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Abstract

Score-based diffusion models have emerged as powerful tools in generative model-
ing, yet their theoretical foundations remain underexplored. In this work, we focus
on the Wasserstein convergence analysis of score-based diffusion models. Specifi-
cally, we investigate the impact of various discretization schemes, including Euler
discretization, exponential integrators, and midpoint randomization methods. Our
analysis provides the first quantitative comparison of these discrete approximations,
emphasizing their influence on convergence behavior. Furthermore, we explore
scenarios where Hessian information is available and propose an accelerated sam-
pler based on the local linearization method. We establish the first Wasserstein
convergence analysis for such a Hessian-based method, showing that it achieves

an improved convergence rate of order o (v/d /), which significantly outperforms

the standard rate O(d/e2) of vanilla diffusion models. Numerical experiments on
synthetic data and the MNIST dataset validate our theoretical insights.

1 Introduction

Diffusion models have become a pivotal framework in modern generative modeling, achieving notable
success across fields such as image generation [[L1} [17, 31} 134], natural language processing [30],
and computational biology [, 42]. These models add noise to data via a forward process and learn
to reverse it, reconstructing data from noise. This approach enables them to capture the underlying
structure of complex, high-dimensional data distributions. For a detailed review of diffusion models,
we refer the readers to [6} /39, 143]).

A widely adopted formulation of diffusion models is the score-based generative model (SGM),
implemented using stochastic differential equations (SDEs) [36]. Broadly speaking, SGMs rely on
two key stochastic processes: a forward process that gradually transforms data samples into pure
noise, and a backward process that reverses this transformation, recovering the target data distribution
from noise.

Despite the remarkable empirical success of diffusion models across various applications, their
theoretical understanding remains limited. In recent years, there has been a rapidly expanding body
of research on the convergence theory of diffusion models. Generally, these contributions can be
divided into two main approaches, each focusing on different metrics and divergences. The first
category investigates convergence bounds based on a-divergence, including the Kullback—Leibler
(KL) divergence and the total variation (TV) distance (see e.g., [, [7, 18, 22} 26} 41]). Among these
works, several explore acceleration techniques that leverage higher-order information about the log
density (see e.g., [19, 24, [27]). The second category focuses on convergence bounds in Wasserstein
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distance, which is often considered more practical and informative for estimation tasks. One line of
work within this category assumes strong log-concavity of the data distribution and access to accurate
estimates of the score function [3} [13} 137, 38]]. Another line of work focuses on specific structural
assumptions of the data distribution [10} 14, [29]].

Much of the existing literature on the convergence theory of diffusion models relies on the Euler
discretization method. Notably, [5] compare the behavior of Euler discretization and exponential
integrators [18}47]] in terms of KL divergence. Additionally, [[L0] provide a comparative analysis of
these two schemes, though without formal theoretical guarantees. A comprehensive and systematic
understanding of how different discretization schemes influence convergence performance in diffusion
models remains underexplored. Furthermore, while convergence analyses of accelerated diffusion
models primarily focus on TV or KL distances, studies investigating Wasserstein convergence for
these accelerations remain lackinﬁ

In this work, we address these challenges by analyzing the Wasserstein convergence of score-based dif-
fusion models when the data distribution has a smooth and strongly log-concave density. Specifically,
we investigate the impact of different discretization schemes on convergence behavior. Beyond the
widely used Euler method and exponential integrator, we explore the midpoint randomization method.
This method was initially introduced in [32] for discretizing kinetic Langevin diffusion [9] and then
has been extensively studied in log-concave sampling complexity theory [16} 21} 144-46]. It was later
applied to diffusion models [[15} 23], showing improved KL and TV convergence performance over
vanilla models and offering easy parallelization.

We also consider scenarios where accurate estimates of the Hessian of the log density are accessible.
Inspired by [33]], we propose a novel sampler based on the local linearization method. Our analysis
shows that this approach significantly accelerates convergence in Wasserstein distance.

Our contribution can be summarized as follows.

* We establish convergence guarantees for SGMs in the Wasserstein-2 distance under various
discretization methods, including the Euler method, exponential integrators, the midpoint
randomization method, and a hybrid approach combining the latter two.

* We introduce a novel Hessian-based accelerated sampler for the stochastic diffusion process,
leveraging the local linearization method. We then establish its Wasserstein convergence

analysis in Theorem achieving state-of-the-art order of O (Vd/e).

* Section 5] compares the performance of SGMs under four discretization schemes and the
proposed Hessian-based method on both synthetic data and the MNIST dataset. The results
align with our theory and highlight the acceleration of the proposed second-order method.

In summary, our analysis provides a quantitative comparison of different discrete approximations,
offering practical guidance for choosing discretization. Moreover, we present the first Wasserstein
convergence analysis of an accelerated sampler that leverages the second-order information about
log-densities. This accelerated sampler achieves a faster convergence rate O(v/d/¢), compared to

the standard rate (5(d /€?) of vanilla diffusion models. These results contribute to the understanding
of Wasserstein convergence in score-based models, shedding light on aspects that have not been
extensively explored before.

Notation. Let R? be the d-dimensional Euclidean space and I, the identity matrix. The gradient and
the Hessian of a function f : R? — R are denoted by V f and V2 f. Given any pair of measures j
and v, the Wasserstein-2 distance between 4 and v is defined as

1/2
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where the infimum is taken over all joint distributions o that have p and v as marginals. For
two symmetric d X d matrices A and B, we use A < B or B = A to denote the relation that
B — A is positive semi-definite. For any random vector X, let £(X) denote its law, and define

IX|lL, :== v/E[||X||?], where || - || denotes the Euclidean norm. For any random matrix A, define
lA|lL, := /E[||A]|3], where || - || denotes the matrix 2-norm.

’Due to space constraints, we defer the discussion of related theoretical advancements in accelerating
samplers for diffusion models to Appendix@



2 Background and Our Setting

Framework. We consider the forward process
dX; = f( X, t)dt + g(Xy,t) dBy, €))

where the initial point Xy ~ pg follows the data distribution, and B; denotes the standard
d—dimensional Brownian motion. Here, the drift f : RY x R, — R? and the function
g : R x R, — R%? are diffusion parameters. Some conditions are necessary to ensure that
the SDE () is well-defined. In practice, various choices for the pair (f, g) are employed, depending
on the specific needs of the model; for a detailed survey, we refer to [39]]. For clarity, we adopt the
simplest possible choice in this work by setting f(X;,¢) = —X;/2 and g(X¢,t) = 1. This results in
the Ornstein-Uhlenbeck process, which is described by the following SDE:

1

The forward process is run until a sufficiently large time 7" > 0, at which point the corrupted
marginal distribution of X7, denoted by pr, is expected to approximate the standard Gaussian
distribution. Then, diffusion models generate new data by reversing the SDE (2)), which leads to the
following backward SDE

1
dX; = 3 (X +2Viogpr—+(X;7)) dt + dW,, 3)

where X§~ ~ prp, and the term V log p;, referred to as the score function for p,, is represented by
the gradient of the log density function of p;. Additionally, W; denotes another standard Brownian
motion independent of B;. Under mild conditions, when initialized at Xj~ ~ pp, the backward
process { X~ }o<i<r has the same distribution as the forward process {Xr1_; }o<i<r [2.4]. As a
result, running the reverse diffusion X;~ from ¢ = 0 to 7" will generate a sample from the target data
distribution py. Note that the density pr is unknown; we approximate it using the distribution

pr=N(0,(1~e")la)

as proposed in [13]. Therefore, we derive a reverse diffusion process defined by
1 "
dY; = §(Yt +2Vlogpr—¢(Yy)) dt + AWy, Yo ~ pr. “

Score Matching.  Another challenge in working with (3)) is that the score function V log p; is
unknown, as the distribution p; is not explicitly available. In practice, rather than using the exact
score function V log pr_;, approximate estimates for it are learned from the data by training neural
networks on a score-matching objective [20} 35 40]. This objective is given by

migiergize E[l|so(t, X¢) — Viog pr(Xi)[1?],

where {sp : 0 € ©} is a sufficiently rich function class, such as that of neural network. Substituting
the learned score estimate s, into the backward process (3), we obtain the following practical
continuous-time backward SDE,

1
de:i(Xf+25*(T—t,Xf))dt+ dW;. &)

Since this continuous backward SDE cannot be simulated exactly, it is typically approximated using
discretization methods.

Discretization Schemes. We outline the four discretization methods considered in this work for
solving the practical reverse SDE (3). Let b > 0 be the step size. Without loss of generality, we
assume 7' = Nh, where N is a positive integer. For simplicity, we denote %Xf +5.(T —t, X))
by ¥(T —t, X;), and define

t+h t+h—s
AW, = Wi — Wy, AW, = / e AW, .
t
e EULER-MARUYAMA SCHEME: Given the step size h, the following approximation holds

h
= X +/0 AT = (t+v), X{7,) dv + A Wi & X7 + hy(T — t, X7) + Ay Wi



We derive the following discretized process forn =0,..., N — 1:
Oy = (1+ h/2)05M + hso (T = nh, O7M) + Ve,
where 95M ~ pr and &, ~ N(0, I).

o EXPONENTIAL INTEGRATOR: Inspired by the work [18]], [47]] propose a more refined discretiza-
tion method which solves the backward SDE (3) explicitly, yielding the following approximation

h
Xtﬁ_hze%Xf—F/ e%s*(T—t—v,Xf_,U)dv—FAhWt
0

~et X+ 2(e? — 1)so (T —t, X)) + AW, .

We derive the following discretized process forn =0,..., N — 1:

9L = €208 4 2(e% — 1)s.(T — nh, 05) + Vel — 1¢,
with the initial point 9§' ~ pr and &, ~ N(0, I).

e VANILLA MIDPOINT RANDOMIZATION: Unlike the Euler method, the midpoint randomization
method evaluates the function v(T" — ¢, X;7) at a random point within the time interval [0, h] rather
than at the start. Let U be a random variable uniformly distributed in [0, 1] and independent of the
Brownian motion W;. The randomized midpoint method exploits the approximation

h
;:Lh:X,f_+/(J YT —t—v, X, 7,)dv+ AW, ©)
The idea behind the randomized midpoint method is to introduce an U in [0, 1], making hy(T — t —
hU, X7 },17) an estimator for integral foh YT —t—wv,Xf7,)dv.

Furthermore, the intermediate term X7, ;; is generated by employing the Euler method. We then
derive the following discretized process forn =0,..., N — 1:

Step 1 Generate £/, ¢ ~ N(0, I4) and U, ~ Unif [0, 1]. Set &, = VU,&, + V1 —U,&LL.
Step 2 With the initialization 9§ ~ pr, define

IREN, = OREM 4 WU, (T — nh, 9FEM) + /RU,E,

OREM — GREM 1 (T — (n + U, )b, OREW) + VRE,, .

o EXPONENTIAL INTEGRATOR WITH MIDPOINT RANDOMIZATION: Combining midpoint
randomization with the exponential integrator approach, we propose the following new discretization
process forn =0,...,N — 1:

Step 1 Generate &,,£) ~ N (0,1;) and U, ~ Unif [0, 1]. Set &, = pn&, + /1 — p2&, with

h(14Un)
pn=¢€ 2 (1

— e (e = 1) - 1)) o

Step 2 With the initialization 9§ ~ pr, define

RS, = eUn/29REL 4 9(hUn/2 _1)s, (T — nh, 9% + \/ehUn — 1€
ORE! = eh/29REN L pe=UnIh/2g (T — (n 4 U, )b, 9RE" ) + Vel — 1€,

The resulting discrete process is then solved to generate new samples that approximately follow the
data distribution pg.

3 Wasserstein Convergence Analysis under Various Discretization Schemes

In this section, we study the convergence of diffusion models under EM, El, REM and REI dis-
cretizations of the continuous backward SDE (B). Specifically, we establish the upper bounds on



the Wasserstein-2 distance between the distribution of the N-th output of the SGMs under these
discretization schemes and the target distribution

Wa(L(9%),po), o € {EM,El,REM,REI} .

Additionally, we analyze the number of iterations N required for the Wasserstein distance to achieve
a pre-specified error level € under each discretization scheme. For clarity of presentation, we omit
constants in the main text, retaining only the key components that affect convergence rates. Full
bounds with constants are provided in the proofs.

To establish the convergence analysis, we require the following assumption on target density py.
Assumption 1. The target density py is mg-strongly log-concave, and the score function V log pg is
Lg-Lipschitz.

Under Assumption[I] p; is m/(t)-strongly log-concave, V log p; is L(t)-Lipschitz. Moreover, m/(t)
is lower bounded by My, = min(1,mg), and L(¢) is upper bounded by Ly.x = 1 + Lo, as
summarized in Lemmal6]and[7)(see Appendix [B). We also assume that the score function V log py(x)
exhibits linear growth in ||x||, as stated below.

Assumption 2. There exists a constant My > 0 such that forn = 0,1,..., N — 1, it holds that

sup |V log pr—i(x) — Viog pr—s(z)|| < Mih(1 + |z[]), V.
nh<t,s<(n+1)h

The above condition is a relaxation of the standard Lipschitz condition on the score function. More-
over, we require the following assumption on the score-matching approximation at each point 9,,.

Assumption 3. Given a small 5. > 0, the score estimator satisfies

SU.p ||V10ng—nh(19n) - 5*(T - nh, 19”)”]].42 g esc .
o<nEN

Assumption [T} 2] and [3] are standard in the Wasserstein convergence analysis of the score-based
diffusion model. These assumptions were previously adopted in [12} [13]] and can be easily verified in
the Gaussian case.

3.1 Euler-Maruyama Method and Exponential Integrator

In the following theorem, we quantify the Wasserstein distance between the distribution of ¥4, o €
{EM, EI} and the target distribution py.

Theorem 1. Suppose that Assumptions and [\ hold, it holds that

Wa(L(9%),p0) S €™ ™" || Xol|p, + 61 Vdh + 65'ese, a € {EM,EI}, (N
Lmax + 1/2 1
where CKFM = 7mmin ~1/2 and %EM = 7mmin —i2
L 1
El max El
— _ —max d - -
[ er— 12 " G = 1/2

with Mmin = min(1,mg) and Lypax = 1+ Lo.

