
Published as a conference paper at ICLR 2021

FACTORIZING DECLARATIVE AND PROCEDURAL
KNOWLEDGE IN STRUCTURED, DYNAMICAL ENVI-
RONMENTS

Anirudh Goyal1, Alex Lamb 1, Phanideep Gampa 1, 2, Philippe Beaudoin 3, Sergey Levine 4,
Charles Blundell 5, Yoshua Bengio 1, Michael Mozer 6

ABSTRACT

Modeling a structured, dynamic environment like a video game requires keeping
track of the objects and their states (declarative knowledge) as well as predicting
how objects behave (procedural knowledge). Black-box models with a monolithic
hidden state often fail to apply procedural knowledge consistently and uniformly,
i.e., they lack systematicity. For example, in a video game, correct prediction of one
enemy’s trajectory does not ensure correct prediction of another’s. We address this
issue via an architecture that factorizes declarative and procedural knowledge and
that imposes modularity within each form of knowledge. The architecture consists
of active modules called object files that maintain the state of a single object and
invoke passive external knowledge sources called schemata that prescribe state
updates. To use a video game as an illustration, two enemies of the same type
will share schemata but will have separate object files to encode their distinct state
(e.g., health, position). We propose to use attention to determine which object files
to update, the selection of schemata, and the propagation of information between
object files. The resulting architecture is a drop-in replacement conforming to the
same input-output interface as normal recurrent networks (e.g., LSTM, GRU) yet
achieves substantially better generalization on environments that have multiple
object tokens of the same type, including a challenging intuitive physics benchmark.

1 INTRODUCTION

An intelligent agent that interacts with its world must not only perceive objects but must also
remember its past experience with these objects. The wicker chair in one’s living room is not just a
chair, it is the chair which has an unsteady leg and easily tips. Your keys may not be visible, but you
recall placing them on the ledge by the door. The annoying fly buzzing in your left ear is the same fly
you saw earlier which landed on the table.

Visual cognition requires a short-term memory that keeps track of an object’s location, properties, and
history. In the cognitive science literature, this particular form of state memory is often referred to as
an object file (Kahneman et al., 1992), which we’ll abbreviate as OF. An OF serves as a temporally
persistent reference to an external object, permitting object constancy and permanence as the object
and the viewer move in the world.

Complementary to information in the OF is abstract knowledge about the dynamics and behavior
of an object. We refer to this latter type of knowledge as a schema (plural schemata), another term
borrowed from the cognitive-science literature. The combination of OFs and schemata is sufficient
to predict future states of object-structured environments, critical for planning and goal-seeking
behavior.

To model a complex, structured visual environment, multiple OFs must be maintained in parallel.
Consider scenes like a PacMan video-game screen in which the ghosts chase the PacMan, a public

01 Mila, University of Montreal, 2 IIT BHU, Varanasi, 3 Waverly, 4 UC Berkeley, 5 Deepmind, 6 Google
Research, Brain Team, Corresponding author: anirudhgoyal9119@gmail.com

1

Published as a conference paper at ICLR 2021

Object Schema 1 Schema 2 Schema 3

files PacMan Normal Scared

(OFs) Ghost Ghost

Left Frame

A X

B X

C X

D X

E X

Right Frame

A X

B X

C X

D X

E X

Figure 1: Two successive
frames of PacMan, illustrat-
ing the factorization of knowl-
edge. Each ghost is rep-
resented by a persistent OF
(maintaining its location and
velocity), but all ghosts op-
erate according to one of
two schemata, depending on
whether the ghost is in a nor-
mal or scared state.

square or sports field in which people interact with one another, or a pool table with rolling and
colliding balls. In each of these environments, multiple instances of the same object class are present;
all operate according to fundamentally similar dynamics. To ensure systematic modeling of the
environment, the same dynamics must be applied to multiple object instances. Toward this goal, we
propose a method of separately representing the state of an individual object—via an OF—and how
its state evolves over time—via a schema.

Object-oriented programming (OOP) provides a metaphor for thinking about the relationship between
OFs and schemata. In OOP, each object is an instantiation of an object class and it has a self-contained
collection of variables whose values are specific to that object and methods that operate on all
instances of the same class. The relation between objects and methods mirrors the relationship
between our OFs and schemata. In both OOP and our view of visual cognition, a key principle is the
encapsulation of knowledge: internal details of objects (OFs) are hidden from other objects (OFs),
and methods (schemata) are accessible to all and only objects (OFs) to which they are applicable.

The modularity of knowledge in OOP supports human programmers in writing code that is readily de-
bugged, extended, and reused. We conjecture that the corresponding modularity of OFs and schemata
will lead to neural-network models with more efficient learning and more robust generalization,
thanks to appropriate disentangling and separation of concerns.

Modularity is the guiding principle of the model we propose, which we call SCOFF, an acronym for
schema / object-file factorization. Like other neural net models with external memory (e.g., Mozer
and Das, 1993; Graves et al., 2016; Sukhbaatar et al., 2015), SCOFF includes a set of slots which are
each designed to contain an OF (Figure 2). In contrast to most previous external memory models,
the slots are not passive contents waiting to be read or written by an active process, but are dynamic,
modular elements that seek information in the environment that is relevant to the object they represent,
and when critical information is observed, they update their states, possibly via information provided
by other OFs. Event-based OOP is a good metaphor for this active process, where external events can
trigger the action of objects.

As Figure 2 suggests, there is a factorization of declarative knowledge—the location, properties,
and history of an object, as contained in the OFs—and procedural knowledge—the rules of object
behavior, as contained in the schemata. Whereas declarative knowledge can change rapidly, procedural
knowledge is more stable over time. This factorization allows any schema to be applied to any OF as

Object
file

Object
file

Object
file

Object
file

Image

Prediction

CNN

SCOFF

Spatial attention

Sc
he

m
aSc

he
m

aSc
he

m
a

Figure 2: Proposed SCOFF model.
Schemata are sets of parameters
that specify the dynamics of ob-
jects. Object files (OFs) are active
modules that maintain the time-
varying state of an object, seek
information from the input, and
select schemata for updating, and
transmit information to other ob-
ject files. Through spatial atten-
tion, OFs compete and select dif-
ferent regions of the input.

