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Abstract

In graph learning, there have been two main inductive biases regarding graph-
inspired architectures: On the one hand, higher-order interactions and message
passing work well on homophilous graphs and are leveraged by GCNs and GATs.
Such architectures, however, cannot easily scale to large real-world graphs. On the
other hand, shallow (or node-level) models using ego features and adjacency embed-
dings work well in heterophilous graphs. In this work, we propose a novel scalable
shallow method – GLINKX – that can work both on homophilous and heterophilous
graphs. To achieve scale in large graphs, GLINKX leverages (i) novel monophilous
label propagations (ii) ego/node features, (iii) knowledge graph embeddings as
positional embeddings, (iv) node-level training, and (v) low-dimensional mes-
sage passing. We show the effectiveness of GLINKX on several homophilous
and heterophilous datasets. An extended version of this work can be found at
http://arxiv.org/abs/2211.00550.

1 Introduction

In recent years, graph learning methods have emerged with a strong performance for various ML
tasks. Graph ML methods leverage the topology of graphs underlying the data [4] to improve their
performance. Two very important design options for proposing graph ML based architectures in the
context of node classification are related to whether the data is homophilous or heterophilous.

For homophilous data – where neighboring nodes share similar labels [26, 3] – Graph Neural Network
(GNN)-based methods are able to achieve high accuracy. Specifically, a broad subclass sucessfull
GNNs are Graph Convolutional Networks (GCNs) (e.g., GCN, GAT, etc.) [19, 37, 46]. In the
GCN paradigm, message passing and higher-order interactions help node classification tasks in
the homophilous setting since such inductive biases tend to bring the learned representations of
linked nodes close to each other. However, GCN-based architectures suffer from scalability issues.
Performing (higher-order) propagations during the training stage are hard to scale in large graphs
because the number of nodes grows exponentially with the increase of the filter receptive field. Thus,
for practical purposes, GCN-based methods require node sampling, substantially increasing their
training time. For this reason, architectures [16, 41, 36, 25, 30] that leverage propagations outside of
the training loop (as a preprocessing step) have shown promising results in terms of scaling to large
graphs.
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In heterophilous datasets [29], the nodes that are connected tend to have different labels. Many
works that address heterophily so far can be classified into two main categories concerning scale. On
the one hand, recent successful architectures (in terms of accuracy) [17, 10, 43, 23, 8] that address
heterophily resemble GCNs in terms of design and thus suffer from the same scalability issues. On
the other hand, shallow or node-level models (see, e.g., [22, 44]), i.e., models that are treating graph
data as tabular data and do not involve propagations during training, have shown a lot of promise
for large heterophilous graphs. In [22], it is shown that combining ego embeddings (aka. node
features) and adjacency embeddings works in the heterophilous setting. However, their design is
still impractical in real-world data since the method (LINKX) is not inductive, and embedding the
adjacency matrix directly requires many parameters in a model. In LINKX, the adjacency embedding
of a node can alternatively be thought of as a positional embedding (PE) of the node in the graph,
and recent developments [18, 12, 22] have elevated the importance of PEs in both homophilous and
heterophilous settings. However, most of these works suggest PE parametrizations that are difficult to
compute in large-scale settings. For this reason, more scalable ways of computing PEs via knowledge
graph embeddings [13, 20, 6, 39] are useful in practical settings.

Goal & Contribution

In this work, we develop a scalable method for node classification that: (i) works both on homophilous
and heterophilous graphs (ii) is simpler and faster than conventional message passing networks
(by avoiding the neighbor sampling and message passing overhead), and (iii) can work in both a
transductive and an inductive2 setting. For a method to be scalable, we argue that it should: (i) run
models on node-scale (thus leveraging i.i.d. minibatching), (ii) avoid doing message passing during
training and do it a constant number of times before training, and (iii) transmit small messages along
the edges. Our proposed method – GLINKX (see Section 3) – combines all the above desiderata.
GLINKX has three components: (i) ego embeddings 3, (ii) PEs inspired by architectures suited for
heterophilous settings, and (iii) scalable 2nd-hop-neighborhood propagations inspired by architectures
suited for monophilous settings. Finally, we evaluate GLINKX’s empirical effectiveness on several
homophilous and heterophilous datasets (Section 4).

2 Preliminaries

2.1 Notation

We represent scalars with lower-case, vectors with bold lower-case letters, and matrices with bold
upper-case letters. We consider a directed graph G = G(V,E) with vertex set V with |V | = n
nodes, and edge set E with |E| = m edges. Let X ∈ Rn×dX represent the dX dimensional node
feature matrix and P ∈ Rn×dP represent the dP dimensional node positional embedding matrix. A
node i has a feature vector xi ∈ RdX and a positional embedding pi ∈ RdP and belongs to a class
yi ∈ {1, . . . , c}. The training set is denoted by Vtrain, validation set by Vvalid, and test set by Vtest. I{·}
denotes the indicator function. i → j denotes a directed edge from i to j.

2.2 Homophily, Heterophily & Monophily

Homophily and Heterophily: There are various measures of homophily in the GNN literature like
node homophily and edge homophily [22]. Intuitively, homophily in a graph implies that nodes with
similar labels are connected. GNN-based approaches like GCN, GAT, etc., leverage this property to
improve the node classification performance. Alternatively, if a graph has low homophily – namely,
nodes that connect tend to have different labels – it is said to be heterophilous. In other words, a
graph is heterophilous if neighboring nodes do not share similar labels.

Monophily: Generally, we define a graph to be monophilous if the label of a node is similar to that of
its neighbors’ neighbors4. Etymologically, the word “monophily” is derived from the Greek words

“monos” (unique) and “philos” (friend), which in our context means that a node – regardless of its

2For this paper, we operate in the transductive setting. See App. A.1 for the inductive setting.
3We use ego embeddings and node features interchangeably.
4A similar definition of monophily has appeared in [3], whereby many nodes have extreme preferences for

connecting to a certain class.
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Algorithm 1 GLINKX Algorithm

Input: Graph G(V,E) with train set Vtrain ⊆ V , node features X , labels Y
Output: Label Predictions Yfinal
1st Stage (KGEs). Pre-train knowledge graph embeddings P with Pytorch Biggraph.
2nd Stage (MLaP). Propagate labels and predict neighbor distribution

1. MLaP Forward: Calculate ŷi =
∑

j∈Vtrain:j→i yj

|{j∈Vtrain:j→i}| for all i ∈ Vtrain

2. Learn distribution of a node’s neighbors:
(a) For each epoch, calculate ỹi = f1(xi,pi;θ1) for i ∈ Vtrain
(b) Update the parameters s.t. LCE,1(θ1) =

∑
i∈Vtrain

CE(ŷi, ỹi;θ1) is maximized.
(c) Let θ∗

1 be the parameters at the end of the training that correspond to the epoch with
the best validation accuracy.

