
Advancing Wasserstein Convergence Analysis of
Score-Based Models: Insights from Discretization and

Second-Order Acceleration

Yifeng Yu
Tsinghua University

yyf22@mails.tsinghua.edu.cn

Lu Yu ∗
City University of Hong Kong

lu.yu@cityu.edu.hk

Abstract

Score-based diffusion models have emerged as powerful tools in generative model-
ing, yet their theoretical foundations remain underexplored. In this work, we focus
on the Wasserstein convergence analysis of score-based diffusion models. Specifi-
cally, we investigate the impact of various discretization schemes, including Euler
discretization, exponential integrators, and midpoint randomization methods. Our
analysis provides the first quantitative comparison of these discrete approximations,
emphasizing their influence on convergence behavior. Furthermore, we explore
scenarios where Hessian information is available and propose an accelerated sam-
pler based on the local linearization method. We establish the first Wasserstein
convergence analysis for such a Hessian-based method, showing that it achieves
an improved convergence rate of order Õ(

√
d/ε), which significantly outperforms

the standard rate Õ(d/ε2) of vanilla diffusion models. Numerical experiments on
synthetic data and the MNIST dataset validate our theoretical insights.

1 Introduction

Diffusion models have become a pivotal framework in modern generative modeling, achieving notable
success across fields such as image generation [11, 17, 31, 34], natural language processing [30],
and computational biology [1, 42]. These models add noise to data via a forward process and learn
to reverse it, reconstructing data from noise. This approach enables them to capture the underlying
structure of complex, high-dimensional data distributions. For a detailed review of diffusion models,
we refer the readers to [6, 39, 43].

A widely adopted formulation of diffusion models is the score-based generative model (SGM),
implemented using stochastic differential equations (SDEs) [36]. Broadly speaking, SGMs rely on
two key stochastic processes: a forward process that gradually transforms data samples into pure
noise, and a backward process that reverses this transformation, recovering the target data distribution
from noise.

Despite the remarkable empirical success of diffusion models across various applications, their
theoretical understanding remains limited. In recent years, there has been a rapidly expanding body
of research on the convergence theory of diffusion models. Generally, these contributions can be
divided into two main approaches, each focusing on different metrics and divergences. The first
category investigates convergence bounds based on α-divergence, including the Kullback–Leibler
(KL) divergence and the total variation (TV) distance (see e.g., [5, 7, 8, 22, 26, 41]). Among these
works, several explore acceleration techniques that leverage higher-order information about the log
density (see e.g., [19, 24, 27]). The second category focuses on convergence bounds in Wasserstein

∗Corresponding author

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

distance, which is often considered more practical and informative for estimation tasks. One line of
work within this category assumes strong log-concavity of the data distribution and access to accurate
estimates of the score function [3, 13, 37, 38]. Another line of work focuses on specific structural
assumptions of the data distribution [10, 14, 29].

Much of the existing literature on the convergence theory of diffusion models relies on the Euler
discretization method. Notably, [5] compare the behavior of Euler discretization and exponential
integrators [18, 47] in terms of KL divergence. Additionally, [10] provide a comparative analysis of
these two schemes, though without formal theoretical guarantees. A comprehensive and systematic
understanding of how different discretization schemes influence convergence performance in diffusion
models remains underexplored. Furthermore, while convergence analyses of accelerated diffusion
models primarily focus on TV or KL distances, studies investigating Wasserstein convergence for
these accelerations remain lacking2.

In this work, we address these challenges by analyzing the Wasserstein convergence of score-based dif-
fusion models when the data distribution has a smooth and strongly log-concave density. Specifically,
we investigate the impact of different discretization schemes on convergence behavior. Beyond the
widely used Euler method and exponential integrator, we explore the midpoint randomization method.
This method was initially introduced in [32] for discretizing kinetic Langevin diffusion [9] and then
has been extensively studied in log-concave sampling complexity theory [16, 21, 44–46]. It was later
applied to diffusion models [15, 23], showing improved KL and TV convergence performance over
vanilla models and offering easy parallelization.

We also consider scenarios where accurate estimates of the Hessian of the log density are accessible.
Inspired by [33], we propose a novel sampler based on the local linearization method. Our analysis
shows that this approach significantly accelerates convergence in Wasserstein distance.

Our contribution can be summarized as follows.

• We establish convergence guarantees for SGMs in the Wasserstein-2 distance under various
discretization methods, including the Euler method, exponential integrators, the midpoint
randomization method, and a hybrid approach combining the latter two.

• We introduce a novel Hessian-based accelerated sampler for the stochastic diffusion process,
leveraging the local linearization method. We then establish its Wasserstein convergence
analysis in Theorem 4, achieving state-of-the-art order of Õ(

√
d/ε).

• Section 5 compares the performance of SGMs under four discretization schemes and the
proposed Hessian-based method on both synthetic data and the MNIST dataset. The results
align with our theory and highlight the acceleration of the proposed second-order method.

In summary, our analysis provides a quantitative comparison of different discrete approximations,
offering practical guidance for choosing discretization. Moreover, we present the first Wasserstein
convergence analysis of an accelerated sampler that leverages the second-order information about
log-densities. This accelerated sampler achieves a faster convergence rate Õ(

√
d/ε), compared to

the standard rate Õ(d/ε2) of vanilla diffusion models. These results contribute to the understanding
of Wasserstein convergence in score-based models, shedding light on aspects that have not been
extensively explored before.

Notation. Let Rd be the d-dimensional Euclidean space and Id the identity matrix. The gradient and
the Hessian of a function f : Rd → R are denoted by ∇f and ∇2f . Given any pair of measures µ
and ν, the Wasserstein-2 distance between µ and ν is defined as

W2(µ, ν) =

(
inf

ϱ∈Γ(µ,ν)

∫
Rd×Rd

∥x− y∥2 dϱ(x, y)

)1/2

,

where the infimum is taken over all joint distributions ϱ that have µ and ν as marginals. For
two symmetric d × d matrices A and B, we use A ≼ B or B ≽ A to denote the relation that
B − A is positive semi-definite. For any random vector X , let L(X) denote its law, and define
∥X∥L2

:=
√
E[∥X∥2], where ∥ · ∥ denotes the Euclidean norm. For any random matrix A, define

∥A∥L2
:=
√
E[∥A∥22], where ∥ · ∥2 denotes the matrix 2-norm.

2Due to space constraints, we defer the discussion of related theoretical advancements in accelerating
samplers for diffusion models to Appendix A.

2

2 Background and Our Setting

Framework. We consider the forward process

dXt = f(Xt, t) dt+ g(Xt, t) dBt , (1)

where the initial point X0 ∼ p0 follows the data distribution, and Bt denotes the standard
d−dimensional Brownian motion. Here, the drift f : Rd × R+ → Rd and the function
g : Rd × R+ → Rd×d are diffusion parameters. Some conditions are necessary to ensure that
the SDE (1) is well-defined. In practice, various choices for the pair (f, g) are employed, depending
on the specific needs of the model; for a detailed survey, we refer to [39]. For clarity, we adopt the
simplest possible choice in this work by setting f(Xt, t) = −Xt/2 and g(Xt, t) = 1. This results in
the Ornstein-Uhlenbeck process, which is described by the following SDE:

dXt = −1

2
Xt dt+ dBt . (2)

The forward process (2) is run until a sufficiently large time T > 0, at which point the corrupted
marginal distribution of XT , denoted by pT , is expected to approximate the standard Gaussian
distribution. Then, diffusion models generate new data by reversing the SDE (2), which leads to the
following backward SDE

dX←t =
1

2
(X←t + 2∇ log pT−t(X

←
t)) dt+ dWt , (3)

where X←0 ∼ pT , and the term ∇ log pt, referred to as the score function for pt, is represented by
the gradient of the log density function of pt. Additionally, Wt denotes another standard Brownian
motion independent of Bt. Under mild conditions, when initialized at X←0 ∼ pT , the backward
process {X←t }0⩽t⩽T has the same distribution as the forward process {XT−t}0⩽t⩽T [2, 4]. As a
result, running the reverse diffusion X←t from t = 0 to T will generate a sample from the target data
distribution p0. Note that the density pT is unknown; we approximate it using the distribution

p̂T = N (0, (1− e−T)Id)

as proposed in [13]. Therefore, we derive a reverse diffusion process defined by

dYt =
1

2
(Yt + 2∇ log pT−t(Yt)) dt+ dWt, Y0 ∼ p̂T . (4)

Score Matching. Another challenge in working with (3) is that the score function ∇ log pt is
unknown, as the distribution pt is not explicitly available. In practice, rather than using the exact
score function ∇ log pT−t, approximate estimates for it are learned from the data by training neural
networks on a score-matching objective [20, 35, 40]. This objective is given by

minimize
θ∈Θ

E[∥sθ(t,Xt)−∇ log pt(Xt)∥2] ,

where {sθ : θ ∈ Θ} is a sufficiently rich function class, such as that of neural network. Substituting
the learned score estimate s∗ into the backward process (3), we obtain the following practical
continuous-time backward SDE,

dX←t =
1

2

(
X←t + 2s∗(T − t,X←t)

)
dt+ dWt . (5)

Since this continuous backward SDE cannot be simulated exactly, it is typically approximated using
discretization methods.

Discretization Schemes. We outline the four discretization methods considered in this work for
solving the practical reverse SDE (5). Let h > 0 be the step size. Without loss of generality, we
assume T = Nh, where N is a positive integer. For simplicity, we denote 1

2X
←
t + s∗(T − t,X←t)

by γ(T − t,X←t), and define

∆hWt := Wt+h −Wt, ∆̄hWt :=

∫ t+h

t

e
t+h−s

2 dWs .

• EULER-MARUYAMA SCHEME: Given the step size h, the following approximation holds

X←t+h = X←t +

∫ h

0

γ(T − (t+ v), X←t+v) dv +∆hWt ≈ X←t + hγ(T − t,X←t) + ∆hWt .

3

We derive the following discretized process for n = 0, . . . , N − 1:

ϑEM
n+1 = (1 + h/2)ϑEM

n + hs∗(T − nh, ϑEM
n) +

√
hξn ,

where ϑEM
0 ∼ p̂T and ξn ∼ N (0, Id).

• EXPONENTIAL INTEGRATOR: Inspired by the work [18], [47] propose a more refined discretiza-
tion method which solves the backward SDE (3) explicitly, yielding the following approximation

X←t+h = e
h
2 X←t +

∫ h

0

e
h−v
2 s∗(T − t− v,X←t−v) dv + ∆̄hWt

≈ e
h
2 X←t + 2(e

h
2 − 1)s∗(T − t,X←t) + ∆̄hWt .

We derive the following discretized process for n = 0, . . . , N − 1:

ϑEI
n+1 = e

h
2 ϑEI

n + 2(e
h
2 − 1)s∗(T − nh, ϑEI

n) +
√
eh − 1ξn

with the initial point ϑEI
0 ∼ p̂T and ξn ∼ N (0, Id).

• VANILLA MIDPOINT RANDOMIZATION: Unlike the Euler method, the midpoint randomization
method evaluates the function γ(T − t,X←t) at a random point within the time interval [0, h] rather
than at the start. Let U be a random variable uniformly distributed in [0, 1] and independent of the
Brownian motion Wt. The randomized midpoint method exploits the approximation

X←t+h = X←t +

∫ h

0

γ(T − t− v,X←t+v) dv +∆hWt

≈ X←t + hγ(T − t− hU,X←t+hU) + ∆hWt .

(6)

The idea behind the randomized midpoint method is to introduce an U in [0, 1], making hγ(T − t−
hU,X←t+hU) an estimator for integral

∫ h

0
γ(T − t− v,X←t+v) dv.

Furthermore, the intermediate term X←t+hU is generated by employing the Euler method. We then
derive the following discretized process for n = 0, . . . , N − 1:

Step 1 Generate ξ′n, ξ
′′
n ∼ N (0, Id) and Un ∼ Unif [0, 1]. Set ξn =

√
Unξ

′
n +

√
1− Unξ

′′
n.

Step 2 With the initialization ϑREM
0 ∼ p̂T , define

ϑREM
n+U = ϑREM

n + hUnγ(T − nh, ϑREM
n) +

√
hUnξ

′
n ,

ϑREM
n+1 = ϑREM

n + hγ(T − (n+ Un)h, ϑ
REM
n+U) +

√
hξn .

• EXPONENTIAL INTEGRATOR WITH MIDPOINT RANDOMIZATION: Combining midpoint
randomization with the exponential integrator approach, we propose the following new discretization
process for n = 0, . . . , N − 1:

Step 1 Generate ξ′n, ξ
′′
n ∼ N (0, Id) and Un ∼ Unif [0, 1]. Set ξn = ρnξ

′
n +

√
1− ρ2nξ

′′
n with

ρn = e
h(1+Un)

2

(
1− e−hUn

)[
(ehUn − 1)(eh − 1)

]−1/2
.

Step 2 With the initialization ϑREI
0 ∼ p̂T , define

ϑREI
n+U = ehUn/2ϑREI

n + 2(ehUn/2 − 1)s∗(T − nh, ϑREI
n) +

√
ehUn − 1ξ′n ,

ϑREI
n+1 = eh/2ϑREI

n + he(1−Un)h/2s∗(T − (n+ Un)h, ϑ
REI
n+U) +

√
eh − 1ξn .

The resulting discrete process is then solved to generate new samples that approximately follow the
data distribution p0.

3 Wasserstein Convergence Analysis under Various Discretization Schemes

In this section, we study the convergence of diffusion models under EM, EI, REM and REI dis-
cretizations of the continuous backward SDE (3). Specifically, we establish the upper bounds on

4

the Wasserstein-2 distance between the distribution of the N -th output of the SGMs under these
discretization schemes and the target distribution

W2(L(ϑα
N), p0), α ∈ {EM,EI,REM,REI} .

Additionally, we analyze the number of iterations N required for the Wasserstein distance to achieve
a pre-specified error level ε under each discretization scheme. For clarity of presentation, we omit
constants in the main text, retaining only the key components that affect convergence rates. Full
bounds with constants are provided in the proofs.

To establish the convergence analysis, we require the following assumption on target density p0.
Assumption 1. The target density p0 is m0-strongly log-concave, and the score function ∇ log p0 is
L0-Lipschitz.

Under Assumption 1, pt is m(t)-strongly log-concave, ∇ log pt is L(t)-Lipschitz. Moreover, m(t)
is lower bounded by mmin = min(1,m0), and L(t) is upper bounded by Lmax = 1 + L0, as
summarized in Lemma 6 and 7 (see Appendix B). We also assume that the score function ∇ log pt(x)
exhibits linear growth in ∥x∥, as stated below.
Assumption 2. There exists a constant M1 > 0 such that for n = 0, 1, . . . , N − 1, it holds that

sup
nh⩽t,s⩽(n+1)h

∥∇ log pT−t(x)−∇ log pT−s(x)∥ ⩽ M1h(1 + ∥x∥), ∀x .

The above condition is a relaxation of the standard Lipschitz condition on the score function. More-
over, we require the following assumption on the score-matching approximation at each point ϑn.
Assumption 3. Given a small εsc > 0, the score estimator satisfies

sup
0⩽n⩽N

∥∇ log pT−nh(ϑn)− s∗(T − nh, ϑn)∥L2
⩽ εsc .

Assumption 1, 2 and 3 are standard in the Wasserstein convergence analysis of the score-based
diffusion model. These assumptions were previously adopted in [12, 13] and can be easily verified in
the Gaussian case.

3.1 Euler-Maruyama Method and Exponential Integrator

In the following theorem, we quantify the Wasserstein distance between the distribution of ϑα
N , α ∈

{EM,EI} and the target distribution p0.

Theorem 1. Suppose that Assumptions 1, 2 and 3 hold, it holds that

W2(L(ϑα
N), p0) ≲ e−mminT ∥X0∥L2

+ C α
1

√
dh+ C α

2 εsc , α ∈ {EM,EI}, (7)

where C EM
1 =

Lmax + 1/2

mmin − 1/2
and C EM

2 =
1

mmin − 1/2
,

C EI
1 =

Lmax

mmin − 1/2
and C EI

2 =
1

mmin − 1/2

with mmin = min(1,m0) and Lmax = 1 + L0 .

Before comparing the above bound with existing ones, we state a direct consequence.
Corollary 2. Given a small ε > 0 and εsc = O(ε), the Wasserstein distance satisfies
W2(L(ϑα

N), p0) < ε, α ∈ {EM,EI} after N = O
(

d
ε2 log

(√
d
ε

))
iterations, provided that T =

O
(
log(

√
d
ε)
)

and h = O
(

ε2

d

)
.

We now explain the upper bound in Theorem 1, which decomposes the total error into three parts:
initialization, discretization, and score-matching errors. The first term on the right-hand side of
display (7) bounds the error arising from initializing the reverse idealized continuous-time SDE (4)
at p̂T instead of pT The second term in (7) captures the discretization error from the discretization
scheme, while the third term reflects the score matching error.

5

The term −1/2 in mmin − 1/2 arises from the drift term of the forward SDE (2), as demonstrated
in Lemma 8 in the appendix. We refer interested readers to the appendix for further details. More
generally, if the forward SDE takes the form dXt = −βXt dt + dBt, then the bound becomes
m(t) − β, reflecting a dependence on the coefficient β. Although the current theory still assumes
that the data distribution p0 is strongly log-concave, the condition m0 > 1/2 naturally generalizes to
m0 > β for any β > 0.

The convergence rates of EM method obtained in Theorem 1 and Corollary 2 align with Theorem
2 and Proposition 5 in [13]. Moreover, we note that the convergence rate of EM and EI schemes
are comparable, which is consistent with the error bounds for these two schemes in KL divergence
established in Theorem 1 of [5], where N = Ω(T 2) in their setting.

3.2 Randomized Midpoint Method

Since the randomized midpoint method involves the i.i.d. uniformly distributed random variable Un,
the resulting score matching function s∗(T − t, x) can be evaluated at any t ∈ [0, T]. To proceed,
we impose a regularity condition on the deviation of the estimated score from the true score at these
points. For this, we introduce the following auxiliary stochastic processes. Given Un = u, define the
conditional realization of the random vector ϑREM

n+U via

ϑREM
n+u :=

(
1 +

uh

2

)
ϑREM
n + uhs∗(T − nh, ϑREM

n) +
√
uhξn .

Similarly, we define the following conditional realization of ϑREI
n+U

ϑREI
n+u := euh/2ϑREI

n + 2(euh/2 − 1)s∗(T − nh, ϑREI
n) +

√
euh − 1ξ′n .

We impose the following assumption on score estimates, which extends Assumption 3.

Assumption 4. There exists a constant εsc > 0 such that for any u ∈ [0, 1] and n = 0, . . . , N ,∥∥∇ log pT−(n+u)h(ϑ
α
n+u)− s∗(T − (n+ u)h, ϑα

n+u)
∥∥
L2

⩽ εsc, α ∈ {REM,REI}.

In what follows, we provide the upper bound for the Wasserstein-2 distance between the law of
ϑα
N , α ∈ {REM,REI} and the data distribution p0.

Theorem 3. Suppose that Assumptions 1, 2 and 4 hold, then for α ∈ {REM,REI},

W2(L(ϑα
N), p0) ≲ e−mminT ∥X0∥L2

+ C α
1 (d)

√
h+ C α

2 εsc ,

where C REM
1 (d) =

√
d/3Lmax + 1/2

√
3

mmin − 1/2
and C REM

2 =
3

mmin − 1/2
,

C REI
1 (d) =

√
d/3Lmax

(mmin − 1/2)
and C REI

2 =
3

mmin − 1/2

with Lmax and mmin as defined in Theorem 1.