Before comparing the above bound with existing ones, we state a direct consequence.

Corollary 2. Given a small ¢ > 0 and e, = O(e), the Wasserstein distance satisfies
Wy (L(9%),p0) < €, € {EM,El} affer N = O(E%log (@)) iterations, provided that T =
O (log(*)) and = 0 ().

We now explain the upper bound in Theorem |1} which decomposes the total error into three parts:
initialization, discretization, and score-matching errors. The first term on the right-hand side of
display (7)) bounds the error arising from initializing the reverse idealized continuous-time SDE (@)
at pr instead of pr The second term in (/) captures the discretization error from the discretization
scheme, while the third term reflects the score matching error.



The term —1/2 in myy;, — 1/2 arises from the drift term of the forward SDE (2), as demonstrated
in Lemma8]in the appendix. We refer interested readers to the appendix for further details. More
generally, if the forward SDE takes the form dX; = —gX,;dt + dBy, then the bound becomes
m(t) — B, reflecting a dependence on the coefficient 5. Although the current theory still assumes
that the data distribution py is strongly log-concave, the condition mg > 1/2 naturally generalizes to
mg > (3 for any 5 > 0.

The convergence rates of EM method obtained in Theorem [I]and Corollary [2]align with Theorem
2 and Proposition 5 in [13]. Moreover, we note that the convergence rate of EM and El schemes
are comparable, which is consistent with the error bounds for these two schemes in KL divergence
established in Theorem 1 of [3], where N = Q(T?) in their setting.

3.2 Randomized Midpoint Method

Since the randomized midpoint method involves the i.i.d. uniformly distributed random variable U,,,
the resulting score matching function s, (7" — ¢, z) can be evaluated at any ¢ € [0, T]. To proceed,
we impose a regularity condition on the deviation of the estimated score from the true score at these
points. For this, we introduce the following auxiliary stochastic processes. Given U,, = u, define the
conditional realization of the random vector 195&'\{'] via

h
IREM . (1 + “7)1955“” + uhs, (T — nh, 9%EM) 4 Vuhe, .

n+u

Similarly, we define the following conditional realization of 1955_'[]

OREL, = e"2YRE 4 2(e" /2 — 1)s, (T — nh, 95°') + Veuh — 1€, .
We impose the following assumption on score estimates, which extends Assumption 3]

Assumption 4. There exists a constant 5. > 0 such that for any u € [0,1] andn =0,..., N,

Hlengf(nJru)h(ﬁeru) - 8*(T - (n + u>h719%+u)HL2 < Ese, QE {REM7 REI}

In what follows, we provide the upper bound for the Wasserstein-2 distance between the law of
9%, a € {REM, REI} and the data distribution py.

Theorem 3. Suppose that Assumptions and 4| hold, then for o € {REM, REI},

W2 (L(9%),p0) S e | Xollp, +EF (VA +C5ese

ReM, n _ V/@/3Lmax +1/2V/3 REM _ 3
where ¢ (d) = Tomin — 172 and €y = =12
/3L 3
REI, 7y _ max REI _
Cr-(d) = (o = 1/2) and €, T

With Limax and My as defined in Theoremg]

The convergence rate of these two schemes is generally consistent with EM, El methods, differing only
in the coefficients. As shown in display (6)), the key idea behind the randomized midpoint method is to
introduce a uniformly distributed random variable U, to evaluate the term v(T" — ¢, X;7) at a random
point within the time interval [0, h]. In the proofs provided in Appendix and (corresponding
to « = REM and a = REI, respectively), we demonstrate that Ey;, [, ] yields an accurate

approximation to the true distribution, with an error of order O(h®/?) + O(h)e,.. However, this

randomization also introduces an variance term |92, | —Ey, [92, ]||L,, of order O(h%/2)+O(h)es..,
which obscures the benefits of the improved estimation. As a result, the midpoint randomization
offers no improvement in convergence over EM and El methods.

Although midpoint randomization itself does not improve convergence in our setting, it enables paral-
lel computation [[15} 23], significantly reducing computational complexity and enhancing efficiency.



4 Second-order Acceleration

In this section, we propose an accelerated sampler that leverages Hessian estimation. The core idea
behind the acceleration is the Local Linearization Method, introduced in [33]], which approximates
the drift term of an SDE using its It6 expansion over small time intervals. To illustrate this, we begin
with a general framework for the backward process.

dzy =v(T — t,zy) dt + o dWy, )
where o > 0 and W is the d-dimensional Brownian motion. We assume that y(¢, z) € C13(R ;. xR%)

and approximate it by a linear function in both state and time within each discretization step. Applying
1t6’s formula to y(T" — ¢, =), we derive the following approximation for y(7T" — t, z;) — v(T — s, x5)

o? 02 0 0
(28:102(11 — 8, Ty) — a—Z(T — s,xs)) (t—s)+ %(T —8,7,) - (zp — ) -
Here and henceforth, we abbreviate the partial derivative a‘;z Ef) a3 g;’g (20). This allows us to
express (T — t, z;) in the following form
V(T*tvxt) NV(T*S,S@)‘FLS(Z}7xs)+Ms(t*S), (9)
with 5 2 2 5
Lsza—Z(T—s,ms) and Msz%a—;(T—s,ms)—a—Z(T—&xs).

Here, L, is the first-order spatial derivative of ~, capturing its local variation with respect to position
z. The term M, represents the temporal evolution of v, incorporating information about how its
shape changes over both space and time. Substituting display (9) into the original SDE (8)), we obtain

dry = V(T — s,25) + Ly(w¢ — ) + M (t — s)] dt + o dW, .

This formulation ensures that the discretized process preserves the essential structure of the original
dynamics while remaining computationally tractable. Unlike discretization schemes in Section [2}
which rely on direct numerical integration, this transformed SDE allows for analytical solutions
within each small time interval.

Setting y(T' — t,x) = 2/2 + Vlogpr_i(z),0 = 1, let At € [0, h] and s = nh. By It0’s formula,
we derive the analytical expression for ;. In the resulting expression, we denote x, by ¥3°. Then,
we obtain that for any ¢ € [nh, (n + 1)h], it holds that

t

t
zp =030 + / (%ﬁio + Vlog pr—nn(93°) + Ly (2, — 93°) + M, (u — nh)) du + dw,,
nh nh
(10)

where

2

d
1 1 ) d
L,=-1I 2] Can(039), M, ==Y —VI _an(939) — =V1 _an(929).
9 d+v og pr h( n )? 2;8x?v ogpr h( n ) atv ogpr h( n )

Thus, L,, contains the Hessian of the score function. The term M, measures the difference between
the spatial and temporal changes in the score function, reflecting the balance between curvature
effects and temporal adaptation in the diffusion process. Notice that z(,, 1), is the point we aim
to approximate. For this, we need to estimate the score function and its higher-order derivatives to
obtain accurate estimates of L,, and M,,, denoted by siL) and s,(kM), respectively.

By the work of [28], higher-order derivatives of log p;(x) with respect to x can be accurately
estimated. Moreover, we show in Appendix [C|that 0,V log p;(x) can be expressed as a combination
of up to second-order partial derivatives of log p; () with respect to . Thus, estimating 9,V log p; ()
requires no additional assumptions beyond those for accurately estimating 92V log p;(x). We also
require the following assumption.

Assumption 5. For some constants 525)7 agﬁﬂ > 0, the estimate for high-order derivatives of the

score function satisfies that

sup 58T —nn, 950 — L | <elB),
0<n<N-1 Lo

sup ‘ SSFM)(T — nh,939) — Mn‘ <el,
0<n<N-1 Lo




This assumption has been adopted in prior works [24] and [27]. Substituting these estimates into
display (T0) then gives

t
=030+ [ [ = b, 050) (T = b 930 o, — 050)
nh

+ siM)(T — nh, 93°)(u — nh)} du + /t dw, .
Let 959 »1 denote x4 1), The second-order discretization scheme is given byl
19n+1 1920 + ska)(T —nh, 1920)_1 (es(*m(T_”h’ﬁf?)h — Id) (21920 + 5.(T — nh, 1920))
(T =, 950) 72 (T IOR — NT —h, 950)h — 1a) M (T = i, 930)

(n+1)h @ o
+ / &5~ (T—nh,9;7”)[(n+1)h—t] th )
nh

‘We assume additional smoothness on the score function.

Assumption 6. Let || - || p denote the Frobenius norm. There exists a positive constant Ly such that

HVQ Ingt(J?) - VQ logpt(y)HF < LF ||Z‘ - y” ’ V%y € Rd .

As shown in Theorems 4 and 5 of [27], this condition plays a crucial role in bounding the Wasserstein
distance for Hessian estimates and can be easily verified in the Gaussian case.

Assumption 7. There exists a constant My > 0 such that, for anyn = 0,...,N —land t €
[nh, (n 4+ 1)h], it holds that

V2 log pr—i(z) — V?1og pr—nn(@)|| < Mah(1+ [|z]]), Va € R?.

We now quantify the W, distance between the generated distribution £(93°) and the target py.
Theorem 4. Suppose that Assumptions [0land[7 hold, then

2 1 ,
Wa(L(030),m) S = Kol + 650 + 650 (2 + 3 VRGD + 31t )y

1,3/2 3L /4 (Limax—1/2)h
. \[( max T \[ F/ ) and chSO — 67 with Ly and
Mmin — 1/2 Mmin — 1/2

where €20 (d) = eLmax—1/2)h
Mumin as defined in Theorem([l]

Before discussing the results of this theorem, let us state its direct consequence.
Corollary 5. For a given ¢ > 0, the Wasserstein distance satisfies Wo(L(93°9),p0) < ¢ after
N=0O (@ log (@)) iterations, provided that T = O (log(@)) and h = O( =)

In the above, we present the first Wasserstein convergence analysis of an accelerated sampler that
utilizes accurate score function estimation and second-order information about log-densities. The
total error arises from the same resources as in Theorem[I} The first term on the right-hand side of
display (TI) captures the initialization error. The second term reflects the benefit of second-order
acceleration, where improved discretization reduces the error in approximating the reverse SDE. The
third term accounts for errors in estimating both the spatial and temporal components of the score
function, as well as the higher order terms L,, and M,,.

The accelerated convergence of this method is driven by two key innovations: approximating the
drift term through its It6 expansion rather than endpoint evaluations, and deriving a closed-form
solution to the integral equation (I0) using the It6 formula, akin to Exponential Integrator techniques.
Compared to the four schemes described in Section E], the proposed second-order algorithm offers

a clear computational advantage: it requires only O(1/¢) iterations (v.s. O(1/£2)), and permits a

Due to space limitations, we refer readers to Appendix E]for a complete derivation.



A =100

3
&
5
&
4
Jo)

0.10 0.15 0.20 0.25 0.30 0.35
Step Size

(@) (b)

Figure 1: (a): Errors of SGMs under EM, EI, REM, REI and SO with different choices of h. (b):
Samples generated by five different algorithms on the MNIST dataset.
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larger step size h = O(¢), enabling faster progression in each iteration instead of h = O(g?). As a
result, the second-order method achieves the same accuracy with fewer iterations and a larger step
size, making it a more efficient method for approximating the target distribution.

We note that the convergence rate O(1 /) matches that of the accelerated Denoising Diffusion Proba-
bilistic Models (DDPM) sampler [[17] proposed in [27], which achieves this rate in KL divergence
and relies on Hessian estimation. Additionally, this rate aligns with the iteration complexity results in
TV distance presented in [19] when setting p = 1 in their framework.

5 Numerical Studies

In this section, we compare the performance of the SGMs under EM, El, REM, REI discretization
schemes described in Section[2] as well as the second-order acceleration method (SO) proposed in
Section[4] evaluated on both synthetic data and the MNIST dataset.

5.1 Experiments on Synthetic Data

We apply the five algorithms to the posterior of penalized logistic regression, defined by po(#)
exp(—f(0)), with the potential function f defined via

Ndata

A 1
f0) =3 10* + —— > " log (1 + exp(—yiz; 0)),
Ndata o1

where A > 0 denotes the tuning parameter. The data {x;,y, };***, composed of binary labels

yi € {—1,1} and features z; = (w;1, -+ ,2;4)' € R? generated from z; ; 1'5'./\/(0, 100). Set
A =100 with d = 20 and ng,ea = 100. Appendix [ provides additional results and implementation
details. Figure[Ta|presents the W distance measured along the first dimension between the empirical
distributions of the samples from the five algorithms and the target distribution under different choices
of h. These results support our theoretical findings: all discretization schemes from Section 2] exhibit
similar convergence behavior, while the proposed Hessian-based sampler consistently achieves
superior performance.

5.2 Real Data Analysis

We apply the four SGM discretization schemes and the second-order algorithm to the MNIST
dataset. To accelerate the SO algorithm, we use Hessian-vector products (HVPs) instead of explicitly
computing the Hessian. The results in Figure [Ib| demonstrate that SO outperforms the others.
Additional results and implementation details are provided in Appendix



6 Discussion

The Wasserstein-2 distance, used in this paper, serves as a natural and practical metric for measuring
errors in diffusion models. However, recent work on the convergence theory of diffusion models has
also explored alternative metrics such as total variation distance and KL divergence. A promising
direction for future research is to establish convergence guarantees with respect to these alternative
distances.

Moreover, while this work makes progress in provably accelerating SDE-based diffusion sampling in
Wasserstein distance, it would also be valuable to explore deterministic samplers based on probability
flow ODEs.

Finally, for clarity and simplicity, we focus on a specific choice of drift functions f and g in the
forward process, corresponding to the Ornstein—Uhlenbeck process. Extending this analysis to a
more general framework with broader choices of (f, g) is an interesting avenue for future research.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims in the abstract and introduction are substantiated by the
detailed theoretical analyses are presented in the paper. These sections clearly outline our
contributions and scope, which are consistently reflected throughout the findings.

Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: In the last section, some strong assumptions made in this work are highlighted,
along with potential directions for relaxing these assumptions and generalizing the current
findings.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: For all the theoretical results, we provide the full set of assumptions and
complete proofs for them.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All information necessary to reproduce the main experimental results is
provided in the main text and appendix.

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The datasets used in this work are either synthetic or publicly available, and
the code for reproducing the results is provided in the supplementary materials.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Experimental settings and details are provided.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Justification: Statistical significance of the experiments is not applicable in this context.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Sufficient information about the computational resources used is provided in
appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: This work fully complies with the NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: This is a theoretical work without addressing or having any societal impact.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This work poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: This work does not use existing assets.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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15.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This work does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This work does not involve crowdsourcing or research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: This work does not involve LLMs as any important, original, or non-standard
components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Discussion of Theoretical Advances in Accelerating Samplers for Diffusion
Models

Score-based diffusion models can be formulated using either SDEs or their deterministic counterparts,
known as probability flow ODEs [36]]. While SDE-based samplers generate samples through stochas-
tic simulation, ODE-based samplers provide a deterministic alternative. Theoretical advancements in
accelerating these samplers have emerged only recently. A significant step toward designing provably
accelerated, training-free methods was made by [24], who propose and analyze acceleration for both
ODE- and SDE-based samplers. Their accelerated SDE sampler leverages higher-order expansions
of the conditional density to enhance efficiency. This was followed by the work of [25]], which
provided convergence guarantees for probability flow ODEs. Furthermore, [19]] studies the conver-
gence properties of deterministic samplers based on probability flow ODEs, using the Runge-Kutta
integrator; [41] propose and analyze a training-free acceleration algorithm for SDE-based samplers,
based on the stochastic Runge-Kutta method. [27] proposes a novel accelerated SDE-based sampler
when Hessian information is available. Another line of work involves the midpoint randomized
method. In particular, [15] explore ODE acceleration by incorporating a randomized midpoint
method, leveraging its advantages in parallel computation. A more recent work by [23] improved
upon the ODE sampler proposed by [[15]], achieving the state-of-the-art convergence rate.

We note that all of these works provide convergence analysis in terms of either KL divergence or TV
distance. Among these, [27] accelerates the stochastic DDPM sampler by leveraging precise score
and Hessian estimations of the log density, even for possibly non-smooth target distributions. This
is achieved through a novel Bayesian approach based on tilting factor representation and Tweedie’s
formula. [19] accelerates the ODE sampler by utilizing p-th (p > 1) order information of the score
function, with the target distribution supported on a compact set and employing early stopping.
These two works are the most similar to our proposed accelerated sampler in that they all rely
on the Hessian information of the log density. However, their settings differ from ours, and their
convergence analyses are neither directly applicable to our framework nor precisely expressed in
terms of Wasserstein distance

B Proof of Section3

We define several stochastic processes associated with the backward process X~ and the sample
path ¥J,,. First, recall that X~ is described by the following SDE:

1
X = (4% + Viogn (X)) dt+ AW, X5~ pr.

and {9%,0 < n < N} satisfies the iterative law:
U5t = Gn (05, AW nh<t<(nt)n) »
where o € {EM, EI, REM, REI, SO}.

Based on X, we define the following two processes, {Y;,0 < ¢ < T} and {f@, 0<t<ht Y,
satisfies the SDE

1
dy; = (25@ +V10gPTt(Yt)> dt + dWs, Yo~ pr.

Y, actually relies on X £ on the time interval [nh, (n + 1)h] for each n. However, we only need this
notation in the proof of one-step discretization error, then we allow for some slight abuse of notation

by omitting n, since it will not lead to any confusion. Therefore, {fft, 0 <t < h} satisfies

- 1~ - -
dY; = <2Yt + Vlongt(Yt)> dt + dWe, Yo =10y (12)

“When the target distribution is compactly supported, Pinsker’s inequality allows translating TV or KL
divergence into Wasserstein distance. However, this often yields loose bounds, especially in high dimensions,
where the actual Wasserstein distance may be much smaller.
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Regall thgt we h?\\;e dfiﬁned two processes YR and RE!, in Section 3.2} that is, for any u € [0, 1]
andn=0,---,N —1,

g = (1+ %WSEM + uhs (T — nh, O3FM) + Vuhé,,

195_E|_|u = eUh/2gREL L 9(euh/2 _ 1) 5, (T — nh, 9RE") + \/euh — 1€/ .

This section is devoted to proving the convergence rate of the diffusion model under various dis-
cretization schemes. To this end, we need the following auxiliary lemmas.

Lemma 6 (Lemma 9 in [13]]). Suppose that Assumptionholds. Then, V log pi(x) is L(t)-Lipschitz,
where L(t) is given by

e'Ly if t <log(l+

uwzmwu—éﬂ”ﬂwdz{O_KWJ if t > log(1+ |

1
)
o)
Therefore,

L(t) <Log+1.

Lemma 7 (Proof of Proposition 7 in [[13]). Suppose that Assumptionholds. Then, V log pi(x) is
m(t)-strongly log-concave, where m(t) is given by

1
e~t/mog+ (1—et)’

m(t) =
Therefore,
m(t) > min{l,mp}.

Combining these two lemmas, we conclude that the Hessian matrix of log p; satisfies the following
condition

—L(t)Iq < VZogpi(-) < —m(t)1y.

We will frequently use Gronwall’s inequality in the proof. Below, we present a specialized form
tailored to the relevant processes.

Lemma 8. Suppose the Assumption[I| holds, consider two stochastic processes Hy and G defined on
the time interval [ty,t5), if they satisfy the same SDE, especially motivated by the same Brownian
motion, which means that
1
AH; = (5 H+ Vlogpr—i(Hy) ) dt + dW,
1
4G, = (iGt + v1ong,t(Gt)) dt + AW, .
then for each t € [t1,12),

— [P (m(T—-s)—3%)ds
1H, = Gy, < e a2 g G, |, .

Applying Lemma [§]to different processes and time intervals, we derive the following inequalities
essential for our proof.

which follow from the fact that {Y;,0 <t < T}, {}7}, 0 <t < h}l {XF,0<t < T} all satisfy the
same SDE as in Lemma by applying a time-shifting operator to Y;.

m (m(T—s)—1) ds

Vontt — Yil|  <e Jun . Vtel[o,h]. (13)

]Lg ]142
1V — X |lp, < e Jom@T===2)ds iy x|, v e [0,T]. (14)

Ynh - 5}0’
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B.1 Proof of Theorem/[I: Part I

In this part, we provide the first part of the proof of Theorem[I} with respect to Euler-Maruyama
method. To achieve this, we first prove the one-step discretization error in the following proposition.

Proposition 9. Suppose that Assumption[l} 2| and 3| are satisfied. Then, the following two claims
hold.

(1) Firstly, it holds that
Hf’h — ﬁﬁ“ﬁlHM <R (Cr(n)? + My) || Yon — 95V

+ h? [Cl(n) (Cl(n)Cg(n) + %C4 + Cg(n)) + My (14 Cs(n) + Cy)

+ 1¥2V/dC (n)
+ hese
where
1 1 (n+1)h
Ci(n)=-+ / L(T —t)dt,
2 h nh

02(n) e f[;Lh(m(T—t)—%)dt HYO _ XTH]LQ ,

C 1 (nﬂ)hdLTf 1/2 4
3(n)—h . (dL(T —t))"/=dt,

Cy = sup ||Xt||L2.
0<t<T

(2) As a result,

Yonron = Ot ||, < ([Yon = O5M||,, + B2 CEM + B3/2VdCh (n) + hee.,
where

rEM = ¢~ St (T =)~ §) dt + h2(C1(n)* 4 M),

Proof. We prove the two claims sequentially.
Proof of Claim [(T)] Rewrite display (I2) in the integral form,

(n+1)h

h
~ ~ 1=~ ~
0 nh

For Euler-Maruyama method, we can write 195% in integral form as follows

(n+1)h 1 (n+1)h
YEM — gEM +/ (2195“" + 5.(T — nh,ﬂﬁM)) dt +/ AW, .
nh nh
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Note that Yy = 9¥EM, then, it holds that

1

h h
3 [ (0Bt [ (Viogproun-i(F) = 5.(T — nh, 05M)
0 0

¥ EM
Lo

Lo

1 rh h 3 }
<! / (Y — Vo) dt + / (V108 prwn_+(T2) — Vlog pr (Vo) dt
0 0

2

Lo

I

h
+ / (V1og pr—nn—_t(0EM) — Vlog pr_nn (WEM)) dt
0

Lo

II

h
+ / (V10g pr—nn(VEM) — 5. (T — nh,9EM)) dt
0

Lo

11
15)

Here, we decompose the term Hffh — 195'21 H into a sum of three terms and then control each term
Lo

individually.
For the term I of inequality (T5), by Assumption[T]and Lipschitzness of V log p;, we obtain

1

h h
5 [ Gi=Toydes [ (Viogprom-i(Ti) - Viogpr_oi(Fo))de
0 0

1 h h
<= ‘ dt+/LT—nh—t’
QA e [ )

1 (n+1)h
< fh—i—/ L(T —t)dt] sup
2 nh 0<t<h

We then proceed to derive the upper bound for the term supg¢; ¢, ’

I=

Lo

dit

i i)

i i)

Lo

7 i)

2

Y- Yo

2

Lemma 10. When py satisfies Assumption([l} it holds that

1 (n+1)h M
]L2< §h+L L(T —t)dt ||Ynh_19n ||]Lg

a0
h

0<t<h

1 e — (T =)= b) e
w(ghe [ LT ) BTy

1 (n+1)h
+=h sup |\Xt||L2+/ (dL(T — t))Y/2 dt + Vdh.
2 o<i<r nh

Notice that we have no initial limit on the Y; in Lemma which means that we can use this lemma
to any discretization scheme.
For the term II of (T3)), we first rely on Assumption [2]to derive

h
T = ‘ / 3% 1ngTfnh7t(19$LM) - VIngTfnh(ﬁELM» d
0

h
< / 1V 108 pr—nn—e(9EM) = Vlog pran (VEM) | dt
0

< h2M(1+ HﬁELMHLz).
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Using the triangle inequality and (T4), we obtain
[9EM N, < [¥an =95y, + 1Yan = XSl + 1A

n 16

< |[Yon — 795M||]L2 4o Jtnm-n=hary, _ Xrllp, + sup || Xl - (16)
0<I<T

For the term IIT of (T3), it follows from Assumption [3]that

h
101 — / (V log pr_nn (M) — s.(T — nh, 9EM)) dt
0

Lo
h

< [ 19108005 = 5.7 i 92
0

< hege

Combining these terms above, we obtain that

|7 = 02| < n2(Ci ) + M) [V = 05V,

+h? {C&(n) (01(71)02(71) + %(14 + Cg(n)) + My (1+Co(n) +Ca)| (17

+ W32V dCy (n)
+ hege

where

1 1 (n+1)h

nh

Cy(n) = e Jo (MT=0=2)dt |y Xq||,
1 (TLJrl)h
Csln) = / (dL(T — 1)V/2 dt
nh
sup || Xl -
<

0<t<

This completes the proof of Claim [(T)]

Cy

Proof of Claim[(2)] By the triangle inequality, we have
¥t = 5, < [[Yonsun = Fa| -+ [ — o5 (18)
Applying (T3) to the first term of (I8), we obtain that

(n+1)h

~ 12 ~ 112
Hi/(’ﬂ*‘rl)h — YhH < e Jnh (Zm(T—t)—l)dt ’Ynh _ YOH . (19)

Notice that }70 = 195'\", it then follows that

[Vouson - T < e s mir-o-prar |y, gew
2

Lo

Claim [2)| follows directly from our previous results and Claim[(T)] Since this step is independent
of the discretization method, it applies to all the schemes discussed in this section. In the following
analysis, we omit this step and proceed directly with the proof of the first claim. O

We now proceed to derive the upper bound of the Wasserstein distance between the sample distribution
generated after IV iterations and the target distribution pg, based on the one-step discretization error
bound given by Proposition[9]

First, note that
Wa (L(9SM), po) < ||9RM — XOH]L2 < || Yan - ﬁJEvMHM + 1Yan — Xollp, -

24



Invoking Proposition 7 of [13]], we have
T
[Yivn = Xolly, < e Jo ™ @ x|, . (20)

According to Proposition[9] by induction, we obtain that

Yo = 9%, rﬁM_l [Yov—nyn — 95|, (hQCN 1+h3/2\/&01(N71)+h556)
1 N-1 [ N-1
rfM 1Yo = 0|, + > | TT v | (n2CE" + n*/2Vacu (k) + he.. )
=0 k=0 \j=k+1
1 N-1
[T & | (n2CE™ + n*/2VaCy (k) + heoe )
o J=k+1
1)
where we define H;V:j\} r¥M = 1. Notice that
7 EM gy — JUTDR (T —t)— 1) dt 2 2
Il 5= 11" DU B2 (Ca(k)? + M)
j=k41 =kt

—1
H e (Mmin—3) _ o=h(Mmin—3)(N—k-1)

j=k+1

Therefore, we have
N-1 )
[V —0R" |, S D e mmm=2) Nk (hQC,EM + B32dC, (k) + hesc)
k=0

1
{—mMFMm— 2 EM 3/2
X 1 —h(Mmin—3%) <h 0<§€n<a]3/<_1 Ck +h f maX Cl(k’) + hege

<\

< ot (\/@ max Cy(k) + Esc) )

Mimin — 1/2 0<k<N—1
(22)
Recall the definition of C1 (k) and the upper bound of L(t), it follows that

1
max Cl (k) < -+ Lmaxa
0<k<N—-1 2

and thus we obtain that

Lax +1/2 1
Vdh - Lnax +1/2 +e

HYNh_'g H]L ~ Mmin — 1/2 © Mnin — 1/2°

Plugging this back into the previous display then we have

- +1/2 1
Wo (£ (9EM <= Jomadt | x L S
2( ( N )’pO)Ne ° || OH +\/7 71/2 te mmin71/2’

which completes the first part of the proof for Theorem E}

B.2 Proof of Theorem [T} Part II

This part aims to prove the Wasserstein convergence result for the Exponential Integrator (EI) scheme.
We will prove this theorem using the same method as in Theorem [T} Following this approach, we
first establish the one-step discretization error in the proposition below.

