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Figure 1. Samples of our distilled single-step model with prompts from diffusiondb.

Abstract
Diffusion models have demonstrated great po-
tential for generating diverse images. However,
their performance often suffers from slow gen-
eration due to iterative denoising. Knowledge
distillation has been recently proposed as a rem-
edy which can reduce the number of inference
steps to one or a few, without significant quality
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degradation. However, existing distillation meth-
ods either require significant amounts of offline
computation for generating synthetic training data
from the teacher model, or need to perform ex-
pensive online learning with the help of real data.
In this work, we present a novel technique called
BOOT, that overcomes these limitations with an
efficient data-free distillation algorithm. The core
idea is to learn a time-conditioned model that pre-
dicts the output of a pre-trained diffusion model
teacher given any time-step. Such a model can
be efficiently trained based on bootstrapping from
two consecutive sampled steps. Furthermore, our
method can be easily adapted to large-scale text-
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to-image diffusion models, which are challenging
for previous methods given the fact that the train-
ing sets are often large and difficult to access. We
demonstrate the effectiveness of our approach on
several benchmark datasets in the DDIM setting,
achieving comparable generation quality while
being orders of magnitude faster than the diffu-
sion teacher. The text-to-image results show that
the proposed approach is able to handle highly
complex distributions, shedding light on more ef-
ficient generative modeling.

1. Introduction
Diffusion models (Sohl-Dickstein et al., 2015; Ho et al.,
2020; Nichol & Dhariwal, 2021; Song et al., 2020) have
become the standard tools for generative applications, such
as image (Dhariwal & Nichol, 2021; Rombach et al., 2021;
Ramesh et al., 2022; Saharia et al., 2022), video (Ho et al.,
2022b;a), 3D (Poole et al., 2022; Gu et al., 2023; Liu et al.,
2023b; Chen et al., 2023), audio (Liu et al., 2023a), and
text (Li et al., 2022; Zhang et al., 2023) generation. Diffu-
sion models are considered more stable for training com-
pared to alternative approaches like GANs (Goodfellow
et al., 2014a) or VAEs (Kingma & Welling, 2013), as they
don’t require balancing two modules, making them less sus-
ceptible to issues like mode collapse or posterior collapse.
Despite their empirical success, standard diffusion mod-
els often have slow inference times (around 50 ∼ 1000×
slower than single-step models like GANs), which poses
challenges for deployment on consumer devices. This is
mainly because diffusion models use an iterative refinement
process to generate samples.

To address this issue, previous studies have proposed using
knowledge distillation to improve the inference speed (Hin-
ton et al., 2015). The idea is to train a faster student model
that can replicate the output of a pre-trained diffusion model.
In this work, we focus on learning efficient single-step mod-
els that only require one neural function evaluation (NFE).
However, previous methods, such as Luhman & Luhman
(2021), require executing the full teacher sampling to gen-
erate synthetic targets for every student update, which is
impractical for distilling large diffusion models like Sta-
bleDiffusion (SD, Rombach et al., 2021). Recently, several
techniques have been proposed to avoid sampling using the
concept of “bootstrap”. For example, Salimans & Ho (2022)
gradually reduces the number of inference steps based on
the previous stage’s student, while Song et al. (2023) and
Berthelot et al. (2023) train single-step denoisers by enforc-
ing self-consistency between adjacent student outputs along
the same diffusion trajectory. However, these approaches
rely on the availability of real data to simulate the intermedi-
ate diffusion states as input, which limits their applicability
in scenarios where the desired real data is not accessible.

In this paper, we propose BOOT, a data-free knowledge
distillation method for denoising diffusion models, with
single-step inference via bootstrapping. Our inspiration for
BOOT partially draws from the insight presented by con-
sistency model (CM, Song et al., 2023) that all points on
the same diffusion trajectory, a.k.a., PF-ODE (Song et al.,
2020), have a deterministic mapping between each other.
We identify two advantages of the proposed method: (i)
Similar to CM, BOOT enjoys efficient single-step infer-
ence which dramatically facilitates the model deployment
on scenarios demanding low resource/latency. (ii) Differ-
ent from CM, which seeks self-consistency from any xt

to x0, thus being data-dependent, BOOT predicts all possi-
ble xt given the same noise point ϵ and a time indicator t.
Consequently, BOOT gθ always reads pure Gaussian noise,
making it data-free. Moreover, learning all xt from the
same ϵ enables bootstrapping: it is easier to predict xt if
the model has already learned to generate xt′ where t′ > t.
However, formulating bootstrapping in this way presents
additional non-trivial challenges, such as noisy sample pre-
diction. To address this, we learn the student model from a
novel Signal-ODE derived from the original PF-ODE. We
also design objectives and boundary conditions to enhance
the sampling quality and diversity. This enables efficient
inference of large diffusion models in scenarios where the
original training corpus is inaccessible due to privacy or
other concerns. For example, we can obtain an efficient
model for synthesizing images of “raccoon astronaut” by
distilling the text-to-image model with the corresponding
prompts (shown in Figure 2), even though collecting such
real data is difficult.

In the experiments, we first demonstrate the efficacy of
BOOT on various challenging image generation bench-
marks, including unconditional and class-conditional set-
tings. Next, we show that the proposed method can be easily
adopted to distill text-to-image diffusion models. An illus-
tration of sampled images from our distilled text-to-image
model is shown in Figure 1.

2. Preliminaries
2.1. Diffusion Models

Diffusion models (Sohl-Dickstein et al., 2015; Song & Er-
mon, 2019; Ho et al., 2020) belong to a class of deep gen-
erative models that generate data by progressively remov-
ing noise from the initial input. In this work, we focus
on continuous-time diffusion models (Song et al., 2020;
Kingma et al., 2021; Karras et al., 2022) in the variance-
preserving formulation (Salimans & Ho, 2022). Given a
data point x ∈ RN , we model a series of time-dependent
latent variables {xt|t ∈ [0, T ],x0 = x} based on a given
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noise schedule {αt, σt}:

q(xt|xs) = N (xt;αt|sxs, σ
2
t|sI), and

q(xt|x) = N (xt;αtx, σ
2
t I),

where αt|s = αt/αs and σ2
t|s = σ2

t − α2
t|sσ

2
s for s < t. By

default, the signal-to-noise ratio (SNR, α2
t /σ

2
t ) decreases

monotonically with t. A diffusion model fϕ learns to re-
verse the diffusion process by denoising xt. After training,
one can use ancestral sampling (Ho et al., 2020) to syn-
thesize new data from the learned model. While the con-
ventional method is stochastic, DDIM (Song et al., 2021)
demonstrates that one can follow a deterministic sampler to
generate the final sample x0, which follows the update rule:

xs = (σs/σt)xt+(αs − αtσs/σt)fϕ(xt, t), s < t, (1)

with the boundary condition xT = ϵ ∼ N (0, I). As
noted in Lu et al. (2022), Eq. (1) is equivalent to the first-
order ODE solver for the underlying probability-flow (PF)
ODE (Song et al., 2020). Therefore, the step size δ = t− s
needs to be small to mitigate error accumulation. Addition-
ally, using higher-order solvers such as Runge-Kutta (Süli
& Mayers, 2003), Heun (Ascher & Petzold, 1998), and
other solvers (Lu et al., 2022; Jolicoeur-Martineau et al.,
2021) can further reduce the number of function evaluations
(NFEs), which, however, are not applicable in single-step.

2.2. Knowledge Distillation

Orthogonal to the development of ODE solvers, distillation-
based techniques have been proposed to learn faster stu-
dent models from a pre-trained diffusion teacher. The
most straightforward approach is to perform direct distil-
lation (Luhman & Luhman, 2021), where a student model
gθ is trained to learn from the output of the diffusion model,
which is computationally expensive itself:

LDirect
θ = Eϵ∼N (0,I)∥gθ(ϵ)− ODE-Solver(fϕ, ϵ, T → 0)∥22,

(2)
Here, ODE-solver refers to any solvers like DDIM as
mentioned above. While this naive approach shows promis-
ing results, it typically requires over 50 steps of evaluations
to obtain reasonable distillation targets, which becomes a
bottleneck when learning large-scale models.

Alternatively, recent studies (Salimans & Ho, 2022; Song
et al., 2023; Berthelot et al., 2023) have proposed methods
to avoid running the full diffusion path during distillation.
For instance, the consistency model (CM, Song et al., 2023)
trains a time-conditioned student model gθ(xt, t) to predict
self-consistent outputs along the diffusion trajectory:

LCM
θ = Ext∼q(xt|x),s,t∼[0,T ],s<t∥gθ(xt, t)−gθ−(xs, s)∥22,

(3)
where xs = ODE-Solver(fϕ,xt, t→ s), typically with
a single-step evaluation using Eq. (1). In this case, θ−

represents an exponential moving average (EMA) of the
student parameters θ, which is important to prevent the
self-consistency objectives from collapsing into trivial solu-
tions by always predicting similar outputs. After training,
samples can be generated by executing gθ(xT , T ) with a
single NFE. It is worth noting that Eq. (3) requires sam-
pling xt from the real data sample x, which is the essence
of bootstrapping: the model learns to denoise increasingly
noisy inputs until xT . However, in many tasks, the original
training data x for distillation is inaccessible. For example,
text-to-image generation models require billions of paired
data for training. One possible solution is to use a differ-
ent dataset for distillation; however, the mismatch in the
distributions of the two datasets would result in suboptimal
distillation performance.

3. Method
In this section, we present BOOT, a novel distillation ap-
proach inspired by the concept of bootstrapping without
requiring target domain data during training. We begin by
introducing signal-ODE, a modeling technique focused ex-
clusively on signals (§ 3.1), and its corresponding distillation
process (§ 3.2). Subsequently, we explore the application
of BOOT in text-to-image generation (§ 3.3). The training
pipeline is depicted in Figure 2.

3.1. Signal-ODE

We utilize a time-conditioned student model gθ(ϵ, t) in our
approach. Similar to direct distillation (Luhman & Luh-
man, 2021), BOOT always takes random noise ϵ as input
and approximates the intermediate diffusion model vari-
able: gθ(ϵ, t) ≈ xt = ODE-Solver(fϕ, ϵ, T → t), ϵ ∼
N (0, I). This approach eliminates the need to sample from
real data during training. The final sample can be obtained
as gθ(ϵ, 0) ≈ x0. However, it poses a challenge to train gθ
effectively, as neural networks struggle to predict partially
noisy images (Berthelot et al., 2023), leading to out-of-
distribution (OOD) problems and additional complexities in
learning gθ accurately.

To overcome the aforementioned challenge, we propose an
alternative approach where we predict yt = (xt − σtϵ)/αt.
In this case, yt represents the low-frequency “signal” com-
ponent of xt, which is easier for neural networks to learn.
The initial noise for diffusion is denoted by ϵ. This predic-
tion target is reasonable since it aligns with the boundary
condition of the teacher model, where y0 = x0. Further-
more, we can derive an iterative equation from Eq. (1) for
consecutive timesteps:

ys =
(
1− eλs−λt

)
fϕ(xt, t) + eλs−λtyt, (4)

where xt = αtyt + σtϵ, and λt = − log(αt/σt) represents
the “negative half log-SNR”. Notably, the noise term ϵ auto-
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Figure 2. Training pipeline of BOOT. s and t are two consecutive timesteps where s < t. From a noise map ϵ, the objective of BOOT
minimizes the difference between the output of a student model at timestep s, and the output of stacking the same student model and a
teacher model at an earlier time t. The whole process is data-free.

matically cancels out in Eq. (4), indicating that the model
always learns from the signal space. Moreover, Eq. (4)
demonstrates an interpolation between the current model
prediction and the diffusion-denoised output. Similar to the
connection between DDIM and PF-ODE (Song et al., 2020),
we can also obtain a continuous version of Eq. (4) by letting
s→ t− as follows:

dyt

dt
= −λ′

t · (fϕ(xt, t)− yt) , yT ∼ pϵ (5)

where λ′
t = dλ/dt, and pϵ epresents the boundary distribu-

tion of yt. It’s important to note that Eq. (5) differs from the
PF-ODE, which directly relates to the score function of the
data. In our case, the ODE, which we refer to as “Signal-
ODE”, is specifically defined for signal prediction. At each
timestep t, a fixed noise ϵ is injected and denoised by the
diffusion model fϕ. The Signal-ODE implies a “ground-
truth” trajectory for sampling new data. For example, one
can initialize a reasonable yT = ϵ ∼ N (0, I) and solve
the Signal-ODE to obtain the final output y0. Although the
computational complexity remains the same as conventional
DDIM, we will demonstrate in the next section how we can
efficiently approximate yt using bootstrapping objectives.