The convergence rate of these two schemes is generally consistent with EM,EI methods, differing only
in the coefficients. As shown in display (6), the key idea behind the randomized midpoint method is to
introduce a uniformly distributed random variable Un to evaluate the term γ(T − t,X←t) at a random
point within the time interval [0, h]. In the proofs provided in Appendix B.3 and B.4 (corresponding
to α = REM and α = REI, respectively), we demonstrate that EUn

[ϑα
n+1] yields an accurate

approximation to the true distribution, with an error of order O(h5/2) + O(h)εsc. However, this
randomization also introduces an variance term ∥ϑα

n+1−EUn
[ϑα

n+1]∥L2
, of order O(h3/2)+O(h)εsc,

which obscures the benefits of the improved estimation. As a result, the midpoint randomization
offers no improvement in convergence over EM and EI methods.

Although midpoint randomization itself does not improve convergence in our setting, it enables paral-
lel computation [15, 23], significantly reducing computational complexity and enhancing efficiency.

6

4 Second-order Acceleration

In this section, we propose an accelerated sampler that leverages Hessian estimation. The core idea
behind the acceleration is the Local Linearization Method, introduced in [33], which approximates
the drift term of an SDE using its Itô expansion over small time intervals. To illustrate this, we begin
with a general framework for the backward process.

dxt = γ(T − t, xt) dt+ σ dWt , (8)

where σ > 0 and Wt is the d-dimensional Brownian motion. We assume that γ(t, x) ∈ C1,3(R+×Rd)
and approximate it by a linear function in both state and time within each discretization step. Applying
Itô’s formula to γ(T − t, x), we derive the following approximation for γ(T − t, xt)− γ(T − s, xs)(

σ2

2

∂2γ

∂x2
(T − s, xs)−

∂γ

∂t
(T − s, xs)

)
(t− s) +

∂γ

∂x
(T − s, xs) · (xt − xs) .

Here and henceforth, we abbreviate the partial derivative ∂αg(z)
∂zα

∣∣
z=z0

as ∂αg
∂zα (z0). This allows us to

express γ(T − t, xt) in the following form
γ(T − t, xt) ≈ γ(T − s, xs) + Ls(xt − xs) +Ms(t− s) , (9)

with

Ls =
∂γ

∂x
(T − s, xs) and Ms =

σ2

2

∂2γ

∂x2
(T − s, xs)−

∂γ

∂t
(T − s, xs) .

Here, Ls is the first-order spatial derivative of γ, capturing its local variation with respect to position
x. The term Ms represents the temporal evolution of γ, incorporating information about how its
shape changes over both space and time. Substituting display (9) into the original SDE (8), we obtain

dxt = [γ(T − s, xs) + Ls(xt − xs) +Ms(t− s)] dt+ σ dWt .

This formulation ensures that the discretized process preserves the essential structure of the original
dynamics while remaining computationally tractable. Unlike discretization schemes in Section 2,
which rely on direct numerical integration, this transformed SDE allows for analytical solutions
within each small time interval.

Setting γ(T − t, x) = x/2 +∇ log pT−t(x), σ = 1, let ∆t ∈ [0, h] and s = nh. By Itô’s formula,
we derive the analytical expression for xt. In the resulting expression, we denote xs by ϑSO

n . Then,
we obtain that for any t ∈ [nh, (n+ 1)h], it holds that

xt = ϑSO
n +

∫ t

nh

(1
2
ϑSO
n +∇ log pT−nh(ϑ

SO
n) + Ln(xu − ϑSO

n) +Mn(u− nh)
)
du+

∫ t

nh

dWu

(10)
where

Ln =
1

2
Id +∇2 log pT−nh(ϑ

SO
n), Mn =

1

2

d∑
j=1

∂2

∂x2
j

∇ log pT−nh(ϑ
SO
n)− ∂

∂t
∇ log pT−nh(ϑ

SO
n) .

Thus, Ln contains the Hessian of the score function. The term Mn measures the difference between
the spatial and temporal changes in the score function, reflecting the balance between curvature
effects and temporal adaptation in the diffusion process. Notice that x(n+1)h is the point we aim
to approximate. For this, we need to estimate the score function and its higher-order derivatives to
obtain accurate estimates of Ln and Mn, denoted by s

(L)
∗ and s

(M)
∗ , respectively.

By the work of [28], higher-order derivatives of log pt(x) with respect to x can be accurately
estimated. Moreover, we show in Appendix C that ∂t∇ log pt(x) can be expressed as a combination
of up to second-order partial derivatives of log pt(x) with respect to x. Thus, estimating ∂t∇ log pt(x)
requires no additional assumptions beyond those for accurately estimating ∂2

x∇ log pt(x). We also
require the following assumption.

Assumption 5. For some constants ε(L)
sc , ε

(M)
sc > 0, the estimate for high-order derivatives of the

score function satisfies that

sup
0⩽n⩽N−1

∥∥∥s(L)
∗ (T − nh, ϑSO

n)− Ln

∥∥∥
L2

⩽ ε(L)
sc ,

sup
0⩽n⩽N−1

∥∥∥s(M)
∗ (T − nh, ϑSO

n)−Mn

∥∥∥
L2

⩽ ε(M)
sc .

7

This assumption has been adopted in prior works [24] and [27]. Substituting these estimates into
display (10) then gives

xt = ϑSO
n +

∫ t

nh

[
γ(T − nh, ϑSO

n) + s
(L)
∗ (T − nh, ϑSO

n)(xu − ϑSO
n)

+ s
(M)
∗ (T − nh, ϑSO

n)(u− nh)
]
du+

∫ t

nh

dWu .

Let ϑSO
n+1 denote x(n+1)h. The second-order discretization scheme is given by3

ϑSO
n+1 = ϑSO

n + s
(L)
∗ (T − nh, ϑSO

n)−1
(
es

(L)
∗ (T−nh,ϑSO

n)h − Id

)(1

2
ϑSO
n + s∗(T − nh, ϑSO

n)

)
+ s

(L)
∗ (T − nh, ϑSO

n)−2
(
es

(L)
∗ (T−nh,ϑSO

n)h − s
(L)
∗ (T − nh, ϑSO

n)h− Id

)
s
(M)
∗ (T − nh, ϑSO

n)

+

∫ (n+1)h

nh

es
(L)
∗ (T−nh,ϑSO

n)[(n+1)h−t] dWt .

We assume additional smoothness on the score function.
Assumption 6. Let ∥ · ∥F denote the Frobenius norm. There exists a positive constant LF such that∥∥∇2 log pt(x)−∇2 log pt(y)

∥∥
F
⩽ LF ∥x− y∥ , ∀x, y ∈ Rd .

As shown in Theorems 4 and 5 of [27], this condition plays a crucial role in bounding the Wasserstein
distance for Hessian estimates and can be easily verified in the Gaussian case.
Assumption 7. There exists a constant M2 > 0 such that, for any n = 0, . . . , N − 1 and t ∈
[nh, (n+ 1)h], it holds that∥∥∇2 log pT−t(x)−∇2 log pT−nh(x)

∥∥ ⩽ M2h(1 + ∥x∥), ∀x ∈ Rd .

We now quantify the W2 distance between the generated distribution L(ϑSO
N) and the target p0.

Theorem 4. Suppose that Assumptions 1, 3, 5, 6 and 7 hold, then

W2(L(ϑSO
N), p0) ≲ e−mminT ∥X0∥L2

+ C SO
1 (d)h+ C SO

2

(
εsc +

2

3

√
hdε(L)

sc +
1

2
hε(M)

sc

)
(11)

where C SO
1 (d) = e(Lmax−1/2)h ·

√
d(L

3/2
max +

√
2LF /4)

mmin − 1/2
and C SO

2 =
e(Lmax−1/2)h

mmin − 1/2
with Lmax and

mmin as defined in Theorem 1.

Before discussing the results of this theorem, let us state its direct consequence.
Corollary 5. For a given ε > 0, the Wasserstein distance satisfies W2(L(ϑSO

N), p0) < ε after

N = O
(√

d
ε log

(√
d
ε

))
iterations, provided that T = O

(
log(

√
d
ε)
)

and h = O(ε√
d
).

In the above, we present the first Wasserstein convergence analysis of an accelerated sampler that
utilizes accurate score function estimation and second-order information about log-densities. The
total error arises from the same resources as in Theorem 1. The first term on the right-hand side of
display (11) captures the initialization error. The second term reflects the benefit of second-order
acceleration, where improved discretization reduces the error in approximating the reverse SDE. The
third term accounts for errors in estimating both the spatial and temporal components of the score
function, as well as the higher order terms Ln and Mn.

The accelerated convergence of this method is driven by two key innovations: approximating the
drift term through its Itô expansion rather than endpoint evaluations, and deriving a closed-form
solution to the integral equation (10) using the Itô formula, akin to Exponential Integrator techniques.
Compared to the four schemes described in Section 3, the proposed second-order algorithm offers
a clear computational advantage: it requires only Õ(1/ε) iterations (v.s. Õ(1/ε2)), and permits a

3Due to space limitations, we refer readers to Appendix E for a complete derivation.

8

(a) (b)

Figure 1: (a): Errors of SGMs under EM,EI,REM,REI and SO with different choices of h. (b):
Samples generated by five different algorithms on the MNIST dataset.

larger step size h = O(ε), enabling faster progression in each iteration instead of h = O(ε2). As a
result, the second-order method achieves the same accuracy with fewer iterations and a larger step
size, making it a more efficient method for approximating the target distribution.

We note that the convergence rate Õ(1/ε) matches that of the accelerated Denoising Diffusion Proba-
bilistic Models (DDPM) sampler [17] proposed in [27], which achieves this rate in KL divergence
and relies on Hessian estimation. Additionally, this rate aligns with the iteration complexity results in
TV distance presented in [19] when setting p = 1 in their framework.

5 Numerical Studies

In this section, we compare the performance of the SGMs under EM,EI,REM,REI discretization
schemes described in Section 2, as well as the second-order acceleration method (SO) proposed in
Section 4, evaluated on both synthetic data and the MNIST dataset.

5.1 Experiments on Synthetic Data

We apply the five algorithms to the posterior of penalized logistic regression, defined by p0(θ) ∝
exp(−f(θ)), with the potential function f defined via

f(θ) =
λ

2
∥θ∥2 + 1

ndata

ndata∑
i=1

log
(
1 + exp(−yix

⊤
i θ)
)
,

where λ > 0 denotes the tuning parameter. The data {xi, yi}ndata
i=1 , composed of binary labels

yi ∈ {−1, 1} and features xi = (xi,1, · · · , xi,d)
⊤ ∈ Rd generated from xi,j

i.i.d.∼ N (0, 100). Set
λ = 100 with d = 20 and ndata = 100. Appendix F provides additional results and implementation
details. Figure 1a presents the W2 distance measured along the first dimension between the empirical
distributions of the samples from the five algorithms and the target distribution under different choices
of h. These results support our theoretical findings: all discretization schemes from Section 2 exhibit
similar convergence behavior, while the proposed Hessian-based sampler consistently achieves
superior performance.

5.2 Real Data Analysis

We apply the four SGM discretization schemes and the second-order algorithm to the MNIST
dataset. To accelerate the SO algorithm, we use Hessian-vector products (HVPs) instead of explicitly
computing the Hessian. The results in Figure 1b demonstrate that SO outperforms the others.
Additional results and implementation details are provided in Appendix G.

9

6 Discussion

The Wasserstein-2 distance, used in this paper, serves as a natural and practical metric for measuring
errors in diffusion models. However, recent work on the convergence theory of diffusion models has
also explored alternative metrics such as total variation distance and KL divergence. A promising
direction for future research is to establish convergence guarantees with respect to these alternative
distances.

Moreover, while this work makes progress in provably accelerating SDE-based diffusion sampling in
Wasserstein distance, it would also be valuable to explore deterministic samplers based on probability
flow ODEs.

Finally, for clarity and simplicity, we focus on a specific choice of drift functions f and g in the
forward process, corresponding to the Ornstein–Uhlenbeck process. Extending this analysis to a
more general framework with broader choices of (f, g) is an interesting avenue for future research.

Acknowledgments and Disclosure of Funding

Lu Yu is supported by the City University of Hong Kong Startup Fund and Hong Kong RGC Grant
21306325.

References
[1] Namrata Anand and Tudor Achim. Protein structure and sequence generation with equivariant

denoising diffusion probabilistic models. arXiv preprint arXiv:2205.15019, 2022.

[2] Brian DO Anderson. Reverse-time diffusion equation models. Stochastic Processes and their
Applications, 12(3):313–326, 1982.

[3] Stefano Bruno, Ying Zhang, Dong-Young Lim, Ömer Deniz Akyildiz, and Sotirios Sabanis.
On diffusion-based generative models and their error bounds: The log-concave case with full
convergence estimates. arXiv preprint arXiv:2311.13584, 2023.

[4] Patrick Cattiaux, Giovanni Conforti, Ivan Gentil, and Christian Léonard. Time reversal of
diffusion processes under a finite entropy condition. In Annales de l’Institut Henri Poincaré (B)
Probabilités et Statistiques, volume 59, pages 1844–1881. Institut Henri Poincaré, 2023.

[5] Hongrui Chen, Holden Lee, and Jianfeng Lu. Improved analysis of score-based generative
modeling: User-friendly bounds under minimal smoothness assumptions. In International
Conference on Machine Learning, pages 4735–4763. PMLR, 2023.

[6] Minshuo Chen, Song Mei, Jianqing Fan, and Mengdi Wang. An overview of diffusion
models: Applications, guided generation, statistical rates and optimization. arXiv preprint
arXiv:2404.07771, 2024.

[7] Sitan Chen, Sinho Chewi, Jerry Li, Yuanzhi Li, Adil Salim, and Anru R Zhang. Sampling is as
easy as learning the score: theory for diffusion models with minimal data assumptions. arXiv
preprint arXiv:2209.11215, 2022.

[8] Sitan Chen, Sinho Chewi, Holden Lee, Yuanzhi Li, Jianfeng Lu, and Adil Salim. The probability
flow ode is provably fast. Advances in Neural Information Processing Systems, 36, 2024.

[9] Xiang Cheng, Niladri S Chatterji, Peter L Bartlett, and Michael I Jordan. Underdamped langevin
mcmc: A non-asymptotic analysis. In Conference on learning theory, pages 300–323. PMLR,
2018.

[10] Valentin De Bortoli. Convergence of denoising diffusion models under the manifold hypothesis.
arXiv preprint arXiv:2208.05314, 2022.

[11] Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis.
Advances in neural information processing systems, 34:8780–8794, 2021.

10

[12] Xuefeng Gao and Lingjiong Zhu. Convergence analysis for general probability flow odes of
diffusion models in wasserstein distances. arXiv preprint arXiv:2401.17958, 2024.

[13] Xuefeng Gao, Hoang M Nguyen, and Lingjiong Zhu. Wasserstein convergence guarantees for a
general class of score-based generative models. arXiv preprint arXiv:2311.11003, 2023.

[14] Marta Gentiloni-Silveri and Antonio Ocello. Beyond log-concavity and score regularity:
Improved convergence bounds for score-based generative models in w2-distance. arXiv preprint
arXiv:2501.02298, 2025.

[15] Shivam Gupta, Linda Cai, and Sitan Chen. Faster diffusion-based sampling with randomized
midpoints: Sequential and parallel. arXiv preprint arXiv:2406.00924, 2024.

[16] Ye He, Krishnakumar Balasubramanian, and Murat A Erdogdu. On the ergodicity, bias and
asymptotic normality of randomized midpoint sampling method. Advances in Neural Informa-
tion Processing Systems, 33:7366–7376, 2020.

[17] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances
in neural information processing systems, 33:6840–6851, 2020.

[18] Marlis Hochbruck and Alexander Ostermann. Exponential integrators. Acta Numerica, 19:
209–286, 2010.

[19] Daniel Zhengyu Huang, Jiaoyang Huang, and Zhengjiang Lin. Convergence analysis of
probability flow ode for score-based generative models. arXiv preprint arXiv:2404.09730, 2024.

[20] Aapo Hyvärinen and Peter Dayan. Estimation of non-normalized statistical models by score
matching. Journal of Machine Learning Research, 6(4), 2005.

[21] Saravanan Kandasamy and Dheeraj Nagaraj. The poisson midpoint method for langevin dynam-
ics: Provably efficient discretization for diffusion models. arXiv preprint arXiv:2405.17068,
2024.

[22] Gen Li and Changxiao Cai. Provable acceleration for diffusion models under minimal assump-
tions. arXiv preprint arXiv:2410.23285, 2024.

[23] Gen Li and Yuchen Jiao. Improved convergence rate for diffusion probabilistic models. arXiv
preprint arXiv:2410.13738, 2024.

[24] Gen Li, Yu Huang, Timofey Efimov, Yuting Wei, Yuejie Chi, and Yuxin Chen. Accelerating
convergence of score-based diffusion models, provably. arXiv preprint arXiv:2403.03852, 2024.

[25] Gen Li, Yuting Wei, Yuejie Chi, and Yuxin Chen. A sharp convergence theory for the probability
flow odes of diffusion models. arXiv preprint arXiv:2408.02320, 2024.

[26] Jiadong Liang, Zhihan Huang, and Yuxin Chen. Low-dimensional adaptation of diffusion
models: Convergence in total variation. arXiv preprint arXiv:2501.12982, 2025.

[27] Y Liang, P Ju, Y Liang, and N Shroff. Broadening target distributions for accelerated diffusion
models via a novel analysis approach. arXiv preprint arXiv:2402.13901, 2024.

[28] Chenlin Meng, Yang Song, Wenzhe Li, and Stefano Ermon. Estimating high order gradients of
the data distribution by denoising. Advances in Neural Information Processing Systems, 34:
25359–25369, 2021.

[29] Nikiforos Mimikos-Stamatopoulos, Benjamin J Zhang, and Markos A Katsoulakis. Score-based
generative models are provably robust: an uncertainty quantification perspective. arXiv preprint
arXiv:2405.15754, 2024.

[30] Vadim Popov, Ivan Vovk, Vladimir Gogoryan, Tasnima Sadekova, and Mikhail Kudinov. Grad-
tts: A diffusion probabilistic model for text-to-speech. In International Conference on Machine
Learning, pages 8599–8608. PMLR, 2021.

11

[31] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical
text-conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 1(2):3,
2022.

[32] Ruoqi Shen and Yin Tat Lee. The randomized midpoint method for log-concave sampling.
Advances in Neural Information Processing Systems, 32, 2019.

[33] Isao Shoji. Approximation of continuous time stochastic processes by a local linearization
method. Math. Comput., 67:287–298, 1998. URL https://api.semanticscholar.org/
CorpusID:13430357.

[34] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020.

[35] Yang Song, Sahaj Garg, Jiaxin Shi, and Stefano Ermon. Sliced score matching: A scalable
approach to density and score estimation. In Uncertainty in Artificial Intelligence, pages
574–584. PMLR, 2020.

[36] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and
Ben Poole. Score-based generative modeling through stochastic differential equations. arXiv
preprint arXiv:2011.13456, 2020.

[37] Stanislas Strasman, Antonio Ocello, Claire Boyer, Sylvain Le Corff, and Vincent Lemaire.
An analysis of the noise schedule for score-based generative models. arXiv preprint
arXiv:2402.04650, 2024.

[38] Wenpin Tang and Hanyang Zhao. Contractive diffusion probabilistic models. arXiv preprint
arXiv:2401.13115, 2024.

[39] Wenpin Tang and Hanyang Zhao. Score-based diffusion models via stochastic differential
equations–a technical tutorial. arXiv preprint arXiv:2402.07487, 2024.

[40] Pascal Vincent. A connection between score matching and denoising autoencoders. Neural
computation, 23(7):1661–1674, 2011.

[41] Yuchen Wu, Yuxin Chen, and Yuting Wei. Stochastic runge-kutta methods: Provable accelera-
tion of diffusion models. arXiv preprint arXiv:2410.04760, 2024.

[42] Minkai Xu, Lantao Yu, Yang Song, Chence Shi, Stefano Ermon, and Jian Tang. Geodiff: A geo-
metric diffusion model for molecular conformation generation. arXiv preprint arXiv:2203.02923,
2022.

[43] Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu, Yue Zhao, Wentao Zhang,
Bin Cui, and Ming-Hsuan Yang. Diffusion models: A comprehensive survey of methods and
applications. ACM Computing Surveys, 56(4):1–39, 2023.