Proposition 11. Suppose that Assumption and 2| hold, then one-step discretization error for
Exponential Integrator scheme is obtained from the following two bounds.
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(1) It holds that

- 2(eM? — 1
s ﬁg'ﬂHLz < 2 (6’5(n)01(n) + Ml(eh)> Yo —0EM||,.

1 2 h/2 _
+ h? [Cs(n) (Cl(n)cg(n) + 56’4 + C;;(n)) + (e - )Ml(l + Cs(n) + Cy)
+ 1*/2V/dCs(n)
2(eh/2 — 1
where
1 (n+1)h . 1
Cs(n) = E/ e (D= 1T _ §)dt &~ Cy(n) — =
nh
(2) Therefore, we have the bound for one-step discretization error
2(eh/2 — 1)
[Yosryn = 955 |, <5 ([ Vo = 05|, + B2CE + h3/2VdC5 (n) + b - G
where
n 3 h/2 —_
Pl = e SR nr 0D ae y 2 (c5<n>01 (n) + M2(h1)) ,

2(eM/? — 1)

1
CE' = C5(n) (cl(n)c2 (n) + 5Ca+Cy (n)> +
Here, the constants C;,1 = 1,2, 3,4 are as defined in Proposition

Proof. We prove two claims in succession.
Proof of Claim[(T)} Consider the process defined in (12)), which satisfies the SDE

dy; = Bf’t + VIngT—nh—t(i/t):| dt + dW,
Instead of integrating both sides of the SDE, we use 1t6’s formula to e~ 2Y,, then we have
d(e_%ﬁ) = —%e_%f/t +e % dy; = e 2 <V 1ong,nh,t(}~/t) dt + th) ,
and we notice that we can write it in an integral form.
Y, — /27, 4+ /teé(ts)Vlongnhs(?S)ds + /nhﬂeé((nﬂ)hs) aw., .

0 nh
Then we obtain that

h
Y. —195;1 :/ ez (h— t)(Vlong nh— t(Yt) — 5.(T —nh ﬁE'))dt

0
We make decomposition the same as the one in (T3)), that is

V10g pr—nh—t (Y1) — 5.(T — nh, 95" = Viog pr_nn—i(Y2) — Viog pr_nn—i(Y0)
+ Vlog pr—_nn_ t(i? ) Vilogpr_ nh(ﬁE)
+ V1og pr—nn (V5" — 5.(T — nh, 95" .
It then follows that

h
HYh— n+1 /0 3 (h=1) ’Vlong whet(V2) — 8(T — nh, 95| dt

Lo

h

ez (=) HvlogPT nh—t(Ye) = V10g pr—nn— t(YO)‘ d

0 L2

h
+/ 2= ||V log pr—nn—t (95) — Vlog pr—nl 7)., dt
0

+

h
/ 62(h_t) Hleng—nh(ﬂEI) - 5*(T - nh’ﬁEI)H]LQ dt
0

26



Note that apart from the exponential term e2 2(h=%) the derivation of the remaining parts is completely

consistent with that of (T3], until we encounter the term involving ¥E', at which point we obtain

h
< (/ e%(h_t)L(T —nh —1) dt) sup
Lo 0 ot<h

" 300 gp ) At (14 |08
([ b1+ 1981, )
h
+ (/ e3(h=?) dt)a
0

By Lemma we can bound the first term on the right-hand side of the previous display. More-
over, from VE! HM can be bounded similarly. Substituting all coefficients with C;(n) from

Proposition[9] we obtain

-, i

Lo

- 1
HYh - ﬁﬁ'HHLQ <2 Cs(n) {C’l(n) [¥or = 95|, + Ca(m)Caln) + 5Ca + cg(n)]

2(eh/? -1
h? .

h
+ h3/2VdC5(n)
2(eM? — 1

eh/2 _
#Qammm+m“21»m%ﬁwb

o, (14 [[¥on = 5|, + Caln) + 1]

+h-

oh/2 _
+h? [05(n) <C’1(n)02(n) + %(14 + Cg(ﬂ)) + le(l + Co(n) + Cy)
+ h*2V/dCs5(n)

+h- Leh/; )

where

(n+1)h L
Cafm) =3 [ BRI LTt o) - 3
n

Proof of Claim [2)} The proof is omitted for brevity, as it merely requires incorporating
HY(n—H)h — Y, H into the conclusion of C1a1mu following a similar argument as in the proof of
Claim[(2)]in Proposmon !

O

For the second part of the proof for Theorem|[T] recall that in the first part, the three key steps 20), 1)
and (22) lead to the desired result. We now revisit these steps within the framework of other
discretization schemes.

Since (20) is independent of the discretization scheme, we can dlrectly apply it throughout the proofs
of Theoremsl andlé-_ll For (]2;1'[) we note that the h? term in 7§ is neglected, which results in the

same upper bound for H = k 1 7§ across all discretization schemes

Given the consistency of these two steps, for the remaining discretization schemes, we can directly
derive an analogue of (22)) from Claim[(2)] Therefore, in the subsequent proofs of these theorems,
after establishing the corresponding proposition, we proceed directly from an expression similar to

).
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For this theorem, we begin the proof with the following inequality
1

S [

! (\/% max 1C’5(k)+€sc)

[Ynn — 9% (hc,f' + ht/2Vd jmax Cs(k) + s)

<k<N-1

™~ Mpin — 1/2 0<k<N—
Lmax 1
<Vdh - —max R
Mmin — 1/2 T Ese Mmin — 1/2

Combining this with the bound of || X — Y3 ||, we obtain
Wa( L5, po) S e n |[Xoll,, + V- —m gL
~ L2 Mmin — 1/2 Mmin — 1/2

as desired.

B.3 Proof of Theorem 3: Part I

In this section, we prove the Wasserstein distance between the generated distribution £(JREM) and
the target distribution. The following proposition is established for the one-step discretization error.

Proposition 12. Suppose that Assumptions|[I| 2] and[d are satisfied, the following two claims hold.
(1) It holds that

|7 —om)|,
o ) ) 1/2
< h2{ [/ / {|u —v|L(T — (n + u)h) (2 + L(T - ”h)) + Ml} dudv}
o Jo
+ LL(T —nh) + 1 Yo, — 05|
43 8v/3 b2

+h2{{/01 /01{(u—v) [(;—&-L(T—nh)) Cg(n)+;C4+(dL(T—nh))1/2} L(T — (n+u)h)

2 1/2
+ My (14 Ca(n) + C4)} dudv}

1 1 o
+ g (Gt +C) + (L(T — nh)Cy(n) + (dL(T — nh))" ) }
4o 1 1 , 1/2 1
+h/{\/a[/o /0 L(T — (n + u)h) |u—v|dudv] +2\/§}
+ 2hege .

(2) Moreover, it holds that
[Yensiyn = ORGT | < it Vo = Onlly, + R2CRG + B 2CREM + 3he,
where

_ (n+Dh 41
TSEM —¢ !, (m(T—t)—3)dt

/01 /01 {|u —v|L(T = (n+ w)h) <; + L(T — nh)) + Ml} 2 dudv]
1

1/2
+h2{
1
+L(Tnh)+},

43 8v/3
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CREM = { /01 /01 {(u —v) [(; + L(T — nh)> Ca(n) + %cu + (dL(T — nh))lﬂ} L(T — (n + u)h)
+ My (1 + Cy(n) +C4)}2dudv}1/2

+ %(Cz(n) +Cy) + % (L(T —nh)Cy(n) + (dL(T — nh))1/2) ,
11 , 1/2 1
CS’EQMZ\/&{/O /OL(T—(n+u)h) |u—vdudv} +2—\/§.

Proof of Proposition[I2] Proof of Claim [(I)} We make the following decomposition of one-step
discretization error

|95 = 0= < [[9h — Bur, [0REH| + 1w, [0F5) - 075 23)

I, -

We first derive the upper bound for the term Hffh —Ey, [1925_'\{']

. By the definitions of YREM and
Lo

Y}, we have

‘ 2

1 (. h . 1
- H 5 / Y, dt + / Viog pr—nn_t(Y;) dt — Eh]EUn (IRENM) — hEy, [s.(T — (n + Uy,)h, 9REN)
0 0

V;, — Ey, [9REY] .

Lo

Notice that

h

h
/ Y, dt = hEy, [Yu,nl , Vlog pr—nn—t(Yy) dt = hEy, [Vlog pr—ntv,yn(Yu,.n)] -
0 0

Plugging this back into the previous display then gives

|7 — Eo, 5541,

2

1 8 . 1
= H ShEv, Yu,u] + hEy, [V1ogpr— (i v,n(Yu,n)] — FhEu, (IRE) = hEy,, (s (T = (n+ Up)h, 9550))

Lo

1 - -
< 30 |[Bu, B = 0558, + 1 |[Ev, [Viog pr— s, n(Fi,n) = s2(T = (n+ Un)h, 9558, )]
2

2

By the definition of Yy, , and 9REY, | we have

HEUn Yo, n — 1955“(/},)]

Lo
L Unh . .
= ||Ey, 5/0 Yy — 9, )dt+/0 (Viog pr—nn—t(Yy) — s:(T — nh,9;,"")) dt
L Lo
[ pUnh Unh .
< ||IEo, 5/ HYt—ﬁEEMH dt+/ HVlong_nh_t(Yt)—s*(T—nh,ﬂEEM)H dt]
L 0 0 Lo
1 fh - h -
< |[Eo, §/ |2 — o5 dt+/ |V 10g pr—uno(V2) = s.(T = nh, 05| dt]
L 0 0 Lo
1 [P h -
< f/ ‘Yt—ﬁEEM dt+/ HVIngTfnhft(Yt)_S*(T_nhvﬁrRLEM)‘ dt.
2 Jo Lo 0 Lo

The second inequality arises because the integrand is non-negative, the last inequality follows from
the fact that the random variables inside the inner expectation Ey; are independent of U,,, and thus
the inner expectation can be ignored. Then using the same argument as in the proof of Proposition [0}
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especially adopting the same procedure as the one following (T3), we can apply the conclusion of
Proposition[9]to the term above, then we obtain that

1 (n+1)h 5 N
< 7h+/ L(T —t)dt | sup HYt—YO

/ REM
HEU% Yu,n — 9030 ] 5 . S
It

2

(n+1)h
+ / [V log pr—nn—s (95™) = 5.(T — nh, 93F)|| | dt
nh

< (C1(n)? + My) ||Yon — 195EMHL2
1
42 {01 (n) (C’l(n)CQ(n) +5Ci+ 03(n)) + My(1+ Ca(n) + Cy)
+ 1¥2VdCy (n)
+ hese
é h2T1 ||Ynh — 195EM ||]L2 + h27“2 + h3/2\/c§C1(n) + hESC s
where
T = Ol(ﬂ)2 + Ml,
1
ro = Cl(n) (Cl(n)Cg(n) + 504 + C3(n>> + Ml(l + Cg(n) + 04)
We now derive the upper bound of the second term in (23)). Note that

H]EU,L [V1og pr—(ntv,yh Yinto,on) — 8+ (T — (n+ Uy )b, OFEY, )] HLZ

1
/ (V IngT—(n—&-u)h(Yv(n—i-u)h) - S*(T - (n + u)h7 ﬁffpﬁ)) du
0

Lo

1
< / Hv 10ng—(n+u)h<Yv(n+u)h) - 8*(T - (TL + u)h» 1955-“1/!) T du
0 2

(24)

1
< / ( HV long—(n+u)h(Y(n+u)}z) -V long—(n+u)h(197RLE_'\£) )
’ 2

V108 P (P55 — 52T (4 ) 975 ) du

1
0

du + esc
Lo
the second inequality follows from the triangle inequality, and the last inequality depends on Assump-
tion[T]and @] By (I7), changing the value of & to uh, we have

Hf/(mru)h —oRE

Lo
< (uh)*(Crn(w)? + My) ||V — OREM|

1
#h)? [Cn(0) (CLa(u)Calo) + 51+ Canlw)) +1(1 4 Cal) + €)@
+ (wh)**VdCy ()
+ uhese
where C1 ,,(u) and C ,, (w) is the uh-version of C;(n) and Cs(n), respectively, that is

Cl’n(u) = 5 + E . L(T — t) dt,

1 (n+u)h s
Conlw) = oz [ (=),
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Plugging the previous display (23] back into display (24), then rearranging and simplifying the
expression, yields

B0, (V108 27 (n 0 (Vs vy) = 50T = (0 + Un)h, 0558 )|

< ( / VLT — (4 R (O ) + Ml)du) [Yor = 92",
+ h? {/01 L(T — (n + u)h)u? [Clm(u) <cl,n(u)02(n) + %04 + 03771(u)) + Mi(1+ Ca(n) + 04)] du}

+ h3/2 (/1 L(T — (n + u)h)u®/? du) VdCy (n)

0
1
+h (/ L(T - (n+ u)h)udu> Esc
0
JreSC
é h2’l"3 ||Ynh — 195M ||]L2 + h27"4 + h3/27"5 + hre€se + €sc

where

7“3:/ L(T = (n + u)h)u2(Chn(w)? + My) du,
0

T4

/01 L(T — (n + u)h)u? [Cm(u) <cl,n(u)02(n) + %a; + cgyn(u))] du+ My(1+ Ca(n) + C) |

s

(/01 L(T — (n 4 u)h)u®/? du> Ve (n),

1
re = / L(T — (n+wh)udu.
0
From the bounds we have obtained for two terms, it follows that

|75 — Eu, [0REY)

2

1 1 1 1
< B (51 +73) [Yon — M|, + h?(5ra +ra) + h5/2(§\/301(n) +75) + (5 + 76)Ese + hese -

2
(26)
Considering the second term of one-step discretization error

a1 — Eu, [955Y)

1
= Sh [050 = Bu, [050]] + B [5(T = (0 + Un)h, U35%5) = B, [s(T = (n + Un)h, 9350)]]

1 [1 1 1
Ly [h(Un = SR 4 (U, = 2)su(T — nhﬁﬁEM)}

2 |2

1 (n+Un)h 1 (n4u)h
+ —h / th - / / th du

2 nh 0 nh
1 [5.(T = (n+ U)h, 055%) = Euy, [5.(T — (n + Uy )1, 055N )

The second equality follows from the fact that
REM REM , 1 REM REM (Ot
Ey, [nio) =95 + §hEUn [Un]0,Y 4+ hEy, [Uy]s« (T — nh,9;,7") + Ey, dWw,
nh
1 1 1 (n+u)h
= YREM ZhﬂﬁEM + 5hs*(T — nh, 9REM) +/ / dw; | du,
0 nh

since U,, is independent of YREM.
We proceed to bound each term in (27). For the first term, still notice that the independence between
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U, and YREM then we find that

!