2

Published as a conference paper at ICLR 2021

deemed appropriate. The model design ensures systematicity in the operation of a schema, regardless
of the slot to which an OF is assigned. Similarly, an OF can access any applicable schema regardless
of which slot it sits in. Furthermore, a schema can be applied to multiple OFs at once, and multiple
schemata could be applied to an OF (e.g., Figure 1). In OOP, systematicity is similarly achieved by
virtue of the fact that the same method can be applied to any object instantiation and that multiple
methods exist which can be applied to an object of the appropriate type.

Our key contribution is to demonstrate the feasibility and benefit of factorizing declarative knowledge
(the location, properties, and history of an object) and procedural knowledge (the way objects behave).
This factorization enforces not only an important form of systematicity, but also of exchangeability:
the model behaves exactly the same regardless of the assignment of schemata to schemata-slots and
the assignment of objects to OF-slots, i.e., the neural network operates on a set of objects and a set of
schemata. With this factorization, we find improved accuracy of next-state prediction models and
improved interpretability of learned parameters.

2 THE SCHEMATA / OBJECT-FILE FACTORIZATION (SCOFF) MODEL

SCOFF, shown in Figure 2, is an architectural backbone that supports the separation of procedural
and declarative knowledge about dynamical entities (objects) in an input sequence. The input
sequence {x1, . . . ,xt, . . . ,xT }, indexed by time step t is processed by a neural encoder (e.g., a fully
convolutional net for images) to obtain a deep embedding, {z1, . . . ,zt, . . . ,zT }, which then drives a
network with nf OFs and ns schemata.

OFs are active processing components that maintain and update their internal state. Essentially, an
OF is a layer of GRU (Chung et al., 2014) or LSTM (Hochreiter and Schmidhuber, 1997) units with
three additional bits of machinery, which we now describe.

1. Our earlier metaphor identifying OFs in SCOFF with objects in OOP is apropos in the sense
that OFs are event driven. OFs operate in a temporal loop, continuously awaiting relevant
input signals. Relevance is determined by an attention-based soft competition among OFs:
the current input serves a key that is matched to a query generated from the state of each OF;
based on the goodness of match, each OF is provided with a value extracted from the input.

2. Each OF performs a one-step update of its state layer of GRU or LSTM units, conditioned on
the input signal received. The weight parameters needed to perform this update, which we
will denote generically as θ, are not—as in a standard GRU or LSTM—internal to the layer
but rather are provided externally. Each schema j is nothing more than a set of parameters
θj which can be plugged into this layer. SCOFF uses a key-value attention mechanism to
perform Gumbel-based hard selection of the appropriate schema (parameters).

3. OFs may pass information to other OFs (analogous to arguments being passed to a method
in OOP), again using a soft attention mechanism by which each OF queries all other OFs.
Keys provided by the other OFs are matched to the query, and a soft selection of the best
matching OFs determines the weighting of values transmitted by the other OFs.

This operation cycle ensures that OFs can update their state in response to both the external input
and the internal state comprised of all the OFs’ contents. This updating is an extra wrapper around
the ordinary update that takes place in a GRU or LSTM layer. It provides additional flexibility in
that (1) The external input is routed to OFs contingent on their internal state, (2) OFs can switch their
dynamics from one time step to the next conditioned on their internal state, (3) OFs are modular in
that they do not communicate with one another except via state-dependent selective message passing.

OFs are placeholders in that a particular OF has no weight parameter specific to that OF. Instead, the
parameters are provided from two sources: either the schemata or a pool of generic parameters shared
by the nf OFs. This generic parameter pool is used to implement key-value attention over the input,
the schemata, and communication among OFs. The sharing of schemata ensures systematicity; the
sharing of the generic parameter pool ensures exchangeability—model behavior is unaffected by the
assignment of object instances to OF slots.

2.1 SCOFF SPECIFICS

3

Published as a conference paper at ICLR 2021

Algorithm 1 SCOFF model

Input: Current sequence element, xt and previous OF state, {ht−1,k| k ∈ {1, . . . , nf}}

Step 1: Process image by position p with fully convolutional net
• cp = [CNN(xt)]p
• ap = [cp ep] (concatenate encoding of position to CNN output)

Step 2: Soft competition among OFs to select regions of the input to process
• qk =W qht−1,k

• sk,p = softmaxk

(qTk κp√
de

)
,where κp = (apW

e)T

• zk =
∑

p sk,pvp where vp = apW
v ∀ k ∈ {1, . . . , nf}

Step 3: OFs pick the most relevant schema and update
• h̃t,k,j = GRUθj

(zk,ht−1,k) ∀k ∈ {1, . . . , nf}, j ∈ {1, . . . , ns}

• q̃k = ht−1,kW̃
q

• ik = argmaxj

(
q̃Tk κ̃k,j + γ

)
, where κ̃k,j = (h̃t,k,jW̃

e)T and γ ∼ Gumbel(0, 1)

• ht,k = h̃t,k,ik

Step 4: Soft competition among OFs to transmit relevant information to each OF

• q̂k = ht−1,kŴ
q ∀k{1, . . . , nf}

• sk,k′ = softmaxk′

(
q̂Tk κ̂k′√

de

)
where κ̂k′ = (ht,k′Ŵ e)T ∀ k, k′ ∈ {1, . . . , nf}

• ht,k ← ht,k +
∑

k′ sk,k′ v̂k′ where v̂k′ = ht,k′Ŵ v ∀k ∈ {1, . . . , nf}

Algorithm 1 provides a precise specification of SCOFF broken into four steps. Step 1 is external
to SCOFF and involves processing an image input to obtain a deep embedding. The processing is
performed by a fully Convolutional Neural Net (CNN) that preserves positional information (typically
64× 64 in our simulations), and for each position p encodes the processed input cp and concatenates
a learned encoding of position, ep to produce a position-specific hidden state. (SCOFF can also handle
non-visual inputs, such as vectors or discrete tokens; in this case the CNN is replaced by an MLP.)
The subsequent core steps are as follows.

Step 2: Soft competition among OFs to select regions of the input to process. The state of each
OF k, ht−1,k, is used to form a query, qk, which determines the input positions that it will attend
to. The query is matched to a set of position-specific input keys, κk,p for position p, producing a
position-specific match score, sk,p. Soft position-specific competition among the OFs results in the
OFs selecting complementary image regions to attend to. The contents of the attended positions are
combined yielding an OF-specific input encoding, zk.

