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ABSTRACT

The state space model (SSM) has garnered significant attention recently due to
its exceptional long-range modeling capabilities achieved with linear-time com-
plexity, enabling notable success in efficient super-resolution. However, apply-
ing SSMs to vision tasks typically requires scanning 2D visual data with a 1D-
sequence form, which disrupts inherent semantic relationships and introduce ar-
tifacts and distortions during image restoration. To address these challenges, we
propose a novel SP-MoMamba method that integrate SSMs with the semantic
preservation capability of superpixels and the efficiency advantage of Mixture-of-
Experts (MoE). Specifically, we pioneer the use of superpixel features as semantic
units to reconstruct the SSM scanning method, proposing the Superpixel-driven
State Space Model (SP-SSM) as a basic building block of SP-MoMamba. Fur-
thermore, we introduce the Multi-Scale Superpixel Mixture of State Space Experts
(MSS-MOoE) scheme to strategically integrate SP-SSMs across scales, effectively
harnessing the complementary semantic information from multiple experts. This
multi-scale expert integration significantly reduces the number of pixels processed
by each SSM while enhancing the reconstruction of fine details through special-
ized experts operating at different semantic scales. This framework enables our
model to deliver superior performance with minimal computational overhead.

1 INTRODUCTION

Single-image super-resolution (SR) is a pivotal technique in image processing, aimed at reconstruct-
ing high-resolution (HR) images from their low-resolution (LR) counterparts to enhance image de-
tail and visual quality. This technology finds widespread application across diverse fields, including
medical imaging, surveillance systems, and satellite imagery. Numerous studies have leveraged con-
volutional neural networks (CNNs) |Dong et al.| (2015); [Lim et al.| (2017); |[Zhang et al.| (2018) and
Transformer|Liang et al.|(2021); L1 et al.|(2023);|Zhou et al.| (2023)) to learn this inherently ill-posed
mapping relationship. However, most of SR methods|Lim et al.|(2017);/Zhang et al.|(2018])) relied on
deeper and more complex architectures to achieve superior performance. These methods often entail
high computational complexity, rendering real-time processing impractical on resource-constrained
devices and thereby limiting their deployment and widespread adoption in real-world scenarios. Al-
though some researchers have reduced computational complexity through methods such as neural
architecture search|Chu et al.|(2021)), recursive networks Tai et al.| (2017)), and model distillation [Liu
et al.| (2020); Hui et al.| (2018)), these efforts have not yet fully addressed this issue.

Recently, state space models (SSMs), exemplified by Mamba |Gu & Dao| (2023)), have opened new
avenues for Efficient SR. Mamba offers linear computational complexity and excels at modeling
long sequences, initially proving its value in high-level vision tasks such as image classification Liu
et al.| (2024); [Zhu et al.| (2024) and object detection [Zhang et al.| (2025); [Wang et al. (2024). On
this basis, researchers adapted Mamba for low-level vision tasks like image denoising |Guo et al.
(2024), image SR |Qiao et al.|(2024)), and low-light image enhancement Zou et al.| (2024)); Zhen
et al.[(2024)). For example, MambalR |Guo et al.[(2024])), based on visual SSM framework, achieved
reconstruction quality comparable to transformer-based methods while maintaining lower compu-
tational costs. These developments demonstrate that Mamba effectively balances performance and



Under review as a conference paper at ICLR 2026

1 2 3 4 [} - . s .
©w SP-M(%)Man)]ha-B
urs 350G 7.00G G 14.00G G
5 6 7 8 ;-3 31V4Seem0 E-L 0G 7.00G 10.50G 14.00G 17.50¢
=
2 313
9 10 ~ 12 g
¥ > B|: 2
s o &
13 14 16 . § 311 SRFormer-Light
:|E
5 50 @
17 18 19 20 SP-MoMamba-T
(Ours) 5 :
[ | 30.9 SWl.lght
e
c gl : . 01 02 03 04 05 06 07 08 09
(a) Existing SSM Scannmg Method (b) Our MSS-MoE Scanning Method Inference Time (s)
X semantic information is disrupted v stronger semantic information (c) Efficiency Comparison
% high cost and redundancy full scanning v only a few pixel needed scanning

Figure 1: (a) The existing method |Guo et al.|(2024) suffers from the adverse effects of the scanning
method of Mamba (the multi-directional scans are not shown for presentation clarity). (b) The
proposed MSS-MoE scanning method can efficiently model the global information by a mixture
of experts at different scale, and embed the semantic consistency of superpixels into Mamba. (c)
Comparison between performance vs Inference times and GPU Memory on Mangal09 x4 dataset.
Inference times and GPU Memory are calculated on 720p HR image.

efficiency in Efficient SR, though additional optimizations are still required to tailor it to specific use
cases and achieve an ideal performance-efficiency trade-off.