3. MLaP Backward: Calculate y′
i =

∑
j∈V :i→j ỹj

|{j∈V :i→j}| for all i ∈ Vtrain, where
ỹj = f1(xj ,pj ;θ

∗
1).

3rd Stage (Final Model). Learn a node’s own distribution:
1. For each epoch, calculate yfinal,i = f2(xi,pi,y

′
i;θ2).

2. Update the parameters s.t. LCE,2(θ2) =
∑

i∈Vtrain
CE(yi, yfinal,i;θ2) is maximized.

Return Yfinal

label – has neighbors of primarily one label. In the context of a directed graph, monophily can be
thought of as a structure that resembles Fig. 1(b) where similar nodes (in this case, three green nodes
connected to a yellow node) are connected to a node with a different label.

We argue that encoding monophily into a model can be helpful for both heterophilous and
homophilous graphs (see Figs. 3(b) and 3(c)), which is one of the main motivators behind
our work. In homophilous graphs, monophily will fundamentally encode the 2nd-hop neighbor’s
label information, and since in such graphs, neighboring nodes have similar labels, it can provide a
helpful signal for node classification. In heterophily, neighboring nodes have different labels, but the
2nd-hop neighbors may share the same label, providing helpful information for node classification.
Monophily is effective for heterophilous graphs [22]. Therefore, an approach encoding monophily
has an advantage over methods designed specifically for homophilous and heterophilous graphs,
especially when varying levels of homophily can exist between different sub-regions in the same
graph (see Section 3.3).

3 Our Method: GLINKX

3.1 Components & Motivation

The desiderata we laid down on Section 1 can be realized by three components: (i) PEs, (ii) ego
embeddings, and (iii) label propagations that encode monophily. More specifically, ego embeddings
and PEs are used as primary features, which have been shown to work for both homophilous and
heterophilous graphs for the models we end up training. Finally, the propagation step is used to
encode monophily to provide additional information to our final prediction.

GLINKX is described in Alg. 1 and consists of three main components: (i) PEs, (ii) ego embeddings,
and (iii) propagations. Fig. 1 shows Alg. 1 on a toy graph.

Positional Embeddings: We use PEs to provide our model information about the position of each
node and hypothesize that PEs are an important piece of information in the context of large-scale node
classification. PEs have been used to help discriminate isomorphic graph (sub)-structures [18, 12, 35].
This is useful for both homophily [18, 12] and heterophily [22] because isomorphic (sub)-structures
can exist in both the settings. In the homophilous case, adding positional information can help
distinguish nodes that have the same neighborhood, but distinct position [12, 27, 38], circumventing
the to do higher-order propagations [12, 21, 7] which are prone to over-squashing [2]. In heterophily,
structural similarity among nodes is important for classification, as in the case of LINKX – where
adjacency embedding can be considered a PE. However, in large graphs, using adjacency embeddings
or Laplacian eigenvectors (as methods such as [18] suggest) can be a computational bottleneck and
may be infeasible.
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(a) KGEs Training (b) MLaP Forward & Neighbor Model (c) MLaP Backward & Final Model

Figure 1: Example. For node i we want to learn a model that takes i’s features xi ∈ RdX , and PEs
pi ∈ RdP and predict a value ỹi ∈ Rc that matches the label distribution of it’s neighbors neighbors
ŷi using a shallow model. Next, we want to propagate (outside the training loop) the (predicted)
distribution of a node back to its neighbors and use it together with the ego features and the PEs to
make a prediction about a node’s own label. We propagate ỹi to its neighbors j1 to j5. For example,
for j1, we encode the propagated distribution estimate ỹi from i to form y′

j1
. We predict the label by

using y′
j1
,xj1 ,pj1 .

In this work, we leverage knowledge graph embeddings (KGEs) to encode positional information
about the nodes. Using KGEs has two benefits: Firstly, KGEs can be trained quickly for large graphs.
This is because KGEs compress the adjacency matrix into a fixed-sized embedding, and adjacency
matrices have been shown to be effective in heterophilous cases. Further, KGEs are low-dimensional
compared to the adjacency matrix (e.g., dP ∼ 102), which allows for faster training and inference
times. Secondly, KGEs can be pre-trained efficiently on such graphs [20] and can be used off-the-shelf
for other downstream tasks, including node classification (see, e.g., [13]). So, in the 1st Stage of our
methods in Alg. 1, we train the KGEs model on the available graph structure.

Here, we fix this positional encoding once they are pre-trained for downstream usage. One can
fine-tune these along with learning [12] in the downstream task, but we leave this for future work.
Finally, we note that this step is transductive but we can easily make it inductive (see e.g. [13, 1]).

Ego Embeddings: We obtain ego embeddings from the node features. Such embeddings have been
used in homophilous and heterophilous settings (e.g., [22, 46]). Node embeddings are useful for
tasks where the graph structure provides little/no information about the task.

Monophilous Label Propagations: We now propose a novel monophily-inspired label propagation
(see Section 2.2) which we refer to as Monophilous Label Propagation (MLaP). MLaP has the
advantage that we can use it both for homophilous and heterophilous graphs or in a scenario with
varying levels of graph homophily (see Section 3.3) as it encodes monophily (Section 2.2).

To understand how MLaP encodes monophily, we consider the example in Fig. 1. In this example, we
have three green nodes connected to a yellow node and two nodes of different colors connected to the
yellow node. Then, one way to encode monophily in Fig. 1(b) while predicting label for jℓ, ℓ ∈ [5], is
to get a distribution of labels of nodes connected to node i thus encoding its neighbors’ distribution.
The fact that there are more nodes with green color than other colors can be used by the model to
make a prediction. But this information may only sometimes be present, or there may be few labeled
nodes around node i. Consequently, we propose to use a model that predicts the label distribution
of nodes connected to i. We use the node features (xi) and PE (pi) of node i to build this model
since nodes that are connected to node i share similar labels, and thus, the features of node i must be
predictive of its neighbors. So, in Fig. 1(b), we train a model to predict a distribution of i’s neighbors.
Next, we provide jℓ the learned distribution of i’s neighbors by propagating the learned distribution
from i back to jℓ. Eqs. (1) to (3) correspond to MLaP. We train a final model that leverages this
information together with node features and PEs (Fig. 1(c)).