Step 3: OFs pick the most relevant schema and update. OF k picks one schema via attention as
follows. OF k binds to each schema j, and then performs a hypothetical update, yielding h̃t,k,j . In
experiments below, the OF state is maintained by a GRU layer, and schema j is a parameterization of
the GRU, denoted GRUθj

, which determines the update. The previous state of the OF, ht−1,k serves
as a query in key-value attention against a key derived from the hypothetical updated state, h̃t,k,j .
The schema ik corresponding to the best query-key match for OF k is used to update OF k’s state.
Selection is based on the straight-through Gumbel-softmax method (Jang et al., 2016), which makes
a hard choice during forward propagation and during backward propagation, it considers a softened
version of the output to permit gradient propagation to non-selected schemata.

Step 4: Soft competition among OFs to transmit relevant information to each OF. This step allows
for interactions among OFs. Each OF k queries other OFs for information relevant to its update as
follows. The OF’s previous state, ht−1,k, is used to form a query, q̂k, in an attention mechanism
against a key derived from the new state of each other OF k′, κ̂k′ , and softmax selection (sk,k′) is
used to obtain weighted information from other OFs, v̂′k, into OF k’s state.

Number of Parameters. SCOFF can be used as a drop-in replacement for a LSTM/GRU layer. There
is a subtlety that must be considered for successful integration. If the total size of the hidden state is
kept the same, integrating SCOFF dramatically reduces the total number of recurrent parameters in

4

Published as a conference paper at ICLR 2021

the model because of its block-sparse structure. The majority of SCOFF parameters are the schemata,
{θj |j ∈ {1, . . . , ns}}. The remaining parameters are those of query (W q, W̃ q, Ŵ q), key (W e,
W̃ e, Ŵ e), and value W v, Ŵ v) functions. Note that these linear functions could be replaced by
nonlinear functions. Its also interesting to note that SCOFF actually has far fewer parameters than
other modular architectures (e.g., RIMs, Recurrent Entity Networks, Neural Module Networks) when
ns < nf (which holds true for most of our experiments), because of the potential one-to-many
mapping between schemata and OFs. Optionally, at Step 2, during training instead of activating
all the OFs, we can use a sparse attention, to only activate a subset of OFs that are relevant at that
time step t, and only update the state of the activated OFs. We note that this is not specific to the
proposed method, but the performance of the method can be improved by only selectively activating
the relevant OFs. We also note that the different schemata in the proposed method are only used to
update the state of OFsand hence is agnostic as to how one obtains a set of OFs. Any other method
for entity extraction (Burgess et al., 2019; Greff et al., 2019) can be used for obtaining a set of OFs.
Similarly, other methods for decoding which preserves equivariance (Watters et al., 2019) among
different OFscan be used for decoding the contents of different OFs.

3 RELATED WORK

CNNs. SCOFF applies the same knowledge (schemata) to multiple OFs, yielding systematicity.
Similarly, a CNN is a highly restrictive instantiation of this same notion, where knowledge—in
the form of a convolutional filter—is applied uniformly to every location in an image, yielding
equivariance. SCOFF is a more flexible architecture than a CNN in that OFs are defined by abstract
notion of objects not a physical patch of an image, and schemata are applied dynamically and flexibly
over time, not in a fixed, rigid manner as the filters in a CNN.

Memory Networks. A variety of existing models leverage an external slot-based, content-addressible
memory (e.g., Graves et al., 2016; Sukhbaatar et al., 2015). The memory slots are passive elements
that are processed by a differentiable neural controller such as an LSTM. Whereas traditional memory
networks have many dumb memory cells and one smart controller, SCOFF has many smart memory
cells—the OFs—which also act as local controllers. However, SCOFF shares the notion with memory
networks that the same knowledge is applied systematically to every cell.

Relational RNN (RMC). The RMC (Santoro et al., 2018) has a multi-head attention mechanism
which allows it to share information between multiple memory locations. RMC is like Memory
Networks in that dynamics are driven by a central controller: memory is used to condition the
dynamics of an RNN.

Recurrent Entity Networks. Henaff et al. (2016) describe a collection of recurrent modules that
update independently and in parallel in response to each input in a sequence. The module outputs are
integrated to form a response. It shares a modular architecture with SCOFF, but the modules have
a fixed function and do not directly communicate with one another. This earlier work focused on
language not images.

Recurrent Independent Mechanisms (RIMs). RIMs (Goyal et al., 2019) are a key inspiration
for our work. RIMs are a modular neural architecture consisting of an ensemble of dynamical
components which have sparse interactions through the bottleneck of attention. Each RIM module
has at its core an LSTM layer (Hochreiter and Schmidhuber, 1997). A RIM module is much like our
OF. Both are meant to be dynamical entities with a time-evolving state. However, in contrast to OFs
in SCOFF, RIM modules operate according to fixed dynamics and each RIM module is specialized for
a particular computation. RIM modules are thus not interchangeable.

Neural Module Networks. A modular module network (Jacobs et al., 1991; Bottou and Gallinari,
1991; Ronco et al., 1997; Reed and De Freitas, 2015; Andreas et al., 2016; Rosenbaum et al., 2017;
Fernando et al., 2017; Shazeer et al., 2017; Kirsch et al., 2018; Rosenbaum et al., 2019) has an
architecture which is composed dynamically from several neural modules, where each module is
meant to perform a distinct function. Each module has a fixed function, unlike our OFs, and modules
are applied one at a time, in contrast to our OFs, which can update and be used for prediction in
parallel.

5

Published as a conference paper at ICLR 2021

4 METHODOLOGY

SCOFF is a drop-in replacement for a standard LSTM or GRU layer, conforming to the same input-
output interface. Because of their interchangeability, we compare SCOFF to LSTM and GRUs. We
also compare SCOFF to two alternative modular architectures: RMC, a memory based relational
recurrent model with attention between memory elements and hidden states (Santoro et al., 2018), and
Recurrent Independent Mechanisms (RIMs), a modular memory based on a single layered recurrent
model with attention modulated input and communication between modules (Goyal et al., 2019).

In all simulations we present, the input is a video sequence, each frame of which is preprocessed by
a CNN backbone. We consider two task types: video prediction and reinforcement learning (RL).
For video prediction, the simulation output is a prediction of the next frame in the sequence. For RL,
the output is an action choice. In both cases, SCOFF’s internal state is mapped to an output in the
following manner. The state of each OF is remapped by a siamese network that transforms the state.
(By siamese network, we mean that every OF is remapped by the same function.) The transformed
state is concatenated and used by an attention-based mechanism operating over the OF slots to ensure
exchangeability of the OFs. In the case of video prediction, a deconvolutional backbone yields an
image as output; in the case of reinforcement learning, the output is a distribution over actions.