)ﬁREM
9/7n

1
@, (U~ )5

Lo

%

~{&[entwn- o1 o]
- U, n 9 n

(1 2112

5 o= }

95, -

= {E Ey,

I
—
=

— 1 |
2V3
The bounding of another part of the first term follows in a similar manner, we obtain that

1
(U, — 5)3* (T — nh, ﬁEEM)

s(T — nh,ﬁEEM)HM .

— ! |
L, 2V3
For the second term of (Z7), notice that due to Itd’s isometry formula, for any well-defined stochastic
process X; and its Itd stochastic integral I;(X) = fot X, dM,,, we have

E[[(X)’] =E /O t X2 d(M).,, (28)

then we can establish a lemma.

Lemma 13. Suppose W, is a d-dim standard Brownian motion, then

(n+Un)h 1 (n+u)h
/ th — / / th du
nh 0 nh

For the third term of (27), we get
[[$4(T = (n+ Un)h, 0555) = Eu, [5(T = (0. + Un)hy 9350,

{E/Ol [/01 $5(T — (n+u)h, 98EN) — s.(T — (n + v)h,y(nﬂ)h)dv]

2

h
<=
3

Lo

1
/0 $:(T — (n+ Up)h, 9FEN) — s.(T — (n + v)h, 9REM) dv

Lo
2

1/2
du}

1 pl 1/2
{E/ / [5(T = (n+ u)h, 9REN) — s.(T — (n+ v)h, 1955"3)]2 du dv}
0 0

N

1 .1 1/2
= { /0 /0 [|$4(T = (n + u)h, 9R5%) — s.(T — (n + v)h,ﬁﬁi“ﬁ)”iz dudv} :
Then by the triangle inequality and Assumption EL we have
|$:4(T = (n+u)h IREMY 5 (T — (n + v)h,ﬂﬁ?ﬁ)“h

» Ym+u
< ||5*(T - (TL + u)h, 1955—'\1/'/,) - V1ong—(n+u)h(195-E&-|\1ﬂL)||L2
+[[8:(T = (n + 0)h, IR = V10g pr—(nroyn(Ingo)[|1, (29)

Zi’g) -V long—(n-&-v)h(ﬂsihg)HLz

<250+ HVIngT—(n-&-u)h(ﬁEE\zAL) -V 10ng—(n+v)h(195~E'r’\£)”L2 .

Combining the three terms of together, we have

+ Hv IngT—(n+u)h<19

1 1 .
[OREY — Eu, [1955“{']”% < 87\/§h2 HﬁSEMHLZ + mh? (T — nh’ﬁzEM)HLZ n T\@hg/g
1,1 e
+h{/0 /O 19108 - (n--0) (IREM) = ¥ 1og pr_ (s (ORE)||7 dudv}

+ 2hege .
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By applying the same technique used in the proofs of Proposition[0]and Proposition [TT] the upper
bounds for ||19$LEM H]L? and Hs*(T — nh, YREM) H]L2 follows readily. Thus, the proposition follows

immediately from the bound on the second last term. We now consider the case for v > v, due to
Assumptions|[T]and 2]

||v 10ng—(n+u)h(195E\1/lL) -V long—("‘H))h('l??RIEM) H]L2
< L(T — (n -+ u)h) 05N — R My (1 4 05N )

Since
REM _ 9REM 1 REM REM (rblh
||19n+u — g HM < i(u —v)h Hﬁn H]L2 + (u—v)h ||S*(T —nh, 9, )H]L2 + / dw,
(n+v)h Lo
1
< = ) ([[Yon — 95|+ o) + )

+ (u—v)h [ssc + L(T — nh) (HYnh — ORIl 4 cg(n)) + (dL(T — nh))l/Q]
+ vV (u—v)h

< (u—w)h B + L(T — nh)} [Yon = 05|,
+ (u—v)h {(; + L(T — nh))Cy(n) + %(14 + (dL(T — nh))1/2]

+ v/ (u—v)dh+ (u—v)heg .
The second inequality follows from (I6), Assumptions|I] B]and Lemma|[I8] Similarly,
1955, < 19RE% = on e, + 19a™" e,

n+v n+v

1
<o [+ 1T = )| Yo — 05
+ vh {(; + L(T — nh))Ca(n) + %Cﬂl + (dL(T — nh))'/?

+ Vudh + vheg.
+[[Yan = ORM|| 4 Ca(n) + Cu.

Therefore, we obtain that

|V 10g pr—(n-+uyn (OREN) — V108 pr—(npoyn (IR50) ||]L2

< h{(u — ) B +L(T - nh)] L(T = (n+u)h) + Ml} [Von — OREM|

+ h%Myv B + L(T — nh)} [Yor = 05|,

+ h2vM, K; + L(T — nh)) Cy(n) + %04 + (dL(T — nh))l/Q]

+ 1*2 M Vvd

+ h{(u — ) [(; + L(T — nh)) Co(n) + 304 + (dL(T — nh))l/ﬂ L(T — (n+u)h)
+ My (1 + Ca(n) + 04)}

+h'PL(T = (n+ u)h)y/(u —v)d

+h(u —v)L(T — (n + u)h)ese + h*Mive,e .
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We claim that we only consider the lowest order of each part, which means the relative higher order
term with the combination of d and h will be ignored. Then take the supremum with respect to v

1/2
2
{/O /O HVlong—(nﬂ)h(ﬂﬁ\ﬁ)—Vlong—(n+u)h(19ﬁi“ﬁ)||L2 dudv}
e 1 2 1/2
<h{/ / {'“_”L(T_("”)h) <2+L(T—"h>> +M1} dudv} ¥ — OFEM |,
1/2
hu%/{/l/ ”+U)VU—UMum]
1/2
+h[/ / (uv)QL(T(n+u)h)2dudv} -
0 0

(30)
Combining the above,

[955 — Eu, R,

th (HYnh o ﬂEEMH]LQ + Cg(n) + C4)

+ 47h [e + L(T — nh) (HYnh —9RM|| c2(n)) + (dL(T

nh))?]
h3/2

+h2{/ / {uv|L — (n+u)h) (;+L(Tnh)) +M1]2dudv}1/2||ynhﬁﬁEMHM
+h2{/ / {uv [( + L(T — nh))C’g(n)+;C’4+(dL(T
2 1/2
+M1(1+02(n)+04)} dudv}
h?’/QWU/ — (n+u)h )Qu—v|dudv]1/2
+ h? UO /0 (u—v)2L(T—(n+u)h)2dudvr/2556

+ 2heg.

nh))l/z} L(T — (n+ u)h)

{ U / [Iu — 0| L(T = (n + u)h) (; b LT - nh)> +M1]2 dudv] 1/2

gt ) [ = 05

+h2{{/ / {u—v K + L(T —nh)> C’g(n)+%C’4+(dL(T nh))1/2] L(T — (n+u)h)
—|—M1(1+Cg(n)+C4)}2dudv}l/2

1 1
+ 8—\/3(02(71) +Cy) + M(L(T —nh)Ca(n) + (dL(T — nh))l/Q)}

1/2
+h3/2{\/3 {/1/1L(T—(n—|—u)h)2|u—v|dudv} / —|—1}
o Jo 2V/3
+ 2hege .

3D
34



Compared to the term Y}, — Ey, [1955'\{'], we can focus on the lower-order terms, ignoring the score

matching error. Therefore, we have

-

<h2{
1
8v/3

- hQ{{ /01 /01 {(u —v) K; + L(T — nh)) Cy(n) + 304 + (dL(T — nh))1/2] L(T — (n+ u)h)

Lo
1/2

¥ = 05y,

/01 /01 {|u— v|L(T — (n + u)h) (; —I—L(T—nh)> _|_M1r dudw
1

+ —L(T — nh) +

43

1/2

+ My (14 Cy(n) + C’4)}2dudv}

1 1 1/9
+ 87\/3(02(71) +Cy) + W (L(T — nh)Cy(n) + (dL(T — nh))Y/ ) }
11 1/2
+h3/2{\/g[/0 /0 L(T—(n+u)h)2|u—v|dudv} +2\1/§}
+ 3hese .

Returning to the proof of Theorem 3] by the conclusion of Proposition[I2] we have

1
[Yn =98, < —— (h max  CP§M+h'/2  max  CEEM 4 3€sc>

0<k<N -1 ’ 0<kESN
< \/E V d/3Lmax + 27\1/5 3
: E€sc” =5 -
~ Mmin — 1/2 Mmin — 1/2

This completes the first part of proof for Theorem 3]

B.4 Proof of Theorem 3t Part II

We begin with the following proposition.
Proposition 14. Suppose that Assumptions|[I| 2| and [ are satisfied, the following two claims hold

(1) It holds that

¥ REI
Lo

< h2{/01 /01 {|u—v|L(T—(n+u)h) <;+L(T—nh)> + M,

1/2
1 2
+ §|u —v|L(T = (n+ v)h)r,EL' (v)} du dv} HYnh — 1955 H]L2

L1-v)h _ 3(1-u)h .
+h2{e - ¢ AR L(T — (n+ u)h) [cg(n) + Cy + 2L(T — nh)Ca(n) + (dL(T — nh))*/?
4 er(-whpyp [1 +2¢dvh (L(T — nh)Cy(n) + (dL(T — nh))1/2) + Coln) + 04]
‘e%(lfu)h o 6%(171))h|

+ I

(L(T — (n 4+ v)h)Ca(n) + (dL(T — (n + v)h))1/2> }

35



- h3/2\/E{ /1 /1 L(T — (n + w)h)?|u — v|du dv}l/z
+ 3hese - o
(2) Furthermore, it holds that
Yo — 9|, < P [V — 05, 4+ HCRE) 4 2R 1 Bhe,
where

n+1)h
TSEI — e LD (n(T—t)— 1) de

+h2{/01/01 [u—v|L(T—(n+u)h)(;+L(T—nh))

1 2 1/2
+ My + §|u —v|L(T = (n+ U)h)rgl(v)} dudv} ,
e%(lfv)h _ 6%(1771)}1, .
CREl = - e L(T — (n+ w)h) [Cg(n) 4 Cy + 2L(T — nh)Cs(n) + (dL(T — nh))w]

tet-whyp [1 + 2evh (L(T — nh)Cy(n) + (dL(T — nh))1/2) + Coln) + 04}

|e%(1—u)h _ e%(l—v)h| (

+

- L(T = (n+ 0)R)Ca(n) + (AL(T = (n+ v)h))"/?) ,
1 1 1/2
Cff,%'zﬁ{A A L(T—(n+u)h)2|u—vdudv} .

Proof of Proposition This proposition can be proven following the same approach as in the proof
of Proposition[T2] with the only difference being the inclusion of the exponential coefficient term.
However, this term does not significantly affect the overall proof.

Similarly, we make a decomposition as

7= o <9 - B, R+ 11w, 9EEL ), (32)

Note that

h
Yy — By, [9354] = /0 O log pr_p (V) dt = KBy, [e3 U (T — nh — Uph, 075 )|

1
- h/o e3(1mwh (V 108 P —ni—un (Yun) — 84(T — nh — uh,ﬂﬁi‘u)) du
1 )
= h/ ez(1-wh (V log pr—nh—un(Yun) — VlOgPT—nh—uh(ﬂEEu)) du
0

1
+ h/o ez(1-w)h (Vlong,nh,uh(ﬁSEu) — $+(T — nh — uh, 1955'“)) du.
Then, we obtain

Hffh — By, [9R54]

1
<h/\
0

1
< h/ e%(k“)hL(T — nh — uh) ‘
0

Lo

e%(l—u)h(v IngTfnhfuh(f/uh) - S*(T —nh— Uh‘7 ﬁSEu))HL du
2

Y, — oFE

n+u

1
du+h/ 6%(17u)h dugsc
]Lg 0

2(euh/2 _ 1)

1
g hg/ 6%(1_")hL(T —nh — uh)u2 (C’5)n(u)Cl7n(u) + M1 uh
0

) du [ = 2,
by 1

T hB/ 65(1—u)hL(T — nh — Uh)uz |:C5n(u) (Clm(u)CQ(n) —+ 504 =+ Cg)n(u)>
0

36



2(e"h —1
+ %Ml(l + Ca(n) 4+ Cy) | du

1
+ 0o / e2TWRL(T — nh — uh)u?/2Cs  (u) du Vd
0

9(euh/2 _ 1 2(eh/?2 — 1
A=) e+ 020 )

——— €, 33
5 5 € (33)

1
+ h? / e2(I=WhL(T — nh — uh)
0
where

1 (n+u)h L
05,n(u):ﬁ/h AR [T _ ) .