3.2 GLINKX

We put the components discussed in Section 3.1 together into three stages. In the first stage, we
pre-train the PEs by using KGEs. Next, encode monophily into our model by training a model that
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(a) 1st Stage

(b) 2nd Stage (c) 3rd Stage

Figure 2: Block Diagrams of GLINKX stages.

predicts a node’s neighbors’ distribution and by propagating the soft labels from the fitted model.
Finally, we combine the propagated information, node features, and PEs to train a final model.
GLINKX is described in Alg. 1 and consists of three main components detailed as block diagrams in
Fig. 2. Fig. 1 shows the GLINKX stages from Alg. 1 on a toy graph:

1st Stage (KGEs): We train KGEs as PEs by using Pytorch-Biggraph and the DistMult method [39].

2nd Stage (MLaP): First (2nd Stage in Alg. 1), for a node we want to learn the distribution of its
neighbors and then propagate this information back to its neighbors. To achieve this, we propagate
the labels from a node’s neighbors, i.e. calculate

ŷi =

∑
j∈Vtrain:j→i yj

|{j ∈ Vtrain : j → i}|
∀i ∈ Vtrain. (1)

We train a model that predicts the distribution of neighbors, which we denote with ỹi using the ego
features {xi}i∈Vtrain and the PEs {pi}i∈Vtrain and maximize the negative cross-entropy with treating
{ŷi}i∈Vtrain as ground truth labels, namely we maximize

LCE, 1(θ1) =
∑

i∈Vtrain

∑
l∈[c]

ŷi,l log(ỹi,l), (2)

where ỹi = f1(xi,pi;θ1) and θ1 ∈ Θ1 is a learnable parameter vector. Although in this paper we
assume to be in the transductive setting, this step allows us to be inductive (see App. A.1). In ??
we give a theoretical justification of this step, namely “why is it good to use a parametric model to
predict the distribution of neighbors?”.

Finally, we propagate the predicted soft-labels ỹi back to the original nodes, i.e. calculate

y′
i =

∑
j∈V :i→j ỹj

|{j ∈ V : i → j}|
∀i ∈ Vtrain, (3)

where the soft labels {ỹi}i∈Vtrain have been computed with the parameter θ∗
1 of the epoch with the

best validation accuracy from the model f1(·|θ1).
3rd Stage (Final Model): As a final stage (3rd Stage in Alg. 1), we make the final predictions
yfinal, i = f2(xi,pi,y

′
i;θ2) by combining the ego embeddings, PEs, and the (back)-propagated

soft labels (θ2 is a learnable parameter vector). We use the soft-labels ỹi instead of the actual labels
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one-hot (yi) in order to avoid label leakage, which hurts performance (see also [33] for a different
way to combat label leakage). Finally, we maximize the negative cross-entropy with respect to a
node’s own labels,

LCE, 2(θ2) =
∑

i∈Vtrain

∑
l∈[c]

I{yi = l} log(yfinal, i,l), (4)

Overall, Stage 2 corresponds to learning the neighbor distributions and propagating this information
back to them and Stage 3 uses these distributions to train a new model which predicts a node’s own
labels.

Label Sparsity: In the case that the graph is very sparsely labeled, we expect that the performance
from the MLaP step to go down, however, other components (PEs, node features) can be more
predictive of the node’s label. Also, we note that other standard methods, such as GCNs, would have
decreased performance due to label sparsity.

3.3 Varying Homophily

Graphs with monophily experience homophily, heterophily, or both. For instance, in the yelp-chi
dataset – where we classify a review as spam/non-spam (see Fig. 3) – we observe a case of monophily
together with varying homophily. Specifically in this dataset, spam reviews are linked to non-spam
reviews, and non-spam reviews usually connect to other non-spam reviews, which makes the node
homophily distribution bimodal. Here the 2nd-order similarity makes both the MLaP mechanism
particularly effective and PEs since we can use the PEs to distinguish nodes that have similar features
but are located in different regions of the graph (homophilous/heterophilous area).

3.4 Scalability

GLINKX is highly scalable as it performs message passing a constant number of times by paying
an O(mc) cost, where the dimensionality of classes c is usually small (compared to dX that GCNs
rely on). In both Stages 2 and 3 of Alg. 1, we train node-level MLPs, which allow us to leverage
i.i.d. (row-wise) mini batching, like tabular data, and thus our complexity is similar to other shallow
methods (LINKX, FSGNN) [22, 25]. This, combined with the propagations outside the training
loops, circumvent the scalability issues of GCNs. For more details, refer App. A.2.

3.5 Complementarity

Different components of GLINKX provide a complementary signal to components proposed in the
GNN literature [25, 41, 30]. One can combine GLINKX with existing architectures (e.g. feature
propagations [25, 30], label propagations [41]) for potential metric gains. For example, SIGN
computes a series of r ∈ N feature propagations [X,ΦX,Φ2X, . . . ,ΦrX] where Φ is a matrix
(e.g., normalized adjacency or normalized Laplacian) as a preprocessing step. We can include this
complementary signal, namely, embed each of the propagated features and combine them in the 3rd
Stage to GLINKX. Overall, although in this paper, we want to keep GLINKX simple to highlight
its main components, we conjecture that adding more components to GLINKX would improve its
performance on datasets with highly variable homophily.