The heart of the model is a single SCOFF layer, consisting of nf OFs and ns schemata. Most simulation
details are contained in section A of the Appendix, but we summarize some key points here. Unless
otherwise indicated, we always train in an end-to-end fashing using the Adam (Kingma and Ba, 2014)
optimizer with a learning rate of 0.0001 and momentum of 0.9. As a default, we use nf = 6 and
ns = 4, except where we are specifically exploring the effects of manipulating these hyperparameters.
We include more experimental results in the Appendix, and we will release the code.

5 EXPERIMENTS

Our experiments address the following questions. (1) Does SCOFF successfully factorize knowledge
into OFs and schemata? (2) Do the learned schemata have semantically meaningful interpretations?
(3) Is the factorization of knowledge into object files and schemata helpful in downstream tasks?
(4) Does SCOFF outperform state-of-the-art approaches, both modular and non-modular, which lack
SCOFF’s strong inductive bias toward systematicity and knowledge factorization?

We begin with a series of experiments involving greyscale synthetic video sequences consisting
of a single ball-like object moving over time according to switchable dynamics. We model this
scenario with SCOFF having a single (nf = 1) OF and the number of schemata matching the number
of different types of dynamics.

Single object with fixed dynamics. To demonstrate that the proposed model is able to factorize
knowledge, we consider video scenes in which a single object, starting in a random location, has
dynamics that cause it to either (a) accelerate in a particular direction, (b) move at a constant velocity
in a particular direction, or (c) take a random walk with a constant velocity. Following training, SCOFF
can predict trajectories after being shown the first few frames. It does so by activating a schema that
has a one-to-one correspondence with the three types of dynamics (Figure 3, left panel), leading

Timesteps along a trajectory

T=0 T=5 T=15T=10

Sc
he

m
at

a

Figure 3: [left panel] Single object sequences with three possible dynamics of motion. After about
five video frames (burn-in period), SCOFF locks into the type of motion and activates a corresponding
schema to predict future states. Relative activation of the three schemata indicated by the color bar.
The selected schema indicated by the faint blue border. [right panel] RL Maze task. The agent learns
to navigate a maze of randomly interconnected rooms to find a key. Array indicates schema activation
over a sequence of steps along a particular trajectory.

6

Published as a conference paper at ICLR 2021

Ball

Two Visual Markers 

Horizontal dynamics (correlates with right visual marker)

Vertical dynamics (correlates with left visual marker)

Tw
o

vi
su

al
 m

ar
ke

rs

Ba
ll Figure 4: Switching dynamics task.

Sequence of steps showing horizontal
(top row) and vertical (bottom row)
dynamics of a ball. Frames contain
visual markers that indicate the cur-
rent dynamics.

to interpretable semantics and a clean factorization of knowledge. For additional details, refer to
Appendix C.

Single object with switching dynamics. In this experiment, video scenes contain a single object,
starting in a random location, operating according to one of two dynamics: vertical and horizontal
motion. In contrast to the previous experiment, the object can switch dynamics in the course of
a sequence. The current dynamics are indicated by markers in the image (see Figure 4) which
SCOFF must learn to detect in order to select the corresponding schema. In this experiment, we
find that SCOFF is able to learn a one-to-one correspondence with two types of dynamics, yielding
high-precision prediction of the next frame, even on the first frame after a switch.

Single object with switching dynamics in an RL paradigm. In this experiment, we use the partially-
observable GotoObjMaze environment from Chevalier-Boisvert et al. (2018), in which an agent must
learn to navigate to navigate a 2D multi-room grid world to locate distinct objects such as a key.
The world consists of 6 × 6 square rooms that are randomly connected through doors to form a
3× 3 maze of rooms. The agent’s view of the world is an egocentric 5× 5 patch. Our experiment
involves ns = 4 schemata whose activation pattern over time steps is shown in the right panel of
Figure 3. The schema activation pattern is interpretable; for example, schema 4 is triggered when the
‘key’ is in the agent’s field of view (see Appendix, Figure 13 and Section D). To obtain quantitative
evaluations, we test transfer by increasing the room size to 10× 10 during testing. SCOFF is able to
successfully reach its goal on 82% of trials, whereas a GRU baseline succeeds only 56% of trials.
Even an overparameterized GRU, which matches SCOFF in number of free parameters, still succeeds
less often—on 74% of trials. All models are trained for an equal number of time steps. To summarize,
the factorization of knowledge in SCOFF leads not only to better next-step prediction but also improve
performance on a downstream control task.

Multiple objects with multiple dynamics. We now turn from single-object sequences to sequences
involving multiple objects which operate according complex dynamics. We consider a bouncing-balls
environment in which multiple balls move with billiard-ball dynamics (Van Steenkiste et al., 2018).
The dataset consists of 50,000 training examples and 10,000 test examples showing ∼50 frames
of either 4 solid same-color balls bouncing in a confined square geometry with different masses
corresponding to their radii (4Balls), 6-8 same-color balls bouncing in a confined geometry (678Balls),
3 same-color balls bouncing in a confined geometry with a central occluder (Curtain), or balls of
four different colors (Colored 678Balls). Although each ball has a distinct state (position, velocity,
and possibly color), they share the same underlying dynamics of motion and collision. We expected
that SCOFF would learn to dissect these dynamics, e.g., by treating collisions, straight-line motion,
interactions with the walls, and moving behind an occluder as distinct schemata. We use the encoder
and decoder architecture of (Van Steenkiste et al., 2018) for all models. SCOFF has nf = 4 for 4Balls
and Curtain, and nf = 8 for 678Balls and Coloured678Balls, and ns = 4 for all simulations. All
models are trained for 100 epochs. As shown in Figure 5, SCOFF achieves dramatic improvements in
successfully predicting 10- and 30-step iterated predictions relative to GRUs, and RIMs. (For further
details, see Appendix Section C.) We omitted RMC (Santoro et al., 2018) from Figures 5a-d because
RIMs performs strictly better than RMC in these environments (Goyal et al., 2019), but have included
RMC in the Appendix.