[44] Lu Yu and Arnak Dalalyan. Parallelized midpoint randomization for langevin monte carlo.
arXiv preprint arXiv:2402.14434, 2024.

[45] Lu Yu, Avetik Karagulyan, and Arnak Dalalyan. Langevin monte carlo for strongly log-concave
distributions: Randomized midpoint revisited. arXiv preprint arXiv:2306.08494, 2023.

[46] Yifeng Yu and Lu Yu. Randomized midpoint method for log-concave sampling under constraints.
arXiv preprint arXiv:2405.15379, 2024.

[47] Qinsheng Zhang and Yongxin Chen. Fast sampling of diffusion models with exponential
integrator. arXiv preprint arXiv:2204.13902, 2022.

12

https://api.semanticscholar.org/CorpusID:13430357
https://api.semanticscholar.org/CorpusID:13430357

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims in the abstract and introduction are substantiated by the
detailed theoretical analyses are presented in the paper. These sections clearly outline our
contributions and scope, which are consistently reflected throughout the findings.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: In the last section, some strong assumptions made in this work are highlighted,
along with potential directions for relaxing these assumptions and generalizing the current
findings.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

13

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: For all the theoretical results, we provide the full set of assumptions and
complete proofs for them.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All information necessary to reproduce the main experimental results is
provided in the main text and appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

14

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The datasets used in this work are either synthetic or publicly available, and
the code for reproducing the results is provided in the supplementary materials.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Experimental settings and details are provided.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Statistical significance of the experiments is not applicable in this context.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

15

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Sufficient information about the computational resources used is provided in
appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This work fully complies with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This is a theoretical work without addressing or having any societal impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

16

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This work poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: This work does not use existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

17

paperswithcode.com/datasets

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This work does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This work does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

18

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: This work does not involve LLMs as any important, original, or non-standard
components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

19

https://neurips.cc/Conferences/2025/LLM

A Discussion of Theoretical Advances in Accelerating Samplers for Diffusion
Models

Score-based diffusion models can be formulated using either SDEs or their deterministic counterparts,
known as probability flow ODEs [36]. While SDE-based samplers generate samples through stochas-
tic simulation, ODE-based samplers provide a deterministic alternative. Theoretical advancements in
accelerating these samplers have emerged only recently. A significant step toward designing provably
accelerated, training-free methods was made by [24], who propose and analyze acceleration for both
ODE- and SDE-based samplers. Their accelerated SDE sampler leverages higher-order expansions
of the conditional density to enhance efficiency. This was followed by the work of [25], which
provided convergence guarantees for probability flow ODEs. Furthermore, [19] studies the conver-
gence properties of deterministic samplers based on probability flow ODEs, using the Runge-Kutta
integrator; [41] propose and analyze a training-free acceleration algorithm for SDE-based samplers,
based on the stochastic Runge-Kutta method. [27] proposes a novel accelerated SDE-based sampler
when Hessian information is available. Another line of work involves the midpoint randomized
method. In particular, [15] explore ODE acceleration by incorporating a randomized midpoint
method, leveraging its advantages in parallel computation. A more recent work by [23] improved
upon the ODE sampler proposed by [15], achieving the state-of-the-art convergence rate.

We note that all of these works provide convergence analysis in terms of either KL divergence or TV
distance. Among these, [27] accelerates the stochastic DDPM sampler by leveraging precise score
and Hessian estimations of the log density, even for possibly non-smooth target distributions. This
is achieved through a novel Bayesian approach based on tilting factor representation and Tweedie’s
formula. [19] accelerates the ODE sampler by utilizing p-th (p ⩾ 1) order information of the score
function, with the target distribution supported on a compact set and employing early stopping.
These two works are the most similar to our proposed accelerated sampler in that they all rely
on the Hessian information of the log density. However, their settings differ from ours, and their
convergence analyses are neither directly applicable to our framework nor precisely expressed in
terms of Wasserstein distance.4.

B Proof of Section 3

We define several stochastic processes associated with the backward process X←t and the sample
path ϑn. First, recall that X←t is described by the following SDE:

dX←t =

(
1

2
X←t +∇ log pt(X

←
t)

)
dt+ dWt , X←0 ∼ pT ,

and {ϑα
n, 0 ⩽ n ⩽ N} satisfies the iterative law:

ϑα
n+1 = Gα

h (ϑ
α
n, {Wt}nh⩽t⩽(n+1)h) ,

where α ∈ {EM,EI,REM,REI,SO}.

Based on X←t , we define the following two processes, {Yt, 0 ⩽ t ⩽ T} and {Ỹt, 0 ⩽ t ⩽ h}. Yt

satisfies the SDE

dYt =

(
1

2
Yt +∇ log pT−t(Yt)

)
dt+ dWt , Y0 ∼ p̂T .

Ỹt actually relies on X←t on the time interval [nh, (n+ 1)h] for each n. However, we only need this
notation in the proof of one-step discretization error, then we allow for some slight abuse of notation
by omitting n, since it will not lead to any confusion. Therefore, {Ỹt, 0 ⩽ t ⩽ h} satisfies

dỸt =

(
1

2
Ỹt +∇ log pT−t(Ỹt)

)
dt+ dWt , Ỹ0 = ϑn . (12)

4When the target distribution is compactly supported, Pinsker’s inequality allows translating TV or KL
divergence into Wasserstein distance. However, this often yields loose bounds, especially in high dimensions,
where the actual Wasserstein distance may be much smaller.

20

Recall that we have defined two processes ϑREM
n+u and ϑREI

n+u in Section 3.2, that is, for any u ∈ [0, 1]
and n = 0, · · · , N − 1,

ϑREM
n+u := (1 +

uh

2
)ϑREM

n + uhs∗(T − nh, ϑREM
n) +

√
uhξn ,

ϑREI
n+u := euh/2ϑREI

n + 2(euh/2 − 1)s∗(T − nh, ϑREI
n) +

√
euh − 1ξ′n .

This section is devoted to proving the convergence rate of the diffusion model under various dis-
cretization schemes. To this end, we need the following auxiliary lemmas.

Lemma 6 (Lemma 9 in [13]). Suppose that Assumption 1 holds. Then, ∇ log pt(x) is L(t)-Lipschitz,
where L(t) is given by

L(t) = min{(1− e−t)−1, etL0} =

{
etL0 if t ⩽ log(1 + 1

L0
)

(1− e−t)−1 if t > log(1 + 1
L0

)
.

Therefore,

L(t) ⩽ L0 + 1 .

Lemma 7 (Proof of Proposition 7 in [13]). Suppose that Assumption 1 holds. Then, ∇ log pt(x) is
m(t)-strongly log-concave, where m(t) is given by

m(t) =
1

e−t/m0 + (1− e−t)
.

Therefore,

m(t) ⩾ min{1,m0} .

Combining these two lemmas, we conclude that the Hessian matrix of log pt satisfies the following
condition

−L(t)Id ≼ ∇2 log pt(·) ≼ −m(t)Id .

We will frequently use Grönwall’s inequality in the proof. Below, we present a specialized form
tailored to the relevant processes.

Lemma 8. Suppose the Assumption 1 holds, consider two stochastic processes Ht and Gt defined on
the time interval [t1, t2], if they satisfy the same SDE, especially motivated by the same Brownian
motion, which means that

dHt =
(1
2
Ht +∇ log pT−t(Ht)

)
dt+ dWt ,

dGt =
(1
2
Gt +∇ log pT−t(Gt)

)
dt+ dWt .

then for each t ∈ [t1, t2],

∥Ht −Gt∥L2
⩽ e
−

∫ t
t1

(m(T−s)− 1
2) ds ∥Ht1 −Gt1∥L2

.

Applying Lemma 8 to different processes and time intervals, we derive the following inequalities
essential for our proof.∥∥∥Ynh+t − Ỹt

∥∥∥
L2

⩽ e−
∫ nh+t
nh

(m(T−s)− 1
2) ds

∥∥∥Ynh − Ỹ0

∥∥∥
L2

, ∀t ∈ [0, h] . (13)

∥Yt −X←t ∥L2
⩽ e−

∫ t
0
(m(T−s)− 1

2) ds ∥Y0 −X←0 ∥L2
, ∀t ∈ [0, T] . (14)

which follow from the fact that {Yt, 0 ⩽ t ⩽ T}, {Ỹt, 0 ⩽ t ⩽ h}, {X←t , 0 ⩽ t ⩽ T} all satisfy the
same SDE as in Lemma 8, by applying a time-shifting operator to Ỹt.

21

B.1 Proof of Theorem 1: Part I

In this part, we provide the first part of the proof of Theorem 1, with respect to Euler-Maruyama
method. To achieve this, we first prove the one-step discretization error in the following proposition.

Proposition 9. Suppose that Assumption 1, 2 and 3 are satisfied. Then, the following two claims
hold.

(1) Firstly, it holds that∥∥∥Ỹh − ϑEM
n+1

∥∥∥
L2

⩽ h2(C1(n)
2 +M1)

∥∥Ynh − ϑEM
n

∥∥
L2

+ h2

[
C1(n)

(
C1(n)C2(n) +

1

2
C4 + C3(n)

)
+M1 (1 + C2(n) + C4)

]
+ h3/2

√
dC1(n)

+ hεsc ,

where

C1(n) =
1

2
+

1

h

∫ (n+1)h

nh

L(T − t) dt ,

C2(n) = e−
∫ nh
0

(m(T−t)− 1
2) dt ∥Y0 −XT ∥L2

,

C3(n) =
1

h

∫ (n+1)h

nh

(dL(T − t))1/2 dt ,

C4 = sup
0⩽t⩽T

∥Xt∥L2
.

(2) As a result,

∥∥Y(n+1)h − ϑEM
n+1

∥∥
L2

⩽ rEMn
∥∥Ynh − ϑEM

n

∥∥
L2

+ h2CEM
n + h3/2

√
dC1(n) + hεsc ,

where

rEMn = e−
∫ (n+1)h
nh (m(T−t)− 1

2) dt + h2(C1(n)
2 +M1) ,

CEM
n = C1(n)

(
C1(n)C2(n) +

1

2
C4 + C3(n)

)
+M1 (1 + C2(n) + C4) .

Proof. We prove the two claims sequentially.
Proof of Claim (1). Rewrite display (12) in the integral form,

Ỹh = Ỹ0 +

∫ h

0

(
1

2
Ỹt +∇ log pT−nh−t(Ỹt)

)
dt+

∫ (n+1)h

nh

dWt .

For Euler-Maruyama method, we can write ϑEM
n+1 in integral form as follows

ϑEM
n+1 = ϑEM

n +

∫ (n+1)h

nh

(
1

2
ϑEM
n + s∗(T − nh, ϑEM

n)

)
dt+

∫ (n+1)h

nh

dWt .

22

Note that Ỹ0 = ϑEM
n , then, it holds that∥∥∥Ỹh − ϑEM

n+1

∥∥∥
L2

=

∥∥∥∥∥12
∫ h

0

(Ỹt − ϑEM
n) dt+

∫ h

0

(∇ log pT−nh−t(Ỹt)− s∗(T − nh, ϑEM
n)) dt

∥∥∥∥∥
L2

⩽

∥∥∥∥∥12
∫ h

0

(Ỹt − Ỹ0) dt+

∫ h

0

(∇ log pT−nh−t(Ỹt)−∇ log pT−nh−t(Ỹ0) dt

∥∥∥∥∥
L2︸ ︷︷ ︸

I

+

∥∥∥∥∥
∫ h

0

(∇ log pT−nh−t(ϑ
EM
n)−∇ log pT−nh(ϑ

EM
n)) dt

∥∥∥∥∥
L2︸ ︷︷ ︸

II

+

∥∥∥∥∥
∫ h

0

(∇ log pT−nh(ϑ
EM
n)− s∗(T − nh, ϑEM

n)) dt

∥∥∥∥∥
L2︸ ︷︷ ︸

III

.

(15)
Here, we decompose the term

∥∥∥Ỹh − ϑEM
n+1

∥∥∥
L2

into a sum of three terms and then control each term

individually.
For the term I of inequality (15), by Assumption 1 and Lipschitzness of ∇ log pt, we obtain

I =

∥∥∥∥∥12
∫ h

0

(Ỹt − Ỹ0) dt+

∫ h

0

(∇ log pT−nh−t(Ỹt)−∇ log pT−nh−t(Ỹ0)) dt

∥∥∥∥∥
L2

⩽
1

2

∫ h

0

∥∥∥Ỹt − Ỹ0

∥∥∥
L2

dt+

∫ h

0

L(T − nh− t)
∥∥∥Ỹt − Ỹ0

∥∥∥
L2

dt

⩽

(
1

2
h+

∫ (n+1)h

nh

L(T − t) dt

)
sup

0⩽t⩽h

∥∥∥Ỹt − Ỹ0

∥∥∥
L2

.

We then proceed to derive the upper bound for the term sup0⩽t⩽h

∥∥∥Ỹt − Ỹ0

∥∥∥
L2

.

Lemma 10. When p0 satisfies Assumption 1, it holds that

sup
0⩽t⩽h

∥∥∥Ỹt − Ỹ0

∥∥∥
L2

⩽

(
1

2
h+

∫ (n+1)h

nh

L(T − t) dt

)∥∥Ynh − ϑEM
n

∥∥
L2

+

(
1

2
h+

∫ (n+1)h

nh

L(T − t) dt

)
e−

∫ nh
0

(m(T−t)− 1
2) dt ∥Y0 −XT ∥L2

+
1

2
h sup

0⩽t⩽T
∥Xt∥L2

+

∫ (n+1)h

nh

(dL(T − t))1/2 dt+
√
dh .

Notice that we have no initial limit on the Ỹt in Lemma 10, which means that we can use this lemma
to any discretization scheme.
For the term II of (15), we first rely on Assumption 2 to derive

II =

∥∥∥∥∥
∫ h

0

(∇ log pT−nh−t(ϑ
EM
n)−∇ log pT−nh(ϑ

EM
n)) dt

∥∥∥∥∥
L2

⩽
∫ h

0

∥∥∇ log pT−nh−t(ϑ
EM
n)−∇ log pT−nh(ϑ

EM
n)
∥∥
L2

dt

⩽ h2M1(1 +
∥∥ϑEM

n

∥∥
L2
) .

23

Using the triangle inequality and (14), we obtain∥∥ϑEM
n

∥∥
L2

⩽
∥∥Ynh − ϑEM

n

∥∥
L2

+ ∥Ynh −X←nh∥L2
+ ∥X←nh∥L2

⩽
∥∥Ynh − ϑEM

n

∥∥
L2

+ e−
∫ nh
0

(m(T−t)− 1
2) dt ∥Y0 −XT ∥L2

+ sup
0⩽t⩽T

∥Xt∥L2
.

(16)

For the term III of (15), it follows from Assumption 3 that

III =

∥∥∥∥∥
∫ h

0

(∇ log pT−nh(ϑ
EM
n)− s∗(T − nh, ϑEM

n)) dt

∥∥∥∥∥
L2

⩽
∫ h

0

∥∥∇ log pT−nh(ϑ
EM
n)− s∗(T − nh, ϑEM

n)
∥∥
L2

dt

⩽ hεsc .

Combining these terms above, we obtain that∥∥∥Ỹh − ϑEM
n+1

∥∥∥
L2

⩽ h2(C1(n)
2 +M1)

∥∥Ynh − ϑEM
n

∥∥
L2

+ h2

[
C1(n)

(
C1(n)C2(n) +

1

2
C4 + C3(n)

)
+M1 (1 + C2(n) + C4)

]
+ h3/2

√
dC1(n)

+ hεsc ,

(17)

where

C1(n) =
1

2
+

1

h

∫ (n+1)h

nh

L(T − t) dt ,

C2(n) = e−
∫ nh
0

(m(T−t)− 1
2) dt ∥Y0 −XT ∥L2

,

C3(n) =
1

h

∫ (n+1)h

nh

(dL(T − t))1/2 dt ,

C4 = sup
0⩽t⩽T

∥Xt∥L2
.

This completes the proof of Claim (1).

Proof of Claim (2). By the triangle inequality, we have∥∥Y(n+1)h − ϑEM
n+1

∥∥
L2

⩽
∥∥∥Y(n+1)h − Ỹh

∥∥∥
L2

+
∥∥∥Ỹh − ϑEM

n+1

∥∥∥
L2

. (18)

Applying (13) to the first term of (18), we obtain that∥∥∥Y(n+1)h − Ỹh

∥∥∥2 ⩽ e−
∫ (n+1)h
nh (2m(T−t)−1) dt

∥∥∥Ynh − Ỹ0

∥∥∥2 . (19)

Notice that Ỹ0 = ϑEM
n , it then follows that∥∥∥Y(n+1)h − Ỹh

∥∥∥
L2

⩽ e−
∫ (n+1)h
nh (m(T−t)− 1

2) dt
∥∥Ynh − ϑEM

n

∥∥
L2

.

Claim (2) follows directly from our previous results and Claim (1). Since this step is independent
of the discretization method, it applies to all the schemes discussed in this section. In the following
analysis, we omit this step and proceed directly with the proof of the first claim.

We now proceed to derive the upper bound of the Wasserstein distance between the sample distribution
generated after N iterations and the target distribution p0, based on the one-step discretization error
bound given by Proposition 9.

First, note that

W2(L(ϑEM
N), p0) ⩽

∥∥ϑEM
N −X0

∥∥
L2

⩽
∥∥YNh − ϑEM

N

∥∥
L2

+ ∥YNh −X0∥L2
.

24

Invoking Proposition 7 of [13], we have

∥YNh −X0∥L2
⩽ e−

∫ T
0

m(t) dt ∥X0∥L2
. (20)

According to Proposition 9, by induction, we obtain that∥∥YNh − ϑEM
N

∥∥
L2

⩽ rEMN−1
∥∥Y(N−1)h − ϑEM

N−1
∥∥
L2

+
(
h2CEM

N−1 + h3/2
√
dC1(N − 1) + hεsc

)
⩽

N−1∏
j=0

rEMj

∥∥Y0 − ϑEM
0

∥∥
L2

+

N−1∑
k=0

 N−1∏
j=k+1

rEMj

(h2CEM
k + h3/2

√
dC1(k) + hεsc

)

=

N−1∑
k=0

 N−1∏
j=k+1

rEMj

(h2CEM
k + h3/2

√
dC1(k) + hεsc

)
,

(21)
where we define

∏N−1
j=N rEMj = 1. Notice that

N−1∏
j=k+1

rEMj =
N−1∏

j=k+1

(e−
∫ (j+1)h
jh (m(T−t)− 1

2) dt + h2(C1(k)
2 +M1))

≲
N−1∏

j=k+1

e−h(mmin− 1
2) = e−h(mmin− 1

2)(N−k−1) .

Therefore, we have

∥∥YNh − ϑEM
N

∥∥
L2

≲
N−1∑
k=0

e−h(mmin− 1
2)(N−k−1)

(
h2CEM

k + h3/2
√
dC1(k) + hεsc

)
⩽

1

1− e−h(mmin− 1
2)

(
h2 max

0⩽k⩽N−1
CEM

k + h3/2
√
d max
0⩽k⩽N−1

C1(k) + hεsc

)
≲

1

mmin − 1/2

(√
dh max

0⩽k⩽N−1
C1(k) + εsc

)
.

(22)
Recall the definition of C1(k) and the upper bound of L(t), it follows that

max
0⩽k⩽N−1

C1(k) ⩽
1

2
+ Lmax ,

and thus we obtain that∥∥YNh − ϑEM
N

∥∥
L2

≲
√
dh · Lmax + 1/2

mmin − 1/2
+ εsc ·

1

mmin − 1/2
.

Plugging this back into the previous display then we have

W2(L(ϑEM
N), p0) ≲ e−

∫ T
0

m(t) dt ∥X0∥L2
+

√
dh · Lmax + 1/2

mmin − 1/2
+ εsc ·

1

mmin − 1/2
,

which completes the first part of the proof for Theorem 1.