3.2. Learning with Bootstrapping

Our objective is to learn yθ(ϵ, t) ≈ yt as a single-step
prediction model using neural networks, rather than solving
the signal-ODE with Eq. (5). By matching both sides of
Eq. (5), we obtain the objective:

LDE
θ = Eϵ∼N (0,I),t∼[0,T ]

∣∣∣∣∣∣dyθ(ϵ,t)
dt + λ′

t · (fϕ(x̂t, t)− yθ(ϵ, t))
∣∣∣∣∣∣2
2
.

(6)
In Eq. (6), we use yθ(ϵ, t) to estimate yt, and x̂t =
αtyθ(ϵ, t) + σtϵ represents the corresponding noisy im-
age. Instead of using forward-mode auto-differentiation,
which can be computationally expensive, we can approxi-
mate the above equation with finite differences due to the
1-dimensional nature of t. The approximate form is similar
to Eq. (4), which can be found in the supplemental.

LBS
θ = Eϵ,t

 w̃t

δ2

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣yθ(ϵ, s)− SG

yθ(ϵ, t) + δλ′
t · ((fϕ(x̂t, t))− yθ(ϵ, t))︸ ︷︷ ︸

incremental improvement


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

2

 ,

(7)
where s = t−δ and δ is the discrete step size. w̃t represents
the time-dependent loss weighting, which can be chosen
uniformly. We use SG[.] as the stop-gradient operator for
training stability.

Unlike CM-based methods, such as those mentioned in
Eq. (3), we do not require an exponential moving average
(EMA) copy of the student parameters to avoid collapsing.
This avoids potential slow convergence and sub-optimal
solutions. The proposed objective is unlikely to degenerate
because there is an incremental improvement term in the
training target, which is mostly non-zero. In other words,
we can consider yθ as an exponential moving average of
fϕ, with a decaying rate of 1− δλ′

t. This ensures that the
student model always receives distinguishable signals for
different values of t.

Error Accumulation One critical challenge in learn-
ing BOOT is the “error accumulation” issue, where im-
perfect predictions of yθ on large t can propagate to
subsequent timesteps. While similar challenges exist in
other bootstrapping-based approaches, it becomes more
pronounced in our case due to the possibility of out-of-
distribution inputs x̂t for the teacher model, resulting from
error accumulation and leading to incorrect learning signals.
To mitigate this, we employ two methods: (1) We uniformly
sample t throughout the training time, despite the potential
slowdown in convergence. (2) We use a higher-order solver
(e.g., Heun’s method (Ascher & Petzold, 1998)) to compute
the bootstrapping target with better estimation.

Boundary Condition In theory, the boundary yT can
have arbitrary values since αT = 0, and the value of yT

does not affect the value xT = ϵ. However, λ′
t is un-

bounded at t = T , leading to numerical issues in opti-
mization. As a result, the student model must be learned
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within a truncated range t ∈ [tmin, tmax]. This necessi-
tates additional constraints at the boundaries to ensure that
αtmaxyθ(ϵ, tmax) + σtmaxϵ follows the same distribution as
the diffusion model. In this work, we address this through
an auxiliary boundary loss:

LBC
θ = Eϵ∼N (0,I)

[
∥fϕ(ϵ, tmax)− yθ(ϵ, tmax)∥22

]
. (8)

Here, we enforce the student model to match the initial
denoising output. In our early exploration, we found that
the boundary condition is crucial for the single-step stu-
dent to fully capture the modeling space of the teacher,
especially in text-to-image scenarios. Failure to learn the
boundaries tends to result in severe mode collapse and color-
saturation problems. The overall learning objective com-
bines Lθ = LBS

θ + βLBC
θ , where β is a hyper-parameter.

The algorithm for student model distillation is presented in
Appendix Algorithm 1.

3.3. Distillation of Text-to-Image Models

Our approach can be readily applied for distilling con-
ditional diffusion models, such as text-to-image genera-
tion (Ramesh et al., 2022; Rombach et al., 2021; Balaji
et al., 2022), where a conditional denoiser fϕ(xt, t, c) is
learned with the same objective given an aligned dataset. In
practice, inference of these models requires necessary post-
processing steps for amplifying the conditional generation.
For instance, classifier-free guidance (CFG, Ho & Salimans,
2022) can be applied as:

f̃ϕ(xt, t, c) = fϕ(xt, t,n)+w·(fϕ(xt, t, c)− fϕ(xt, t,n)) ,
(9)

where n is the negative prompt (or empty), and w is the
guidance weight (by default w = 7.5) over the denoised
signals. We directly use the modified f̃ϕ to replace the orig-
inal fϕ in the training objectives in Equations (6) and (8).
Similar to Meng et al. (2022), we can also learn student
model condition on w to reflect different guidance strength.

Our method can be easily adopted in either pixel (Saharia
et al., 2022) or latent space (Rombach et al., 2021) mod-
els without any change in implementation. For pixel-space
models, it is sometimes critical to apply clipping or dynamic
thresholding (Saharia et al., 2022) over the denoised targets
to avoid over-saturation. Similarly, we also clip the targets
in our objectives Equations (6) and (8). Pixel-space mod-
els (Saharia et al., 2022) typically involve learning cascaded
models (one base model + a few super-resolution (SR) mod-
els) to increase the output resolutions progressively. We
can also distill the SR models with BOOT into one step by
conditioning both the SR teacher and the student with the
output of the distilled base model.

Steps FFHQ 64× 64 ImageNet 64× 64
FID fps FID fps

DDPM 250 5.4 0.2 11.0 0.1

DDIM
50 7.6 1.2 13.7 0.6
10 18.3 5.3 18.3 3.3
1 225 54 237 34

Ours 1 9.0 54 12.3 34

Table 1. Comparison for image generation benchmarks on FFHQ
and class-conditioned ImageNet. For ImageNet, numbers are
reported without using CFG (w = 1).