Increasing the number of schemata. Our previous experiment used ns = 4 for all simulations. In
order to study what happens if SCOFF has access to a large number of schemata, we perform an
experiment with ns = 10. For the curtain task, we found that only three schemata were being used,
and performance was about the same as when training with ns = 3 or ns = 4. For 678Balls, we
found that by the end of training only four schemas were being used, and performance is about the
same as when training with ns = 4. Thus, providing SCOFF with excess resources leads to some not
being used which is a waste of computation and memory but does not lead to suboptimal performance.

7

Published as a conference paper at ICLR 2021

GRU RIMs SCOFF
method

0.0

0.2

0.4

0.6

0.8

1.0

BC
E

(R
el

at
iv

e
to

 G
RU

 b
as

el
in

e)

steps = 10 steps

GRU RIMs SCOFF
method

steps = 30 steps

(a) 4Balls
GRU RIMs SCOFF

method
0.0

0.2

0.4

0.6

0.8

1.0

BC
E

(R
el

at
iv

e
to

 G
RU

 b
as

el
in

e)

steps = 10 steps

GRU RIMs SCOFF
method

steps = 30 steps

(b) Curtain

GRU RIMs SCOFF
method

0.0

0.2

0.4

0.6

0.8

1.0

BC
E

(R
el

at
iv

e
to

 G
RU

 b
as

el
in

e)

steps = 10 steps

GRU RIMs SCOFF
method

steps = 30 steps

(c) 678Balls
GRU RIMs SCOFF

method
0.0

0.2

0.4

0.6

0.8

1.0

BC
E

(R
el

at
iv

e
to

 G
RU

 b
as

el
in

e)

steps = 10 steps

GRU RIMs SCOFF
method

steps = 30 steps

(d) Coloured678Balls

Figure 5: Bouncing ball motion. Error relative to GRU baseline on 10- and 30-frame video prediction
of multiple-object video sequences Predictions are based on 15 frames of ground truth. The advantage
of SCOFF is amplified as the number of balls increases (4Balls versus 678Balls) and as predictions
require greater look ahead (10 versus 30 frames).

Block O1 (Disappear) Block O2 (Shape Change) Block O3 (Teleport)
RMC (Santoro et al., 2018) 0.43 ± 0.05 0.39 ± 0.03 0.46 ± 0.02

Intphys (Riochet et al., 2019) 0.52 0.52 0.51

SCOFF (ours) 0.34 ± 0.05 0.35 ± 0.05 0.42 ± 0.02

Table 1: Results on the IntPhys benchmark. Relative classification error of unrealistic physical
phenomena (Riochet et al., 2019) for three models, demonstrating benefits of SCOFF in scenes
with significant occlusions ("Occluded"). This particular benchmark has three subsets, and for our
experiments we evaluate the proposed model on the “occlusion” subset of the task. The three columns
correspond to 3 different types of occlusions. Lower is better. Average taken over 3 random seeds.

For example, one might have been concerned about overfitting with too many resources. However,
with ns = 3 schemata, we never observe unused schemata, suggesting that the model does not have
difficulty using the resources we provide to it. That is, there are no ‘dead’ schemata that fail to be
trained due to local optima.

Modeling physical laws in a multi-object environment. Modeling a physical system, such as objects
in a world obeying laws of gravity and momentum, requires factorization of state (object position,
velocity) and dynamics. All objects must obey the same laws while each object must maintain its
distinct state. We used the Intuitive Physics Benchmark (Riochet et al., 2019) in which balls roll
behind a brick wall such that they are briefly occluded. The training data is constructed such that the
examples are all physically realistic. The test set consists of both sequences that behave according
to the laws used to synthesize the training data and sequences that follow unrealistic physical laws.
We test three forms of unrealistic physics: balls disappearing behind the wall (O1 task), balls having
their shape change for no reason (O2 task), and balls teleporting (O3 task). The Benchmark has three
subsets of experiments, and we chose the challenging subset with significant occlusions. We trained
models to perform next state prediction on the training set and we use model likelihood (Riochet
et al., 2019) to discriminate between realistic and unnatural test sequences. Further details are in
Appendix E. As Table 1 indicates, SCOFF significantly outperforms two competitors on all three tasks.

8

Published as a conference paper at ICLR 2021

6 CONCLUSIONS

Understanding the visual world requires interpreting images in terms of distinct independent physical
entities. These entities have persistent intrinsic properties, such as a color or velocity, and they
have dynamics that transform the properties. We explored a mechanism that is able to factorize
declarative knowledge (the properties) and procedural knowledge (the dynamics). Using attention,
our SCOFF model learns this factorization into representations of entities—OFs—and representations
of how they transform over time—schemata. By applying the same schemata to multiple OFs, SCOFF
achieves systematicity of prediction, resulting in significantly improved generalization performance
over state-of-the-art methods. It also addresses a fundamental issue in AI and cognitive science: the
distinction between types and tokens. SCOFF is also interpretable, in that we can identify the binding
between schemata and entity behavior. The factorization of declarative and procedural knowledge
has broad applicability to a wide variety of challenging deep learning prediction tasks.

REFERENCES

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. Neural module networks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 39–48,
2016.

Léon Bottou and Patrick Gallinari. A framework for the cooperation of learning algorithms. In
Advances in neural information processing systems, pages 781–788, 1991.

Christopher P Burgess, Loic Matthey, Nicholas Watters, Rishabh Kabra, Irina Higgins, Matt Botvinick,
and Alexander Lerchner. Monet: Unsupervised scene decomposition and representation. arXiv
preprint arXiv:1901.11390, 2019.

Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem Lahlou, Lucas Willems, Chitwan Saharia,
Thien Huu Nguyen, and Yoshua Bengio. Babyai: First steps towards grounded language learning
with a human in the loop. arXiv preprint arXiv:1810.08272, 2018.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of
gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

Chrisantha Fernando, Dylan Banarse, Charles Blundell, Yori Zwols, David Ha, Andrei A Rusu,
Alexander Pritzel, and Daan Wierstra. Pathnet: Evolution channels gradient descent in super neural
networks. arXiv preprint arXiv:1701.08734, 2017.

Anirudh Goyal, Alex Lamb, Jordan Hoffmann, Shagun Sodhani, Sergey Levine, Yoshua Bengio, and
Bernhard Schölkopf. Recurrent independent mechanisms. arXiv preprint arXiv:1909.10893, 2019.

Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka, Agnieszka Grabska-
Barwińska, Sergio Gómez Colmenarejo, Edward Grefenstette, Tiago Ramalho, John Agapiou, et al.
Hybrid computing using a neural network with dynamic external memory. Nature, 538(7626):471,
2016.

Klaus Greff, Raphaël Lopez Kaufman, Rishabh Kabra, Nick Watters, Christopher Burgess, Daniel
Zoran, Loic Matthey, Matthew Botvinick, and Alexander Lerchner. Multi-object representation
learning with iterative variational inference. In International Conference on Machine Learning,
pages 2424–2433. PMLR, 2019.

Mikael Henaff, Jason Weston, Arthur Szlam, Antoine Bordes, and Yann LeCun. Tracking the world
state with recurrent entity networks. arXiv preprint arXiv:1612.03969, 2016.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Robert A Jacobs, Michael I Jordan, Steven J Nowlan, Geoffrey E Hinton, et al. Adaptive mixtures of
local experts. Neural computation, 3(1):79–87, 1991.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. arXiv
preprint arXiv:1611.01144, 2016.

9

Published as a conference paper at ICLR 2021

D. Kahneman, A. Treisman, and B. J. Gibbs. The reviewing of object files: object-specific integration
of information. Cognitive psychology, 24(2):175–219, 1992.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Louis Kirsch, Julius Kunze, and David Barber. Modular networks: Learning to decompose neural
computation. In Advances in Neural Information Processing Systems, pages 2408–2418, 2018.

Michael C Mozer and Sreerupa Das. A connectionist symbol manipulator that discovers the structure
of context-free languages. In S. J. Hanson, J. D. Cowan, and C. L. Giles, editors, Advances in
Neural Information Processing Systems 5, pages 863–870. Morgan-Kaufmann, 1993.

Scott Reed and Nando De Freitas. Neural programmer-interpreters. arXiv preprint arXiv:1511.06279,
2015.

Ronan Riochet, Mario Ynocente Castro, Mathieu Bernard, Adam Lerer, Rob Fergus, Véronique Izard,
and Emmanuel Dupoux. Intphys: A benchmark for visual intuitive physics reasoning. 2019.

Eric Ronco, Henrik Gollee, and Peter J Gawthrop. Modular neural networks and self-decomposition.
Technical Report CSC-96012, 1997.

Clemens Rosenbaum, Tim Klinger, and Matthew Riemer. Routing networks: Adaptive selection of
non-linear functions for multi-task learning. arXiv preprint arXiv:1711.01239, 2017.

Clemens Rosenbaum, Ignacio Cases, Matthew Riemer, and Tim Klinger. Routing networks and the
challenges of modular and compositional computation. arXiv preprint arXiv:1904.12774, 2019.

Adam Santoro, Ryan Faulkner, David Raposo, Jack W. Rae, Mike Chrzanowski, Theophane Weber,
Daan Wierstra, Oriol Vinyals, Razvan Pascanu, and Timothy P. Lillicrap. Relational recurrent neural
networks. CoRR, abs/1806.01822, 2018. URL http://arxiv.org/abs/1806.01822.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and
Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. arXiv
preprint arXiv:1701.06538, 2017.

Sainbayar Sukhbaatar, arthur szlam, Jason Weston, and Rob Fergus. End-to-end memory networks.
In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in
Neural Information Processing Systems 28, pages 2440–2448. Curran Associates, Inc., 2015. URL
http://papers.nips.cc/paper/5846-end-to-end-memory-networks.pdf.

Sjoerd Van Steenkiste, Michael Chang, Klaus Greff, and Jürgen Schmidhuber. Relational neural
expectation maximization: Unsupervised discovery of objects and their interactions. arXiv preprint
arXiv:1802.10353, 2018.

Nicholas Watters, Loic Matthey, Christopher P Burgess, and Alexander Lerchner. Spatial broadcast
decoder: A simple architecture for learning disentangled representations in vaes. arXiv preprint
arXiv:1901.07017, 2019.

10

http://arxiv.org/abs/1806.01822
http://papers.nips.cc/paper/5846-end-to-end-memory-networks.pdf

Published as a conference paper at ICLR 2021

Appendix

Table of Contents
A Implementation Details and Hyperparameters 11

B Adding Task 11

C Bouncing Ball 12

D BabyAI: Reinforcement Learning 12

E Intuitive Physics 13

F Switching Dynamics 13
F.1 Experiment Setup . 14
F.2 The factorisation of dynamics into schemata 15

G Pseudocode for SCOFF Algorithm 24

A IMPLEMENTATION DETAILS AND HYPERPARAMETERS

The model setup consists of three main components: an encoder, the process of interaction between
object files and schemata followed by a decoder. The images are first processed by an encoder, which
is parameterized as a CNN. For experiments containing multiple entities, we use a spatial attention
(i.e., output of the CNN preserves the spatial information) such that different OFs can attend to
different spatial regions.

Resources Used. It takes about 2 days to train the proposed model on bouncing ball task for 100
epochs on V100 (32G). We did not do any hyper-parameter search specific to a particular dataset (i.e
4Balls or 678Balls or Curtain Task). We ran the proposed model for different number of schemata
(i.e 2/4/6). Similarly, it takes about 3 days to run for 20M steps for the Reinforcement learning task.

B ADDING TASK

We analyzed the proposed method on the adding task. This is a standard task for investigating
recurrent models (Hochreiter and Schmidhuber, 1997). The input consists of two co-occuring
sequences: 1) N numbers (a0 · · · aN−1) sampled independently from U [0, 1], 2) an index i0 in the
first half of the sequence, and an index i1 in the second half of the sequence together encoder as a one
hot sequences. The target output is ai0 + ai1 . As shown in figure 6 (a), we can clearly observe the
factorisation of procedural knowledge into two schemata effectively, one schema is triggered when
an operand is encountered and the other when non-operand is encountered.

Generalization Result: For demonstrating the generalization capability of SCOFF, we consider a
scenario where the models are trained to add a mixture of two and four numbers from sequences of
length 50. They are evaluated on adding variable number (2-10) of numbers on 200 length sequences.
As shown in Table 1, we note better generalization when using SCOFF. The dataset consists of 50,000
training sequences and 20,000 testing sequences for each different number of numbers to add.

All the models are trained for 100 epochs with a learning rate of 0.001 using the Adam optimizer.
We use 300 as the hidden dimension for both the LSTM baseline and the LSTM’s in RIMS, SCOFF.
Table 2 lists the different hyperparameters used for training SCOFF.