B.2 Proof of Theorem 1: Part II

This part aims to prove the Wasserstein convergence result for the Exponential Integrator (EI) scheme.
We will prove this theorem using the same method as in Theorem 1. Following this approach, we
first establish the one-step discretization error in the proposition below.

Proposition 11. Suppose that Assumption 1, 3 and 2 hold, then one-step discretization error for
Exponential Integrator scheme is obtained from the following two bounds.

25

(1) It holds that∥∥∥Ỹh − ϑEI
n+1

∥∥∥
L2

⩽ h2

(
C5(n)C1(n) +M1

2(eh/2 − 1)

h

)∥∥Ynh − ϑEM
n

∥∥
L2

+ h2

[
C5(n)

(
C1(n)C2(n) +

1

2
C4 + C3(n)

)
+

2(eh/2 − 1)

h
M1(1 + C2(n) + C4)

]
+ h3/2

√
dC5(n)

+ h · 2(e
h/2 − 1)

h
εsc ,

where

C5(n) =
1

h

∫ (n+1)h

nh

e
1
2 ((n+1)h−t)L(T − t) dt ≈ C1(n)−

1

2
.

(2) Therefore, we have the bound for one-step discretization error∥∥Y(n+1)h − ϑEI
n+1

∥∥
L2

⩽ rEIn
∥∥Ynh − ϑEI

n

∥∥
L2

+ h2CEI
n + h3/2

√
dC5(n) + h · 2(e

h/2 − 1)

h
εsc ,

where

rEIn = e−
∫ (n+1)h
nh (m(T−t)− 1

2) dt + h2

(
C5(n)C1(n) +M1

2(eh/2 − 1)

h

)
,

CEI
n = C5(n)

(
C1(n)C2(n) +

1

2
C4 + C3(n)

)
+

2(eh/2 − 1)

h
M1(1 + C2(n) + C4) .

Here, the constants Ci, i = 1, 2, 3, 4 are as defined in Proposition 9.

Proof. We prove two claims in succession.
Proof of Claim (1). Consider the process defined in (12), which satisfies the SDE

dỸt =

[
1

2
Ỹt +∇ log pT−nh−t(Ỹt)

]
dt+ dWt ,

Instead of integrating both sides of the SDE, we use Itô’s formula to e−
t
2 Ỹt, then we have

d(e−
t
2 Ỹt) = −1

2
e−

t
2 Ỹt + e−

t
2 dỸt = e−

t
2

(
∇ log pT−nh−t(Ỹt) dt+ dWt

)
,

and we notice that we can write it in an integral form.

Ỹt = et/2Ỹ0 +

∫ t

0

e
1
2 (t−s)∇ log pT−nh−s(Ỹs) ds+

∫ nh+t

nh

e
1
2 ((n+1)h−s) dWs .

Then we obtain that

Ỹh − ϑEI
n+1 =

∫ h

0

e
1
2 (h−t)(∇ log pT−nh−t(Ỹt)− s∗(T − nh, ϑEI

n)) dt .

We make decomposition the same as the one in (15), that is
∇ log pT−nh−t(Ỹt)− s∗(T − nh, ϑEI

n) = ∇ log pT−nh−t(Ỹt)−∇ log pT−nh−t(Ỹ0)

+∇ log pT−nh−t(ϑ
EI
n)−∇ log pT−nh(ϑ

EI
n)

+∇ log pT−nh(ϑ
EI
n)− s∗(T − nh, ϑEI

n) .

It then follows that∥∥∥Ỹh − ϑEI
n+1

∥∥∥
L2

⩽
∫ h

0

e
1
2 (h−t)

∥∥∥∇ log pT−nh−t(Ỹt)− s∗(T − nh, ϑEI
n)
∥∥∥
L2

dt

⩽
∫ h

0

e
1
2 (h−t)

∥∥∥∇ log pT−nh−t(Ỹt)−∇ log pT−nh−t(Ỹ0)
∥∥∥
L2

dt

+

∫ h

0

e
1
2 (h−t)

∥∥∇ log pT−nh−t(ϑ
EI
n)−∇ log pT−nh(ϑ

EI
n)
∥∥
L2

dt

+

∫ h

0

e
1
2 (h−t)

∥∥∇ log pT−nh(ϑ
EI
n)− s∗(T − nh, ϑEI

n)
∥∥
L2

dt .

26

Note that apart from the exponential term e
1
2 (h−t), the derivation of the remaining parts is completely

consistent with that of (15), until we encounter the term involving ϑEI
n , at which point we obtain

∥∥∥Ỹh − ϑEI
n+1

∥∥∥
L2

⩽

(∫ h

0

e
1
2 (h−t)L(T − nh− t) dt

)
sup

0⩽t⩽h

∥∥∥Ỹt − Ỹ0

∥∥∥
L2

+

(∫ h

0

e
1
2 (h−t) dt

)
M1h

(
1 +

∥∥ϑEI
n

∥∥
L2

)
+

(∫ h

0

e
1
2 (h−t) dt

)
εsc .

By Lemma 10, we can bound the first term on the right-hand side of the previous display. More-
over, from (16),

∥∥ϑEI
n

∥∥
L2

can be bounded similarly. Substituting all coefficients with Ci(n) from
Proposition 9, we obtain∥∥∥Ỹh − ϑEI

n+1

∥∥∥
L2

⩽ h2 · C5(n)

[
C1(n)

∥∥Ynh − ϑEI
n

∥∥
L2

+ C1(n)C2(n) +
1

2
C4 + C3(n)

]
+ h2 · 2(e

h/2 − 1)

h
M1

[
1 +

∥∥Ynh − ϑEM
n

∥∥
L2

+ C2(n) + C4

]
+ h3/2

√
dC5(n)

+ h · 2(e
h/2 − 1)

h
εsc

= h2

(
C5(n)C1(n) +M1

2(eh/2 − 1)

h

)∥∥Ynh − ϑEM
n

∥∥
L2

+ h2

[
C5(n)

(
C1(n)C2(n) +

1

2
C4 + C3(n)

)
+

2(eh/2 − 1)

h
M1(1 + C2(n) + C4)

]
+ h3/2

√
dC5(n)

+ h · 2(e
h/2 − 1)

h
εsc ,

where

C5(n) =
1

h

∫ (n+1)h

nh

e
1
2 ((n+1)h−t)L(T − t) dt ≈ C1(n)−

1

2
.

Proof of Claim (2). The proof is omitted for brevity, as it merely requires incorporating∥∥∥Y(n+1)h − Ỹh

∥∥∥
L2

into the conclusion of Claim (1), following a similar argument as in the proof of

Claim (2) in Proposition 9.

For the second part of the proof for Theorem 1, recall that in the first part, the three key steps (20), (21)
and (22) lead to the desired result. We now revisit these steps within the framework of other
discretization schemes.

Since (20) is independent of the discretization scheme, we can directly apply it throughout the proofs
of Theorems 1, 3 and 4. For (21), we note that the h2 term in rαj is neglected, which results in the
same upper bound for

∏N−1
j=k+1 r

α
j across all discretization schemes.

Given the consistency of these two steps, for the remaining discretization schemes, we can directly
derive an analogue of (22) from Claim (2). Therefore, in the subsequent proofs of these theorems,
after establishing the corresponding proposition, we proceed directly from an expression similar to
(22).

27

For this theorem, we begin the proof with the following inequality∥∥YNh − ϑEI
N

∥∥
L2

≲
1

mmin − 1/2

(
hCEI

n + h1/2
√
d max
0⩽k⩽N−1

C5(k) + εsc

)
≲

1

mmin − 1/2

(√
dh max

0⩽k⩽N−1
C5(k) + εsc

)
⩽

√
dh · Lmax

mmin − 1/2
+ εsc ·

1

mmin − 1/2
.

Combining this with the bound of ∥X0 − YNh∥L2
, we obtain

W2(L(ϑEI
N), p0) ≲ e−mminT ∥X0∥L2

+
√
dh · Lmax

mmin − 1/2
+ εsc ·

1

mmin − 1/2

as desired.

B.3 Proof of Theorem 3: Part I

In this section, we prove the Wasserstein distance between the generated distribution L(ϑREM
N) and

the target distribution. The following proposition is established for the one-step discretization error.
Proposition 12. Suppose that Assumptions 1, 2 and 4 are satisfied, the following two claims hold.

(1) It holds that∥∥∥Ỹh − ϑREM
n+1

∥∥∥
L2

⩽ h2

{[∫ 1

0

∫ 1

0

[
|u− v|L(T − (n+ u)h)

(
1

2
+ L(T − nh)

)
+M1

]2
dudv

]1/2

+
1

4
√
3
L(T − nh) +

1

8
√
3

}∥∥Ynh − ϑREM
n

∥∥
L2

+ h2

{{∫ 1

0

∫ 1

0

{
(u− v)

[(
1

2
+ L(T − nh)

)
C2(n) +

1

2
C4 + (dL(T − nh))1/2

]
L(T − (n+ u)h)

+M1(1 + C2(n) + C4)

}2

dudv

}1/2

+
1

8
√
3
(C2(n) + C4) +

1

4
√
3

(
L(T − nh)C2(n) + (dL(T − nh))1/2

)}

+ h3/2

{
√
d

[∫ 1

0

∫ 1

0

L(T − (n+ u)h)2|u− v|dudv
]1/2

+
1

2
√
3

}
+ 2hεsc .

(2) Moreover, it holds that∥∥Y(n+1)h − ϑREM
n+1

∥∥ ⩽ rREMn ∥Ynh − ϑn∥L2
+ h2CREM

n,1 + h3/2CREM
n,2 + 3hεsc ,

where

rREMn = e−
∫ (n+1)h
nh (m(T−t)− 1

2) dt

+ h2

{[∫ 1

0

∫ 1

0

[
|u− v|L(T − (n+ u)h)

(
1

2
+ L(T − nh)

)
+M1

]2
dudv

]1/2

+
1

4
√
3
L(T − nh) +

1

8
√
3

}
,

28

CREM
n,1 =

{∫ 1

0

∫ 1

0

{
(u− v)

[(
1

2
+ L(T − nh)

)
C2(n) +

1

2
C4 + (dL(T − nh))1/2

]
L(T − (n+ u)h)

+M1(1 + C2(n) + C4)

}2

dudv

}1/2

+
1

8
√
3
(C2(n) + C4) +

1

4
√
3

(
L(T − nh)C2(n) + (dL(T − nh))1/2

)
,

CREM
n,2 =

√
d

[∫ 1

0

∫ 1

0

L(T − (n+ u)h)2|u− v|dudv
]1/2

+
1

2
√
3
.

Proof of Proposition 12. Proof of Claim (1). We make the following decomposition of one-step
discretization error∥∥∥Ỹh − ϑREM

n+1

∥∥∥
L2

⩽
∥∥∥Ỹh − EUn

[
ϑREM
n+1

]∥∥∥
L2

+
∥∥EUn

[
ϑREM
n+1

]
− ϑREM

n+1

∥∥
L2

. (23)

We first derive the upper bound for the term
∥∥∥Ỹh − EUn

[
ϑREM
n+1

]∥∥∥
L2

. By the definitions of ϑREM
n and

Ỹh, we have∥∥∥Ỹh − EUn

[
ϑREM
n+1

]∥∥∥
L2

=

∥∥∥∥∥12
∫ h

0

Ỹt dt+

∫ h

0

∇ log pT−nh−t(Ỹt) dt−
1

2
hEUn

(ϑREM
n+U)− hEUn

[s∗(T − (n+ Un)h, ϑ
REM
n+U])

∥∥∥∥∥
L2

.

Notice that∫ h

0

Ỹt dt = hEUn
[ỸUnh] ,

∫ h

0

∇ log pT−nh−t(Ỹt) dt = hEUn
[∇ log pT−(n+Un)h(ỸUnh)] .

Plugging this back into the previous display then gives∥∥∥Ỹh − EUn [ϑ
REM
n+1]

∥∥∥
L2

=

∥∥∥∥12hEUn
[ỸUnh] + hEUn

[∇ log pT−(n+Un)h(ỸUnh)]−
1

2
hEUn

(ϑREM
n+U)− hEUn

(s∗(T − (n+ Un)h, ϑ
REM
n+U))

∥∥∥∥
L2

⩽
1

2
h
∥∥∥EUn

[ỸUnh − ϑREM
n+Un

]
∥∥∥
L2

+ h
∥∥∥EUn

[∇ log pT−(n+Un)h(ỸUnh)− s∗(T − (n+ Un)h, ϑ
REM
n+Un

)]
∥∥∥
L2

.

By the definition of ỸUnh and ϑREM
n+Un

, we have∥∥∥EUn [ỸUnh − ϑREM
n+Un

]
∥∥∥
L2

=

∥∥∥∥∥EUn

[
1

2

∫ Unh

0

(Ỹt − ϑREM
n) dt+

∫ Unh

0

(∇ log pT−nh−t(Ỹt)− s∗(T − nh, ϑREM
n)) dt

]∥∥∥∥∥
L2

⩽

∥∥∥∥∥EUn

[
1

2

∫ Unh

0

∥∥∥Ỹt − ϑREM
n

∥∥∥ dt+

∫ Unh

0

∥∥∥∇ log pT−nh−t(Ỹt)− s∗(T − nh, ϑREM
n)

∥∥∥ dt

]∥∥∥∥∥
L2

⩽

∥∥∥∥∥EUn

[
1

2

∫ h

0

∥∥∥Ỹt − ϑREM
n

∥∥∥ dt+

∫ h

0

∥∥∥∇ log pT−nh−t(Ỹt)− s∗(T − nh, ϑREM
n)

∥∥∥ dt

]∥∥∥∥∥
L2

⩽
1

2

∫ h

0

∥∥∥Ỹt − ϑREM
n

∥∥∥
L2

dt+

∫ h

0

∥∥∥∇ log pT−nh−t(Ỹt)− s∗(T − nh, ϑREM
n)

∥∥∥
L2

dt .

The second inequality arises because the integrand is non-negative, the last inequality follows from
the fact that the random variables inside the inner expectation EUn

are independent of Un, and thus
the inner expectation can be ignored. Then using the same argument as in the proof of Proposition 9,

29

especially adopting the same procedure as the one following (15), we can apply the conclusion of
Proposition 9 to the term above, then we obtain that∥∥∥EUn

[
ỸUnh − ϑREM

n+Un

]∥∥∥
L2

⩽

(
1

2
h+

∫ (n+1)h

nh

L(T − t) dt

)
sup

0⩽t⩽h

∥∥∥Ỹt − Ỹ0

∥∥∥
L2

+

∫ (n+1)h

nh

∥∥∇ log pT−nh−t(ϑ
REM
n)− s∗(T − nh, ϑREM

n)
∥∥
L2

dt

⩽ h2(C1(n)
2 +M1)

∥∥Ynh − ϑREM
n

∥∥
L2

+ h2

[
C1(n)

(
C1(n)C2(n) +

1

2
C4 + C3(n)

)
+M1(1 + C2(n) + C4)

]
+ h3/2

√
dC1(n)

+ hεsc
△
=h2r1

∥∥Ynh − ϑREM
n

∥∥
L2

+ h2r2 + h3/2
√
dC1(n) + hεsc ,

where

r1 = C1(n)
2 +M1,

r2 = C1(n)

(
C1(n)C2(n) +

1

2
C4 + C3(n)

)
+M1(1 + C2(n) + C4).

We now derive the upper bound of the second term in (23). Note that∥∥∥EUn

[
∇ log pT−(n+Un)h(Ỹ(n+Un)h)− s∗(T − (n+ Un)h, ϑ

REM
n+Un

)
]∥∥∥

L2

=

∥∥∥∥∫ 1

0

(
∇ log pT−(n+u)h(Ỹ(n+u)h)− s∗(T − (n+ u)h, ϑREM

n+u)
)
du

∥∥∥∥
L2

⩽
∫ 1

0

∥∥∥∇ log pT−(n+u)h(Ỹ(n+u)h)− s∗(T − (n+ u)h, ϑREM
n+u)

∥∥∥
L2

du

⩽
∫ 1

0

(∥∥∥∇ log pT−(n+u)h(Ỹ(n+u)h)−∇ log pT−(n+u)h(ϑ
REM
n+u)

∥∥∥
L2

+
∥∥∇ log pT−(n+u)h(ϑ

REM
n+u)− s∗(T − (n+ u)h, ϑREM

n+u)
∥∥
L2

)
du

⩽
∫ 1

0

L(T − (n+ u)h)
∥∥∥Ỹ(n+u)h − ϑREM

n+u

∥∥∥
L2

du+ εsc ,

(24)

the second inequality follows from the triangle inequality, and the last inequality depends on Assump-
tion 1 and 4. By (17), changing the value of h to uh, we have∥∥∥Ỹ(n+u)h − ϑREM

n+u

∥∥∥
L2

⩽ (uh)2(C1,n(u)
2 +M1)

∥∥Ynh − ϑREM
n

∥∥
L2

+ (uh)2
[
C1,n(u)

(
C1,n(u)C2(n) +

1

2
C4 + C3,n(u)

)
+M1(1 + C2(n) + C4)

]
+ (uh)3/2

√
dC1,n(u)

+ uhεsc ,

(25)

where C1,n(u) and C3,n(u) is the uh-version of C1(n) and C3(n), respectively, that is

C1,n(u) =
1

2
+

1

uh

∫ (n+u)h

nh

L(T − t) dt,

C3,n(u) =
1

uh

∫ (n+u)h

nh

(dL(T − t))1/2 dt,

30

Plugging the previous display (25) back into display (24), then rearranging and simplifying the
expression, yields∥∥∥EUn

[∇ log pT−(n+Un)h(Ỹ(n+Un)h)− s∗(T − (n+ Un)h, ϑ
REM
n+Un

)]
∥∥∥
L2

⩽ h2

(∫ 1

0

L(T − (n+ u)h)u2(C1,n(u)
2 +M1) du

)∥∥Ynh − ϑEM
n

∥∥
L2

+ h2

{∫ 1

0

L(T − (n+ u)h)u2

[
C1,n(u)

(
C1,n(u)C2(n) +

1

2
C4 + C3,n(u)

)
+M1(1 + C2(n) + C4)

]
du

}
+ h3/2

(∫ 1

0

L(T − (n+ u)h)u3/2 du

)√
dC1(n)

+ h

(∫ 1

0

L(T − (n+ u)h)udu

)
εsc

+ εsc
△
=h2r3

∥∥Ynh − ϑEM
n

∥∥
L2

+ h2r4 + h3/2r5 + hr6εsc + εsc ,

where

r3 =

∫ 1

0

L(T − (n+ u)h)u2(C1,n(u)
2 +M1) du ,

r4 =

∫ 1

0

L(T − (n+ u)h)u2

[
C1,n(u)

(
C1,n(u)C2(n) +

1

2
C4 + C3,n(u)

)]
du+M1(1 + C2(n) + C4) ,

r5 =

(∫ 1

0

L(T − (n+ u)h)u3/2 du

)√
dC1(n) ,

r6 =

∫ 1

0

L(T − (n+ u)h)udu .

From the bounds we have obtained for two terms, it follows that∥∥∥Ỹh − EUn
[ϑREM

n+1]
∥∥∥
L2

⩽ h3(
1

2
r1 + r3)

∥∥Ynh − ϑEM
n

∥∥
L2

+ h3(
1

2
r2 + r4) + h5/2(

1

2

√
dC1(n) + r5) + h2(

1

2
+ r6)εsc + hεsc .

(26)
Considering the second term of one-step discretization error

ϑREM
n+1 − EUn

[ϑREM
n+1]

=
1

2
h
[
ϑREM
n+U − EUn

[ϑREM
n+U]

]
+ h

[
s∗(T − (n+ Un)h, ϑ

REM
n+U)− EUn

[s∗(T − (n+ Un)h, ϑ
REM
n+U)]

]
=

1

2
h

[
1

2
h(Un − 1

2
)ϑREM

n + h(Un − 1

2
)s∗(T − nh, ϑREM

n)

]
+

1

2
h

[∫ (n+Un)h

nh

dWt −
∫ 1

0

(∫ (n+u)h

nh

dWt

)
du

]
+ h

[
s∗(T − (n+ Un)h, ϑ

REM
n+U)− EUn [s∗(T − (n+ Un)h, ϑ

REM
n+U)]

]
.