4. Experiments
4.1. Experimental Setups

Diffusion Model Teachers We begin by evaluating the
performance of BOOT on diffusion models trained on
standard image generation benchmarks: CIFAR-10 32 ×
32 (Krizhevsky et al., 2009), FFHQ 64× 64 (Karras et al.,
2017), class-conditional ImageNet 64 × 64 (Deng et al.,
2009). On CIFAR-10, we compare with other established
methods, including PD (Salimans & Ho, 2022), CM (Song
et al., 2023) trained with 800K iterations, as well as fast
sampling solvers. For these experiments, we adopt the EDM
teacher (Karras et al., 2022). For other datasets, we train the
teacher diffusion models separately using signal prediction.
We test the performance of CFG where the student models
are trained with random conditioning on w ∈ [1, 5] (See the
effects in Fig.8.

For text-to-image generation scenarios, we directly apply
BOOT to open-sourced diffusion models in both pixel-
space (DeepFloyd-IF (IF), Saharia et al., 2022) and latents
space (StableDiffusion (SD), Rombach et al., 2021). Thanks
to the data-free nature of BOOT, we do not require access
to the original training set, which may consist of billions of
text-image pairs with unknown preprocessing steps. Instead,
we only need the prompt conditions to distill both models.
In this work, we consider general-purpose prompts gener-
ated by users. Specifically, we utilize diffusiondb (Wang
et al., 2022), a large-scale prompt dataset that contains 14
million images generated by StableDiffusion using prompts
provided by real users.

Implementation Details Similar to previous re-
search (Song et al., 2023), we use student models with
architectures similar to those of the teachers, having nearly
identical numbers of parameters. A more comprehensive
architecture search is left for future work. We initialize
the majority of the student yθ parameters with the teacher
model fϕ, except for the newly introduced conditioning
modules (target timestep t and potentially the CFG weight
w), which are incorporated into the U-Net architecture in a
similar manner as how class labels were incorporated. It is
important to note that the target timestep t is different from
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Figure 3. Comparison between the generated outputs of DDIM/Signal-ODE and our distilled model given the same prompt. By definition,
signal-ODE converges to the same final sample as the original DDIM, while the distilled single-step model does not necessarily follow.

Figure 4. Uncurated samples of {50, 10, 1} DDIM sampling steps and the proposed BOOT from (a) FFHQ (b) ImageNet benchmarks,
respectively, given the same set of initial noise input.

the original timestep used for conditioning the diffusion
model, which is always set to tmax for the student model.
Additionally, for CIFAR-10 experiments, we also train our
models coupled with LPIPS loss (Zhang et al., 2018).

Evaluation Metrics For image generation, results are com-
pared according to Fréchet Inception Distance (FID, Heusel
et al., 2017), Precision and Recall (Kynkäänniemi et al.,
2019) over 50, 000 real samples from the corresponding
datasets. For text-to-image tasks, we measure the zero-
shot CLIP score (Radford et al., 2021) for measuring the
faithfulness of generation given 5000 randomly sampled
captions from COCO2017 (Lin et al., 2014) validation set.
We also compare with LCM (Luo et al., 2023) on 30, 000

randomly sampled prompts on diffusiondb and compare the
FID against images generated by SD. In addition, we report
the speed by fps on a single A100 GPU.

4.2. Results

Quantitative Results We first evaluate the proposed
method on standard image generation benchmarks. The
quantitative comparison with the standard diffusion infer-
ence methods like DDPM (Ho et al., 2020) and the deter-
ministic DDIM (Song et al., 2021) are shown in Table 1.
Despite lagging behind the 50-step DDIM inference, BOOT
significantly improves the performance 1-step inference,
and achieves better performance against DDIM with around
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Figure 5. Uncurated samples of 8 and 1 DDIM sampling steps, LCM (Luo et al., 2023) and the proposed BOOT from SD2.1-base, given
the same initial noise and prompts from diffusiondb. All faces presented are synthesized by the models, and are not real identities.

Figure 6. Ablation Study. (a) vs. (b): The additional boundary loss in § 3.2 alleviates the mode collapsing issue and prompts diversity in
generation. (c) vs. (d): Uniform time training yields better generation compared with progressive time training. All faces presented are
synthesized by the models, and are not real identities.

10 denoising steps, while maintaining ×10 speed-up.

Also, we show quantitative results on CIFAR-10 compared
against existing methods in Table 2. It is important to high-
light that none of the considered distillation approaches
can be categorized as completely data-free. These meth-
ods either necessitate the generation of expansive synthetic
datasets or depend on real data sources. Our approach sur-
passes PD and boasts comparable results when contrasted
with CM (which was trained much longer than our mod-

els). Note that our approach is the first to achieve data-free
training to enable highly efficient single-step generation.

Additionally, we conduct quantitative evaluation on text-to-
image tasks. Using the SD teacher, we obtain a CLIP-score
of 0.254 on COCO2017, a slight degradation compared
to the 50-step DDIM results (0.262), while it generates 2
orders of magnitude faster, rendering real-time applications.
On diffusiondb, BOOT also surpasses LCM significantly in
terms of FID (30.21 vs 111.55).
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Figure 7. With fixed noise, we can perform controllable generation by swapping the keywords from the prompts. The prompts are chosen
from the combination of portrait of a {owl, raccoon, tiger, fox, llama, gorilla, panda} wearing {a t-shirt, a jacket, glasses} {drinking a
latte, eating a pizza, reading a book} cinematic, hdr. All images are generated from the student distilled from IF teacher.

Figure 8. The distilled student is able to trade generation quality with diversity based on CFG weights.

Method NFE FID

Diffusion Model+Solver

DDPM (Ho et al., 2020) 1000 3.17
DDIM (Song et al., 2021) 50 4.67
DPM-solver-2 (Lu et al., 2022) 10 5.94
DEIS (Zhang & Chen, 2022) 10 4.17
EDM (Karras et al., 2022) 35 2.04

Distillation

Direct* (Luhman & Luhman, 2021) 1 9.36
DFNO* (Zheng et al., 2023) 1 4.12
ReFlow* (Liu et al., 2022) 1 6.18
PD (Salimans & Ho, 2022) 1 8.34
CM (Song et al., 2023) 1 3.55

Data-free Distillation

Ours (L2 loss) 1 6.88
Ours (LPIPS loss) 1 4.38

Table 2. Unconditional image generation on the CIFAR-10 dataset.
* indicates methods requiring synthesizing additional dataset.