In the third inequality, we can directly bound ‘ Yo, — ORE

, as it is a special case of Proposition ,
L2

where the step size is replaced by uh.
For the second term of (32)), we have

IR — By, [In51]

= he%(l—Un,)hS*(T —nh — Unh71955|U> _ hEU" {e%(l—Un,)hS*(T —nh— Unh71955IU>:|

» Yn4v

1
= h/ [6%(17Un)h5*(T —nh — Un,h, ﬂEE-IUn> - e%(lfv)hs*(T — nh — vh ,L9REI )] do.
0

Similar to display (29), we then obtain

1975 = Eo, (9750,

2

1/2
du}

9 1/2
du dv}
L2

5 1/2
du dv}
Lo

1 1
< {E/ [h/ ez 1=l (T — (n + u)h, 9RE! ) — e3(1=hg (T — (n+v)h,1955r'v)dv}
0 0
1 1
<{[ ]
0 0
1 1
<{[ /]
0 0
1 1
+ 2h (/ e(l—wh du) Esc
0

Using the same strategy as in display (30), we arrive at

e%(l—u)hs*(T _ (TL + u)h71955|u) _ e%(l—v)hs*(T _ (TL + v)h '19RE| )

» Yn+4v

11— 11—y
ez(1mwhy IngTf(nvLu)h(ﬁE«Eklu) —e2(I7vhy 1ngT7(n+v)h<197Rzilv)
/2

e%(liu)hv IngT—(n-&-u)h(ﬂg-Ei-lu) - e%(liv)hv long—(n-i-v)h(ﬁE-E&-lv)

Lo
< ez(1-wh ||V10ng_(n+u)h(1955r'u) - Vlong_(n+u)h(195Ev)||L2
1(1—u
+ 62(1 )h ||V long_(n+u)h(’l95Ev) — Vlong—(n—&-v)h(ﬁE—Eo—lv)Hle

+ e%(lfu)h _ e%(lfu)h

HVIngTf(n+v)h(195-E-lv)||]L2
< e WNLT — (n+u)h) |0, — %5 ||,
+er (=R (1 + |[0RE, L)
H00h 3O [T — (04 0)h) ([ Vg — 955 |, + Colm)) + (LT — (n -+ 0))) 2]

ez
The second inequality follows from Assumptions [T| and [2 We bound the term
||V log pT_(n+v)h(195§U) H]L2 by decomposing it as follows

+

HvIngTf(nJrv)h(ﬁ;Rzl—Ei-lv)HL2 < HVIngTf(nJrv)h(ﬂsilv) - VIngTf(n+v)h(}/(n+v)h)H]L2

+ Hv 10ng—(n+v)h(Y—(n+v)h) -V 10ng—(n+v)h(X(<(_n+7j)h))H]L2
+ Hv10ng—(n+v)h(XT—(n+v)h)HLz :
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Without loss of generality, we consider the case where u > v; the other case follows similarly.

197 = ol

_ (pxuh _ _ivh REI Uh 1t
= (e ex"") Hﬁn HLZ + . e dt‘
v

(ntwh | (o
/ (b= gy, / (0= qiy,
nh nh

$«(T —nh, ﬂSE')HM

+

Lo
< (eHo - 1)ehoh (|1, — oFE L+ Calm) + C)

+2(e3 (R _1)esvh [esc + L(T — nh) (HY,Lh —9RE| L+ cg(n)) S+ (dIL(T - nh))l/“']

1/2

+ [(euh 1) 4 (e — 1) — 2(e N - 6“5”’1)} V.
(34)
Here, we apply the formula in (28] to bound the last term.
(n+u) . .
/ L (napny (€2 (070 — ez (OmE0h=ty gy e (R0 4wy,
nh
Lo

(n+u)h

(n+v)h L )
= \/& / (@E((nJru)hft) _ 65((n+v)h7t))2 dt +/

1/2
e(n+u)h7t dt
h (n+v)h

uTv u—v 1/2
_f|:( uh_ )+(eviL_1)_2(e * h_eTh):| ,

We then bound the term Hﬂfﬁ'v H]Lz following display (34) above. To this end, let u = 0, we then have

1955, < (€2 = (Yo = 5], + Caln) + Cu)
F2(evh — 1) [586 + L(T — nh) (Hynh —ORE||+ cz(n)) + (dL(T — nh))l/ﬂ
+ ﬁ(e”h - 1)1/2
+ ([ Yo = 95F|[, + Ca(n) + Cu.

Additionally, we can bound HY(n_H,) h— 1925_'” ||]L2, as it is a special case of the one-step discretization

error under the Exponential Integrator scheme, where the step size is replaced by vh. Specifically, we
have
_ gREl

HY("+U n+v H]Lz
< 715' (1)) HYnh — 195E|HL2 + h2CEI(U) + h3/2u3/2\/a05,n(’0) + th(eTESC 9

where

Loh
rEl(w) = e~ SO @ -t =3)de | 2p2 (CS,n(U)CLn(’U) N le_l)> |
v

CE'(v) = Cs.n(v) (Cl,n(v)cz(n) + %al + Cg,n(v)> + le(l + Ca(n) + Cy).

vh

Then, we obtain

1
< {2(65(1_“)" - e%(l_“)h)e%”}’L(T — (n+u)h) [

e%(liwhv lngTf(n+u)h(195-Ei-lu) - e%(liv)hv1ongf(n+v)h(195-E&-lv) L

5+ LT~ nh)]

RN (2R 1) 4 2(e — 1)L(T — nh) +1]
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4 e3(-—wh _ g5(1-v)h L(T - (n+ v)h)rﬁl(v)} ||Ynh - ﬁEEIHLz

. L(1—w)h _ i(1-v)h
LT — (0 + 0)h) i = Lc8iw)
%(l—u)h _ %(l—v)h
L R2L(T — (n+ 0)h) L€ c L2 /dcs (o)

h

2 l(l—u)heévh —1
+ h*Me2 T<C2(n)+04>

12
+ B2 Myt “Wﬁ( - 1)

e%(lfv)h _ 6E(lfu)h N
+h{ . B L(T — (n + u)h) [C’g(n) + Cy + 2L(T — nh)Cs(n) + (dL(Tfnh))l/Q]
7N 14 268 (L(T = nh)Ca(n) + (AL(T = nk))/2) + Ca(n) + Ci

(1-uw)h _ Lt (1—v)h
* - | 1/2
+ - (LT = (n+ 0)R)Ca(n) + (dL(T = (n + v)) )}
uh __ vh _ - u+uh _ u—vp 1/2
+ h2L(T = (n+ u)h)ez(=wh G 1)+ (e ;L 2(e ez )] Nz
|e3(1-wh _ o3(1=0)h| g(edvh _ 1)
+ h2es L(T — (n + v)h)
h h

1 ezuh _ 6%vh .

+hege - 20207 | LT — (n 4+ w)h)———p—— + Mies*" |

Ignoring the higher-order terms, we take the supremum with respect to v and substitute it back into
the original expression, yielding

[955 = Eu, W0RE ],

Lol § 5 1/2
h{/o /0 ‘ ex(ImWhs (T — (n + u)h, 9RE,) — eV (T — (n+v)h, IREL) L dudv}
1,1 1
0o Jo
1 1/2
+ f\u—v|L(T (n+v)h)ry (v)] dudv} (b 71955'||L2
1/2
h3/2{/ / dL(T n+u)h)2|u—v|dudv} + 2hese .
(35)
This completes the proof.
O

Now, we have

1
_ gREI| < CRE! RE
HYNh UN H]Lz ~ Mupin — 1/2 (hogglgazsf{ 1 +\f0g£n\a§/{ Co, +3€SC)
L
< Vdh—e—m o0
~ V3(Mmin — 1/2) Munin — 1/2

The desired result follows readily.
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C The proof of the upper bound of error of the second-order acceleration
scheme

This section is dedicated to proving the Wasserstein convergence result for second-order acceleration.
To this end, we first establish the following proposition.

Proposition 15. Suppose that Assumptions[I} 3| B] [6 [/ are satisfied, the following results hold.

(1) First, we have an upper bound for Y, — 19,513_1 H as follows,

Hifh - 19231“ < An,le(L(nh)_E)hfﬂ HYnh - ﬂiOH]L + An,ze(L("h)_%)th
Lo 2
+ (hasc - gx/&h?)/?agﬁ) + ;h%g%) e(HT=nh)=3)h

where

Apr= sup )htl /t (/OS [(1+ L(T — nh —w))L(T — nh — u)

nh<t<(n+1
+ (14 L(T = nh))L(T — nh)] du) ds,

Ays=  sup 1{/;(/0 [(14 L(T — nh — ) L(T — nh — u)

nh<t<(n+1)ht?
+(1+ L(T — nh))L(T — nh)] du) ds - Ca(n)

+f/ (/ +L(T—nh—u))L(T—nh—u)1/2

+ (% + L(T = nh) | L(T — nh)"/?] du) ds

+/Ot (/OS;(L(Tnhu)JrL(Tnh))du) ds«C’4}
\[\fLF

(2) Furthermore, it holds that
Yoo = 9520, <72l [|Yan = 95°|,, + B2CRO

{hsgﬁ_ SVan2e® 4 h2 (M)] (T =nh)=$)h

where

nh

o= St -t —4)de | h2A,, e E(T—nh)=5)h

C’rSLO = A, 26(L(T—nh)—%)h )

)

Proof. Recall the expression in display (#4)), which states that
t

t
=90 4 / <2ﬁi° + V1og pr—nn(93°) + Ly (x5 — 03°) + M, (s — nh)> ds +/ dw,
nh
with

1
Ly =Sla+ V2108 pr—nn(93°) € R*4,

d
1 0? 0
M., = = I va | _ SO 1 SO Rd
n 2 z:; 81’?v og pr nh(ﬁn ) atv ogpr— nh(ﬁ ) S
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Plugging the estimates of V log pr_ 4 (93°), L,, and M,, into the previous display yields the follow-
ing process for z7°

¢

1

220 =950 4 / 5197510 + 5, (T — nh,93°) ds
nh

t t
+ / s (T — nh,93°) (230 — 93°) + sM) (T — nh,93°)(s — nh)ds + / dw;.
nh nh

Then, we obtain

230 — 2; = (t — nh)(s.(T — nh, 93°) — Vlog pr_nn(93°))

t t

(xi’o - 1920) ds+ L, / (zfo —xs)ds

+ (8T = nh, 95°) — L) /
nh

nh
1
+ (sM(T = nh, 959) — M,,) - 5t —nh).
Notice that

1 1
~Iy 4+ V2 1og pr_nn(93°)|| < L(T —nh) — 3 (36)

IZalk, =

Lo

Combining this with Assumptions [3]and [5|then provides us with
o)
[ErAE? H]L2

t t
1
< (t—nh)ese + 525) / ||x§0 - ﬂfLOH]LQ ds + ”LHHM /h HIEO - $sH ds + i(t - nh)ngy)

nh n

I 2 1
< (L(T —nh) — 5) /h |23° — @] ds + (t — nh)ese + g\/ﬁ(t —nh)32eD) 4 5(t — nh)2e@D),

2
We omit the constant of term g\/ﬁ(t —nh)3/ 2525) in the last inequality. To handle the resulting

integral inequality, we invoke the following Gronwall-type inequality.

Lemma 16. Ler z(t) > tg satisfy the following inequality:

z(t) < a(t) Jr/t B(s)z(s)ds, t=tg,

where B(s) is non-negative, and tq is the initial time. Then, the solution z(t) satisfies the following
bound:

A1) < Oz(t)—|—/to¢(s),8(s)exp (/:5(7«) dr) ds. t>to.

to

Additionally, if a(t) is non-decreasing function, then
t
z(t) < a(t) exp < B(s) ds) , t>=to.
to
Let
2() = [[a2° = 2|,
2 1
at) = (t — nh)es + gV&(t —nh)3/2e(B) 4 5t - nh)2eM) |
1

Bt) = LT~ nh) — 5.

and set t) = nh. By Lemma[I6] we have

2 1 —nh)—1
Hﬁi?*l — x(n+1)h‘|L2 < <h555 + g\/gh3/2,€g£‘) -+ 2h25g¥)> e(L(T h z)h ) (37)
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The original SDE can be rewritten as follows

nh+t

- - to1 - N
Y, =Y, +/ <§YS + v1ong,nh,s(Ys)) ds +/ aw, .
0 nh

Combining this with the definition of z; in (@4)), we then have

- e - 1
Y;‘/ — Tph+t = / <2Ys + V1ngT7nhfs(Yrs) - 7197510 - vlongfnh(ﬁzo) - Ln(xthrs - 1920) - Mns> ds
0

DO =

t
:/ L, (Y — Tppys)ds + < Ys + Viogpr_nn_ S(Y)—fﬁso Viegpr_ nh(ﬁ )) ds

0

t S
—/(/Ldeu)ds—/( Mdu)
0 0
t - S 1 -

:/ Ln(Ys—xnhH)der/ </ d( w+ Viogpr—nn—u(Ya ))> ds

0 0 0

t

2

t s s
—/ </ Lndifudu) ds—/ </ Mndu) ds.
0 0 0 0

1~ N
We then apply the It6 formula to the term d (2Yu + Vlog anhu(Yu)> . Recall the definitions

of L,, and M,,, and after rearranging the expression, we obtain
t
Vo= unss = [ La(Fa = auns) ds+/ (/ V2108 pr—nnu(Ta) = V2 1og pr_nn (Yo) Ao ) s
0

I II

\;
| —
o\
//~
M\H

d
Z long nh— u( ) a1‘VIngT nh— u(i/ )>

III

In what follows, we derive the upper bounds for each term on the right-hand side of the previous
display.