(27)
The second equality follows from the fact that

EUn [ϑ
REM
n+U] = ϑREM

n +
1

2
hEUn [Un]ϑ

REM
n + hEUn [Un]s∗(T − nh, ϑREM

n) + EUn

∫ (n+Un)h

nh

dWt

= ϑREM
n +

1

4
hϑREM

n +
1

2
hs∗(T − nh, ϑREM

n) +

∫ 1

0

(∫ (n+u)h

nh

dWt

)
du ,

since Un is independent of ϑREM
n .

We proceed to bound each term in (27). For the first term, still notice that the independence between

31

Un and ϑREM
n , then we find that∥∥∥∥(Un − 1

2
)ϑREM

n

∥∥∥∥
L2

=

{
E

[
EUn

∥∥∥∥(Un − 1

2
)ϑREM

n

∥∥∥∥2
]}1/2

=

{
E
[
EUn [(Un − 1

2
)2] ·

∥∥ϑREM
n

∥∥2]}1/2

=

{
E
[
1

12

∥∥ϑREM
n

∥∥2]}1/2

=
1

2
√
3

∥∥ϑREM
n

∥∥
L2

.

The bounding of another part of the first term follows in a similar manner, we obtain that∥∥∥∥(Un − 1

2
)s∗(T − nh, ϑREM

n)

∥∥∥∥
L2

=
1

2
√
3

∥∥s∗(T − nh, ϑREM
n)

∥∥
L2

.

For the second term of (27), notice that due to Itô’s isometry formula, for any well-defined stochastic
process Xt and its Itô stochastic integral It(X) =

∫ t

0
Xu dMu, we have

E[It(X)2] = E
∫ t

0

X2
u d⟨M⟩u , (28)

then we can establish a lemma.

Lemma 13. Suppose Wt is a d-dim standard Brownian motion, then∥∥∥∥∥
∫ (n+Un)h

nh

dWt −
∫ 1

0

(∫ (n+u)h

nh

dWt

)
du

∥∥∥∥∥
2

L2

⩽
h

3
.

For the third term of (27), we get∥∥s∗(T − (n+ Un)h, ϑ
REM
n+U)− EUn

[s∗(T − (n+ Un)h, ϑ
REM
n+U)]

∥∥
L2

=

∥∥∥∥∫ 1

0

s∗(T − (n+ Un)h, ϑ
REM
n+U)− s∗(T − (n+ v)h, ϑREM

n+v) dv

∥∥∥∥
L2

=

{
E
∫ 1

0

[∫ 1

0

s∗(T − (n+ u)h, ϑREM
n+u)− s∗(T − (n+ v)h, y(n+v)h) dv

]2
du

}1/2

⩽

{
E
∫ 1

0

∫ 1

0

[
s∗(T − (n+ u)h, ϑREM

n+u)− s∗(T − (n+ v)h, ϑREM
n+v)

]2
dudv

}1/2

=

{∫ 1

0

∫ 1

0

∥∥s∗(T − (n+ u)h, ϑREM
n+u)− s∗(T − (n+ v)h, ϑREM

n+v)
∥∥2
L2

dudv

}1/2

.

Then by the triangle inequality and Assumption 4, we have∥∥s∗(T − (n+ u)h, ϑREM
n+u)− s∗(T − (n+ v)h, ϑREM

n+v)
∥∥
L2

⩽
∥∥s∗(T − (n+ u)h, ϑREM

n+u)−∇ log pT−(n+u)h(ϑ
REM
n+u)

∥∥
L2

+
∥∥s∗(T − (n+ v)h, ϑREM

n+v)−∇ log pT−(n+v)h(ϑ
REM
n+v)

∥∥
L2

+
∥∥∇ log pT−(n+u)h(ϑ

REM
n+u)−∇ log pT−(n+v)h(ϑ

REM
n+v)

∥∥
L2

⩽ 2εsc +
∥∥∇ log pT−(n+u)h(ϑ

REM
n+u)−∇ log pT−(n+v)h(ϑ

REM
n+v)

∥∥
L2

.

(29)

Combining the three terms of (27) together, we have∥∥ϑREM
n+1 − EUn

[ϑREM
n+1]

∥∥
L2

⩽
1

8
√
3
h2
∥∥ϑREM

n

∥∥
L2

+
1

4
√
3
h2
∥∥s∗(T − nh, ϑREM

n)
∥∥
L2

+
1

2
√
3
h3/2

+ h

{∫ 1

0

∫ 1

0

∥∥∇ log pT−(n+v)h(ϑ
REM
n+v)−∇ log pT−(n+u)h(ϑ

REM
n+v)

∥∥2
L2

dudv

}1/2

+ 2hεsc .

32

By applying the same technique used in the proofs of Proposition 9 and Proposition 11, the upper
bounds for

∥∥ϑREM
n

∥∥
L2

and
∥∥s∗(T − nh, ϑREM

n)
∥∥
L2

follows readily. Thus, the proposition follows
immediately from the bound on the second last term. We now consider the case for u > v, due to
Assumptions 1 and 2,∥∥∇ log pT−(n+u)h(ϑ

REM
n+u)−∇ log pT−(n+v)h(ϑ

REM
n+v)

∥∥
L2

⩽ L(T − (n+ u)h)
∥∥ϑREM

n+u − ϑREM
n+v

∥∥
L2

+M1h
(
1 +

∥∥ϑREM
n+v

∥∥
L2

)
.

Since

∥∥ϑREM
n+u − ϑREM

n+v

∥∥
L2

⩽
1

2
(u− v)h

∥∥ϑREM
n

∥∥
L2

+ (u− v)h
∥∥s∗(T − nh, ϑREM

n)
∥∥
L2

+

∥∥∥∥∥
∫ (n+u)h

(n+v)h

dWt

∥∥∥∥∥
L2

⩽
1

2
(u− v)h

(∥∥Ynh − ϑREM
n

∥∥
L2

+ C2(n) + C4

)
+ (u− v)h

[
εsc + L(T − nh)

(∥∥Ynh − ϑREM
n

∥∥
L2

+ C2(n)
)
+ (dL(T − nh))1/2

]
+
√
(u− v)h

⩽ (u− v)h

[
1

2
+ L(T − nh)

] ∥∥Ynh − ϑREM
n

∥∥
L2

+ (u− v)h

[
(
1

2
+ L(T − nh))C2(n) +

1

2
C4 + (dL(T − nh))1/2

]
+
√

(u− v)dh+ (u− v)hεsc .

The second inequality follows from (16), Assumptions 1, 3 and Lemma 18. Similarly,∥∥ϑREM
n+v

∥∥
L2

⩽
∥∥ϑREM

n+v − ϑREM
n

∥∥
L2

+
∥∥ϑREM

n

∥∥
L2

⩽ vh

[
1

2
+ L(T − nh)

] ∥∥Ynh − ϑREM
n

∥∥
L2

+ vh

[
(
1

2
+ L(T − nh))C2(n) +

1

2
C4 + (dL(T − nh))1/2

]
+
√
vdh+ vhεsc

+
∥∥Ynh − ϑREM

n

∥∥
L2

+ C2(n) + C4 .

Therefore, we obtain that∥∥∇ log pT−(n+u)h(ϑ
REM
n+u)−∇ log pT−(n+v)h(ϑ

REM
n+v)

∥∥
L2

⩽ h

{
(u− v)

[
1

2
+ L(T − nh)

]
L(T − (n+ u)h) +M1

}∥∥Ynh − ϑREM
n

∥∥
L2

+ h2M1v

[
1

2
+ L(T − nh)

] ∥∥Ynh − ϑREM
n

∥∥
L2

+ h2vM1

[(
1

2
+ L(T − nh)

)
C2(n) +

1

2
C4 + (dL(T − nh))1/2

]
+ h3/2M1

√
vd

+ h

{
(u− v)

[(
1

2
+ L(T − nh)

)
C2(n) +

1

2
C4 + (dL(T − nh))1/2

]
L(T − (n+ u)h)

+M1(1 + C2(n) + C4)

}
+ h1/2L(T − (n+ u)h)

√
(u− v)d

+ h(u− v)L(T − (n+ u)h)εsc + h2M1vεsc .

33

We claim that we only consider the lowest order of each part, which means the relative higher order
term with the combination of d and h will be ignored. Then take the supremum with respect to v,{∫ 1

0

∫ 1

0

∥∥∇ log pT−(n+v)h(ϑ
REM
n+v)−∇ log pT−(n+u)h(ϑ

REM
n+v)

∥∥2
L2

dudv

}1/2

⩽h

{∫ 1

0

∫ 1

0

[
|u− v|L(T − (n+ u)h)

(
1

2
+ L(T − nh)

)
+M1

]2
dudv

}1/2 ∥∥Ynh − ϑREM
n

∥∥
L2

+ h1/2
√
d

[∫ 1

0

∫ 1

0

L(T − (n+ u)h)2|u− v|dudv
]1/2

+ h

[∫ 1

0

∫ 1

0

(u− v)2L(T − (n+ u)h)2 dudv

]1/2
εsc .

(30)
Combining the above,∥∥ϑREM

n+1 − EUn
[ϑREM

n+1]
∥∥
L2

⩽
1

8
√
3
h2
(∥∥Ynh − ϑREM

n

∥∥
L2

+ C2(n) + C4

)
+

1

4
√
3
h2
[
εsc + L(T − nh)

(∥∥Ynh − ϑREM
n

∥∥
L2

+ C2(n)
)
+ (dL(T − nh))1/2

]
+

1

2
√
3
h3/2

+ h2

{∫ 1

0

∫ 1

0

[
|u− v|L(T − (n+ u)h)

(
1

2
+ L(T − nh)

)
+M1

]2
dudv

}1/2 ∥∥Ynh − ϑREM
n

∥∥
L2

+ h2

{∫ 1

0

∫ 1

0

{
(u− v)

[(
1

2
+ L(T − nh)

)
C2(n) +

1

2
C4 + (dL(T − nh))1/2

]
L(T − (n+ u)h)

+M1(1 + C2(n) + C4)

}2

dudv

}1/2

+ h3/2
√
d

[∫ 1

0

∫ 1

0

L(T − (n+ u)h)2|u− v|dudv
]1/2

+ h2

[∫ 1

0

∫ 1

0

(u− v)2L(T − (n+ u)h)2 dudv

]1/2
εsc

+ 2hεsc

≲ h2

{[∫ 1

0

∫ 1

0

[
|u− v|L(T − (n+ u)h)

(
1

2
+ L(T − nh)

)
+M1

]2
dudv

]1/2
+

1

4
√
3
L(T − nh) +

1

8
√
3

}∥∥Ynh − ϑREM
n

∥∥
L2

+ h2

{{∫ 1

0

∫ 1

0

{
(u− v)

[(
1

2
+ L(T − nh)

)
C2(n) +

1

2
C4 + (dL(T − nh))1/2

]
L(T − (n+ u)h)

+M1(1 + C2(n) + C4)

}2

dudv

}1/2

+
1

8
√
3
(C2(n) + C4) +

1

4
√
3
(L(T − nh)C2(n) + (dL(T − nh))1/2)

}
+ h3/2

{√
d

[∫ 1

0

∫ 1

0

L(T − (n+ u)h)2|u− v|dudv
]1/2

+
1

2
√
3

}
+ 2hεsc .

(31)

34

Compared to the term Ỹh − EUn [ϑ
REM
n+1], we can focus on the lower-order terms, ignoring the score

matching error. Therefore, we have∥∥∥Ỹ(n+1)h − ϑREM
n+1

∥∥∥
L2

⩽ h2

{[∫ 1

0

∫ 1

0

[
|u− v|L(T − (n+ u)h)

(
1

2
+ L(T − nh)

)
+M1

]2
dudv

]1/2 ∥∥Ynh − ϑREM
n

∥∥
L2

+
1

4
√
3
L(T − nh) +

1

8
√
3

}

+ h2

{{∫ 1

0

∫ 1

0

{
(u− v)

[(
1

2
+ L(T − nh)

)
C2(n) +

1

2
C4 + (dL(T − nh))1/2

]
L(T − (n+ u)h)

+M1(1 + C2(n) + C4)

}2

dudv

}1/2

+
1

8
√
3
(C2(n) + C4) +

1

4
√
3

(
L(T − nh)C2(n) + (dL(T − nh))1/2

)}

+ h3/2

{
√
d

[∫ 1

0

∫ 1

0

L(T − (n+ u)h)2|u− v|dudv
]1/2

+
1

2
√
3

}
+ 3hεsc .

Returning to the proof of Theorem 3, by the conclusion of Proposition 12, we have∥∥YNh − ϑREM
N

∥∥
L2

≲
1

mmin − 1/2

(
h max

0⩽k⩽N−1
CREM

k,1 + h1/2 max
0⩽k⩽N−1

CREM
k,2 + 3εsc

)
≲

√
h ·

√
d/3Lmax +

1
2
√
3

mmin − 1/2
+ εsc ·

3

mmin − 1/2
.

This completes the first part of proof for Theorem 3.

B.4 Proof of Theorem 3: Part II

We begin with the following proposition.
Proposition 14. Suppose that Assumptions 1, 2 and 4 are satisfied, the following two claims hold

(1) It holds that∥∥∥Ỹh − ϑREI
n+1

∥∥∥
L2

⩽ h2

{∫ 1

0

∫ 1

0

[
|u− v|L(T − (n+ u)h)

(
1

2
+ L(T − nh)

)
+M1

+
1

2
|u− v|L(T − (n+ v)h)rEIn (v)

]2
dudv

}1/2 ∥∥Ynh − ϑREI
n

∥∥
L2

+ h2

{
e

1
2 (1−v)h − e

1
2 (1−u)h

h
e

1
2 vhL(T − (n+ u)h)

[
C2(n) + C4 + 2L(T − nh)C2(n) + (dL(T − nh))1/2

]
+ e

1
2 (1−u)hM1

[
1 + 2e

1
2 vh
(
L(T − nh)C2(n) + (dL(T − nh))1/2

)
+ C2(n) + C4

]
+

|e 1
2 (1−u)h − e

1
2 (1−v)h|

h

(
L(T − (n+ v)h)C2(n) + (dL(T − (n+ v)h))1/2

)}

35

+ h3/2
√
d

{∫ 1

0

∫ 1

0

L(T − (n+ u)h)2|u− v|dudv
}1/2

+ 3hεsc .

(2) Furthermore, it holds that∥∥Y(n+1)h − ϑREI
n+1

∥∥
L2

⩽ rREIn

∥∥Ynh − ϑREI
n

∥∥
L2

+ h2CREI
n,1 + h3/2CREI

n,2 + 3hεsc ,

where

rREIn = e−
∫ (n+1)h
nh (m(T−t)− 1

2) dt

+ h2

{∫ 1

0

∫ 1

0

[
|u− v|L(T − (n+ u)h)(

1

2
+ L(T − nh))

+M1 +
1

2
|u− v|L(T − (n+ v)h)rEIn (v)

]2
dudv

}1/2

,

CREI
n,1 =

e
1
2 (1−v)h − e

1
2 (1−u)h

h
e

1
2vhL(T − (n+ u)h)

[
C2(n) + C4 + 2L(T − nh)C2(n) + (dL(T − nh))1/2

]
+ e

1
2 (1−u)hM1

[
1 + 2e

1
2 vh
(
L(T − nh)C2(n) + (dL(T − nh))1/2

)
+ C2(n) + C4

]
+

|e 1
2 (1−u)h − e

1
2 (1−v)h|

h

(
L(T − (n+ v)h)C2(n) + (dL(T − (n+ v)h))1/2

)
,

CREI
n,2 =

√
d

{∫ 1

0

∫ 1

0

L(T − (n+ u)h)2|u− v|dudv
}1/2

.

Proof of Proposition 14. This proposition can be proven following the same approach as in the proof
of Proposition 12, with the only difference being the inclusion of the exponential coefficient term.
However, this term does not significantly affect the overall proof.
Similarly, we make a decomposition as∥∥∥Ỹh − ϑREI

n+1

∥∥∥
L2

⩽
∥∥∥Ỹh − EUn

[ϑREI
n+1]

∥∥∥
L2

+
∥∥EUn

[ϑREI
n+1]

∥∥
L2

. (32)

Note that

Ỹh − EUn [ϑ
REI
n+1] =

∫ h

0

e
1
2 (h−t)∇ log pT−nh−t(Ỹt) dt− hEUn

[
e

1
2 (1−Un)hs∗(T − nh− Unh, ϑ

REI
n+Un

)
]

= h

∫ 1

0

e
1
2 (1−u)h

(
∇ log pT−nh−uh(Ỹuh)− s∗(T − nh− uh, ϑREI

n+u)
)
du

= h

∫ 1

0

e
1
2 (1−u)h

(
∇ log pT−nh−uh(Ỹuh)−∇ log pT−nh−uh(ϑ

REI
n+u)

)
du

+ h

∫ 1

0

e
1
2 (1−u)h

(
∇ log pT−nh−uh(ϑ

REI
n+u)− s∗(T − nh− uh, ϑREI

n+u)
)
du .

Then, we obtain∥∥∥Ỹh − EUn [ϑ
REI
n+1]

∥∥∥
L2

⩽ h

∫ 1

0

∥∥∥e 1
2 (1−u)h(∇ log pT−nh−uh(Ỹuh)− s∗(T − nh− uh, ϑREI

n+u))
∥∥∥
L2

du

⩽ h

∫ 1

0

e
1
2 (1−u)hL(T − nh− uh)

∥∥∥Ỹuh − ϑREI
n+u

∥∥∥
L2

du+ h

∫ 1

0

e
1
2 (1−u)h du εsc

⩽ h3

∫ 1

0

e
1
2 (1−u)hL(T − nh− uh)u2

(
C5,n(u)C1,n(u) +M1

2(euh/2 − 1)

uh

)
du
∥∥Ynh − ϑREI

n

∥∥
L2

+ h3

∫ 1

0

e
1
2 (1−u)hL(T − nh− uh)u2

[
C5,n(u)

(
C1,n(u)C2(n) +

1

2
C4 + C3,n(u)

)

36

+
2(euh − 1)

uh
M1(1 + C2(n) + C4)

]
du

+ h5/2

∫ 1

0

e
1
2 (1−u)hL(T − nh− uh)u3/2C5,n(u) du

√
d

+ h2

∫ 1

0

e
1
2 (1−u)hL(T − nh− uh)

2(euh/2 − 1)

h
du εsc + h

2(eh/2 − 1)

h
εsc , (33)

where

C5,n(u) =
1

uh

∫ (n+u)h

nh

e
1
2 ((n+u)h−t)L(T − t) dt .

In the third inequality, we can directly bound
∥∥∥Ỹuh − ϑREI

n+u

∥∥∥
L2

, as it is a special case of Proposition 11,

where the step size is replaced by uh.
For the second term of (32), we have

ϑREI
n+1 − EUn

[ϑREI
n+1]

= he
1
2 (1−Un)hs∗(T − nh− Unh, ϑ

REI
n+U)− hEUn

[
e

1
2 (1−Un)hs∗(T − nh− Unh, ϑ

REI
n+U)

]
= h

∫ 1

0

[
e

1
2 (1−Un)hs∗(T − nh− Unh, ϑ

REI
n+Un

)− e
1
2 (1−v)hs∗(T − nh− vh, ϑREI

n+v)
]
dv .