Visual Results We show the qualitative comparison in
Figure 4 and Figure 5 for image generation and text-to-
image, respectively. For both cases, naïve 1-step inference
fails completely, and the diffusion generally outputs almost

empty and ill-structured images with fewer than 10 NFEs.
In contrast, BOOT is able to synthesize high-quality images
that are visually close (Figure 4) or semantically similar
(Figure 5) to teacher’s results with much more steps. Unlike
the standard benchmarks, distilling text-to-image models
(e.g., SD) typically leads to noticeably different generation
from the original diffusion model, even starting with the
same initial noise. We hypothesize it is a combined effect of
highly complex underlying distribution and CFG. We show
more results including pixel-space models in the appendix.

4.3. Analysis

Importance of Boundary Condition The significance of
incorporating the boundary loss is demonstrated in Figure 6
(a) and (b). When using the same noise inputs, we compare
the student outputs based on different target timesteps. As
yθ(ϵ, t) tracks the signal-ODE output, it produces more
averaged results as t approaches 1. However, without proper
boundary constraints, the student outputs exhibit consistent
sharpness across timesteps, resulting in over-saturated and
non-realistic images. This indicates a complete failure of
the learned student model to capture the distribution of the
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Figure 9. Latent space interpolation of the student model distilled from the IF teacher. We randomly sample two noises to generate images
(shown in red boxes) given the same text prompts, and then linearly interpolate the noises to synthesize images shown in the middle.

teacher model, leading to severe mode collapse.

Progressive v.s. Uniform Time Training We also com-
pare different training strategies in Figure 6 (c) and (d). In
contrast to the proposed approach of uniformly sampling
t, one can potentially achieve additional efficiency with a
fixed schedule that progressively decreases t as training pro-
ceeds. This progressive training strategy seems reasonable
considering that the student is always initialized from tmax

and gradually learns to predict the clean signals (small t)
during training. However, progressive training tends to in-
troduce more artifacts (as observed in the visual comparison
in Figure 6). We hypothesize that progressive training is
more prone to accumulating irreversible errors.

Controllable Generation In Figure 7, we provide an exam-
ple of text-controlled generation by fixing the noise input
and only modifying the prompts. Similar to the original dif-
fusion teacher model, the BOOT distilled student retains the
ability of disentangled representation, enabling fine-grained
control while maintaining consistent styles. Additionally,
in Figure 9, we visualize the results of latent space interpola-
tion, where the student model is distilled from the pretrained
IF teacher. The smooth transition of the generated images
demonstrates that the distilled student model has success-
fully learned a continuous latent space.

5. Related Work
Improving Efficiency of Diffusion Models Speeding up
inference of diffusion models is a broad area. Recent works
and also our work (Luhman & Luhman, 2021; Salimans &
Ho, 2022; Meng et al., 2022; Song et al., 2023; Berthelot
et al., 2023) aim at reducing the number of diffusion model
inference steps via distillation. Aside from distillation meth-
ods, other representative approaches include advanced ODE
solvers (Karras et al., 2022; Lu et al., 2022), low-dimension
space diffusion (Rombach et al., 2021; Vahdat et al., 2021;
Jing et al., 2022; Gu et al., 2022), and improved diffusion
targets (Lipman et al., 2023; Liu et al., 2022). BOOT is or-
thogonal and complementary, and can theoretically benefit

from improvements made in these approaches.

Knowledge Distillation for Generative Models Knowl-
edge distillation (Hinton et al., 2015) has seen successful
applications in learning efficient generative models, includ-
ing model compression (Kim & Rush, 2016; Aguinaldo
et al., 2019; Fu et al., 2020; Hsieh et al., 2023) and non-
autoregressive sequence generation (Gu et al., 2017; Oord
et al., 2018; Zhou et al., 2019). We believe that BOOT
could inspire a new paradigm of distilling powerful gener-
ative models without requiring access to the training data.

6. Discussion and Conclusion
Limitations BOOT may produce lower quality samples
compared to other distillation methods (Song et al., 2023;
Berthelot et al., 2023) which require ground-truth data for
training. This issue can potentially be remedied by combin-
ing BOOT with these methods. Another limitation is that
the current design only focuses on data-free distillation into
a single-step student model and cannot support multi-step
generation as did in previous work (Song et al., 2023) for
further quality improvement. As future research, we aim to
investigate the possibility of jointly training the teacher and
the student models in a manner that incorporates the con-
cept of diffusion into the distillation process. Furthermore,
we find it intriguing to explore the training of a single-step
diffusion model from scratch where a pre-trained model
is not available. Finally, extending BOOT to multi-step
generation is also feasible, which can be achieved by train-
ing the student with multiple timesteps coupled with restart
sampling (Xu et al., 2023) approaches.

Conclusion In summary, this paper introduced a novel
technique BOOT to distill diffusion models into single-step
models. The method did not require the presence of any
real or synthetic data by learning a time-conditioned student
model with bootstrapping objectives. The proposed ap-
proach achieved comparable generation quality while being
significantly faster, compared to the diffusion teacher, and
was also applicable to large-scale text-to-image generation,
showcasing its versatility.
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Impact Statement
The introduction of Data-free Distillation of Diffusion Mod-
els with Bootstrapping represents a significant advancement
in the field of generative modeling, offering far-reaching im-
plications for both technology and society. By streamlining
the image generation process through diffusion models, this
technique opens new possibilities for efficient and scalable
applications in various sectors, including healthcare, enter-
tainment, and automated content creation. The ability to
generate high-quality images swiftly and without extensive
data requirements can revolutionize industries reliant on
visual content, enhancing creative processes and potentially
reducing operational costs.

However, the broader societal and ethical implications of
this technology must be carefully considered. The ease of
generating realistic images could lead to challenges in dis-
tinguishing between real and AI-generated content, raising
concerns about misinformation and the authenticity of dig-
ital media. This underscores the need for robust policies
and ethical guidelines to govern the use of such advanced
generative models, ensuring they are used responsibly and
transparently. Additionally, the democratization of image
generation could impact job markets, particularly in creative
fields, necessitating a reevaluation of skill sets and job roles
in the era of AI-assisted creation.
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Appendices
A. Algorithm Details
A.1. Notations

In this paper, we use fϕ(x, t) to represent the diffusion model that denoises the noisy sample x into its clean version, and
we derive the DDIM sampler (Eq. (1)) following the definition of Song et al. (2021): we deterministically synthesize xs

based on the following update rule:

xs = ODE-Solver(fϕ, ϵ, T → s)

= αsfϕ(xt, t) + σs

(
xt − αtfϕ(xt, t)

σt

)
=

σs

σt
xt +

(
αs − αt

σs

σt

)
fϕ(xt, t)

(10)

where 0 ≤ s < t ≤ T . Here we use ODE-Solver to represent the DDIM sampling from a random noise xT = ϵ ∼
N (0, I), and iteratively obtain the sample at step s. In practice, we can generalize to higher-order ODE-solvers for better
efficiency.