4 Experiments

4.1 Comparisons

We experiment with homophilous and heterophilous datasets (see Tab. 1 and App. B.3). We train
KGEs with Pytorch-Biggraph [20, 39]. For homophilous datasets we compare with vanilla GCN
and GAT, FSGNN and Label Propagation (LP). For a fair comparison, we compare with one-layer
GCN/GAT/FSGNN/LP since our method is one-hop. We also compare with higher-order (h.o.)
GCN/GAT/FSGNN/LP with 2 and 3 layers. In the heterophilous case, we compare with LINKX5

5We have run our method with hyperparameter space that is a subset of the sweeps reported in [22] due to
resource constraints. A bigger hyperparameter search would improve our results.
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Figure 3: Top: Node and class homophily distributions for the yelp-chi dataset. Bottom: Examples
of a homophilous (Fig. 3(b)) and a heterophilous (Fig. 3(c)) region in the same graph that are both
monophilous, namely they are connected to many neighbors of the same kind. In a spam network, the
homophilous region corresponds to many non-spam reviews connecting to non-spam reviews (which
is the expected behaviour of a non-spammer user), and the heterophilous region corresponds to spam
reviews targeting non-spam reviews (which is the expected behaviour of spammers), thus, yielding a
graph with both homophilous and heterophilous regions such as in Fig. 3(a).

because it is scalable and is shown to work better than other baselines (e.g. H2GCN), as well as
with FSGNN. Note that we do not compare GLINKX with other more complex methods because
GLINKX is complementary to methods (see Section 3), and design principles from these methods
can be incorporated into GLINKX. We use a ResNet module to combine the components from Stages
2 and 3 of our algorithm. Details about the hyperparameters we use are in App. D.

In the heterophilous datasets, GLINKX outperforms LINKX (except arxiv-year where we are within
the confidence interval). Moreover, the performance gap between using KGEs and adjacency
embeddings shrinks as the dataset grows. In the homophilous datasets GLINKX outperforms 1-layer
GCN/GAT/LP/FSGNN and LINKX. In PubMed, GLINKX outperforms h.o. GCN/GAT and in
arxiv-year GLINKX is very close to the performance of GCN/GAT.

Finally, we note that our method produces consistent results across regime shifts. In detail, in the
heterophilous regime our method performs on par with LINKX, however when we shift to the
homophilous regime, LINKX’s performance drops, whereas our method’s performance continues to
be high. Similarly, while FSGNN performs similar to GLINKX on the homophilous datasets, we
observe a big performance drop on the heterophilous datasets (see arxiv-year).

4.2 Ablation Study

We ablate each component of Alg. 1 to see each component’s performance contribution. We use
the hyperparameters of the best model from Tab. 1. We perform two types of ablations: (i) we
remove each of the components from all stages of the training, and (ii) we remove the corresponding
components only from the 3rd stage of Alg. 1. Except for removing the PEs from the 3rd stage only
on ogbn-arxiv, all components contribute to increasing performance on both datasets (where adding
PEs on the 1st stage improves performance).
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Homophilous Datasets Heterophilous Datasets

PubMed ogbn-arxiv squirrel yelp-chi arxiv-year

n 19.7K 169.3K 5.2K 169.3K 45.9K
m 44.3K 1.16M 216.9K 7.73M 1.16M
Edge-insensitive homophily [22] 0.66 0.41 0.02 0.05 0.27
dX/c 500 / 27 128 / 40 2089 / 5 32 / 2 128 / 5

GLINKX w/ KGEs 87.95 ±0.30 69.27 ±0.25 45.83 ±2.89 87.82 ±0.20 54.09 ±0.61
GLINKX w/ Adjacency 88.03 ±0.30 69.09 ±0.13 69.15 ±1.87 89.32 ±0.45 53.07 ±0.29

Label Propagation (1-hop) 83.02 ±0.35 69.59 ±0.00 32.22 ±1.45 85.98 ±0.28 43.71 ±0.22
Label Propagation (2-hop) 83.44 ±0.35 69.78 ±0.00 43.41 ±1.44 85.95 ±0.26 46.30 ±0.27
Label Prop. on I[A2−A−I≥0] 82.14 ±0.33 9.87 ±0.00 24.43 ±1.18 85.68 ±0.32 23.08 ±0.13
LINKX (from [22]) 87.86 ±0.77 67.32 ±0.24 61.81 ±1.80 85.86 ±0.40 56.00 ±1.34
LINKX (our runs) 87.55 ±0.37 63.91 ±0.18 61.46 ±1.60 88.25 ±0.24 53.78 ±0.06
GCN w/ 1 Layer 86.43 ±0.74 50.76 ±0.20 N/A
GAT w/ 1 Layer 86.41 ±0.53 54.42 ±0.10 N/A
FSGNN w/ 1 Layer 88.93 ±0.31 61.82 ±0.84 64.06 ±2.69 86.36 ±0.36 42.86 ±0.22

Higher-order GCN 86.29 ±0.46 71.18 ±0.27 (*) N/A
Higher-order GAT 86.64 ±0.40 73.66 ±0.11 (*) N/A
Higher-order FSGNN 89.37 ±0.49 69.26 ±0.36 68.04 ±2.19 86.33 ±0.30 44.89 ±0.29

Table 1: Experimental results. (*) = results from the OGB leaderboard

Ablation Type Stages All Remove ego embeddings Remove propagation Remove PEs

Heterophilous arxiv-year All stages 54.09 ±0.61 53.52 ±0.77 50.83 ±0.24 39.06 ±0.35
arxiv-year 3rd stage 54.09 ±0.61 53.69 ±0.65 50.83 ±0.24 49.13 ±1.10

Homophilous ogbn-arxiv All stages 69.27 ±0.25 61.26 ±0.33 62.70 ±0.34 65.64 ±0.18
ogbn-arxiv 3rd stage 69.27 ±0.25 67.60 ±0.39 62.70 ±0.34 69.62 ±0.15

Table 2: Ablation Study. We use the hyperparameters of the best run from Tab. 1 with KGEs.

5 Conclusion & Future Work

We present GLINKX, a scalable method for node classification in homophilous and heterophilous
graphs that combines three components: (i) ego embeddings, (ii) PEs, and (iii) monophilous propaga-
tions. Our method is complementary to what other methods propose since we can incorporate extra
components such as feature propagations, label propagations, and attention to GLINKX. As future
work, (i) GLINKX can be extended in heterogeneous graphs, (ii) use more expressive methods such
as attention or Wasserstein barycenters [9] for averaging the low-dimensional messages, and (iii) add
complementary signals.

Acknowledgements

The authors would like to thank Maria Gorinova, Fabrizio Frasca, Sophie Hilgard, Ben Chamberlain,
and Katarzyna Janocha from Twitter Cortex Applied Research for the useful discussions and com-
ments on our work. MP would also like to thank Felix Hohne for his help regarding questions about
the LINKX codebase.