The main challenge of Mamba-based SR methods currently is the inability to maintain correct se-
mantic relationships during global image scanning. Specifically, these methods convert 2D images
into 1D sequences during the scanning process, which disrupts inherent semantic information
and impairs SR model performance. As shown in Figure [T] (a), this unfolding process destroys
the semantic connections between spatially adjacent pixels (e.g., vertically neighboring pixels), hin-
dering the model’s ability to capture local structural details effectively. Although strategies such as
multi-directional scanning|Guo et al.|(2024)) or cascaded Mamba Qi1ao et al.|(2024) modules attempt
to mitigate this issue, they fail to address the fundamental problem of semantic disruption, instead
exacerbating computational overhead and parameter complexity. Furthermore, repetitive textures
in natural images, such as skies and water surfaces, are prone to semantic confusion in 1D
sequences, weakening the model’s grasp of overall image structure. This shows that there is still
much room for improvement in the processing efficiency and semantic preservation of the current
Mamba-based method.

To address the above challenges, we propose SP-MoMamba, an efficient SSM tailored for efficient
SR. Given that superpixel features naturally delineate distinct semantic regions, as shown in Fig-
ure [T] (b), our core innovation lies in integrating their semantic preservation capabilities into a SSM
framework. Technically, our SP-MoMamba is composed of stacked Layer of Experts (LoEs) for
dynamically selecting the pivotal features via experts, focusing on two different aspects. At the
macro level, each LoE contains two consecutive expert blocks: (a) Superpixel Global Modulating
Expert (SGME), which excels in modeling global semantic information, and (b) Local Spatial Mod-
ulating Expert (LSME), which is proficient in efficient reconstruction of local spatial details. At
the micro level, we design a Multi Scale Superpixel Mixture of State Space Experts (MSS-MoE) as
the foundational component of SGME, which dynamically selects the optimal scale of superpixel-
driven state space model (SP-SSM) for different inputs at different scales, to accurately capture the
correlation between global semantics. Specifically, SP-SSM compresses semantically homogeneous
features into superpixel units through superpixel sampling. Then, SSM calculates the similarity be-
tween superpixels. This similarity is propagated to the corresponding semantic regions to enhance
consistency within the regions. Overall, our method obtains different professional knowledge by
explicitly mining experts of different granularity for different expertise, thereby accurately recon-
structing more details. Our contributions are summarized below:

* To the best of our knowledge, SP-MoMamba is the first work that pioneers the use of super-
pixel features as fundamental semantic units to restructure the input for State Space Models
(SSMs). We correspondingly introduce a Superpixel-driven State Space Model (SP-SSM),
which effectively resolves the issue of semantic disruption inherent in the scanning process
of Mamba-based methods.
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* We propose a Multi-Scale Superpixel Mixture of State Space Experts (MSS-MoE), en-
abling comprehensive global modeling by dynamically selecting optimal experts across
scales to leverage semantic similarities.

* Quantitative comparisons in Figure[T] (c) further confirm the advantages of our method: it
surpasses other efficient SR techniques in reconstruction fidelity and achieves a significant
reduction in inference time.

2 RELATED WORKS

Efficient Super-resolution Methods. Efficient super-resolution methods have been pursued
through lightweight architectures |Ahn et al.| (2018); |Hui et al.| (2018)); |Sun et al.| (2023) and ef-
ficient transformers [Zhang et al| (2022); [Lu et al| (2022); |Zou et al| (2022). CARN |Ahn et al.
(2018)) uses cascading for feature integration, IMDN Hui et al.| (2018]) employs feature distillation,
and SAFMN [Sun et al.| (2023) builds channel-aware pyramids. To reduce Transformer complex-
ity, methods like ELAN |Zhang et al.|(2022)) and ESRT [Lu et al.| (2022) lower dimensionality, while
SCET Zou et al.| (2022) uses pixel attention. Recently, SPIN [Zhang et al.[(2023) leverages superpixel
and cross-attention. However, balancing efficiency and performance remains challenging.