For distillation, we define the student model with gθ(ϵ, t) which approximates xt along the diffusion trajectory above. To
avoid directly predicting the noisy samples xt with neural networks, we re-parameterize gθ(ϵ, t) = αtyθ(ϵ, t) + σtϵ where
the noise part is constant throughout t except the scale factor σt. In this way, the learning goal yθ(ϵ, t) is to predict a new
variable yt: the “signal” part of the original variable yt = (xt − σtϵ)/αt.

A.2. Derivation of Signal-ODE

Based on the definition of yt = (xt − σtϵ)/αt, we can derive the following equations from Eq. (10):

xs =
σs

σt
xt +

(
αs − αt

σs

σt

)
fϕ(xt, t)

⇒ αsys + σsϵ =
σs

σt
(αtyt + σtϵ) +

(
αs − αt

σs

σt

)
fϕ(xt, t)

⇒ αsys +��σsϵ = αt
σs

σt
yt +��σsϵ+

(
αs − αt

σs

σt

)
fϕ(xt, t)

⇒ ys =
αtσs

σtαs
yt +

(
1− αtσs

σtαs

)
fϕ(xt, t)

=
(
1− eλs−λt

)
fϕ(xt, t) + eλs−λtyt,

(11)

where we use the auxiliary variable λt = − log(αt/σt) for simplifying the equations. As mentioned in § 3.1, we can further
obtain the continuous form of Eq. (11) by assigning t− s→ 0. That is, Eq. (11) is equivalent to that shown in the following:

ys =
(
1− eλs−λt

)
fϕ(xt, t) + eλs−λtyt

⇒ yt − ys = −
(
1− eλs−λt

)
(fϕ(xt, t)− yt)

⇒ yt − ys

t− s
= −eλt − eλs

t− s
· e−λt (fϕ(xt, t)− yt)

⇒ dyt

dt
= −��eλt · λ′

t ·���e−λt (fϕ(xt, t)− yt)

(12)

where λ′
t = dλt/dt. Given a fixed noise input ϵ, Eq. (12) defines an ODE over yθ w.r.t t, which we call Signal-ODE, as

both sides of the equation only operate in “low-frequency” signal space.
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Algorithm 1 Distillation using BOOT for Conditional Diffusion Models.

Require: pretrained diffusion model fϕ, initial student parameter from the teacher θ ← ϕ, step size δ, learning rate η, CFG
weight w, context dataset D, negative condition n = ∅, tmin, tmax, β.

1: while not converged do
2: Sample noise input ϵ ∼ N (0, I)
3: Sample context input c ∼ D
4: Sample t ∼ (tmin, tmax), s = min (t− δ, tmin))
5: Compute noise schedule αt, σt, αs, σs

6: Compute λ′
t ≈ (1− αtσs

σtαs
)/δ

7: Generate the model predictions:
8: yt = yθ(ϵ, t, c), ys = yθ(ϵ, s, c), ytmax

= yθ(ϵ, tmax, c)
9: Generate the noisy sample x̂t = αtyt + σtϵ

10: Compute the denoised target:
11: f̃t = fϕ(x̂t, t,n) + w · (fϕ(x̂t, t, c)− fϕ(x̂t, t,n))

12: f̃tmax
= fϕ(ϵ, tmax,n) + w · (fϕ(ϵ, tmax, c)− fϕ(ϵ, tmax,n))

13: Compute the bootstrapping loss LBS
θ =

1

(δλ′
t)

2
∥ys − SG(yt + δλ′

t(f̃t − yt))∥22

14: Compute the boundary loss LBC
θ = ∥ytmax − f̃tmax∥22

15: Update model parameters θ ← θ − η · ∇θ

(
LBS
θ + βLBC

θ

)
16: end while
17: return Trained model parameters θ

A.3. Bootstrapping Objectives

The bootstrapping objectives in Eq. (6) can be easily derived by taking the finite difference of Eq. (3). Here we use yθ(ϵ, t)
to estimate yt, and use x̂t to represent the noisy image obtained from yθ(ϵ, t).

Lθ = Eϵ,t

[
ω̃t

∣∣∣∣∣∣∣∣dyθ(ϵ, t)

dt
+ λ′

t · (fϕ(x̂t, t)− yθ(ϵ, t))

∣∣∣∣∣∣∣∣2
2

]

≈ Eϵ,t

[
ω̃t∥

yθ(ϵ, s)− yθ(ϵ, t)

δ
− λ′

t (fϕ(x̂t, t)− yθ(ϵ, t)) ∥22
]

= Eϵ,t

 ω̃t

δ2
∥yθ(ϵ, s)−

yθ(ϵ, t) + δλ′
t (fϕ(x̂t, t)− yθ(ϵ, t))︸ ︷︷ ︸

incremental improvement

 ∥22


= Eϵ,t

[
ω̃t

δ2
∥yθ(ϵ, s)− ŷθ(ϵ, s)∥22

]
,

(13)

where s = t− δ, and ŷθ(ϵ, s) is the approximated target. ω̃t is the additional weight, where by default ω̃t = 1. To stabilize
training, a stop-gradient operation SG(.) is typically included:

Lθ = Eϵ,t

[
ω̃t

δ2
∥yθ(ϵ, s)− SG(ŷθ(ϵ, s))∥22

]
. (14)

In our experiments, we also find that it helps use ω̃t = 1/λ′2
t for text-to-image generation.