8



References

[1] Marjan Albooyeh, Rishab Goel, and Seyed Mehran Kazemi. Out-of-sample representation
learning for knowledge graphs. In Findings of the Association for Computational Linguistics:
EMNLP 2020, pages 2657–2666, 2020.

[2] Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical
implications. In International Conference on Learning Representations, 2021.

[3] Kristen M Altenburger and Johan Ugander. Monophily in social networks introduces similarity
among friends-of-friends. Nature human behaviour, 2(4):284–290, 2018.

[4] Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius
Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan
Faulkner, et al. Relational inductive biases, deep learning, and graph networks. arXiv preprint
arXiv:1806.01261, 2018.

[5] K. Bhatia, K. Dahiya, H. Jain, P. Kar, A. Mittal, Y. Prabhu, and M. Varma. The extreme
classification repository: Multi-label datasets and code, 2016.

[6] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko.
Translating embeddings for modeling multi-relational data. Advances in neural information
processing systems, 26, 2013.

[7] Xavier Bresson and Thomas Laurent. Residual gated graph convnets. arXiv preprint
arXiv:1711.07553, 2017.

[8] Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized
pagerank graph neural network. arXiv preprint arXiv:2006.07988, 2020.

[9] Marco Cuturi and Arnaud Doucet. Fast computation of wasserstein barycenters. In Eric P.
Xing and Tony Jebara, editors, Proceedings of the 31st International Conference on Machine
Learning, volume 32 of Proceedings of Machine Learning Research, pages 685–693, Bejing,
China, 22–24 Jun 2014. PMLR.

[10] Francesco Di Giovanni, James Rowbottom, Benjamin P Chamberlain, Thomas Markovich,
and Michael M Bronstein. Graph neural networks as gradient flows. arXiv preprint
arXiv:2206.10991, 2022.

[11] Yingtong Dou, Zhiwei Liu, Li Sun, Yutong Deng, Hao Peng, and Philip S Yu. Enhancing graph
neural network-based fraud detectors against camouflaged fraudsters. In Proceedings of the
29th ACM International Conference on Information & Knowledge Management, pages 315–324,
2020.

[12] Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
Graph neural networks with learnable structural and positional representations. arXiv preprint
arXiv:2110.07875, 2021.

[13] Ahmed El-Kishky, Thomas Markovich, Serim Park, Chetan Verma, Baekjin Kim, Ramy Eskan-
der, Yury Malkov, Frank Portman, Sofía Samaniego, Ying Xiao, et al. Twhin: Embedding the
twitter heterogeneous information network for personalized recommendation. arXiv preprint
arXiv:2202.05387, 2022.

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learningfor image
recognition. ComputerScience, 2015.

[15] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.
Advances in neural information processing systems, 33:22118–22133, 2020.

[16] Qian Huang, Horace He, Abhay Singh, Ser-Nam Lim, and Austin R Benson. Combining
label propagation and simple models out-performs graph neural networks. arXiv preprint
arXiv:2010.13993, 2020.

[17] Di Jin, Rui Wang, Meng Ge, Dongxiao He, Xiang Li, Wei Lin, and Weixiong Zhang. Raw-gnn:
Random walk aggregation based graph neural network. arXiv preprint arXiv:2206.13953, 2022.

[18] Jinwoo Kim, Tien Dat Nguyen, Seonwoo Min, Sungjun Cho, Moontae Lee, Honglak Lee, and Se-
unghoon Hong. Pure transformers are powerful graph learners. arXiv preprint arXiv:2207.02505,
2022.

9



[19] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016.

[20] Adam Lerer, Ledell Wu, Jiajun Shen, Timothee Lacroix, Luca Wehrstedt, Abhijit Bose, and
Alex Peysakhovich. Pytorch-biggraph: A large scale graph embedding system. Proceedings of
Machine Learning and Systems, 1:120–131, 2019.

[21] Guohao Li, Matthias Muller, Ali Thabet, and Bernard Ghanem. Deepgcns: Can gcns go as deep
as cnns? In Proceedings of the IEEE/CVF international conference on computer vision, pages
9267–9276, 2019.

[22] Derek Lim, Felix Hohne, Xiuyu Li, Sijia Linda Huang, Vaishnavi Gupta, Omkar Bhalerao, and
Ser Nam Lim. Large scale learning on non-homophilous graphs: New benchmarks and strong
simple methods. Advances in Neural Information Processing Systems, 34:20887–20902, 2021.

[23] Sitao Luan, Chenqing Hua, Qincheng Lu, Jiaqi Zhu, Mingde Zhao, Shuyuan Zhang, Xiao-Wen
Chang, and Doina Precup. Is heterophily a real nightmare for graph neural networks to do node
classification? arXiv preprint arXiv:2109.05641, 2021.

[24] Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron Lipman. Invariant and equivariant
graph networks. arXiv preprint arXiv:1812.09902, 2018.

[25] Sunil Kumar Maurya, Xin Liu, and Tsuyoshi Murata. Improving graph neural networks with
simple architecture design. arXiv preprint arXiv:2105.07634, 2021.

[26] Miller McPherson, Lynn Smith-Lovin, and James M Cook. Birds of a feather: Homophily in
social networks. Annual review of sociology, pages 415–444, 2001.

[27] Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen,
Gaurav Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural
networks. In Proceedings of the AAAI conference on artificial intelligence, volume 33, pages
4602–4609, 2019.

[28] Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn:
Geometric graph convolutional networks. arXiv preprint arXiv:2002.05287, 2020.

[29] Everett M Rogers, Arvind Singhal, and Margaret M Quinlan. Diffusion of innovations. In An
integrated approach to communication theory and research, pages 432–448. Routledge, 2014.

[30] Emanuele Rossi, Fabrizio Frasca, Ben Chamberlain, Davide Eynard, Michael Bronstein,
and Federico Monti. Sign: Scalable inception graph neural networks. arXiv preprint
arXiv:2004.11198, 7:15, 2020.

[31] Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-scale attributed node embedding.
Journal of Complex Networks, 9(2):cnab014, 2021.

[32] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-
Rad. Collective classification in network data. AI magazine, 29(3):93–93, 2008.

[33] Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong, Wenjin Wang, and Yu Sun. Masked
label prediction: Unified message passing model for semi-supervised classification. arXiv
preprint arXiv:2009.03509, 2020.