Recently, Mamba |Gu & Dao| (2023)), a selective SSM, has been successfully adapted to the vision
domain, such as VMamba Liu et al.| (2024) and VIM [Zhu et al.| (2024). Subsequently, its applica-
tion has been further explored in low-level vision tasks, yielding a variety of methods Zhen et al.
(2024);Zou et al.| (2024) with promising results. MambalR |Guo et al.|(2024)), for instance, captures
spatial information and enhances channel interactions. However, these Mamba-based methods rely
on multi-directional scanning to process all pixels, disrupting semantic coherence and increasing
computation. In contrast, our approach uses superpixels to extract compressed semantic features,
modeling their spatial relationships with SSMs, preserving semantics while significantly reducing
complexity.

Mixture of Experts (MoE). Recently, the Mixture of Experts (MoE) method has gained widespread
adoption in large-scale language models due to its efficiency and scalability. Thus, MoE has been
extended to advanced vision tasks, including image classification Riquelme et al.| (2021)), object
detection|Wu et al.| (2022)), as well as low-level vision tasks Emad et al. (2022); |[Zamfir et al.|(2024);
Rossi et al.| (2025). For instance, literatures Emad et al.| (2022) and |Liang et al.[ (2022)) extract
latent degradation features to construct MoE-based adaptive networks, effectively addressing diverse
degradation patterns in blind SR. SeemoRe |[Zamfir et al.| (2024)) employs rank-modulated experts to
prioritize features with the highest information content, followed by spatial modulation experts to
achieve precise spatial enhancement. Similarly, Swin2-MoSE Rossi et al.|(2025)) enhances Swin2SR
Conde et al.[(2022) by incorporating an MoE framework, yielding improved visual outcomes. While
these methods leverage the flexibility and efficiency of MoE to achieve commendable performance,
there remains potential for further improvement in image quality.

3  MOTIVATION

To extend state space models (SSMs) from 1D sequence data to 2D visual data, most current re-
searches |Guo et al.| (2024); |Qiao et al.| (2024); Liu et al.| (2024) employ a 2D selective scanning
mechanism (SS2D) |Liu et al.| (2024)) to capture the spatial correlations within 2D feature, as illus-
trated in Figure[I] (a). However, during the process of flattening an image into a 1D sequence, SS2D
often disrupts the inherent semantic relationships within the image. For example, two geese that are
spatially adjacent in the Figure [1| (a) might end up widely separated in the 1D sequence. This loss
of spatial proximity hinders the model’s ability to leverage their closeness to infer semantic con-
nections. Furthermore, images frequently contain many repetitive structures, such as skies, water
surfaces, and buildings, which tend to share similar textures and colors, thereby heightening the risk
of semantic confusion. Once the image is unfolded into a 1D sequence, the information from these
repetitive structures may be incorrectly associated at inappropriate positions, leading to erroneous
predictions during model processing. Thus, the limitation of the current SS2D method lies in its
inability to adequately preserve the critical spatial structure and semantic information of the image.

Compared to the traditional SS2D method, which systematically transforms 2D features into 1D se-
quences, superpixel sampling clusters perceptually similar pixels to generate corresponding super-
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Figure 2: Architecture of our proposed method. SP-MoMamba is composed of several Layer of
Experts (LoEs). Each LoE is composed of a superpixel global modulation expert (SGME) and a
local spatial modulation expert (LSME). SGME uses multi-scale superpixel mixture of state space
experts (MSS-MOE) to select the optimal semantic correlation to refine the global texture, while
LMSE uses local mixed attention (LMA) to further restore the local texture.

pixels. Each superpixel comprises pixels sharing similar colors or textures, effectively reducing the
number of pixels requiring processing while maintaining the spatial structure and semantic integrity
of the image. Therefore, integrating superpixel algorithms into SSM provides a robust solution to
the inherent limitations of conventional SSMs when processing 2D images.