11

Published as a conference paper at ICLR 2021

Table 2: Hyperparameters for the adding generalization task

Parameter Value
Number of object files (nf) 5
Number of schemata (ns) 2
Optimizer Adam(Kingma and Ba, 2014)
learning rate 1 · 10−2
batch size 64
Inp keys 64
Inp Values 60
Inp Heads 4
Inp Dropout 0.1
Comm keys 32
Comm Values 32
Comm heads 4
Comm Dropout 0.1

Number of Values LSTM RIMS SCOFF

2 0.8731 0.0007 0.0005
3 1.3017 0.0009 0.0007
4 1.6789 0.0014 0.0013
5 2.0334 0.0045 0.0030
8 4.8872 0.0555 0.0191
9 7.3730 0.1958 0.0379

10 11.3595 0.8904 0.0539

Table 3: Adding Task: Mean test set error on 200 length sequences with number of numbers to add
varying among {2, 3, 4, 5, 8, 9, 10}. The models are trained to add a mixture of two and four numbers
from sequences of length 50.

C BOUNCING BALL

The dataset consists of 50,000 training examples and 10,000 test examples showing ∼50 frames of
either 4 solid balls bouncing in a confined square geometry (4Balls), 6-8 balls bouncing in a confined
geometry (678Balls), 3 balls bouncing in a confined geometry with an occluded region (Curtain), or
balls of different colors (Colored 678Balls). The balls have distinct states (and hence distinct object
files) but share underlying procedures (schema), which we aim to capture using SCOFF.

We trained baselines as well as proposed model for about 100 epochs. . We also provide the rollouts
predicted by the models in the Figures 8, 10, 9, 11, 12.

As part of future work, We also provide a scenario where instead of activating all the OF only a subset
of the OF that are most relevant to the input based on attention scores are activated. We denote the
original model as SCOFF-ab, and the ablation of only activating a subset of the OF as SCOFF.

Comparison to the RMC baseline is shown in fig. 7.

D BABYAI: REINFORCEMENT LEARNING

We use the GotoObjMaze environment (i.e MiniGrid-GotoObjMaze-v0) from (Chevalier-Boisvert
et al., 2018). Here, the agent has to navigate to an object, the object may be in another room. We
use exactly the same RL setup as in (Chevalier-Boisvert et al., 2018) except we extend the setup in
BabyAI to only apply RGB images of the world rather than symbolic state representations, and hence
making the task much more difficult. Hyper-parameters for this task are listed in Tab. 5.

In this environment, the agent is expected to navigate a 3x3 maze of 6x6 rooms, randomly inter-
connected by doors to find an object like "key". Here we use only one object file, but different number

12

Published as a conference paper at ICLR 2021

(a) (b)

Figure 6: (a) OF (nf = 4) vs Schemata (ns = 2) activation for an example of length 8 of the adding
task. "Null" refers to the elements other than the operands on which the addition is to be performed.
The figure shows the affinity of each OF to use a particular schema. Each row corresponds to a
particular OF, and column represents a particular schema (dark color shows high affinity of an OF
toward a particular schema). As shown in the figure, the active OFs trigger Schema 1 when an operand
is encountered, and Schema 2 when a "Null" element is encountered. (b) Here, we have a single
OF, and that can follow three different dynamics. We found that our method is able to learn these 3
different modes once it’s passed an initial phase of uncertainty.

GRU RMC RIMs SCOFF
method

0.0

0.2

0.4

0.6

0.8

1.0

BC
E

(R
el

at
iv

e
to

 G
RU

 b
as

el
in

e)

steps = 10 steps

GRU RMC RIMs SCOFF
method

steps = 30 steps

(a) Coloured678Balls

Figure 7: Bouncing ball motion. Error relative to GRU baseline on 10- and 30-frame video prediction
of multiple-object video sequences Predictions are based on 15 frames of ground truth.

of schemas (4 in this example). If we look at the object files (vs) schemata, schemata 4 is being
triggered when the "key" is in agent’s view as shown in fig. 13.

E INTUITIVE PHYSICS

We use the similar training setup as (Riochet et al., 2019). Hyper-parameters related to the proposed
method are listed in Tab. 6.

F SWITCHING DYNAMICS

We consider a scenario where a ball follows one of the two dynamics, horizontal and vertical
oscillations at a given time. We limit the number of switches between the dynamics followed to be
one. An example ground truth trajectory is given in figure 14. Here we run another experiment, where
we have more number of OFs as compared to number of entities or objects, and then we investigate if
we are still able to have factorization of different dynamics in different schemata.

13

Published as a conference paper at ICLR 2021

Table 4: Hyperparameters for the bouncing balls task

Parameter Value
Number of object files (nf) 4
Number of schemata (ns) 2/4/6
Size of Hidden state of object file 100
Optimizer Adam(Kingma and Ba, 2014)
learning rate 1 · 10−4
batch size 64
Inp keys 64
Inp Values 100
Inp Heads 1
Inp Dropout 0.1
Comm keys 32
Comm Values 32
Comm heads 4
Comm Dropout 0.1

Table 5: Hyperparameters for BabyAI

Parameter Value
Number of object files (nf) 1
Number of schemata (ns) 2/4/6
Size of Hidden state of object file 510
Optimizer Adam(Kingma and Ba, 2014)
Learning rate 3 · 10−4
Inp keys 64
Inp Values 256
Inp Heads 4
Inp Dropout 0.1
Comm keys 16
Comm Values 32
Comm heads 4
Comm Dropout 0.1

F.1 EXPERIMENT SETUP

The dataset consists of 10,000 trajectories of 51 length with the switching between dynamics
happening at the middle of the trajectory.

Table 6: Hyperparameters for IntPhys benchmark

Parameter Value
Number of object files (nf) 6
Number of schemata (ns) 4/6
Optimizer Adam(Kingma and Ba, 2014)
learning rate 3 · 10−4
batch size 64
Inp keys 64
Inp Values 85
Inp Heads 4
Inp Dropout 0.1
Comm keys 32
Comm Values 32
Comm heads 4
Comm Dropout 0.1

14

Published as a conference paper at ICLR 2021

We use the same architecture for encoder as well as decoder as in (Van Steenkiste et al., 2018). At
each time step, we give the last five frames stacked across the channels as input to the encoder.