Similar to display (29), we then obtain∥∥ϑREI
n+1 − EUn [ϑ

REI
n+1]

∥∥
L2

⩽

{
E
∫ 1

0

[
h

∫ 1

0

e
1
2 (1−u)hs∗(T − (n+ u)h, ϑREI

n+u)− e
1
2 (1−v)hs∗(T − (n+ v)h, ϑREI

n+v) dv

]2
du

}1/2

⩽ h

{∫ 1

0

∫ 1

0

∥∥∥e 1
2 (1−u)hs∗(T − (n+ u)h, ϑREI

n+u)− e
1
2 (1−v)hs∗(T − (n+ v)h, ϑREI

n+v)
∥∥∥2
L2

dudv

}1/2

⩽ h

{∫ 1

0

∫ 1

0

∥∥∥e 1
2 (1−u)h∇ log pT−(n+u)h(ϑ

REI
n+u)− e

1
2 (1−v)h∇ log pT−(n+v)h(ϑ

REI
n+v)

∥∥∥2
L2

dudv

}1/2

+ 2h

(∫ 1

0

e(1−u)h du

)1/2

εsc ,

Using the same strategy as in display (30), we arrive at∥∥∥e 1
2 (1−u)h∇ log pT−(n+u)h(ϑ

REI
n+u)− e

1
2 (1−v)h∇ log pT−(n+v)h(ϑ

REI
n+v)

∥∥∥
L2

⩽ e
1
2 (1−u)h

∥∥∇ log pT−(n+u)h(ϑ
REI
n+u)−∇ log pT−(n+u)h(ϑ

REI
n+v)

∥∥
L2

+ e
1
2 (1−u)h

∥∥∇ log pT−(n+u)h(ϑ
REI
n+v)−∇ log pT−(n+v)h(ϑ

REI
n+v)

∥∥
L2

+
∣∣∣e 1

2 (1−u)h − e
1
2 (1−v)h

∣∣∣ ∥∥∇ log pT−(n+v)h(ϑ
REI
n+v)

∥∥
L2

⩽ e
1
2 (1−u)hL(T − (n+ u)h)

∥∥ϑREI
n+u − ϑREI

n+v

∥∥
L2

+ e
1
2 (1−u)hM1h(1 +

∥∥ϑREI
n+v

∥∥
L2
)

+
∣∣∣e 1

2 (1−u)h − e
1
2 (1−v)h

∣∣∣ [L(T − (n+ v)h)
(∥∥Y(n+v)h − ϑREI

n+v

∥∥
L2

+ C2(n)
)
+ (dL(T − (n+ v)h))1/2

]
.

The second inequality follows from Assumptions 1 and 2. We bound the term∥∥∇ log pT−(n+v)h(ϑ
REI
n+v)

∥∥
L2

by decomposing it as follows∥∥∇ log pT−(n+v)h(ϑ
REI
n+v)

∥∥
L2

⩽
∥∥∇ log pT−(n+v)h(ϑ

REI
n+v)−∇ log pT−(n+v)h(Y(n+v)h)

∥∥
L2

+
∥∥∥∇ log pT−(n+v)h(Y(n+v)h)−∇ log pT−(n+v)h(X

←
((n+v)h))

∥∥∥
L2

+
∥∥∇ log pT−(n+v)h(XT−(n+v)h)

∥∥
L2

.

37

Without loss of generality, we consider the case where u > v; the other case follows similarly.∥∥ϑREI
n+u − ϑREI

n+v

∥∥
L2

= (e
1
2uh − e

1
2 vh)

∥∥ϑREI
n

∥∥
L2

+

∫ uh

vh

e
1
2 t dt

∥∥s∗(T − nh, ϑREI
n)
∥∥
L2

+

∥∥∥∥∥
∫ (n+u)h

nh

e
1
2 ((n+u)h−t) dWt −

∫ (n+v)h

nh

e
1
2 ((n+v)h−t) dWt

∥∥∥∥∥
L2

⩽
(
e

1
2 (u−v)h − 1

)
e

1
2 vh
(∥∥Ynh − ϑREI

n

∥∥
L2

+ C2(n) + C4

)
+ 2
(
e

1
2 (u−v)h − 1

)
e

1
2 vh
[
εsc + L(T − nh)

(∥∥Ynh − ϑREI
n

∥∥
L2

+ C2(n)
)
+ (dL(T − nh))1/2

]
+
[
(euh − 1) + (evh − 1)− 2(e

u+v
2 h − e

u−v
2 h)

]1/2 √
d .

(34)
Here, we apply the formula in (28) to bound the last term.∥∥∥∥∥

∫ (n+u)h

nh

1{t⩽(n+v)h}(e
1
2 ((n+u)h−t) − e

1
2 ((n+v)h−t)) + 1{t>(n+v)h}e

1
2 ((n+u)h−t) dWt

∥∥∥∥∥
L2

=
√
d

[∫ (n+v)h

nh

(e
1
2 ((n+u)h−t) − e

1
2 ((n+v)h−t))2 dt+

∫ (n+u)h

(n+v)h

e(n+u)h−t dt

]1/2
=

√
d
[
(euh − 1) + (evh − 1)− 2(e

u+v
2 h − e

u−v
2 h)

]1/2
,

We then bound the term
∥∥ϑREI

n+v

∥∥
L2

following display (34) above. To this end, let u = 0, we then have∥∥ϑREI
n+v

∥∥
L2

⩽ (e
1
2 vh − 1)(

∥∥Ynh − ϑREI
n

∥∥
L2

+ C2(n) + C4)

+ 2(e
1
2 vh − 1)

[
εsc + L(T − nh)

(∥∥Ynh − ϑREI
n

∥∥
L2

+ C2(n)
)
+ (dL(T − nh))1/2

]
+
√
d(evh − 1)1/2

+
∥∥Ynh − ϑREI

n

∥∥
L2

+ C2(n) + C4 .

Additionally, we can bound
∥∥Y(n+v)h − ϑREI

n+v

∥∥
L2

, as it is a special case of the one-step discretization
error under the Exponential Integrator scheme, where the step size is replaced by vh. Specifically, we
have ∥∥Y(n+v)h − ϑREI

n+v

∥∥
L2

⩽ rEIn (v)
∥∥Ynh − ϑREI

n

∥∥
L2

+ h2CEI
n (v) + h3/2u3/2

√
dC5,n(v) + vh

2(e
1
2 vh − 1)

vh
εsc ,

where

rEIn (v) = e−
∫ (n+v)h
nh (m(T−t)− 1

2) dt + v2h2

(
C5,n(v)C1,n(v) +M1

2(e
1
2vh − 1)

vh

)
,

CEI
n (v) = C5,n(v)

(
C1,n(v)C2(n) +

1

2
C4 + C3,n(v)

)
+

2(e
1
2 vh − 1)

vh
M1(1 + C2(n) + C4) .

Then, we obtain∥∥∥e 1
2 (1−u)h∇ log pT−(n+u)h(ϑ

REI
n+u)− e

1
2 (1−v)h∇ log pT−(n+v)h(ϑ

REI
n+v)

∥∥∥
L2

⩽

{
2(e

1
2 (1−v)h − e

1
2 (1−u)h)e

1
2vhL(T − (n+ u)h)

[
1

2
+ L(T − nh)

]
+ e

1
2 (1−u)hM1h

[
(e

1
2vh − 1) + 2(e

1
2vh − 1)L(T − nh) + 1

]
38

+
∣∣∣e 1

2 (1−u)h − e
1
2 (1−v)h

∣∣∣L(T − (n+ v)h)rEIn (v)

}∥∥Ynh − ϑREI
n

∥∥
L2

+ h3L(T − (n+ v)h)
|e 1

2 (1−u)h − e
1
2 (1−v)h|

h
CEI

n (v)

+ h5/2L(T − (n+ v)h)
|e 1

2 (1−u)h − e
1
2 (1−v)h|

h
u3/2

√
dC5,n(v)

+ h2M1e
1
2 (1−u)h

e
1
2 vh − 1

h
(C2(n) + C4)

+ h3/2M1e
1
2 (1−u)h

√
vd

(
evh − 1

vh

)1/2

+ h

{
e

1
2 (1−v)h − e

1
2 (1−u)h

h
e

1
2vhL(T − (n+ u)h)

[
C2(n) + C4 + 2L(T − nh)C2(n) + (dL(T − nh))1/2

]
+ e

1
2 (1−u)hM1

[
1 + 2e

1
2 vh
(
L(T − nh)C2(n) + (dL(T − nh))1/2

)
+ C2(n) + C4

]
+

|e 1
2 (1−u)h − e

1
2 (1−v)h|

h

(
L(T − (n+ v)h)C2(n) + (dL(T − (n+ v)h))1/2

)}

+ h1/2L(T − (n+ u)h)e
1
2 (1−u)h

[
(euh − 1) + (evh − 1)− 2(e

u+v
2 h − e

u−v
2 h)

h

]1/2 √
d

+ h2εscL(T − (n+ v)h)
|e 1

2 (1−u)h − e
1
2 (1−v)h|

h

2(e
1
2vh − 1)

h

+ hεsc · 2e
1
2 (1−u)h

[
L(T − (n+ u)h)

e
1
2uh − e

1
2 vh

h
+M1e

1
2 vh

]
.

Ignoring the higher-order terms, we take the supremum with respect to v and substitute it back into
the original expression, yielding∥∥ϑREI

n+1 − EUn [ϑ
REI
n+1]

∥∥
L2

⩽ h

{∫ 1

0

∫ 1

0

∥∥∥e 1
2 (1−u)hs∗(T − (n+ u)h, ϑREI

n+u)− e
1
2 (1−v)hs∗(T − (n+ v)h, ϑREI

n+v)
∥∥∥2
L2

dudv

}1/2

⩽ h2

{∫ 1

0

∫ 1

0

[
|u− v|L(T − (n+ u)h)

(
1

2
+ L(T − nh)

)
+M1

+
1

2
|u− v|L(T − (n+ v)h)rEIn (v)

]2
dudv

}1/2 ∥∥Ynh − ϑREI
n

∥∥
L2

+ h3/2

{∫ 1

0

∫ 1

0

dL(T − (n+ u)h)2|u− v|dudv
}1/2

+ 2hεsc .

(35)
This completes the proof.

Now, we have∥∥YNh − ϑREI
N

∥∥
L2

≲
1

mmin − 1/2

(
h max

0⩽k⩽N−1
CREI

n,1 +
√
h max

0⩽k⩽N−1
CREI

n,2 + 3εsc

)
≲

√
dh

Lmax√
3(mmin − 1/2)

+ εsc
3

mmin − 1/2
.

The desired result follows readily.

39

C The proof of the upper bound of error of the second-order acceleration
scheme

This section is dedicated to proving the Wasserstein convergence result for second-order acceleration.
To this end, we first establish the following proposition.
Proposition 15. Suppose that Assumptions 1, 3, 5, 6, 7 are satisfied, the following results hold.

(1) First, we have an upper bound for
∥∥∥Ỹh − ϑSO

n+1

∥∥∥
L2

as follows,∥∥∥Ỹh − ϑSO
n+1

∥∥∥
L2

⩽ An,1e
(L(nh)− 1

2)hh2
∥∥Ynh − ϑSO

n

∥∥
L2

+An,2e
(L(nh)− 1

2)hh2

+

(
hεsc +

2

3

√
dh3/2ε(L)

sc +
1

2
h2ε(M)

sc

)
e(L(T−nh)− 1

2)h ,

where

An,1 = sup
nh⩽t⩽(n+1)h

1

t2

∫ t

0

(∫ s

0

[
(1 + L(T − nh− u))L(T − nh− u)

+ (1 + L(T − nh))L(T − nh)
]
du
)
ds ,

An,2 = sup
nh⩽t⩽(n+1)h

1

t2

[∫ t

0

(∫ s

0

[
(1 + L(T − nh− u))L(T − nh− u)

+ (1 + L(T − nh))L(T − nh)
]
du
)
ds · C2(n)

+
√
d

∫ t

0

(∫ s

0

[(1
2
+ L(T − nh− u)

)
L(T − nh− u)1/2

+
(1
2
+ L(T − nh)

)
L(T − nh)1/2

]
du

)
ds

+

∫ t

0

(∫ s

0

1

2
(L(T − nh− u) + L(T − nh)) du

)
ds · C4

]
+

√
2

4

√
dLF .

(2) Furthermore, it holds that∥∥Y(n+1)h − ϑSO
n+1

∥∥
L2

⩽ rSOn
∥∥Ynh − ϑSO

n

∥∥
L2

+ h2CSO
n

+

[
hεsc +

2

3

√
dh3/2ε(L)

sc +
1

2
h2ε(M)

sc

]
e(L(T−nh)− 1

2)h ,

where

rSOn = e−
∫ (n+1)h
nh (m(T−t)− 1

2) dt + h2An,1e
(L(T−nh)− 1

2)h ,

CSO
n = An,2e

(L(T−nh)− 1
2)h .

Proof. Recall the expression in display (44), which states that

xt = ϑSO
n +

∫ t

nh

(
1

2
ϑSO
n +∇ log pT−nh(ϑ

SO
n) + Ln(xs − ϑSO

n) +Mn(s− nh)

)
ds+

∫ t

nh

dWs

with

Ln =
1

2
Id +∇2 log pT−nh(ϑ

SO
n) ∈ Rd×d,

Mn =
1

2

d∑
j=1

∂2

∂x2
j

∇ log pT−nh(ϑ
SO
n)− ∂

∂t
∇ log pT−nh(ϑ

SO
n) ∈ Rd.

40

Plugging the estimates of ∇ log pT−nh(ϑ
SO
n), Ln and Mn into the previous display yields the follow-

ing process for xSO
t

xSO
t = ϑSO

n +

∫ t

nh

1

2
ϑSO
n + s∗(T − nh, ϑSO

n) ds

+

∫ t

nh

s
(L)
∗ (T − nh, ϑSO

n)(xSO
s − ϑSO

n) + s
(M)
∗ (T − nh, ϑSO

n)(s− nh) ds+

∫ t

nh

dWs .

Then, we obtain

xSO
t − xt = (t− nh)(s∗(T − nh, ϑSO

n)−∇ log pT−nh(ϑ
SO
n))

+ (s
(L)
∗ (T − nh, ϑSO

n)− Ln)

∫ t

nh

(xSO
s − ϑSO

n) ds+ Ln

∫ t

nh

(xSO
s − xs) ds

+ (s
(M)
∗ (T − nh, ϑSO

n)−Mn) ·
1

2
(t− nh)2.

Notice that

∥Ln∥L2
=

∥∥∥∥12Id +∇2 log pT−nh(ϑ
SO
n)

∥∥∥∥
L2

⩽ L(T − nh)− 1

2
. (36)

Combining this with Assumptions 3 and 5 then provides us with∥∥xSO
t − xt

∥∥
L2

⩽ (t− nh)εsc + ε(L)
sc

∫ t

nh

∥∥xSO
s − ϑSO

n

∥∥
L2

ds+ ∥Ln∥L2

∫ t

nh

∥∥xSO
s − xs

∥∥ ds+
1

2
(t− nh)2ε(M)

sc

≲
(
L(T − nh)− 1

2

)∫ t

nh

∥∥xSO
s − xs

∥∥ ds+ (t− nh)εsc +
2

3

√
d(t− nh)3/2ε(L)

sc +
1

2
(t− nh)2ε(M)

sc .

We omit the constant of term
2

3

√
d(t − nh)3/2ε

(L)
sc in the last inequality. To handle the resulting

integral inequality, we invoke the following Grönwall-type inequality.

Lemma 16. Let z(t) ⩾ t0 satisfy the following inequality:

z(t) ⩽ α(t) +

∫ t

t0

β(s)z(s) ds , t ⩾ t0 ,

where β(s) is non-negative, and t0 is the initial time. Then, the solution z(t) satisfies the following
bound:

z(t) ⩽ α(t) +

∫ t

t0

α(s)β(s) exp

(∫ t

s

β(r) dr

)
ds , t ⩾ t0 .

Additionally, if α(t) is non-decreasing function, then

z(t) ⩽ α(t) exp

(∫ t

t0

β(s) ds

)
, t ⩾ t0 .

Let

z(t) =
∥∥xSO

t − xt

∥∥
L2

,

α(t) = (t− nh)εsc +
2

3

√
d(t− nh)3/2ε(L)

sc +
1

2
(t− nh)2ε(M)

sc ,

β(t) = L(T − nh)− 1

2
,

and set t0 = nh. By Lemma 16, we have∥∥ϑSO
n+1 − x(n+1)h

∥∥
L2

⩽

(
hεsc +

2

3

√
dh3/2ε(L)

sc +
1

2
h2ε(M)

sc

)
e(L(T−nh)− 1

2)h . (37)

41

The original SDE can be rewritten as follows

Ỹt = Ỹ0 +

∫ t

0

(1
2
Ỹs +∇ log pT−nh−s(Ỹs)

)
ds+

∫ nh+t

nh

dWs .

Combining this with the definition of xt in (44), we then have

Ỹt − xnh+t =

∫ t

0

(
1

2
Ỹs +∇ log pT−nh−s(Ỹs)−

1

2
ϑSO
n −∇ log pT−nh(ϑ

SO
n)− Ln(xnh+s − ϑSO

n)−Mns

)
ds

=

∫ t

0

Ln(Ỹs − xnh+s) ds+

∫ t

0

(
1

2
Ỹs +∇ log pT−nh−s(Ỹs)−

1

2
ϑSO
n −∇ log pT−nh(ϑ

SO
n)

)
ds

−
∫ t

0

(∫ s

0

Ln dỸu du

)
ds−

∫ t

0

(∫ s

0

Mn du

)
ds

=

∫ t

0

Ln(Ỹs − xnh+s) ds+

∫ t

0

(∫ s

0

d

(
1

2
Ỹu +∇ log pT−nh−u(Ỹu)

))
ds

−
∫ t

0

(∫ s

0

Ln dỸu du

)
ds−

∫ t

0

(∫ s

0

Mn du

)
ds .

We then apply the Itô formula to the term d

(
1

2
Ỹu +∇ log pT−nh−u(Ỹu)

)
. Recall the definitions

of Ln and Mn, and after rearranging the expression, we obtain

Ỹt − xnh+t =

∫ t

0

Ln(Ỹs − xnh+s) ds︸ ︷︷ ︸
I

+

∫ t

0

(∫ s

0

∇2 log pT−nh−u(Ỹu)−∇2 log pT−nh(Ỹ0) dỸu

)
ds︸ ︷︷ ︸

II

+

∫ t

0

[∫ s

0

(
1

2

d∑
j=1

∂2

∂x2
j

∇ log pT−nh−u(Ỹu)− ∂t∇ log pT−nh−u(Ỹu)

)
︸ ︷︷ ︸

III

−
(
1

2

d∑
j=1

∂2

∂x2
j

∇ log pT−nh(Ỹ0)− ∂t∇ log pT−nh(Ỹ0)

)
du

]
ds︸ ︷︷ ︸

III

.

In what follows, we derive the upper bounds for each term on the right-hand side of the previous
display.

Upper bound for term I: The upper bound of the term I follows directly from the fact that

∥Ln∥L2
⩽ L(T − nh)− 1

2
.

Upper bound for term II: To derive the upper bound for the second term, we expand the term dỸu,
yielding∥∥∥∥∫ s

0

∇2 log pT−nh−u(Ỹu)−∇2 log pT−nh(Ỹ0) dỸu

∥∥∥∥
L2

⩽

∥∥∥∥∫ s

0

(
∇2 log pT−nh−u(Ỹu)−∇2 log pT−nh(Ỹ0)

)(1
2
Ỹu +∇ log pT−nh−u(Ỹu)

)
du

∥∥∥∥
L2

+

∥∥∥∥∫ s

0

(
∇2 log pT−nh−u(Ỹu)−∇2 log pT−nh(Ỹ0)

)
dWu

∥∥∥∥
L2

⩽
∫ s

0

∥∥∥∇2 log pT−nh−u(Ỹu)−∇2 log pT−nh(Ỹ0)
∥∥∥
L2

·
∥∥∥∥12 Ỹu +∇ log pT−nh−u(Ỹu)

∥∥∥∥
L2

du

+

(∫ s

0

∥∥∥∇2 log pT−nh−u(Ỹu)−∇2 log pT−nh(Ỹ0)
∥∥∥2
L2

du

)1/2

.