4 METHODOLOGY

In this section, we present our proposed SP-MoMamba, as illustrated in Figure 2] The complete
architecture of our pipeline integrates N layers of experts (LoEs) and upsampling layers. Initially, a
3 x 3 convolutional operation is employed to extract shallow features from the input low-resolution
image. These features are then processed through a series of LoEs to recover deep features. Each
LoE consists of M paired sets of Superpixel Global Modulating Experts (SGME) and Local Spatial
Modulating Experts (LSME), collaboratively enhancing feature restoration. SGME adopts a collab-
orative reconstruction method by integrating a multi-scale superpixels mixture of state space experts
(MSS-MoE), maximizing the interaction of global information. LSME concentrates on refining lo-
cal features through a localized mixed attention mechanism, which enhances overall performance. In
addition, two residual connections with learnable scales 3, and -y are introduced. Finally, the refined
deep features are transformed into high-resolution images via a pixelshuffle and convolution.

4.1 SUPERPIXEL GLOBAL MODULATING EXPERTS

Unlike SPIN [Zhang et al.| (2023) and MambalR |Guo et al.| (2024), which rely on substantial compu-

tational resources, we prioritize efficiency by constructing global similarity relationships based on
interactions among the most relevant scale-specific superpixels. Here, we propose the MSS-MoE,
as shown in Figure 2} MSS-MOoE employs superpixel-driven state space models (SP-SSMs) at dif-
ferent scales to independently model global features across different resolutions. By leveraging the
strengths of the mixture of experts scheme, it selectively integrates the resulting features, ensuring
optimal global modeling within each LoE. Then, a Gated Feed-Forward Network (GatedFFN)
is utilized to aggregate contextual information from these global features.
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Figure 3: Illustration of the superpixel-driven state space model (SP-SSM). One-hot mask should be
N x M, which is converted into a 3D matrix (H x W) x M for ease of understanding in the figure.

MSS-MoE. As shown in Figure[2] the output features from the last layer normalization serve as the
input features x;,, for this module. A Linear layer is first applied to increase the dimensionality of
the feature channels, followed by a split along the channel dimension to yield two distinct features,
z1 and xo. Subsequently, we employ a SP-SSM module to derive the global attention feature x’
from z;. Meanwhile, x5 is processed through an activation function to obtain the gating feature z.
Consequently, the formulation for each superpixel state space expert is expressed as follows:

Ei(r1,m9,8) =2’ ® 2z = SP-SSM(x1, s) ® o (z2) (1)

where SP-SSM(-) and o(-) denote the SP-SSM module and the SiLU |Shazeer| (2020) activation
function, respectively. The ® denotes Hadamard product. The s represents the scale parameter of
SP-SSM. We employ an SP-SSM to ensure robust modeling of global information while introducing
an residual connection to prevent the loss of local information.

However, the SP-SSM operating at a fixed scale may fail to fully exploit all internal information,
thereby limiting the model’s expressive capacity. To address this, we propose an ensemble approach
that integrates superpixel state space experts across multiple scales s;. A routing network searches
the solution space to identify the optimal scale for the superpixel state space experts based on the
input and network depth. The final output x,,; of the MSS-MOoE is formulated as follows:

Tout = Y G(12)Ei (71,72, 85) 2)

where G(-) and £(+) denote the router function and the i-th expert function, respectively. The s;
represents the scale parameter of the i-th expert’s SP-SSM module. Specifically, a router G(-) is
composed of a linear mapping and Softmax to map input features into weights of different superpixel
state space experts. The sparsity inherent in the router function G(-) optimizes computation by
assigning greater weights to the top-k superpixel state space experts. During training, our method
learns from all superpixel state space experts, while during inference, it utilizes only the selected
top-k experts with higher routing weights for computation, thereby enhancing efficiency. Hence,
the computational complexity of the inference process becomes independent of the total number of
experts, further enhancing efficiency. We further provide the pseudocode for the proposed MSS-
MOoE in the supplementary materials.