We can take advantage of higher-order solvers for a more accurate target that reduces the discretization error. For example,
one can use Heun’s method (Ascher & Petzold, 1998) to first calculate the intermediate value ỹθ(ϵ, s), and then the final
approximation ŷθ(ϵ, s):

ỹθ(ϵ, s) = yθ(ϵ, t) + δλ′
t (fϕ(x̂t, t)− yθ(ϵ, t)) , x̃s = αsỹθ(ϵ, s) + σsϵ

ŷθ(ϵ, s) = yθ(ϵ, t) +
δλ′

t

2
[(fϕ(x̂t, t)− yθ(ϵ, t)) + (fϕ(x̃s, s)− ỹθ(ϵ, s))] .

(15)
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Using Heun’s method essentially doubles the evaluations of the teacher model during training, while the add-on overheads
are manageable as we stop the gradients to the teacher model.

A.4. Training Algorithm

We summarize the training algorithm of BOOT in Algorithm 1, where by default we assume conditional diffusion model
with classifier-free guidance and DDIM solver. Here, for simplicity, we write λ′

t ≈ (1− αtσs

σtαs
)/δ. For unconditional models,

we can simply remove the context sampling part.

B. Connections to Existing Literature
B.1. Physics Informed Neural Networks (PINNs)

Physics-Informed Neural Networks (PINNs, Raissi et al., 2019) are powerful approaches that combine the strengths of
neural networks and physical laws to solve ODEs. Unlike traditional numerical methods, which rely on discretization and
iterative solvers, PINNs employ machine learning techniques to approximate the solution of ODEs. The key idea behind
PINNs is to incorporate physics-based constraints directly into the training process of neural networks. By embedding the
governing equations and available boundary or initial conditions as loss terms, PINNs can effectively learn the underlying
physics while simultaneously discovering the solution. This ability makes PINNs highly versatile in solving a wide range of
ODEs, including those arising in fluid dynamics, solid mechanics, and other scientific domains. Moreover, PINNs offer
several advantages, such as automatic discovery of spatio-temporal patterns and the ability to handle noisy or incomplete
data.

Although motivated from different perspectives, BOOT shares similarities with PINNs at a high level, as both aim to learn
ODE/PDE solvers directly through neural networks. In the domain of PINNs, solving ODEs can also be simplified into two
objectives: the differential equation (DE) loss (Eq. (6)) and the boundary condition (BC) loss (Eq. (8)). The major difference
lies in the focus of the two approaches. PINNs primarily focus on learning complex ODEs/PDEs for single problems,
where neural networks serve as universal approximators to address the discretization challenges faced by traditional solvers.
Moreover, the data space in PINNs is relatively low-dimensional. In contrast, BOOT aims to learn single-step generative
models capable of synthesizing data in high-dimensional spaces (e.g., millions of pixels) from random noise inputs and
conditions (e.g., labels, prompts). To the best of our knowledge, no existing work has applied similar methods in generative
modeling. Additionally, while standard PINNs typically compute derivatives (Eq. (6)) directly using auto-differentiation, in
this paper, we employ the finite difference method and propose a bootstrapping-based algorithm.

B.2. Consistency Models / TRACT

The most related previous works to our research are Consistency Models (Song et al., 2023) and concurrently TRACT (Berth-
elot et al., 2023), which propose bootstrapping-style algorithms for distilling diffusion models. These approaches map
an intermediate noisy training example at time step t to the teacher’s t-step denoising outputs using the DDIM inference
procedure. The training target for the student is constructed by running the teacher model with one step, followed by the
self-teacher with t− 1 steps. As illustrated in Figure 10, BOOT takes a different approach to bootstrapping. It starts from
the Gaussian noise prior and directly maps it to an intermediate step t in one shot. This change has significant modeling
implications, as it does not require any training data and can achieve data-free distillation, a capability that none of the prior
works possess.

B.3. Single-step Generative Models

BOOT is also related to other single-step generative models, including VAEs (Kingma & Welling, 2013) and GANs (Good-
fellow et al., 2014b), which aim to synthesize data in a single forward pass. However, BOOT does not require an encoder
network like VAEs. Thanks to the power of the underlying diffusion model, BOOT can produce higher-contrast and more
realistic samples. In comparison to GANs, BOOT does not require a discriminator or critic network. Furthermore, the
distillation process of BOOT enables better-controlled exploration of the text-image joint space, which is explored by the
pretrained diffusion models, resulting in more coherent and realistic samples in text-guided generation. Additionally, BOOT
is more stable to learn compared to GANs, which are challenging to train due to the adversarial nature of maintaining a
balance between the generator and discriminator networks.
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Figure 10. Comparison of Consistency Model (Song et al., 2023) (red ↑) and BOOT (black ↓) highlighting the opposing prediction
pathways.

C. Additional Experimental Settings
C.1. Datasets

While the proposed method is data-free, we list the additional dataset information that used to train our teacher diffusion
models:

FFHQ (https://github.com/NVlabs/ffhq-dataset) contains 70k images of real human faces in resolution of
1024× 1024. In most of our experiments, we resize the images to a low resolution at 64× 64 for early-stage benchmarking.

ImageNet-1K (https://image-net.org/download.php) contains 1.28M images across 1000 classes. We di-
rectly merge all the training images with class labels and train a class-conditioned diffusion teacher. All images are resized
to 64× 64 with center-crop. To support test-time classifier-free guidance, the teacher model is trained with 0.2 unconditional
probability.

As we do not need to train our own teacher models for text-to-image experiments, no additional text-image pairs are required
in this paper. However, our distillation still requires the text conditions for querying the teacher diffusion. To better capture
and generalize the real user preference of such diffusion models, we choose to adopt the collected prompt datasets:

DiffusionDB (https://poloclub.github.io/diffusiondb/) contains 14M images generated by Stable Dif-
fusion using prompts and hyperparameters specified by users. For the purpose of our experiments, we only keep the text
prompts and discard all model-generated images as well as meta-data and hyperparameters so that they can be used for
different teacher models. We use the same prompts for both latent and pixel space models.

C.2. Text-to-Image Teachers

We directly choose the recently open-sourced large-scale diffusion models as our teacher models. More specifically, we
looked into the following models:

StableDiffusion (SD) (https://github.com/Stability-AI/stablediffusion) is an open-source text-to-
image latent diffusion model (Rombach et al., 2021) conditioned on the penultimate text embeddings of a CLIP ViT-
H/14 (Radford et al., 2021) text encoder. Different standard diffusion models, SD performs diffusion purely in the
latent space. In this work, we use the checkpoint of SD v2.1-Base (https://huggingface.co/stabilityai/
stable-diffusion-2-1-base) as our teacher which first generates in 64 × 64 latent space, and then directly
upscaled to 512× 512 resolution with the pre-trained VAE decoder. The teacher model was trained on subsets of LAION-
5B (Schuhmann et al., 2022) with noise prediction objective.