42

The second inequality follows from display (28). We note that by Assumptions 6 and 7, it holds that∥∥∥∇2 log pT−nh−u(Ỹu)−∇2 log pT−nh(Ỹ0)
∥∥∥
L2

⩽
∥∥∥∇2 log pT−nh−u(Ỹu)−∇2 log pT−nh(Ỹu)

∥∥∥
L2

+
∥∥∥∇2 log pT−nh(Ỹu)−∇2 log pT−nh(Ỹ0)

∥∥∥
L2

⩽ M2h(1 +
∥∥∥Ỹu

∥∥∥
L2

) + LF

∥∥∥Ỹu − Ỹ0

∥∥∥
L2

⩽ M2h+ (LF +M2h)
∥∥∥Ỹu − Ỹ0

∥∥∥
L2

+M2h
∥∥ϑSO

n

∥∥
L2

≲ LF

√
du ,

Combining this with the previous display provides us with∥∥∥∥∫ s

0

∇2 log pT−nh−u(Ỹu)−∇2 log pT−nh(Ỹ0) dỸu

∥∥∥∥
L2

≲
∫ s

0

LF

√
du ·

∥∥∥∥12 Ỹu +∇ log pT−nh−u(Ỹu)

∥∥∥∥
L2

du+

(∫ s

0

L2
F dudu

)1/2

.

Hence, we obtain

∥II∥L2
=

∥∥∥∥∫ t

0

(∫ s

0

∇2 log pT−nh−u(Ỹu)−∇2 log pT−nh(Ỹ0) dỸu

)
ds

∥∥∥∥
L2

⩽
∫ t

0

∥∥∥∥∫ s

0

∇2 log pT−nh−u(Ỹu)−∇2 log pT−nh(Ỹ0) dỸu

∥∥∥∥
L2

ds

⩽
∫ t

0

[∫ s

0

LF

√
du ·

∥∥∥∥12 Ỹu +∇ log pT−nh−u(Ỹu)

∥∥∥∥
L2

du+

(∫ s

0

L2
F dudu

)1/2
]
ds

≲

√
2

4
LF

√
dt2 .

(38)

Upper bound for term III:

In Section 4, it is claimed that the partial derivative of ∇ log pt with respect to t can be estimated
without requiring additional assumptions. This is achieved by transforming the t-derivative into
x-derivative via the Fokker-Planck equation, as detailed below.

∂tpt(x) =
d

2
pt(x) +

1

2
x⊤∇pt(x) +

1

2

d∑
i=1

∂2pt(x)

∂x2
i

. (39)

We need the following auxiliary lemma.

Lemma 17. Let pt be the probability density function of Xt, then

d∑
i=1

∂2pt(x)

∂x2
i

· 1

pt(x)
= Tr

(
∇2 log pt(x)

)
+ ∥∇ log pt(x)∥2 ,

∇

(
d∑

i=1

∂2pt(x)

∂x2
i

)
· 1

pt(x)
= ∇

(
Tr(∇2 log pt(x))

)
+∇(∥∇ log pt(x)∥2)

+
[
Tr(∇2 log pt(x)) + ∥∇ log pt(x)∥2

]
· ∇ log pt(x) .

We begin by taking the gradient of log pt, and then compute the partial derivative of ∇ log pt with
respect to t. This results in

∂t∇ log pt(x) = ∂t

(
∇pt(x)

pt(x)

)
=

∂t∇pt(x)

pt(x)
− ∇pt(x)

pt(x)
· ∂tpt(x)

pt(x)
.

43

Under certain regularity conditions, we can interchange the operators ∂t and ∇ in the term ∂t∇pt(x),
and substitute ∂tpt(x) by (39), it follows that

∂t∇ log pt(x) =
∇∂tpt(x)

pt(x)
−∇ log pt(x) ·

(
d

2
+

1

2
x⊤∇ log pt(x) +

1

2

d∑
i=1

∂2pt(x)

∂x2
i

· 1

pt(x)

)
.

and

∇∂tpt(x)

pt(x)
=

1

pt(x)
· ∇

(
d

2
pt(x) +

1

2
x⊤∇pt(x) +

1

2

d∑
i=1

∂2pt(x)

∂x2
i

)

=
d

2

∇pt(x)

pt(x)
+

1

2

∇pt(x)

pt(x)
+

1

2

∇2pt(x)x

pt(x)
+

1

2
∇

(
d∑

i=1

∂2pt(x)

∂x2
i

)
· 1

pt(x)

=
d+ 1

2
∇ log pt(x) +

1

2

∇2pt(x)x

pt(x)
+

1

2
∇

(
d∑

i=1

∂2pt(x)

∂x2
i

)
· 1

pt(x)
.

Therefore, we obtain that

∂t∇ log pt(x) =
d+ 1

2
∇ log pt(x) +

1

2

∇2pt(x)x

pt(x)
+

1

2
∇

(
d∑

i=1

∂2pt(x)

∂x2
i

)
· 1

pt(x)

−∇ log pt(x) ·

(
d

2
+

1

2
x⊤∇ log pt(x) +

1

2

d∑
i=1

∂2pt(x)

∂x2
i

· 1

pt(x)

)

=
1

2
∇ log pt(x) +

1

2

(
∇2pt(x)x

pt(x)
−∇ log pt(x)∇ log pt(x)

⊤x

)
+

1

2
∇

(
d∑

i=1

∂2pt(x)

∂x2
i

)
· 1

pt(x)
− 1

2
∇ log pt(x)

d∑
i=1

∂2pt(x)

∂x2
i

· 1

pt(x)
.

By Lemma 17, the last two terms above can be calculated. Additionally, it holds that

∇2 log pt(x) =
∇2pt(x)

pt(x)
− ∇pt(x)∇pt(x)

⊤

pt(x)2
.

Thus, ∂t∇ log pt(x) can be simplified to

∂t∇ log pt(x) =
1

2
∇ log pt(x) +

1

2
∇2 log pt(x)x

+
1

2

[
∇
(
Tr(∇2 log pt(x))

)
+∇(∥∇ log pt(x)∥2)

]
+

1

2

(
Tr(∇2 log pt(x)) + ∥∇ log pt(x)∥2

)
· ∇ log pt(x)

− 1

2
∇ log pt(x)

(
Tr(∇2 log pt(x)) + ∥∇ log pt(x)∥2

)
=

1

2
∇ log pt(x) +

1

2
∇2 log pt(x)x+

1

2
∇(Tr(∇2 log pt(x))) +

1

2
∇(∥∇ log pt(x)∥2) .

Notice that
d∑

j=1

∂2

∂x2
j

∇ log pt(x) =
1

2
∇(Tr(∇2 log pt(x))) .

Then, it follows that

1

2

d∑
j=1

∂2

∂x2
j

∇ log pt(x)− ∂t∇ log pt(x)

= −
(
1

2
∇ log pt(x) +

1

2
∇2 log pt(x)x+

1

2
∇(∥∇ log pt(x)∥2)

)
= −1

2

(
∇ log pt(x) +∇2 log pt(x)x

)
+∇2 log pt(x) · ∇ log pt(x) .

44

Therefore we have∥∥∥∥∥∥12
d∑

j=1

∂2

∂x2
j

∇ log pT−nh−u(Ỹu)− ∂t∇ log pT−nh−u(Ỹu)

∥∥∥∥∥∥
L2

⩽
1

2

∥∥∥∇ log pT−nh−u(Ỹu)
∥∥∥
L2

+
1

2

∥∥∥∇2 log pT−nh−u(Ỹu)
∥∥∥
L2

∥∥∥Ỹu

∥∥∥
L2

+
∥∥∥∇2 log pT−nh−u(Ỹu)

∥∥∥
L2

∥∥∥∇ log pT−nh−u(Ỹu)
∥∥∥
L2

⩽
1

2

∥∥∥∇ log pT−nh−u(Ỹu)
∥∥∥
L2

+
1

2
L(T − nh− u)

∥∥∥Ỹu

∥∥∥
L2

+ L(T − nh− u)
∥∥∥∇ log pT−nh−u(Ỹu)

∥∥∥
L2

.

The second inequality follows from Assumption 1. The bounds for
∥∥∥Ỹu

∥∥∥
L2

and∥∥∥∇ log pT−nh−u(Ỹu)
∥∥∥
L2

can be derived according to the proof of Lemma 10. We then find

∥∥∥∥∥∥12
d∑

j=1

∂2

∂x2
j

∇ log pT−nh−u(Ỹu)− ∂t∇ log pT−nh−u(Ỹu)

∥∥∥∥∥∥
L2

⩽
1

2

∥∥∥∇ log pT−nh−u(Ỹu)
∥∥∥
L2

+
1

2
L(T − nh− u)

∥∥∥Ỹu

∥∥∥
L2

+ L(T − nh− u)
∥∥∥∇ log pT−nh−u(Ỹu)

∥∥∥
L2

⩽
(1
2
+ L(T − nh− u)

) [
L(T − nh− u)(

∥∥Ynh − ϑSO
n

∥∥
L2

+ C2(n)) +
(
dL(T − nh− u)

)1/2]
+

1

2
L(T − nh− u)

(∥∥Ynh − ϑSO
n

∥∥
L2

+ C2(n) + C4

)
.

Therefore, we obtain

∥III∥L2
⩽
∫ t

0

∫ s

0

∥∥∥∥∥∥12
d∑

j=1

∂2

∂x2
j

∇ log pT−nh−u(Ỹu)− ∂t∇ log pT−nh−u(Ỹu)

∥∥∥∥∥∥
L2

duds

+

∫ t

0

∫ s

0

∥∥∥∥∥∥12
d∑

j=1

∂2

∂x2
j

∇ log pT−nh(Ỹ0)− ∂t∇ log pT−nh(Ỹ0)

∥∥∥∥∥∥
L2

duds

⩽
∫ t

0

∫ s

0

[(1 + L(T − nh− u))L(T − nh− u) + (1 + L(T − nh))L(T − nh)] duds ·
∥∥Ynh − ϑSO

n

∥∥
L2

+

∫ t

0

∫ s

0

[(1 + L(T − nh− u))L(T − nh− u) + (1 + L(T − nh))L(T − nh)] duds · C2(n)

+
√
d

∫ t

0

∫ s

0

[
(
1

2
+ L(T − nh− u))L(T − nh− u)1/2 + (

1

2
+ L(T − nh))L(T − nh)1/2

]
duds

+

∫ t

0

∫ s

0

1

2
(L(T − nh− u) + L(T − nh)) duds · C4 .

(40)
For simplicity, we focus on the lowest-order term. Recall equations (36), (38) and (40), which lead to
the following expression∥∥∥Ỹt − xnh+t

∥∥∥
L2

⩽
(
L(T − nh)− 1

2

)∫ t

0

∥∥∥Ỹs − xnh+s

∥∥∥
L2

ds+
(
An,1

∥∥Ynh − ϑSO
n

∥∥
L2

+An,2

)
· t2,

where

An,1 = sup
nh⩽t⩽(n+1)h

1

t2

∫ t

0

∫ s

0

[(1 + L(T − nh− u))L(T − nh− u) + (1 + L(T − nh))L(T − nh)] duds ,

45

and

An,2 = sup
nh⩽t⩽(n+1)h

1

t2

[
C2(n)

∫ t

0

∫ s

0

[(1 + L(T − nh− u))L(T − nh− u) + (1 + L(T − nh))L(T − nh)] duds

+
√
d

∫ t

0

∫ s

0

[(
1

2
+ L(T − nh− u))L(T − nh− u)1/2 + (

1

2
+ L(T − nh))L(T − nh)1/2] duds

+

∫ t

0

∫ s

0

1

2
(L(T − nh− u) + L(T − nh)) duds · C4

]
+

√
2

4

√
dLF .

Using Lemma 16 with

z(t) =
∥∥∥Ỹt − xnh+t

∥∥∥
L2

,

α(t) = (An,1

∥∥Ynh − ϑSO
n

∥∥
L2

+An,2) · t2 ,

β(t) = L(T − nh)− 1

2
,

set t0 = nh, we then obtain∥∥∥Ỹh − x(n+1)h

∥∥∥
L2

⩽ (An,1

∥∥Ynh − ϑSO
n

∥∥
L2

+An,2)h
2 exp

(
(L(T − nh)− 1

2
)h

)
= An,1e

(
L(T−nh)− 1

2

)
hh2

∥∥Ynh − ϑSO
n

∥∥
L2

+An,2e
(L(T−nh)− 1

2)hh2.

Invoking display (37), we arrive at∥∥∥Ỹh − ϑSO
n+1

∥∥∥
L2

⩽
∥∥∥Ỹh − x(n+1)h

∥∥∥
L2

+
∥∥ϑSO

n+1 − x(n+1)h

∥∥
L2

⩽ An,1e
(L(T−nh)− 1

2)hh2
∥∥Ynh − ϑSO

n

∥∥
L2

+An,2e
(L(T−nh)− 1

2)hh2

+

[
hεsc +

2

3
h3/2

√
dε(L)

sc +
1

2
h2ε(M)

sc

]
e(L(T−nh)− 1

2)h .

Furthermore, we can bound the coefficients An,1 and An,2 as follows,

An,1 ⩽
1

t2

∫ t

0

(∫ s

0

2(1 + Lmax)Lmax du

)
ds = (1 + Lmax)Lmax ,

An,2 ⩽ (1 + Lmax)LmaxC2(n) +
√
d(

1

2
+ Lmax)L

1/2
max +

1

2
LmaxC4 +

√
2

4

√
dLF

≲
√
d(

1

2
+ Lmax)L

1/2
max +

√
2

4

√
dLF .

Collecting all the pieces then gives∥∥Ynh − ϑSO
n+1

∥∥
L2

⩽ rSOn
∥∥Ynh − ϑSO

n

∥∥
L2

+ CSO
n h2 +

[
hεsc +

2

3
h3/2ε(L)

sc +
1

2
h2ε(M)

sc

]
e(L(T−nh)− 1

2)h,

where

rSOn = e−
∫ (n+1)h
nh (m(T−t)− 1

2) dt +An,1e
(L(T−nh)− 1

2)hh2,

CSO
n = An,2e

(L(T−nh)− 1
2)h .

From the result above, we finally obtain∥∥YNh − ϑSO
N

∥∥
L2

≲
1

mmin − 1/2

[
h max

0⩽k⩽N−1
CSO

k +

(
εsc +

2

3
h1/2ε(L)

sc +
1

2
hε(M)

sc

)
e(Lmax− 1

2)h

]
≲ h ·

√
d(L

3/2
max +

√
2LF /4)e

(Lmax− 1
2)h

mmin − 1/2
+

(
εsc +

2

3

√
hdε(L)

sc +
1

2
hε(M)

sc

)
e(Lmax− 1

2)h .

This completes the proof of Theorem 4.

46

D Proof of Auxiliary Lemma

D.1 Proof of Lemma 8

We have

d ∥Ht −Gt∥2

dt
= 2

〈
Ht −Gt,

d(Ht −Gt)

dt

〉
= 2

〈
Ht −Gt,

1

2
(Ht −Gt) +

(
∇ log pT−t(Ht)−∇ log pT−t(Gt)

)〉
= ∥Ht −Gt∥2 + 2⟨Ht −Gt,∇ log pT−t(Ht)−∇ log pT−t(Gt)⟩
⩽
(
1− 2m(T − t)

)
∥Ht −Gt∥2 .

(41)

The last inequality follows from Lemma 6. Then, we take the derivative of
e
−

∫ t
t1

(2m(T−s)−1) ds ∥Ht −Gt∥2

d

dt

(
e
∫ t
t1

(2m(T−s)−1) ds ∥Ht −Gt∥2
)

= (2m(T − t)− 1)e
−

∫ t
t1

(2m(T−s)−1) ds ∥Ht −Gt∥2 + e
−

∫ t
t1

(2m(T−s)−1) ds d ∥Ht −Gt∥2

dt
⩽ 0 .

Therefore, we obtain that

e
∫ t
t1

(2m(T−s)−1) ds ∥Ht −Gt∥2 ⩽ ∥Htt −Gt1∥
2
.

taking the expectation of both sides and then applying the square root yields the desired result.

D.2 Proof of Lemma 10

By the definition of Ỹh, we have∥∥∥Ỹt − Ỹ0

∥∥∥
L2

=

∥∥∥∥∥
∫ t

0

(
1

2
Ỹs +∇ log pT−nh−s(Ỹs)) ds+

∫ nh+t

nh

dWs

∥∥∥∥∥
L2

⩽
∫ t

0

1

2

∥∥∥Ỹs

∥∥∥
L2

dt+

∫ t

0

∥∥∥∇ log pT−nh−s(Ỹs)
∥∥∥
L2

ds+

∥∥∥∥∥
∫ nh+t

nh

dWs

∥∥∥∥∥
L2

.

To bound the first term, we observe that for any s ∈ [0, h], the following holds∥∥∥Ỹs

∥∥∥
L2

⩽ ∥Ynh+s∥L2
+
∥∥∥Ỹs − Ynh+s

∥∥∥
L2

⩽
∥∥Ynh+s −X←nh+s

∥∥
L2

+
∥∥X←nh+s

∥∥
L2

+
∥∥∥Ỹs − Ynh+s

∥∥∥
L2

⩽ e−
∫ nh+s
0

(m(T−t)− 1
2) dt ∥Y0 −X←0 ∥L2

+
∥∥XT−(nh+s)

∥∥
L2

+ e−
∫ s
nh

(m(T−u)− 1
2) du

∥∥Ynh − ϑEM
n

∥∥
L2

⩽ e−
∫ nh
0

(m(T−t)− 1
2) dt ∥Y0 −XT ∥L2

+ sup
0⩽t⩽T

∥Xt∥L2
+
∥∥Ynh − ϑEM

n

∥∥
L2

.

Here, the second inequality follows from the Grönwall inequality applied on
∥∥Ynh+s −X←nh+s

∥∥
L2

and
∥∥∥Ỹs − Ynh+s

∥∥∥
L2

, and the fact that ∥Xt∥L2
=
∥∥X←T−t∥∥L2

. To bound the second term, we need

the following lemma.

Lemma 18. If the target distribution p0 satisfies Assumption 1, it holds that

∥∇ log pt(Xt)∥L2
⩽ (dL(t))1/2.

47

According to Lemma 18, it follows that∥∥∥∇ log pT−nh−s(Ỹs)
∥∥∥
L2

⩽
∥∥∥∇ log pT−nh−s(Ỹs)−∇ log pT−nh−s(X

←
nh+s)

∥∥∥
L2

+
∥∥∇ log pT−nh−s(X

←
nh+s)

∥∥
L2

⩽ L(T − nh− s)
∥∥∥Ỹs −X←nh+s

∥∥∥
L2

+ (dL(T − nh− s))1/2

⩽ L(T − nh− s)
∥∥∥Ỹ0 −X←nh

∥∥∥
L2

+ (dL(T − nh− s))1/2

⩽ L(T − nh− s)

(∥∥∥Ỹ0 − Ynh

∥∥∥
L2

+ ∥Ynh −X←nh∥L2

)
+ (dL(T − nh− s))1/2

⩽ L(T − nh− s)
(∥∥Ynh − ϑEM

n

∥∥
L2

+ e−
∫ nh
0

(m(T−t)− 1
2) dt ∥Y0 −XT ∥L2

) + (dL(T − nh− s)
)1/2

.

Here, we use the fact that Ỹ0 = ϑEM
n , and Grönwall inequality are used in the third inequality and the

last one. This completes the proof.

D.3 Proof of Lemma 13

For the stochastic integral of process X , we have

E(It(X))2 = E
∫ t

0

X2
ud⟨M⟩u .

Then, we obtain∥∥∥∥∥
∫ (n+Un)h

nh

dWt −
∫ 1

0

(∫ (n+u)h

nh

dWt

)
du

∥∥∥∥∥
2

L2

= E

(∫ 1

0

∫ (n+1)h

nh

−1{Un⩽u}1{(n+Un)h⩽t⩽(n+u)h} + 1{Un>u}1{(n+u)h⩽t⩽(n+Un)h} dWt du

)2

⩽
∫ 1

0

E

(∫ (n+1)h

nh

−1{Un⩽u}1{(n+Un)h⩽t⩽(n+u)h} + 1{Un>u}1{(n+u)h⩽t⩽(n+Un)h} dWt

)2

du

=

∫ 1

0

(
E
∫ (n+1)h

nh

1{Un⩽u}1{(n+Un)h⩽t⩽(n+u)h} + 1{Un>u}1{(n+u)h⩽t⩽(n+Un)h} dt

)
du

=

∫ 1

0

(
E
(
1{Un⩽u}(u− Un)h+ 1{Un>u}(Un − u)h

))
du

= h

∫ 1

0

(
u2 − u+

1

2

)
du

=
1

3
h .