III

N |

d 92
> 2 long_nh(maNlong_nh(Yo)) du} s

J=1

Upper bound for term I: The upper bound of the term I follows directly from the fact that

IZally, < LT —nh) - 5.
Upper bound for term II: To derive the upper bound for the second term, we expand the term dY,,,
yielding

/ V2 log pr—n—u(Va) — V2 log pr—nn (Vo) A,

Lo

1~ .
H/ (V*1og pr—ni— w(Yo) = V2 log pr_ nh(YO))(iyu+V10ngfnh7u(Yu)> du

Lo

_|_

/ (v 1ngT nh— u( ) v 1ngT nh(YO)) dW
0

L2

du

/ HV lngT nh— u( ) V long nh(Yb)
L2

U

1=~ ~
: ’2Yu + Vv lngTfnhfu (Yu)

) 1/2
du) .
Lo

2

long nh— u( ) VQ long nh(Yb)

0
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The second inequality follows from display (28). We note that by Assumptions[6]and[7] it holds that

HVQIngT nh— u( u) v2long nh(}/()) L
2

Hv210ng wn-u(V) = V2 logpr-an (F)|| |+ |V 108 pr—un(¥a) = V2 ogpr—un(¥0)

o, + 00 950

Lo

< Mah(1

)+LF‘~u_
2 H—42
< Mah+ (Lp + Mah) ||V -

S LrVdu,

Combining this with the previous display provides us with

S 1 ~ ~
S / vadu HQYu'i_VIngTnhu(Yu)
0

/ V2 1og prmnu(¥a) — V2 log pr_nn (o) T
Lo

S
du + ( / L%du du)
]LQ 0
Hence, we obtain

I, = W(/WMWMM> Wme%mﬁw

1/2

L2
/v%ng nhu(Yy) = V21og pr_nn(Yo) dY,||  ds
Lo
t s 1 ~ ~ S 1/2
</0 /o LrVdu - H2Yu+Vlongnhu(Yu) du + (/0 L%dudu) ds
Lo

2
< %LF Vidi? .
(38)
Upper bound for term III:

In Section[d] it is claimed that the partial derivative of V log p; with respect to ¢ can be estimated
without requiring additional assumptions. This is achieved by transforming the ¢-derivative into
z-derivative via the Fokker-Planck equation, as detailed below.

1

a 1. 9%
oPi(@) + 52" V() 5_2 2 : (39)

We need the following auxiliary lemma.

Opi(w) =

Lemma 17. Let p; be the probability density function of X;, then

d 2 "
P agstcf? : 'ptzx) = Tr (V2 logpi(x)) + ||V log pi ()|,
d 2 "
v < - 65;52 )> 'ptzx) =V (Te(VZlogpi())) + V(||V log pe(2)]|)

+ | Te(V log pi()) + [V log pr (x)|°] - Vlog pi ()

We begin by taking the gradient of log p;, and then compute the partial derivative of V log p, with
respect to ¢. This results in

VPt@)) _ %Vpi(@)  Vipi(x) Gip()

9, Vlogpi(x) = 0y ( pe(a) pe(z) pe(z)  pi(x)
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Under certain regularlty conditions, we can interchange the operators 9; and V in the term 9; Vp; (),
and substitute 9;p;(x) by (39), it follows that

Vo d 1.0 1
0V logpu(z) = 22U _ G 1og (). <2+xTV10gpt(r)+zz g;(;:), ) .

()

and

VO, (x 1 d 1 1< 92 (T
pfx() ) N pe() v <2pt(x) * §xTth($) " 2 Z z )>

_dVpi(z) | 1Vp(a)  1Vpy(a)z | 1 Ppi(z)) 1
T3 i n T2 o T2V A\ e ) Pi(@)

— divlo g pe(z) + LVipi(@)x n %V (Z ant(a:)> . ptl

2 p(x)

Therefore, we obtain that

_d+1 1 0%py () 1
iV logpi(w) = == Vlogpi(a) + 53— 5= + 3V (Z 2 ) )

d 1 1 2
— Vlog pi(x) - <2+ —2 ' Vlogpi(z )+§; 022

1 1 (V2pi(z)z T
— V1 S (YR g 1
5 Vlogpi(w) + 3 ( @)V og py(2)V log py(x) x)
d d
1 °pi(x) 11 Ppy(z) 1
- . — V1 . .
* 2V <i_l Ox? pe(x) 2V og () — 0z} pila)

By Lemma|I7] the last two terms above can be calculated. Additionally, it holds that
VZpi(z)  Vpi(2)Vpe(a)
pe(x) pe(x)?

V2 log pi(z) =
Thus, 0;V log p;(x) can be simplified to
0:V log pi(z) = %Vlogpt(x) + %Vz log pi(x)x
5 [V (1T 0gme) + V(I 0gm ()]
+ 5 (T 0gp(@) + |V logpi (2)]) - Vlog py(2)
— S Vlogpi(a) (TH(V logpi() + |V o5 pu(a) )

1 1 1 1
= 5 Vlogpy() + §V2 log pe () + §V(TF(V2 log p¢(z))) + §V(||Vlogpt(w)\|2)~

Notice that
2

d
0 1
> gz Viegpi(z) = S V(T(V log py())
— Oz} 2
Then, it follows that

Vlogpi(x) — 0,V log pi(x)

2
LL']

<
—

N | —
H'Mg
V)

1 1
Viogpu(a) + 3V o)+ 3V(IVlogpu(a)|?) )

I

|
w\»—l/—\
DO =

—= (Vlogpi(z) + V?log py(z)x) + VZlog py(z) - V1og pi(x) .
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Therefore we have

02 -
Za 2V10ng nh— u( ) atvlong nh— u(Yu)

Lo

< 5 Hvlong—nh—u(Y/u) Yu

5 21 -n —u?u
L2+2HV 0g pr—nh—u(Yu)

+ ||V g pronnu(Fa)
Lo

Lo Lo

—u(Ya)

Lo

1 - 1 ~
< 5 |[Viogpromnu(V)| |+ L@ = nh—w) ||V 4+ LT = nh = w) || VIogpr—n-u(¥.)
2 2

L,

The second inequality follows from Assumption The bounds for ‘ffu and

| V108 2 (F)

Lo
can be derived according to the proof of Lemma We then find

Lo

o2 ;
Za 2V1ngT nh— u( ) atleng nh— u(Y>

Lo

1 ) 1 ~
<z Hwong,nh,u(Yu) n fL(T—nh—u)‘ .,
2 Ly, 2

Lo Lo

+ L(T — nh — u) HVlong nh—u(Ya)
1/2}

< (% + L(T — nh — u)) [L(T —nh —u)(||[Yon — 0P|, + Ca(n) + (dL(T —nh —u)
+ %L(T —nh — u)( HYnh — ﬂfLOHLz + Cy(n) + 04) .
Therefore, we obtain

\IIIHL2 / / Za 2Vlong nh— u( w) — 0tV log pr_np— u(ffu) duds

Lo

—_

t ps d g2
o B -
+/0 /0 = ; TI?VIOgPTfnh(YvO) — 8, V1ogpr nn(Yo)|| duds

Lo

[N
<

< /t / [(1+ L(T = nh — w)) (T = nh — ) + (1 + L(T = nh)) (T = nh)] duds - ||[Yan =932,
+/0t /05 [(1+ L(T —nh —u))L(T —nh —u) + (1 + L(T — nh))L(T — nh)] duds - Ca(n)
+ﬁAtAS [(;JFL(Tnhu))L(Tnhu)1/2+(;+L(Tnh))L(Tnh)1/2 duds

—|—/Ot/os;(L(T—nh—u)—|—L(T—nh))duds-C’4.

(40)
For simplicity, we focus on the lowest-order term. Recall equations (36), (38) and (@0), which lead to
the following expression

> N ) 2
Hy; - xnhH‘ 5 <(L(T —nh) — 5) /0 I (An,1 Yo — 03], + An,z) 2,
where
1 t S
A1 = sup / / [(1+ L(T = nh — w))L(T — nh — u) + (1 + L(T — nh))L(T — nh)] duds,
nh<t<(n+1)ht 0
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and

Apo = sup |:02 / / [(1+ L(T —nh —u))L(T —nh —u) + (1 + L(T — nh))L(T — nh)] duds

nh<t<(n+1)h

+ \/E/ / [(f + L(T = nh — u))L(T — nh —u)'/? + (% + L(T = nh)) L(T — nh)'/*]duds

/ / —nh—u)—&-L(T—nh))duds-Cﬁ;}
f dLp.
Using Lemma@wﬂh
’ Yt - anh+t )

) = s Vo~ 0]+ Ar)- 2

B(t) = L(T — nh) -

set tg = nh, we then obtain

Y 1
|7 = ], < (Aua [[Yan = 950l + A2} exp <(L(T — k) - Q)h)

5 ’

= A, 1¢e (L(T nh)— )th HY _ 1950“ +An €(L(T nh)— )th.

Invoking display (37), we arrive at
HYh 19n+1” Hffh - JU(nJrl)hH]L
2

< A, eL(T=nh)=$)hp2 [Von — 05|, + Ay pe LT —nh —)hp2
: 2l ’
+ {h«ssc + %hf‘ﬂ\/&egg) + ;mggy)} o(L(T=nh)=H)h

Furthermore, we can bound the coefficients A,, ; and A,, 5 as follows,

1 t s
') / (/ 2(1 + Lmax)Lmax du) ds = (1 + Lmax)Lmax 3
0 0

+ (19331 = iy,

An,l S t2

An,2 g (1 + Lmax)LmaxCQ( ) + \f( + Lmax)L1/2 + Lmaxc4 + i\[LF

<\f( + Lnax) L2 + \[\/&LF.

Collecting all the pieces then gives
2 1
1Yo = 953 ||, <2 [[Yon = 93°|, + Ca0H° + [hssc + §h3/2€g€) + ihzegi”) (LT —nh)=3)h
where
TrSLO — féz+1)h(m(T—t)—%)dt 1+ A, 16(L(T—nh)—%)hh27

Crslo — An 26(L(T—nh)——)h

From the result above, we finally obtain

1
||YNh *ﬁjsvoHLZ S Momin — 1/2 h

™~ Mmin — 1/2 0<Ikn<ajir(flcgo N (65C - ghl/zsgﬁ) N ;h€g¥)> e(L‘“‘”‘é)h]

L2 (Linax—3)h

< p. YUlLniax + fLF/lj); R (esc + gvhdeéﬁ) + ;hegﬁ“) e(Lmax=5)h
Mmin —

This completes the proof of Theorem 4]
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D Proof of Auxiliary Lemma

D.1 Proof of Lemmal§]

We have
W 2<Hth, d(th;Gt)>
9 <Ht ~Goy L (H, — o) + (Viogpr—(H,) ~ V long—t(Gt>)> @1
= ||H; — Gi||* + 2(H; — G, Vogpr_(Hy) — Vogpr—i(Gy))
< (1—2m(T —t) | H, — Gi|*.
The last inequality follows from Lemma [6 Then, we take the derivative of

o f:l (2m(T—s)—1)ds ||Ht _ Gt||2

d ¢ m —S)— S
G (T i, - )

[t (2m(T—s)—1) ds e Co-nyas d||He — Gi|?
= (m(T — 1)~ ) ST gy o o Crer—-as A G
<0.
Therefore, we obtain that

e‘ftl (Qm(Tis)il) d ||Ht - Gt||2 < ||Htt - th ||2 :

taking the expectation of both sides and then applying the square root yields the desired result.

D.2 Proof of Lemma 10|

By the definition of Y}, we have

t 1~ N nh+t
/ (§Ys + Vlogpr—nn—s(Ys))ds + / dWs
0 n

h
i 1 nh+t
[ [
0 2 nh

To bound the first term, we observe that for any s € [0, h], the following holds

Hfft - Y
Lo

Lo

Y,

t
dt+ [ |iogpromu(T) ds+
Lo 0

L.
2 L

Y/s ffs - Ynh+s

< Wanssly, + |
Lo

Lo

< Wanss = Xl + [ Xially, + | %5 = Yanss

Lo
<em fonh+5(m(T7t)7%)dt ||YO o X(T”M + HXT—(7W+S)HLZ +e” J2(m(T—uw)— %) du ||Ynh _ 19|7ELM||IL2

_ nh 1
< e Jo" m(T-) z)dtHYO_XTHML sup \\Xt||L2+||KL;L—795M||L2-
0<t<T

Here, the second inequality follows from the Gronwall inequality applied on HYnh+5 = X his ||]L2
and ’ Y, — Yphis|| . and the fact that 1 Xellp, = ||X:,f
L2

il
the following lemma.

. To bound the second term, we need

Lemma 18. If the target distribution py satisfies Assumption[I} it holds that

IV log pi (X)lly,, < (dL(t)">.
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According to Lemma(T8§] it follows that

|V 108 1o (F2)

Lo

HVlong nh—s(Ys) = V1og pr_nn—s(Xhis) L2+HVlOgPTfnhfs(XEH)HM

< L(T —nh — s) + (dL(T — nh — s))'/?

nh+9

< L(T —nh — s) HYO— (dL( ~nh — s))/?

< L(T — nh — s) (HYO Yo

\L Yo — X5l ) (dL(T = nh — 5))"/2
2

1

< L(T —nh —s) (||Ynh - 195M||L2 te ot mT-t-g)dt |y Xrlly,) + (dL(T — nh — s))l/Q.

Here, we use the fact that Y = YEM and Gronwall inequality are used in the third inequality and the

last one. This completes the proof.

D.3 Proof of Lemma[I3|

For the stochastic integral of process X, we have

t
=E / X2d(M
0
Then, we obtain

(n+Un)h 1 (nt+u)h 2
nh 0 nh

Lo

2
(n+1)h
=E (/ / 1y, <t Y (ntU)n<t<nrwny + Lo, >uy Y (nrwh<t< (U, )ny AWy du>
0

1 (n+1)h 2
< / E / L, <oy l{(ntv)h<t<(nruwny + Lo, >uy l{(ntwh<t<(nrv,)ny AWe | du
0 nh

1 (n+1)h
= / (E / Lv, <y Vit n<t<(ntwny T Lo, >t lm+wh<t<(n+0,)n} df) du
0 nh

1
_ /0 (E (1, cuy (4 — Un)h+ 10,500 (U — w)h)) du

:h/ol(uQ—u—&—;)du

D.4 Proof of Lemma[I6

Define the function w(s) via

5) = exp (— /t 6(r)dr> /t B(r)=(r)ydr, Vs> to.

Differentiating this function gives

W)= (+66) - t:mr)z(r)dr) e (- t:mr)dr) <ale) e (- t:mr)dr).

48



Note that w(ty) = 0. Integrating the function w from ¢y to ¢ yields

wi) < [ )t (- 50 ar) ds,

to

By the definition of w(s), we also have

/t:ms)z(s) ds = exp < /t:mr) dr) w(t).

Combining the previous two displays provides us with

/t: B(s)z(s)ds < /t: a(s)B(s) exp (/Stﬂ(r) dr) ds.