Table 7: Hyperparameters for the switching dynamics task

Parameter Value
Number of object files (nf) 6
Number of schemata (ns) 2
Optimizer Adam(Kingma and Ba, 2014)
learning rate 1 · 10−4
batch size 50
Inp keys 64
Inp Values 64
Inp Heads 4
Inp Dropout 0.1
Comm keys 32
Comm Values 32
Comm heads 4
Comm Dropout 0.1

F.2 THE FACTORISATION OF DYNAMICS INTO SCHEMATA

As shown in figure 15, SCOFF is effective in factorising the two different dynamics into two different
schemata, even if the order of dynamics followed is different.

15

Published as a conference paper at ICLR 2021

Figure 8: Rollout for 4Balls. In all cases, the first 10 frames of ground truth are fed in (last 6 shown)
and then the system is rolled out for the next 30 time steps. In the predictions, the transparent blue
shows the ground truth, overlaid to help guide the eye.

16

Published as a conference paper at ICLR 2021

Figure 9: Rollout for Curtain. In all cases, the first 10 frames of ground truth are fed in (last 6
shown) and then the system is rolled out for the next 30 time steps. In the predictions, the transparent
blue shows the ground truth, overlaid to help guide the eye.

17

Published as a conference paper at ICLR 2021

Figure 10: Rollout for 678Balls. In all cases, the first 10 frames of ground truth are fed in (last 6
shown) and then the system is rolled out for the next 30 time steps. In the predictions, the transparent
blue shows the ground truth, overlaid to help guide the eye.

18

Published as a conference paper at ICLR 2021

Figure 11: Rollout for Colored 4Balls. In all cases, the first 10 frames of ground truth are fed in
(last 6 shown) and then the system is rolled out for the next 25 time steps.

19

Published as a conference paper at ICLR 2021

Figure 12: Rollout for Colored 678Balls. In all cases, the first 10 frames of ground truth are fed in
(last 6 shown) and then the system is rolled out for the next 25 time steps.

20

Published as a conference paper at ICLR 2021

Timesteps along a trajectory

T=0 T=5 T=15T=10

Sc
he

m
at

a

(a) Object Files (nf = 1) (vs) Schemata (ns = 4) Activation

(b) Agent view in the environment

Figure 13: BabyAI-GotoObjMaze Trajectory In this environment, the agent is expected to navigate
a 3x3 maze of 6x6 rooms, randomly inter-connected by doors to find an object like "key". Here we
use only one object file, but different number of schemata (4 in this example). If we look at the object
files (vs) schemata affinity, schema 1 is activated while close to or opening doors while schema 4 is
triggered when the "key" is in the agent’s view.

21

Published as a conference paper at ICLR 2021

Figure 14: Switching dynamics task. An example ground truth trajectory, where the ball oscillates
horizontally and switches to vertical oscillations after few steps indicated by the red box. The bottom
left has two bulb indicators corresponding to the two dynamics.

22

Published as a conference paper at ICLR 2021

(a) Object Files (nf = 6) (vs) Schemata (ns = 2) for trajectory one.

(b) Object Files (nf = 6) (vs) Schemata (ns = 2) for trajectory two.

Figure 15: Switching dynamics task. l = 0 denotes horizontal oscillations and l = 1 denotes
vertical oscillations. We can clearly observe that the dynamics are being factorised into separate
schemata. Schemata one is being used for vertical oscillations and schemata two for horizontal
oscillations.

23

Published as a conference paper at ICLR 2021

G PSEUDOCODE FOR SCOFF ALGORITHM

#Assume we have defined: pos_in (number of positions in the incoming input),

num_OF_out (number of object files on the current layer), of_dim (the

number of hidden units in each object file), bsz (the batch size).

#Step 1: Process image with fully convolutional net.

#Step 2: Soft competition among OFs to select regions of the input

#Step 3: OFs pick the most relevant schema and update

#Step 4: Soft competition among OFs to transmit relevant information

def scoff_core(inp, h):

inp = self.CNN(inp)

att_inp = objectfile_input_selection(inp, h)

h_next,schema_indices = schemata_selective_update(att_inp, h)

h_next = h_next + objectfile_communication(h_next, schema_indices)

return h_next

def objectfile_input_selection(inp, h):

inp = inp.reshape((bsz, pos_in, OF_dim))

att_inp,_ = self.inp_attn(h.reshape((bsz, num_OF_out, OF_dim)), inp, inp)

att_inp = att_inp.reshape((bsz, of_dim*num_OF_out))

return att_inp

def schemata_selective_update(inp_to_objfile, h):

h_all = torch.zeros((bsz*num_OF, num_schemata, OF_dim))

#We batch the rest of these operations over the object files.

inp_to_objfile = inp_to_objfile.reshape((bsz*num_OF, OF_dim))

h = h.reshape((bsz*num_OF, OF_dim))

for j in range(num_schemata):

h_all[:,j] = self.gru_lst[j](inp_to_objfile, h)

key[:, j] = self.key(h_all[:,j])

q = self.query(h)

h_sel, ind = gumbel_softmax(torch.bmm(key, q.unsqueeze(1)))

return h_sel.reshape((bsz,num_OF,-1), ind.reshape((bzs,num_OF,-1))

def objectfile_communication(h, schema_indices):

h = h.reshape((bsz, num_OF_out, of_dim))

q = self.comm_query(h)[:,schema_indices]

k = self.comm_key(h)[:,schema_indices]

v = self.comm_value(h)[:,schema_indices]

h_att,_ = self.comm_attn(q, k, v)

h_att = h_att.reshape((bsz, num_OF_out*of_dim))

return h_att

Figure 16: The core SCOFF module for a single recurrent step using GRU independent dynamics.
We show how the attention scores from attention are used to re-weight the input to the different object
files (Step 2 in the box). Then different object files select particular schemata (Step 3 in algorithm),
and then different object files transmit relevant information (Step 4 in algorithm).

24

	
	Introduction
	The schemata / object-file factorization (scoff) model
	scoff specifics

	Related Work
	Methodology
	Experiments
	Conclusions
	Appendix

	 Appendix
	Implementation Details and Hyperparameters
	Adding Task
	Bouncing Ball
	BabyAI: Reinforcement Learning
	Intuitive Physics
	Switching Dynamics
	Experiment Setup
	The factorisation of dynamics into schemata

	Pseudocode for SCOFF Algorithm