SP-SSM. As shown in Figure[3] given the input feature ;,, € R”*W*C we use 3 x 3 convolution
and SiL.U activation function to map features. Then, these features are downsampled by a factor of
s, and superpixel sampling is performed to obtain the corresponding M superpixel features x, €
RM*C and similarity matrix Mg;,,, € RNXM (where N = H x W). It is formulated as follows:

Zsp, Mgim = SPS(o(Conv(zip)) Js) 3)

where SPS(-) denotes the superpixel sampling operation. |4 represents the downsampling operation
by a factor of s. Subsequently, a SSM is employed to perform global information modeling on
the superpixel feature x,, yielding an enhanced superpixel feature :E/sp € RMXC The similarity

matrix M;,, is transformed into a differentiable one-hot mask M, € RV <M using the Gumbel-
Softmax Jang et al.|(2016) technique applied to log probabilities, enabling the indexing of the most
similar superpixel for each pixel. Then, matrix multiplication followed by a sigmoid function is
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utilized to derive the global attention feature A € RV XC as follows:

x/sp = SSM(iESp) (4)
M, .05k = Gumbel-Softmax (Mg, ) 5)
A= Singid(Mmask X x,sp) (6)

where Sigmoid(-) and ® denote sigmoid function and matrix multiplication. The final output of this
module is obtained by multiplying the attention feature A with «/, , followed by the addition of the
original transformed feature x;,,, as follows:

LTout = (A O] .’b;n) Ts +Tin (7)

Since superpixels encapsulate comprehensive semantic information, the resulting output features
effectively capture correlations among distinct semantics.

Superpixel Sampling. We follow the soft k-
means-based superpixel algorithm in SSNJam-|  mitial by average pooling
pani et al.| (2018) to perform superpixel sam-
1. . G . RNXC
pling on images. Given input as X € v 2
(where N = H x W), M superpixels s € ig}ﬂ,;m;g;,ir
RM*C and similarity matrix Mg, € RV*M o Wl ~ ™
are obtained through 7T iterations, maximizing e — :
. .. S . . Superpixel ttention Feature
their association with the corresponding pixels. perp!
Firstly, as shown in Figure [d] we use average Sampling
pooling to initialize superpixels s’. Then, we
conduct iterations using a similarity matrix that
calculates the similarity between each pixel and
superpixel. It can be formulated as follows:

Superpixel
Attention
Weighting

Superpixel features  Similarity Matrix

Figure 4: Superpixel sampling of our method,
which initializes the superpixel features by av-
erage pooling, and then generates the superpixel
features and similarity matrix.

M., (i,j) = e MOTTOIE (g

Notably, superpixel sampling solely evaluates
the similarity mapping between each pixel and
its neighboring superpixels. This preserves the local coherence of superpixels, thereby enhancing
computational efficiency. Subsequently, we can obtain the superpixel st by computing a weighted
sum of all pixels, defined as:

1 .
Sé - m ;Mzim(u])x(z) ©

where z!(j) = Y, M, ., (i, j) denote the normalization term along the column. After 7" iterations,
we can obtain the final similarity matrix M2, ~and superpixels s”. Using the similarity matrix,

S1m
we can assign each pixel to its most similar superpixel, thus generating the corresponding mask, as
depicted in Figure [d Therefore, with the superpixels and their respective masks, we can perform
superpixel-based attention weighting on pixels across distinct regions. Our proposed SP-SSM uti-
lizes this critical insight by employing a SSM to assign weights to superpixels, enabling weighted

processing of semantic information across distinct regions.

4.2 LOCAL SPATIAL MODULATING EXPERTS

After the proposed MSS-MOoE primarily leverages superpixels to capture global semantic relation-
ships, we enhance its capability by incorporating Local Spatial Modulation Experts (LSME) to
strengthen the processing of local information. Given that MSS-MoE requires scanning only a lim-
ited number of superpixels, this property is insufficient for the modeling of local correlation. Con-
sequently, we adopt a robust combination of shift window-based multi-head self-attention (SWin-
MHSA) and channel attention to construct a Local Mixed Attention Module (LMA), as depicted in
Figure[2] Channel attention recalibrates features across channels to emphasize salient local informa-
tion; subsequently, Swin-MHSA captures fine-grained spatial dependencies within local windows.
GatedFNN then refines features by integrating global and local information, preserving prior seman-
tics while enhancing detail capture, thus improving overall model performance.
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) Set5 Setl4 BSD100 Urban100 Mangal09