By substituting this estimate into the inequality, we can obtain the first desired result. Furthermore, if
« is non-decreasing, then for any s < ¢, it holds that «(s) < «(t). This leads to

2(t) < alt) + a(t) / :6(5) exp ( / B0r) dr) ds.

which can be simplified to

t
z(t) < a(t) exp (/ B(r) dr> , t>tg.
to
This completes the proof.

D.5 Proof of Lemma[I7]

Notice that
1 1
V2o ) =— ——Vp(2)Vpe(2)T + ——V?p,(x
g pi(x) ()2 pe(x)Vpe(z) @) pe()
1
— _ 1 1 T T 2
Vlogpi(z)Vlogpi(z) + pt(:lc)v pe(),
which indicates
d
1 *pe(z) 1 1 ( 1 s )
- . =_-Tr Vop(x
2i:1 ox?  p(z) 2 pe(x) pi(x)
1
=3 Tr (V2 log pi(z) + Vlogpi(z)V logpt(x)T>
1 1
=5 Tr (V2 log pi(x)) + 3 1V log pe (),

Additionally, we have
v 02 log py () -V 32107:(93)' L 3pt($)_ 1)
0z? oz p(x) Ozr;  pi(x)
Ppu(a) 1 Pple) 1 dlogpi(x) \*
g . —_ . . 1 J— _ .
V(%5) w9 ()
Then, we obtain

d
0%py () 1
v ( Ox? ) . pe()

i=1

=V (Tr(V?log pe(x))) + [Tr(VQ log pi(@)) + ||V log pe(2)]|*| - Viog pe(z) + V(||V log pi()|1%) .
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D.6 Proof of Lemma

Note that

B Tog (X01%) = [ | IV 108 pu(0)|* pu(o) o

= lim (Vlogpi(x), Vlog pi(z))pe(x) dx
R—o0 B(O,R)
= lim (Vlogpi(x), Vp(z)) da

R—o0 B(O,R)

where B(0, R) denotes the Euclidean ball with radius R > 0 centered at the origin. Using integration
by parts, we then obtain

ds

BV () = tim [ pwatogpadet [ g 18R

E—o0 Jp(0,R) 9B(0,R) on
/dpt(x) - (=Alogpi(x)) dz

R
<dL(?),

9 . — - .
where 8—{ = Vf - ii represents the directional derivative along the normal vector 77 and d.S denotes
i

the surface integral over the spherical surface. Here we use the fact that p;(x) converges to 0 at an
exponential rate as ||x|| approaches infinity, and the fact that

—Alogpi(z) = —Tr(V? log py(x)) € [0,dL(1)],

which follows from Lemmal@

E Details for second-order acceleration

In this section, we present a complete derivation of the second-order acceleration scheme, detailing
the implementation of It6-Taylor expansions and It6’s formula. Building upon the general backward
process framework

dry = ~y(T — t,x¢) dt + o AWy, (42)

where o > 0 and W} is the d-dimensional Brownian motion. We apply Itd’s formula to (T — ¢, x).
This procedure generates an approximated structure of SDE (@2)),

daey = [Y(T = s,25) + Ls(xs — xs) + Ms(t — 8)] dt + o AW 43)
with
0y % 0%y 0y
s az( s,xs) and M 5 8:52( 8,Ts) 5'15( S, Ts)

which serves as the foundation for our subsequent second-order discretization.In Section [ we
demonstrate that this approximation preserves the core dynamical structure of the original SDE
([@2)) while admitting a closed-form solution. This is achieved by replacing the intractable drift term
~(T — t, xs) with its Itd-expanded counterpart, which remains analytical tractable through explicit
integration.

Applying It6’s formula to e~ Lstz; yields
d(e Letay) = e Lot (y(T — s,25) — Lsxs + My(t — 5))dt + e L=to dW, .

For fixed s, both sides of the equation permit closed-form integration. While the Brownian integral
A
SHAL - Lity dW, formally appears non-analytic, it equivalently manifests as a Gaussian random

variable with explicitly computable variance. This enables full analytical representation for xs4 a¢
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when integrating over [s, s + At],

s+At
Ts+At = eLSAtxs + / elalerat=t) dt(y(T — s,2s) — Lsxs)
s

s+At s+ At
+ / eL‘S(S+At_t)(t —s)dt M, + a/ els (sHAL=1) qpy,
=z + L7 (el A — D)y(T — s, 2,) + L2 [(eLsAt —1) — LyAt] M,

s+At
+ 0/ els(stAat=w) g7,
S

Having established the general framework, we now specialize to our core case through the parameter-

1
ization: set y(T' — t,z) = 5% + Viogpr_i(z),0 = 1,1let At € [0, h] and s = nh.

In the resulting expression, we denote x5 by ¥5°. Then for any ¢ € [nh, (n + 1)h], the solution
admits the semi-analytic representation

t
1
5 =030+ [ (G050 + Vlogpr_un(95°) @
nh
t
L =050+ M) dut [ aw,
nh
where

1
Ln - ild + VQ long—nh(ﬂfLo)

1N 92 9
My, =5 2_:1 g ¥ 108pr-nn(032) = 5V logpr i (97°)
Though L,, and M,, are theoretically defined through exact derivatives in SDE [#3)), their practical
evaluation requires approximations due to the score function’s computational intractability. We imple-
ment these approximations via numerical methods or neural networks, with concrete techniques for
L,, and M,, estimation provided separately in Appendix [Fland[G] Substituting these approximations
into the SDE (#4) yields
t

o= 02+ [ (AT 1, 950) 4 ST, 950)a, — 050)
nh

t
+ M) (T — nh,93°) (u — nh)) du + / dw, .
nh
Crucially, this substitution preserves the closed-form integrability of the original framework. Adopting
the same exponential integration strategy as above, we derive a closed form of z;. Let ﬂfﬁ’rl denote

T(n+1)h» the second-order discretization scheme is given by
1
9501 =950 + s(T — b, 950) 71 (e T ) (Qﬁio + 5.(T = nh, ﬂio))
58T, 950) 2 (ORI BN b 950)h — 1) s (T — i, 950)

(n+1)h
+ / esgm (T—nh,93°)[(n+1)h—t] aw, .
nh

Implementation specifics for handling the matrix exponentials and stochastic integral are addressed

in Appendix

F Numerical Studies on Synthetic Data

We apply the five schemes to the posterior density of penalized logistic regression, defined by
po(0) x exp(—f(0)) with the potential function

Ndata

A
7(6)= 1617 + —— > log(1 + exp(~yia 6))

data i—1
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Figure 2: Error of various discretization schemes and second-order sampler with different choice of
step size.

where A > 0 denotes the tuning parameter. The data {x;,y;};***, composed of binary labels
yi € {—1,1} and features v; = (v, 1,--- ,2;4) € R? generated from Tij 1'fl'wd'/\/(O, 100).

F.1 Implementation Details

In the numerical studies, we set 7' = 10, and the number of Monte Carlo iterations is chosen as the
floor of T'/h, where h varies according to the step size indicated in the figure. Figure [2| shows the
Wasserstein distance measured along the first dimension between the empirical distributions of the
N-th outputs from SGMs and the target distribution, with different choices of the step size h. In this
simulation, we use the Monte-Carlo method to estimate the score function and the Hessian matrix.

F.2 Calculation

In this part, we derive explicit formulas for each coefficient term we need. First, the score function
can be computed as

1 Tdata —yx exp(*ysze)
Vo 0)=—| A0+ z
gpo(f) < Ndata < 1+ exp(—y,x; 0)

1 MNdata _ylxz
S Vi .
( Ndata Z 1+ eXp(g,xj@))

i=1

1
—, then
1+e v

1 Mdata
Vlogpo(0) = — ()\0 + Z ymﬂ(@/ﬂj@) :

Ndata o1

For simplicity, we denote the logistic sigmoid function o (u) =

Since o’/ (u) = o(u)[1 — o(u)], we have

Ndata

1 Ndata
V2 logpo(h) = — ()Jd + Z y2o(—yix, 0) [1- U(—yim;re)] a)‘ﬂ?j)
i=1
> o(—yi]0) [1 - o(—yix] )] mz] .

i=1

Asz;z] =0, VZlog po(0) < —AI4. We also have that o(1 — y;2] 0) € (0, 1), then

— M, —

Ndata

Ndata

1
V2logpo(0) = — Mg — zx;
g po(0) d gaes ;
1 MNdata
= At —Amax (Y miw)))a
Ndata o1
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Therefore,

1 Ndata
mo=2X  Lo=XA+ — Amax zir) ).
0 0 Ndata (; )
Recall that the transition probability p;jo(0¢|00) = ¢(04; put, Xt), where 1y = ez, %, = (1 —
e 1)1y, and ¢(60, i, ) denotes the probability density function of Ay, 32), then we have

pe(0;) = /Rd Pt)0(0¢]00)po(00) Ao

1 1 B
= ) W eXP(—§(9t — p1t) "2 (0 — 111))po(6o) dbo
1 1

B /R 2r(1 — e t)]

1 9
21— e 1) 16 — e~ 2"00[1*)po(60) dbo

73 exp(—

1 1 _10 19
= e [P el
Hence,
1 1 —Ltp 12
Vpi(0:) = WEQONPO v eXP(_mHQt — e 20[%)
1 1 —1 —(0: — e~ %%0)
= Ko - — 5t 2y, A\t = 7 70
el M e LR e
1 1 _1
VEpe(0r) = WE%NPO [GXP(Q(l_e_t)Wt — e =0|)

(6= e72400) (6, — e~ 760p) " 1,
(1—e?)? T—et )|

We can approximate p;(6;), Vp:(6;) and V?p;(6;) or even higher order derivative tensor of p;(6;)
by Monte Carlo method, therefore, we can compute score function and its high order derivative by

_ Vp(6y) V2pi(0:)  Vpi(6:)Vp:(6:) "
pt(et) ’ pt(et) pt(et)Q

G Real Data Analysis

Vlog p:(6;) v? log pi(0:) =

G.1 Implementation Details

We set the step size h = 0.2 and N = 2/h. We conducted experiments on an NVIDIA RTX 4060
GPU (16GB VRAM). The training process required 2 GPU hours over 100 epochs with a batch size
of 32, using CUDA 12.4, PyTorch 2.4, and torchvision 0.20.0. Figure [3|shows the digits generated
by five algorithms, using the same score functions. The execution times for the algorithms are as
follows: EM method 2 hour 12 min 49 s, El method 2 hour 12 min 50 s, REM method 2 hour 13 min
30s, RElI method 2 hour 13 min 47 s, SO method 2 hour 14 min 05s.

G.2 Score matching function for second order acceleration

For the MNIST dataset, we have demonstrated in the proof of Proposition[I5]that computing third-
order derivatives is unnecessary. Unlike existing high-order methods for estimating second-order
scores [28]], which require the joint training of score functions and Hessian matrices and consequently
incur substantial computational overhead, our second-order algorithm avoids explicit computation
of the Jacobian matrix. Furthermore, by employing Hessian-vector products (HVPs), we efficiently
capture higher-order information, enabling our second-order acceleration method to achieve improved
performance with reduced iteration complexity and manageable computational cost.

More specifically, in the experiments of the MNIST dataset, we construct a U-Net architecture incor-
porating time and label embeddings to train the score function, where the time embedding operates
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Figure 3: Comparative visualization of generated MNIST digits under various discretization schemes.

on the temporal variable ¢ of the score function, while the label embedding leverages MNIST’s cate-
gorical digit labels. This conditional formulation expresses the score function as V log p(¢, x|label),
enabling per-class score estimation through discriminative embedding propagation.

Recall iteration rule of the SO algorithm, we have

1
9500 = 050+ (T =, 950) 7 (T TOR  ) ('1950 +5.(T —nh 1950))

2 n k) n

+ (T — nh, 950) 2 (esi“(T—"hvﬂ?f’ I s\ — b, 95OV — Id) sM(T — nh, 95°)

) n

(n+1)h
_|_/ esiL)(T—nh,ﬂio)[(n—o—l)h—t] dw, .
nh

Note that

(n+1)h
/ esiﬂ(Tfnh,ﬂio)[(nJrl)hft] AW, ~ N (07 %SiL) (T - nh,ﬁf,lo)*l (625iL)(T7nh,19i9)h _ Id)) '
nh

Let g, (-) := s.(T — nh,-) denote the score matching function at time 7' — nh. Although the
approximation of the Hessian matrix V2 log pr_ 5 (+) will not explicitly appear in the algorithmic
implementation, we formally designate it as H,,(-) for notational clarity. Consequently, the estimators
of L,, and M, are chosen to be

1
s$N(T — nh, 93°) = g la+ Hi(90)

1 1
ST —nh,930) = =S 9a(030) = Ha(932°) (5950 + 9a(93°)).

Employing the Taylor expansion, we have

k(o (L)yk—1
(s{E)~1 (ehsi“ _ ]d) R (s )

k! ’

M

=
I
—

Bk (siL))k_Q
k! ’

M

(SSKL))_2 (ehs(f) _ hska) . Id)

=
[|
v
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1 1/2 0
[z(siL))l <62hsiL) _ Id)] _ \/EZak(hsiL))k7
k=0

15 1 79 _3 71
where (ao, a1, a2, a3,a4,as5,a6---) = (1,3, 515 16> 5765 1556 193536~ )- We thus reformulate

all operators in the discretization scheme using matrix multiplications, which is a crucial step that
avoids the explicit computation and storage of the full Hessian matrix H;. This is achieved by
leveraging Hessian-vector products (HVPs) via automatic differentiation, which reduces memory
complexity to O(d) while retaining second-order curvature information. Specifically, given that
gn corresponds to the neural network’s output and H,, represents its Jacobian matrix, we compute
H,v for any vector v through PyTorch’s reverse-mode differentiation (torch.autograd.grad).
By iteratively applying this HVP procedure k times, we efficiently construct H*v for any k > 0.
Through Taylor series expansion, these HVP-powerd computations enable precise evaluation of each
term in the discretization scheme.
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