DeepFloyd IF (IF) (https://github.com/deep-floyd/IF) is a recently open-source text-to-image model with
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Image Generation Text-to-Image
Hyperparameter FFHQ CIFAR10 ImageNet SD-Base IF-I-L IF-II-M

Architecture
Denosing resolution 64× 64 32× 32 64× 64 64× 64 64× 64 256× 256
Base channels 128 256 192
Multipliers 1,2,3,4 1,2,4 1,2,3,4
# of Resblocks 1 1 2
Attention resolutions 8,16 8,16 8,16 – Default –
Noise schedule cosine cosine cosine
Model Prediction signal signal signal
Text Encoder - - - CLIP T5 T5

Training
Loss weighting uniform uniform uniform λ′−2

t λ′−2
t λ′−2

t

Bootstrapping step size 0.04 0.04 0.04 0.01 0.04 0.04
CFG weight - - 1 ∼ 5 7.5 7.0 4.0
Learning rate 1e-4 1e-4 3e-4 2e-5 2e-5 2e-5
Batch size 128 128 1024 64 64 32
EMA decay rate 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
Training iterations 500k 500k 300k 500k 500k 100k

Table 3. Hyperparameters used for training BOOT. The CFG weights for text-to-image models are determined based on the default value
of the open-source codebase.

a high degree of photorealism and language understanding. IF is a modular composed of a frozen text encoder and three
cascaded pixel diffusion modules, similar to Imagen (Saharia et al., 2022): a base model that generates 64× 64 image based
on text prompt and two super-resolution models (256× 256, 1024× 1024). All stages of the model utilize a frozen text
encoder based on the T5 (Raffel et al., 2020) to extract text embeddings, which are then fed into a UNet architecture enhanced
with cross-attention and attention pooling. Models were trained on 1.2B text-image pairs (based on LAION (Schuhmann
et al., 2022) and few additional internal datasets) with noise prediction objective. In this paper, we conduct experiments
on the first two resolutions (64× 64, 256× 256) with the checkpoints of IF-I-L-v1.0 (https://huggingface.co/
DeepFloyd/IF-I-L-v1.0) and IF-II-M-v1.0 (https://huggingface.co/DeepFloyd/IF-II-M-v1.0).

C.3. Model Architectures

We follow the standard U-Net architecture (Nichol & Dhariwal, 2021) for image generation benchmarks and adopt the
hyperparameters similar in f-DM (Gu et al., 2022). For text-to-image applications, we keep the default architecture setups
from the teacher models unchanged. As mentioned in the main paper, we initialize the weights of the student models directly
from the pretrained checkpoints and use zero initialization for the newly added modules, such as target time and CFG weight
embeddings. We include additional architecture details in the Table 3.

C.4. Training Details

All models for all the tasks are trained on the same resources of 8 NVIDIA A100 GPUs for 500K updates. Training roughly
takes 3 ∼ 7 days to converge depending on the model sizes. We train all our models with the AdamW (Loshchilov & Hutter,
2017) optimizer, with no learning rate decay or warm-up, and no weight decay. Standard EMA to the weights is also applied
for student models. Since our methods are data-free, there is no additional overhead on data storage and loading except for
the text prompts, which are much smaller and can be efficiently loaded into memory.

Learning the boundary loss requires additional NFEs during each training step. In practice, we apply the boundary loss less
frequently (e.g., computing the boundary condition every 4 iterations and setting the loss to be 0 otherwise) to improve the
overall training efficiency. Note that distilling from the class-conditioned / text-to-image teachers requires multiple forward
passes due to CFG, which relatively slows down the training compared to unconditional models.

Distilling from the DeepFloyd IF teacher requires learning from two stages. In this paper, we can easily achieve that by first
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distilling the first-stage model into single-step with BOOT, and then distilling the upscaler model based on the output of the
first-stage student. Following the original paper (Saharia et al., 2022), noise augmentation is also applied on the first-stage
output where we set the noise-level as 250 *. For more training hyperparameters, please refer to Table 3.

D. Additional Samples from BOOT
Finally, we provide additional qualitative comparisons for the unconditional models of CIFAR-10 32 × 32 (Figure 11),
FFHQ 64× 64 (Figure 12), the class-conditional model of ImageNet 64× 64 (Figure 13), and comparisons for text-to-image
generation based on DeepFloyd-IF (64 × 64 in Figure 14, 256 × 256 in Figure 1) and StableDiffusion (512 × 512 in
Figure 16).

*https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/deepfloyd_
if/pipeline_if_superresolution.py#L715
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(a) Random samples from EDM teacher.

(b) Random samples from BOOT student.

Figure 11. Qualitative comparison between EDM teacher and BOOT samples on CIFAR-10 datasets.
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Figure 12. Uncurated samples from FFHQ 64× 64. All corresponding samples use the same initial noise for the DDIM teacher and the
single-step BOOT student. All faces presented are synthesized by the models, and are not real identities.
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Figure 13. Uncurated class-conditioned samples from ImageNet 64× 64. All corresponding samples use the same initial noise for the
DDIM teacher and the single-step BOOT student. Classes from top to bottom: cowboy boot, volcano, golden retriever, teapot, daisy. The
diffusion model uses CFG with w = 3, and our student model conditions on the same weight.
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Figure 14. Uncurated text-conditioned image generation distilled from DeepFloyd IF (the first stage model, images are at 64× 64). All
corresponding samples use the same initial noise for the DDIM teacher and the single-step BOOT student. The specific prompts are
shown above the images.
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Figure 15. Given the 64× 64 outputs from Figure 14, we also show comparison for the second-stage models which upscale the images to
256× 256. All corresponding samples use the same initial noise for the DDIM teacher and the single-step BOOT student.
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Figure 16. Uncurated text-conditioned image generation distilled from StableDiffusion (latent diffusion in 64× 64, images are upscaled
to 512× 512 with the pre-trained VAE decoder). All corresponding samples use the same initial noise for the DDIM teacher and the
single-step BOOT student. We use the same prompts as in Figure 14 for better comparison.
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