetric function.
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• As explained earlier, NeRF2 requires a large set of measurements for training. According to (Zhao et al., 2023), it uses
around 6000× 21 measurements and 80%/20% for training/testing splitting, while we only use a sparse set of 8× 8
measurements for training. Under the same setting of training, NEAR uses less than half of the training time of NeRF2

due to our proposed regularization rather than the ray tracing strategy, which is well known for its heavy computational
cost.

C.3. Additional Details on Radar Data Processing

To sense the environment, the system emits a sequence of waveforms, commonly referred to as chirp signals, through the
Tx within a short time interval. These signals propagate, interact with objects in the environment, and are subsequently
reflected back to be captured by the Rx. The received signals are then processed to generate an intermediate frequency (IF)
signal by mixing the transmitted and received signals from each Tx-Rx antenna pair. This mixed signal is then sampled by
an ADC to generate discrete samples for each chirp. By aggregating ADC samples across all chirps and Tx-Rx antenna
pairs, the sensing system constructs a three-dimensional (3D) complex data cube for each frame. This data cube is organized
into three dimensions: fast time, slow time, and channel, which correspond to range, range rate, and angle, respectively
(Kramer et al., 2022).

To process the acquired ADC samples, fourier techniques are applied along the fast time and slow time dimensions to
extract detailed information. The first range processing is performed across the fast time axis to isolate objects at different
distances into distinct frequency responses within range bins defined by hardware specifications. Subsequently, a Doppler
processing along the slow time axis decodes phase variances—Doppler bins—to derive relative radial velocities, producing
a range-Doppler (RD) map (Ding et al., 2024). An additional CFAR target detector is usually employed to detect peaks that
stand out prominently from their surroundings in the range-Doppler velocity heat-map by comparing local signal power to
an adaptive threshold. DOA processing is then performed only for the peaks detected by the CFAR detector.

C.4. More Experimental Results

Some more experimental results of target localization are shown below.

Figure 6. Point cloud visualizations for target localization with K = 1 (scenario 1). Left: Full array, Middle: NEAR, Right: EMaC.

Figure 7. Point cloud visualizations for target localization with K = 1 (scenario 2). Left: Full array, Middle: NEAR, Right: EMaC.
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Figure 8. Point cloud visualizations for target localization with K = 2 (scenario 1). Left: Full array, Middle: NEAR, Right: EMaC.

Figure 9. Point cloud visualizations for target localization with K = 2 (scenario 2). Left: Full array, Middle: NEAR, Right: EMaC.

Figure 10. Point cloud visualizations for target localization with K = 3 (scenario 1). Left: Full array, Middle: NEAR, Right: EMaC.

Figure 11. Point cloud visualizations for target localization with K = 3 (scenario 2). Left: Full array, Middle: NEAR, Right: EMaC.
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Figure 12. Point cloud visualizations for target localization with K = 4 (scenario 1). Left: Full array, Middle: NEAR, Right: EMaC.

Figure 13. Point cloud visualizations for target localization with K = 4 (scenario 2). Left: Full array, Middle: NEAR, Right: EMaC.
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