[34] Arnab Sinha, Zhihong Shen, Yang Song, Hao Ma, Darrin Eide, Bo-June Hsu, and Kuansan
Wang. An overview of microsoft academic service (mas) and applications. In Proceedings of
the 24th international conference on world wide web, pages 243–246, 2015.

[35] Balasubramaniam Srinivasan and Bruno Ribeiro. On the equivalence between positional node
embeddings and structural graph representations. arXiv preprint arXiv:1910.00452, 2019.

[36] Chuxiong Sun, Hongming Gu, and Jie Hu. Scalable and adaptive graph neural networks with
self-label-enhanced training. arXiv preprint arXiv:2104.09376, 2021.
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Supplementary Materials
A Model Addendum

A.1 Inductive Setting

In the paper we focus on the transductive setting. Here we show how we can extend our framework to
the inductive setting. In the inductive setting, during training we only have access to the training graph
Gtrain(Vtrain, Etrain). During test, the whole graph G ⊆ Gtrain is revealed and we make predictions for
the test set. The stages of GLINKX in the inductive setting are as follows:

1st Stage (KGEs). For the KGE pretraining stage, we train KGEs on Gtrain. Then we can use existing
methods in the literature such as [13, 1] to infer the KGEs of the test nodes.

2nd Stage (MLaP). We train the model that predicts the distribution of the neighbors on Gtrain as in
Alg. 1. Then for the test nodes, we know their ego features xi and we can also infer their PEs (see
above) from the pre-trained PEs on the training set. We use these and the pre-trained shallow model
in order to predict ỹi for the test nodes. From the soft-labels ỹi we calculate y′

i

3rd Stage. First, we train the second shallow model by using the propagated soft-predictions only on
Gtrain. Then, we infer the soft-labels ỹi from the 2nd stage and propagate them back to the original
nodes. We then use the ego features, PEs and the propagated information y′

i to make predictions on
the test set.

Test set inference is illustrated by Alg. 2

Algorithm 2 Inductive GLINKX
Input: Graph G(V,E) with train set Vtrain ⊆ V and test set Vtest ⊆ V , node features X , labels Y
Output: Predictions for all nodes i ∈ Vtest

Pre-training. Call Alg. 1 with input graph Gtrain(Vtrain, Etrain) and compute PEs {pi}i∈Vtrain , and
pre-trained models f1 (from 2nd stage) and f2 (from 3rd stage)

1st Stage (KGEs). Create PEs {pi}i∈Vtest for the nodes of the test set (see e.g. [13, 1])

2nd Stage (MLaP). Predict the distribution of neighbors for the nodes of the test set as ỹi =
f1(xi,pi) for all i ∈ Vtest. Propagate labels backwards and train model to predict a node’s own labels

Calculate y′
i =

∑
j∈V :i→j ỹj

|{j∈V :i→j}| for all i ∈ Vtest.

3rd Stage (Final Model). Compute yfinal,i = f2(xi,pi,y
′
i) for all i ∈ Vtest.

Return {yfinal,i}i∈Vtest

A.2 Scalability

The propagations have to be done constant number (ideally once) of times by paying an O(mc)
cost, where the dimensionality of classes c is usually small (compared to dX that GCNs rely on). In
both stages 2 and 3 of Alg. 1 we train node-level MLPs which allow us to leverage i.i.d. (row-wise)
minibatching, like tabular data, and thus our complexity is similar to other shallow methods (LINKX,
FSGNN) [22, 25]; meeting our requirements. This, combined with the propagations that happen
outside of the training loops, circumvent the issues of GCNs in large-scale graphs.

Cost of 1st Stage. For the first stage, we are using Pytorch-Biggraph to train PEs. Please refer to [20]
for more information.

Cost of 2st Stage. For the second stage we pay once O(mtrainc) (mtrain = |Etrain| is the number of edges
in the graph induced by the train nodes) to run MLaP Forward and then the MLP that takes xi and pi

with LX layers for the features xi and LP layers for the PEs pi, and Lagg layers for the ResNet and
hidden dimension h, has forward pass complexity O

(
n(dXh+ h2LX + dPh+ h2LP + h2Lagg)

)
.

Finally, we pay again once O(mtrainc) for MLaP Backward.
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Cost of 3rd Stage. For the 3rd Stage, we pay O

(
n(dXh+ h2LX + dPh+ h2LP + ch+ h2Lprop +

h2Lagg)

)
for a forward pass of the MLP, where c is the class dimensionality and Lprop are the layers

for the MLP handling the propagated labels y′
i.

Comparison with LINKX. Compared to LINKX we pay an O(mtrainc) extra cost once. Regarding em-
bedding the adjacency matrix LINKX pays a O(mh+nh2LP ) cost for generating the h-dimensional
adjacency embeddings whereas we pay O(ndPh+ nh2LP ) which is better for dP = O(m/n). This
holds in most real-world large networks since dP ∼ 102 whereas n ∼ 1B and m ∼ 100B. Also note
that using KGEs as PEs has an additional benefit, since KGEs can be trained only once and can be
used off-the-shelf for other downstream tasks.

Inference Complexity (Alg. 2). On the inductive setting, given pretrained models
f1, f2 from stages 2 and 3, the runtime Alg. 2 without the pretraining stage is
O
(
mc+ ntest(dXh+ h2LX + dPh+ h2LP + h2Lagg)

)
to generate predictions for the test nodes,

where ntest = |Vtest|.

A.3 Monophilous Label Propagation (MLaP): Motivation

In monophily, a node shares labels with its neighbors’ neighbors. One way to encode monophily
in Fig. 1(a) while predicting the label for ji is to get a distribution of labels of nodes connected to
node i, thus encoding its neighbors’ distribution. The fact that there are more nodes with green color
than other colors can be used by the model to make a prediction. But this information may only
sometimes be present, or there may be few labeled nodes around node i. For this reason, we propose
to use a model that predicts the label distribution of nodes connected to node i. And we use the node
features (xi) and PE (pi) of node i to build this model because nodes that are connected to node
i share similar labels and hence, the features of node i must be predictive of its neighbors. So, in
Stage 2, for every node, we train a model to predict the distribution of its neighbors. We start with the
objective to provide node ji with the neighbors’ label distribution of node i. Then, we propagate this
information to ji, thus encoding monophily. Finally, in Stage 3, we train a model that uses the node
features, the PEs, and the propagated labels.