D.4 Proof of Lemma 16

Define the function w(s) via

w(s) = exp

(
−
∫ s

t0

β(r)dr

)∫ s

t0

β(r)z(r) dr , ∀s ⩾ t0 .

Differentiating this function gives

w′(s) =

(
z(s)−

∫ s

t0

β(r)z(r) dr

)
β(s) exp

(
−
∫ s

t0

β(r) dr

)
⩽ α(s)β(s) exp

(
−
∫ s

t0

β(r) dr

)
.

48

Note that w(t0) = 0. Integrating the function w from t0 to t yields

w(t) ⩽
∫ t

t0

α(s)β(s) exp

(
−
∫ s

t0

β(r) dr

)
ds .

By the definition of w(s), we also have∫ t

t0

β(s)z(s) ds = exp

(∫ t

t0

β(r) dr

)
w(t) .

Combining the previous two displays provides us with∫ t

t0

β(s)z(s) ds ⩽
∫ t

t0

α(s)β(s) exp

(∫ t

s

β(r) dr

)
ds .

By substituting this estimate into the inequality, we can obtain the first desired result. Furthermore, if
α is non-decreasing, then for any s ⩽ t, it holds that α(s) ⩽ α(t). This leads to

z(t) ⩽ α(t) + α(t)

∫ t

t0

β(s) exp

(∫ t

s

β(r) dr

)
ds .

which can be simplified to

z(t) ⩽ α(t) exp

(∫ t

t0

β(r) dr

)
, t ⩾ t0 .

This completes the proof.

D.5 Proof of Lemma 17

Notice that

∇2 log pt(x) =− 1

pt(x)2
∇pt(x)∇pt(x)

⊤ +
1

pt(x)
∇2pt(x)

=−∇ log pt(x)∇ log pt(x)
⊤ +

1

pt(x)
∇2pt(x) ,

which indicates

1

2

d∑
i=1

∂2pt(x)

∂x2
i

· 1

pt(x)
=

1

2
Tr

(
1

pt(x)
∇2pt(x)

)
=

1

2
Tr
(
∇2 log pt(x) +∇ log pt(x)∇ log pt(x)

⊤
)

=
1

2
Tr
(
∇2 log pt(x)

)
+

1

2
∥∇ log pt(x)∥2 ,

Additionally, we have

∇
(
∂2 log pt(x)

∂x2
i

)
= ∇

(
∂2pt(x)

∂x2
i

· 1

pt(x)
−
(
∂pt(x)

∂xi
· 1

pt(x)

)2
)

= ∇
(
∂2pt(x)

∂x2
i

)
· 1

pt(x)
− ∂2pt(x)

∂x2
i

· 1

pt(x)
· ∇ log pt(x)−∇

((
∂ log pt(x)

∂xi

)2
)

.

Then, we obtain

∇

(
d∑

i=1

∂2pt(x)

∂x2
i

)
· 1

pt(x)

=∇
(
Tr(∇2 log pt(x))

)
+
[
Tr(∇2 log pt(x)) + ∥∇ log pt(x)∥2

]
· ∇ log pt(x) +∇(∥∇ log pt(x)∥2) .

49

D.6 Proof of Lemma 18

Note that

E(∥∇ log pt(Xt)∥2) =
∫
Rd

∥∇ log pt(x)∥2 pt(x) dx

= lim
R→∞

∫
B(0,R)

⟨∇ log pt(x),∇ log pt(x)⟩pt(x) dx

= lim
R→∞

∫
B(0,R)

⟨∇ log pt(x),∇pt(x)⟩dx ,

where B(0, R) denotes the Euclidean ball with radius R > 0 centered at the origin. Using integration
by parts, we then obtain

E(∥∇ log pt(Xt)∥2) = lim
R→∞

∫
B(0,R)

−pt(x)∆ log pt(x) dx+

∫
∂B(0,R)

pt(x)
∂ log pt(x)

∂n⃗
dS

=

∫
Rd

pt(x) · (−∆ log pt(x)) dx

⩽ dL(t) ,

where
∂f

∂n⃗
= ∇f · n⃗ represents the directional derivative along the normal vector n⃗ and dS denotes

the surface integral over the spherical surface. Here we use the fact that pt(x) converges to 0 at an
exponential rate as ∥x∥ approaches infinity, and the fact that

−∆ log pt(x) = −Tr(∇2 log pt(x)) ∈ [0, dL(t)] ,

which follows from Lemma 6.

E Details for second-order acceleration

In this section, we present a complete derivation of the second-order acceleration scheme, detailing
the implementation of Itô-Taylor expansions and Itô’s formula. Building upon the general backward
process framework

dxt = γ(T − t, xt) dt+ σ dWt , (42)

where σ > 0 and Wt is the d-dimensional Brownian motion. We apply Itô’s formula to γ(T − t, x).
This procedure generates an approximated structure of SDE (42),

dxt = [γ(T − s, xs) + Ls(xt − xs) +Ms(t− s)] dt+ σ dWt . (43)

with

Ls =
∂γ

∂x
(T − s, xs) and Ms =

σ2

2

∂2γ

∂x2
(T − s, xs)−

∂γ

∂t
(T − s, xs)

which serves as the foundation for our subsequent second-order discretization.In Section 4, we
demonstrate that this approximation preserves the core dynamical structure of the original SDE
(42) while admitting a closed-form solution. This is achieved by replacing the intractable drift term
γ(T − t, xs) with its Itô-expanded counterpart, which remains analytical tractable through explicit
integration.

Applying Itô’s formula to e−Lstxt yields

d(e−Lstxt) = e−Lst(γ(T − s, xs)− Lsxs +Ms(t− s)) dt+ e−Lstσ dWt .

For fixed s, both sides of the equation permit closed-form integration. While the Brownian integral∫ s+∆t

s
e−Lstσ dWt formally appears non-analytic, it equivalently manifests as a Gaussian random

variable with explicitly computable variance. This enables full analytical representation for xs+∆t

50

when integrating over [s, s+∆t],

xs+∆t = eLs∆txs +

∫ s+∆t

s

eLs(s+∆t−t) dt(γ(T − s, xs)− Lsxs)

+

∫ s+∆t

s

eLs(s+∆t−t)(t− s) dtMs + σ

∫ s+∆t

s

eLs(s+∆t−t) dWt

= xs + L−1s (eLs∆t − 1)γ(T − s, xs) + L−2s

[
(eLs∆t − 1)− Ls∆t

]
Ms

+ σ

∫ s+∆t

s

eLs(s+∆t−u)dWt .

Having established the general framework, we now specialize to our core case through the parameter-

ization: set γ(T − t, x) =
1

2
x+∇ log pT−t(x), σ = 1, let ∆t ∈ [0, h] and s = nh.

In the resulting expression, we denote xs by ϑSO
n . Then for any t ∈ [nh, (n + 1)h], the solution

admits the semi-analytic representation

xt = ϑSO
n +

∫ t

nh

(
1

2
ϑSO
n +∇ log pT−nh(ϑ

SO
n) (44)

+ Ln(xu − ϑSO
n) +Mn(u− nh)) du+

∫ t

nh

dWu

where

Ln =
1

2
Id +∇2 log pT−nh(ϑ

SO
n)

Mn =
1

2

d∑
j=1

∂2

∂x2
j

∇ log pT−nh(ϑ
SO
n)− ∂

∂t
∇ log pT−nh(ϑ

SO
n) .

Though Ln and Mn are theoretically defined through exact derivatives in SDE (43), their practical
evaluation requires approximations due to the score function’s computational intractability. We imple-
ment these approximations via numerical methods or neural networks, with concrete techniques for
Ln and Mn estimation provided separately in Appendix F and G. Substituting these approximations
into the SDE (44) yields

xt = ϑSO
n +

∫ t

nh

(
γ(T − nh, ϑSO

n) + s
(L)
∗ (T − nh, ϑSO

n)(xu − ϑSO
n)

+ s
(M)
∗ (T − nh, ϑSO

n)(u− nh)
)
du+

∫ t

nh

dWu .

Crucially, this substitution preserves the closed-form integrability of the original framework. Adopting
the same exponential integration strategy as above, we derive a closed form of xt. Let ϑSO

n+1 denote
x(n+1)h, the second-order discretization scheme is given by

ϑSO
n+1 = ϑSO

n + s
(L)
∗ (T − nh, ϑSO

n)−1
(
es

(L)
∗ (T−nh,ϑSO

n)h − Id

)(1

2
ϑSO
n + s∗(T − nh, ϑSO

n)

)
+ s

(L)
∗ (T − nh, ϑSO

n)−2
(
es

(L)
∗ (T−nh,ϑSO

n)h − s
(L)
∗ (T − nh, ϑSO

n)h− Id

)
s
(M)
∗ (T − nh, ϑSO

n)

+

∫ (n+1)h

nh

es
(L)
∗ (T−nh,ϑSO

n)[(n+1)h−t] dWt .

Implementation specifics for handling the matrix exponentials and stochastic integral are addressed
in Appendix G.

F Numerical Studies on Synthetic Data

We apply the five schemes to the posterior density of penalized logistic regression, defined by
p0(θ) ∝ exp(−f(θ)) with the potential function

f(θ) =
λ

2
∥θ∥2 + 1

ndata

ndata∑
i=1

log(1 + exp(−yix
⊤
i θ)) ,

51

Figure 2: Error of various discretization schemes and second-order sampler with different choice of
step size.

where λ > 0 denotes the tuning parameter. The data {xi, yi}ndata
i=1 , composed of binary labels

yi ∈ {−1, 1} and features xi = (xi,1, · · · , xi,d)
⊤ ∈ Rd generated from xi,j

i.i.d.∼ N (0, 100).

F.1 Implementation Details

In the numerical studies, we set T = 10, and the number of Monte Carlo iterations is chosen as the
floor of T/h, where h varies according to the step size indicated in the figure. Figure 2 shows the
Wasserstein distance measured along the first dimension between the empirical distributions of the
N -th outputs from SGMs and the target distribution, with different choices of the step size h. In this
simulation, we use the Monte-Carlo method to estimate the score function and the Hessian matrix.

F.2 Calculation

In this part, we derive explicit formulas for each coefficient term we need. First, the score function
can be computed as

∇ log p0(θ) = −

(
λθ +

1

ndata

ndata∑
i=1

−yixi exp(−yix
⊤
i θ)

1 + exp(−yix⊤i θ)

)

= −

(
λθ +

1

ndata

ndata∑
i=1

−yixi

1 + exp(yix⊤i θ)

)
.

For simplicity, we denote the logistic sigmoid function σ(u) =
1

1 + e−u
, then

∇ log p0(θ) = −

(
λθ +

1

ndata

ndata∑
i=1

−yixiσ(−yix
⊤
i θ)

)
.

Since σ′(u) = σ(u)[1− σ(u)], we have

∇2 log p0(θ) =−

(
λId +

1

ndata

ndata∑
i=1

y2i σ(−yix
⊤
i θ)

[
1− σ(−yix

⊤
i θ)
]
xix
⊤
i

)

=− λId −
1

ndata

ndata∑
i=1

σ(−yix
⊤
i θ)

[
1− σ(−yix

⊤
i θ)
]
xix
⊤
i .

As xix
⊤
i ≽ 0, ∇2 log p0(θ) ≼ −λId. We also have that σ(1− yix

⊤
i θ) ∈ (0, 1), then

∇2 log p0(θ) ≽− λId −
1

4ndata

ndata∑
i=1

xix
⊤
i

≽− (λ+
1

ndata
λmax(

ndata∑
i=1

xix
⊤
i))Id .

52

Therefore,

m0 = λ, L0 = λ+
1

ndata
λmax(

ndata∑
i

xix
⊤
i) .

Recall that the transition probability pt|0(θt|θ0) = ϕ(θt;µt,Σt), where µt = e−
1
2 tθ0,Σt = (1 −

e−t)Id, and ϕ(θ, µ,Σ) denotes the probability density function of N (µ,Σ), then we have

pt(θt) =

∫
Rd

pt|0(θt|θ0)p0(θ0) dθ0

=

∫
Rd

1√
(2π)d|Σt|

exp(−1

2
(θt − µt)

⊤Σ−1t (θt − µt))p0(θ0) dθ0

=

∫
Rd

1

[2π(1− e−t)]
d/2

exp(− 1

2(1− e−t)
∥θt − e−

1
2 tθ0∥2)p0(θ0) dθ0

=
1

[2π(1− e−t)]
d/2

Eθ0∼p0

[
exp(− 1

2(1− e−t)
∥θt − e−

1
2 tθ0∥2)

]
.

Hence,

∇pt(θt) =
1

[2π(1− e−t)]
d/2

Eθ0∼p0

[
∇
(
exp(− 1

2(1− e−t)
∥θt − e−

1
2 tθ0∥2)

)]

=
1

[2π(1− e−t)]
d/2

Eθ0∼p0

[
exp(− 1

2(1− e−t)
∥θt − e−

1
2 tθ0∥2) ·

−(θt − e−
1
2 tθ0)

1− e−t

]
,

∇2pt(θt) =
1

[2π(1− e−t)]
d/2

Eθ0∼p0

[
exp(− 1

2(1− e−t)
∥θt − e−

1
2 tθ0∥2)

·
(
(θt − e−

1
2 tθ0)(θt − e−

1
2 tθ0)

⊤

(1− e−t)2
− 1

1− e−t
Id

)]
.

We can approximate pt(θt),∇pt(θt) and ∇2pt(θt) or even higher order derivative tensor of pt(θt)
by Monte Carlo method, therefore, we can compute score function and its high order derivative by

∇ log pt(θt) =
∇pt(θt)

pt(θt)
, ∇2 log pt(θt) =

∇2pt(θt)

pt(θt)
− ∇pt(θt)∇pt(θt)

⊤

pt(θt)2
.

G Real Data Analysis

G.1 Implementation Details

We set the step size h = 0.2 and N = 2/h. We conducted experiments on an NVIDIA RTX 4060
GPU (16GB VRAM). The training process required 2 GPU hours over 100 epochs with a batch size
of 32, using CUDA 12.4, PyTorch 2.4, and torchvision 0.20.0. Figure 3 shows the digits generated
by five algorithms, using the same score functions. The execution times for the algorithms are as
follows: EM method 2 hour 12 min 49 s, EI method 2 hour 12 min 50 s, REM method 2 hour 13 min
30 s, REI method 2 hour 13 min 47 s, SO method 2 hour 14 min 05 s.

G.2 Score matching function for second order acceleration

For the MNIST dataset, we have demonstrated in the proof of Proposition 15 that computing third-
order derivatives is unnecessary. Unlike existing high-order methods for estimating second-order
scores [28], which require the joint training of score functions and Hessian matrices and consequently
incur substantial computational overhead, our second-order algorithm avoids explicit computation
of the Jacobian matrix. Furthermore, by employing Hessian-vector products (HVPs), we efficiently
capture higher-order information, enabling our second-order acceleration method to achieve improved
performance with reduced iteration complexity and manageable computational cost.
More specifically, in the experiments of the MNIST dataset, we construct a U-Net architecture incor-
porating time and label embeddings to train the score function, where the time embedding operates

53

Figure 3: Comparative visualization of generated MNIST digits under various discretization schemes.

on the temporal variable t of the score function, while the label embedding leverages MNIST’s cate-
gorical digit labels. This conditional formulation expresses the score function as ∇ log p(t, x|label),
enabling per-class score estimation through discriminative embedding propagation.

Recall iteration rule of the SO algorithm, we have

ϑSO
n+1 = ϑSO

n + s
(L)
∗ (T − nh, ϑSO

n)−1
(
es

(L)
∗ (T−nh,ϑSO

n)h − Id

)(1

2
ϑSO
n + s∗(T − nh, ϑSO

n)

)
+ s

(L)
∗ (T − nh, ϑSO

n)−2
(
es

(L)
∗ (T−nh,ϑSO

n)h − s
(L)
∗ (T − nh, ϑSO

n)h− Id

)
s
(M)
∗ (T − nh, ϑSO

n)

+

∫ (n+1)h

nh

es
(L)
∗ (T−nh,ϑSO

n)[(n+1)h−t] dWt .

Note that∫ (n+1)h

nh

es
(L)
∗ (T−nh,ϑSO

n)[(n+1)h−t] dWt ∼ N
(
0,

1

2
s
(L)
∗ (T − nh, ϑSO

n)−1
(
e2s

(L)
∗ (T−nh,ϑSO

n)h − Id

))
.

Let gn(·) := s∗(T − nh, ·) denote the score matching function at time T − nh. Although the
approximation of the Hessian matrix ∇2 log pT−nh(·) will not explicitly appear in the algorithmic
implementation, we formally designate it as Hn(·) for notational clarity. Consequently, the estimators
of Ln and Mn are chosen to be

s
(L)
∗ (T − nh, ϑSO

n) :=
1

2
Id +Hn(ϑ

SO
n)

s
(M)
∗ (T − nh, ϑSO

n) := −1

2
gn(ϑ

SO
n)−Hn(ϑ

SO
n)(

1

2
ϑSO
n + gn(ϑ

SO
n)) .

Employing the Taylor expansion, we have

(s
(L)
∗)−1

(
ehs

(L)
∗ − Id

)
=

∞∑
k=1

hk(s
(L)
∗)k−1

k!
,

(s
(L)
∗)−2

(
ehs

(L)
∗ − hs

(L)
∗ − Id

)
=

∞∑
k=2

hk(s
(L)
∗)k−2

k!
,

54

[
1

2
(s

(L)
∗)−1

(
e2hs

(L)
∗ − Id

)]1/2
=

√
h

∞∑
k=0

ak(hs
(L)
∗)k ,

where (a0, a1, a2, a3, a4, a5, a6 · · ·) = (1, 1
2 ,

5
24 ,

1
16 ,

79
5760 ,

3
1280 ,

71
193536 , · · ·). We thus reformulate

all operators in the discretization scheme using matrix multiplications, which is a crucial step that
avoids the explicit computation and storage of the full Hessian matrix Ht. This is achieved by
leveraging Hessian-vector products (HVPs) via automatic differentiation, which reduces memory
complexity to O(d) while retaining second-order curvature information. Specifically, given that
gn corresponds to the neural network’s output and Hn represents its Jacobian matrix, we compute
Hnv for any vector v through PyTorch’s reverse-mode differentiation (torch.autograd.grad).
By iteratively applying this HVP procedure k times, we efficiently construct Hk

nv for any k ⩾ 0.
Through Taylor series expansion, these HVP-powerd computations enable precise evaluation of each
term in the discretization scheme.

55

	Introduction
	Background and Our Setting
	Wasserstein Convergence Analysis under Various Discretization Schemes
	Euler-Maruyama Method and Exponential Integrator
	Randomized Midpoint Method

	Second-order Acceleration
	Numerical Studies
	Experiments on Synthetic Data
	Real Data Analysis

	Discussion
	Discussion of Theoretical Advances in Accelerating Samplers for Diffusion Models
	Proof of Section 3
	Proof of Theorem 1: Part I
	Proof of Theorem 1: Part II
	Proof of Theorem 3: Part I
	Proof of Theorem 3: Part II

	The proof of the upper bound of error of the second-order acceleration scheme
	Proof of Auxiliary Lemma
	Proof of Lemma 8
	Proof of Lemma 10
	Proof of Lemma 13
	Proof of Lemma 16
	Proof of Lemma 17
	Proof of Lemma 18

	Details for second-order acceleration
	Numerical Studies on Synthetic Data
	Implementation Details
	Calculation

	Real Data Analysis
	Implementation Details
	Score matching function for second order acceleration