B Experiments Addendum

B.1 Implementation and Environment

GLINKX is implemented in Pytorch-Geometric. For the knowledge graph embeddings we use
the official Pytorch-Biggraph implementation. We use the official implementation of LINKX. For
hardware we used Vertex AI notebooks with 8 NVIDIA Tesla V100 with 16GB of memory and 96
CPUs.

B.2 Experimental Protocol

Error Bars. For the PubMed dataset and the heterophilous datasets provided by [28, 22, 40] we used
the fixed splits provided with a fixed seed. For the OGB datasets, where there exists only one officialy
released split for each dataset [15] we generate the error bars by runnning the respective experiments
with 10 different seeds (0-9).

B.3 Datasets

For our experiments we use the following datasets (see Tab. 1):

• PubMed [40, 32]. The PubMed dataset consists of scientific publications from PubMed
database pertaining to diabetes classified into one of three classes. Each node is described
by a TF-IDF weighted word vector from a dictionary which consists of 500 unique words.

• ogbn-arxiv [15, 5, 34]. The ogbn-arxiv dataset is a directed graph, representing the citation
network between all CS papers on arxiv mined from the Microsoft Academic Graph (MAG).
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Figure 4: Node Homophily Distribution and Class (or Edge-insensitive) Homophily [22].

Nodes are papers and edges correspond to citations. The node features correspond to the
average of word embeddings of the title and abstract of the papers. The task is to predict the
papers’ subcategories (e.g. CS.LG, CS.SI etc.).

• squirrel [31]. The data represents page-to-page networks on squirrels mined from Wikipedia
between October 2017 and November 2018. Node represent articles and edges are mutual
links between the pages. The features of each node are binary and represent the existence of
informative nouns that appear on the corresponding Wikipedia pages.

• arxiv-year, yelp-chi [22]. The arXiv-year dataset is derived from the ogbn-arxiv dataset
where the labels have been changed in order to convert the dataset from homophilous to
heterophilous. Instead of predicting each paper’s subcategories, the new task focuses on
predicting the year that a paper is posted, where batches of years have been converted
to labels. The yelp-chi dataset includes hotel and restaurant reviews filtered (spam) and
recommended (legitimate) by Yelp. The graph structure comes from [11] and the features
from [32]. The task is to predict whether a review is a spam or not.

C Further Related Work

Homophilous Methods. The backbone of graph learning is based on homophily. A graph is
homophilous if connected nodes have similar labels (and usually similar features). In such settings,
propagating node embeddings and then combining these embeddings with a permutation-invariant
function and perhaps an edge-wise attention mechanism yields decent results [19, 37]. Recently,
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much attention has been given to large-scale settings where conventional GNNs – such as GCN and
GAT – cannot scale. Such methods are based on multiple propagations of the features over layers,
and back-propagating through the weights is an infeasible task for large-scale networks.

For this reason, several methods have been proposed to tackle this computational bottleneck which
can scale to networks with hundreds of millions of nodes. Conceptually, the most characteristic
large-scale method is SIGN [30], where multiple stages of non-trainable filters are applied to the
initial features to create node embeddings – which can be stored for later use. Then a shallow
model (MLP) is applied on top of the final embeddings to produce the final predictions. Various
follow-up methods tweak the SIGN architecture to add attention (SAGN [36]), softmax regularization,
soft-selection, and hop-normalization (FSGNN [25]) and improve upon its performance. A related
method is also GAMLP [41], where the authors combine label propagations and feature propagations
and combine them with an attention mechanism. However, their method does not take into account
heterophilous inductive biases.

Another important method for large-scale homophilous node classification is Correct-And-Smooth
(C&S) [16]. C&S lifts the assumption that GNNs are essentially necessary for good performance
on graph ML tasks. They propose to train a shallow classifier over the nodes and produce a set of
soft labels from its predictions. Afterward, the authors leverage the graph structure and the label
correlations in two steps: an error correction step that spreads residual errors in training data to
correct the errors present in the test data and a prediction correlation that smooths the predictions on
the test data.

Heterophilous Methods. Recently, there has been a surge in research regarding node classification
in heterophilous graphs, i.e., graphs where connected nodes may have different class labels (and
maybe different features). One of the first proposed methods is H2GCN [46], where the authors
introduce a set of design principles for heterophilous model design. They propose the following design
principles: ego and neighbor embedding separation, higher-order neighborhoods, and a combination
of intermediate representations. Accordingly, they build a model – H2GCN – based on such principles
and evaluate it on various real-world and synthetic datasets. Following up this work, the authors
of [22] propose a significantly simpler architecture – LINKX – which combines embeddings of
the ego features and embeddings of the corresponding rows of the adjacency matrix (inspired by
the LINK method [42]) with a ResNet block [14]. The LINKX method is very lightweight since
nodes are processed on an i.i.d. (row-wise) basis – i.e., there are no graph dependencies between the
nodes – and mini-batching can be performed efficiently (contrary to propagation-based methods).
LINKX is shown to outperform H2GCN on a variety of datasets. However, LINKX falls short in
node classification tasks that regard homophilous datasets (such as Cora, CiteSeer, and PubMed [40])
where standard methods such as GCN and GAT yield better results.

The recent framework of [23] argues that not all cases of heterophily are harmful to GNN-based
architectures and propose a set of metrics based on the construction of a similarity matrix that
measures the influence of the graph and the input features on GNNs. Based on their observations, the
authors design a model based on a filterbank which consists of a high-pass and a low-pass filter to
address harmful heterophily achieving state-of-the-art results.

Methods for Homophily and Heterophily. Recently, there have been lots of methods that have been
adapted to work both in homophily and heterophily regimes. H2GCN [46] (see above) was one of
the first methods shown to work in both datasets. RAW-GNN [17] is a random-walk-based GCN
that exploits both homophily and heterophily by doing random walks and aggregations in two ways:
breadth-first for homophily and depth-first for heterophily. CPGNN [45] is a GCN-based architecture
that uses a compatibility matrix for modeling the heterophily or homophily level in the graph, which
can be learned in an end-to-end fashion, enabling it to go beyond the assumption of strong homophily.
GPR-GNN [8] addresses feature over-smoothing and homophily/heterophily by combining GNNs
with Generalized PageRank techniques, where each step of feature propagation is associated with a
learnable weight. The amplitudes of the weights trade off the degree of smoothing of node features
and the aggregation power of topological features. However, all the above methods suffer from the
same scalability issues that GCNs have.

Regarding scalable methods for both homophily and heterophily, the FSGNN [25] method is also
closely related to our work and relies on using propagations which are separate from the training
(similarly to SIGN) and also uses separate (higher-order) feature propagations for homophily and
heterophily. On the contrary, our method, in its current form, is one-hop and relies on different
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components to address homophily and heterophily. Besides, their components can be added to
our method, together with the ego features, the PEs, and the propagations, and thus, from another
viewpoint, their work can be seen as complementary to ours. CLP [44] combines a shallow (base)
predictor model with a modified Label Propagation that works both in homophily and heterophily,
where they use a class compatibility matrix (similarly to CPGNN) for the Label Propagation step.
Our method is fundamentally different than theirs; however, incorporating a compatibility matrix for
the propagation stage constitutes interesting future work.

Positional Embeddings. Following up on the recent success of LINKX in classifying nodes in
heterophilous settings based partially on the position of each node (adjacency embedding), a series of
methods have been suggested for incorporating positional embeddings on graph methods [18, 12].
More specifically, [12] proposes the MLPGNN-LSPE architecture, which is able to simultaneously
learn both structural and positional embeddings for nodes, whereas [18] proposes TokenGT, which
treats all nodes and edges as independent tokens, augments them with positional embeddings – i.e.,
eigenvectors of the normalized Laplacian of the graph ignoring edge directions – and then feed them
to a Transformer model. They prove that their framework is at least as expressive as a 2-IGN [24]
composed of equivariant linear layers, which is more expressive than all message-passing GNNs.
However, creating positional embeddings that require the factorization of, e.g., the Laplacian matrix
to compute a set of orthonormal eigenvectors is infeasible for large datasets. For this reason, various
methods have been proposed for embedding nodes in a graph in a scalable manner, such as TransE [6],
DistMult [39]6. The recent development of Pytorch-Biggraph [20] allows training such embeddings
on billion-scale heterogeneous graphs such as the Twitter graph [13].

D Hyperparameters

For each of the methods we train for 200 epochs and report the test set accuracy on the epoch with
the best validation accuracy.

D.1 KGEs

We use the following hyperparameters for the KGEs using Pytorch-Biggraph:

• dimension = 400
• 50 epochs
• negative samples = 1000
• batch size = 10000
• dot comparator, softmax loss [39]
• learning rate = 0.1

D.2 GLINKX w/ Adjacency

D.2.1 Sweeps

We perform the following sweeps:

• glinkx_init_layers_X ∈ {1, 2}
• glinkx_init_layers_A"∈ {1, 2}
• glinkx_init_layers_agg ∈ {1, 2}
• glinkx_inner_dropout : ∈ {0.5}
• lr ∈ {0.1, 0.001}
• optimize:r: AdamW

D.3 GLINKX w/ KGEs

D.3.1 Sweeps

We perform the following sweeps for all datasets
6For more such methods, see [20] and the references therein.
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name init_layers_A init_layers_X init_layers_agg inner_dropout lr

arxiv-year 1 2 1 0.5 0.001
PubMed 1 2 1 0.5 0.001
squirrel 2 1 1 0.5 0.001
yelp-chi 2 2 1 0.5 0.01

Table 3: GLINKX w/ Adjacency Hyperparameters

• glinkx_init_layers_X ∈ {1, 2}
• glinkx_init_layers_A ∈ {1, 2}
• glinkx_init_layers_agg ∈ {1, 2}
• glinkx_inner_dropout : ∈ {0.5}
• lr ∈ {0.1, 0.001}
• optimize:r: AdamW

• biggraph_vector_length: 400

name biggraph_vector_length init_layers_A init_layers_X init_layers_agg inner_dropout lr

arxiv-year 400 2 1 1 0.5 0.01
ogbn-arxiv 400 2 2 2 0.5 0.001
PubMed 400 2 2 2 0.5 0.01
squirrel 400 2 1 2 0.5 0.001
yelp-chi 400 2 2 2 0.5 0.01

Table 4: GLINKX w/ Biggraph Hyperparameters

D.4 GAT

D.4.1 Sweeps

• gat_num_layers ∈ {1}
• gat_hidden_channels ∈ {4, 8, 16, 32}
• gat_num_heads ∈ {2, 4}
• lr ∈ {0.01, 0.001}

name gat_heads gat_hidden_channels gat_num_layers lr

arxiv-year 4 8 1 0.1
ogbn-arxiv 4 4 1 0.1
PubMed 4 16 1 0.1
squirrel 4 4 1 0.1

Table 5: GAT w/ 1 layer Hyperparameters

D.5 GCN

D.5.1 Sweeps

We perform the following sweeps:

• gcn_num_layers ∈ {1}
• gcn_hidden_channels ∈ {4, 8, 16, 32, 64}
• lr ∈ {0.01, 0.001}
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name gcn_hidden_channels gcn_num_layers lr

arxiv-year 64 1 0.01
ogbn-arxiv 64 1 0.01
PubMed 64 1 0.01
squirrel 64 1 0.01
yelp-chi 64 1 0.01

Table 6: GCN w/ 1 layer Hyperparameter

D.6 FSGNN

We run the following sweeps for FSGNN

• layers = 1 for the 1-layer case and layers ∈ {2, 3} for the higher-order case
• hidden channels ∈ {32, 64, 128}
• learning rate ∈ {0.01, 0.001}
• layer normalization ∈ {true, false}

D.7 Label Propagation

We run the following sweeps using the implementation of Label Propagation from [22]:

• α ∈ {0.01, 0.1, 0.25, 0.5, 0.75, 0.99}
• hops ∈ {1, 2}
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E Ablation Visualization Addendum

(a) All (b) Remove PEs (c) Remove propagation (d) Remove ego emb.

(e) All (f) Remove PEs (g) Remove propagation (h) Remove ego emb.

Figure 5: t-SNE plots of output layer embedding for ogbn-arxiv (top), arxiv-year (bottom) for ablation
on both 1st and 2nd stages

(a) All (b) Remove PEs (c) Remove propagation (d) Remove ego emb.

(e) All (f) Remove PEs (g) Remove propagation (h) Remove ego emb.

Figure 6: t-SNE plots of output layer embedding for ogbn-arxiv (top), arxiv-year (bottom) for ablation
on the 2nd stage
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