Scale Model Params M)} GMACs] ponpy SSIM{ PSNRT SSIM{ PSNRT SSIM PSNRT SSIM{ PSNRT  SSIM{
CARN-M IK 91 3753 09583 33.26 00041 3192 08960 3123 09193  — -
PAN 261K 71 3800 09605 3350 09181 3218 08997 3201 09273 3870 09773
DRSAN 370K 86 3799 09606 3357 09177 3216 08999 32.10 09279  — —
5 SAEMN 228K 5 3800 09605 3354 09177 3216 08995 3184 09266 3871 09771
SeemoRe-T 220K 45 3806 09608 3365 09186 3223 09004 3222 09286 3901 09777
SRConvNet 387K 74 3800 09605 3358 09186 32.16 0.8995 3205 09272 3887 09774
SP-MoMamba-T (ours) 259K 85 3816 09612 3381 09199 3229 09011 3248 09312 3976  0.9820
CARN-M 415K 3 3002 08903 2842 07762 2744 07304 2562 07694  — —
PAN 272K 28 3213 08948 2861 07822 2759 07363 2611 07854 3051 09095
DRSAN 410K 3l 3215 08935 2854 07813 2754 07364 2606 07858  — —
4 SARMN 240K 14 3218 08948 2860 07813 2758 07359 2597 07809 3043 09063
SeemoRe-T 232K 12 3231 08965 2872 07840 27.65 07384 2623 07883 3082 09107
SRConvNet 382K 2 3218 08951 2861 07359 2757 07359 2606 07845 3035 09075
SP-MoMamba-T (ours) 271K 2 3235 08970 2877 07850  27.69 07398 2640 07939 3101  0.9160

Table 1: Comparison to efficient SR models. PSNR (dB 1) and SSIM (1) metrics are reported on
the Y-channel. Best and second best performances are highlighted. GMACs (G) are computed by
upscaling to a 1280 x 720 HR image.

Set5 Set14 BSD100 Urban100 Mangal09
Scale Model Params (M), GMACs| ponpy SsIM{ PSNRT  SSIM{ PSNRT  SSIM{ PSNRT  SSIMt PSNRTg SSIM?t
SwinIR-Light 910K 244 3814 09611 3386 09206 3231 09012 3276 09340 39.12 09783
SRFormer-Light 853K 236 3823 09613 3394 09209 3236 09019 3291 09353 3928 09785
SPIN 497K 320 3820 09615 3390 09215 3231 09015 3279 09340 39.18 09784
x2  MambalR-light 905K 334 3813 09610 3395 09208 3231 09013 3285 09349 3920 09782
SeemoRe-L 931K 197 3827 09616 3401 09210 3235 09018 32.87 09344 3949 09790
CRAFT 738K 197 3823 09615 3392 09211 3233 09016 3286 09343 3939 09786
MambalRv2-light 774K 286 3826 09615 34.09 09221 3236 09019 3326 09378 3935 09785
SP-MoMamba-B (ours) 543K 170 3827 09616 3404 09219 3238 09022 3299 09357 4018  0.9827
SwinIR-Light 897K 64 3244 08976 28.77 0.7858 27.69 0.7406 2647 0.7980 3091 09151
SRFormer-Light 873K 63 3251 0.8988 2882 07872 27.73 07422 2667 08032 31.17 09165
SPIN 555K 90 3248 0.8983 2880 0.7862 27.70 07415 2655 07998 3098  0.9156
x4 MambalR-light 930K 64 3242 08977 2874 0.7847 27.68 0.7400 2652 07983 3094 0.9135
SeemoRe-L 969K 50 3251 0.8990 2892 07881 27.77 07428 2679 0.8046 3148 09181
CRAFT 753K 52 3252 0.8980 2885 07872 2772 07418 2656 07995 31.18  0.9168
MambalRv2-light 790K 76 3251 0.8992 2884 07878 27.75 07425 2682 08079 3124 09182
SP-MoMamba-B (ours) 559K 46 3256  0.8992 2893 0.7885 27.78 07426 2676 0.8030 3151  0.9210

Table 2: Comparison to lightweight SR models. PSNR (dB 1) and SSIM (1) metrics are reported on
the Y-channel. Best and second best performances are highlighted. GMACsSs (G) are computed by
upscaling to a 1280 x 720 HR image.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Datasets and Evaluation. Following the previous SR methods |Liang et al| (2021); Zamfir et al.
(2024), we utilize two widely-used datasets, DIV2K [Timofte et al.| (2017) and Flickr2K |Lim et al.
(2017) for training. We assess our method performance on five classical benchmark datasets for SR,
Set5 [Bevilacqua et al.| (2012), Set14 Zeyde et al.| (2010), BSD100 Martin et al.[ (2001), Urban100
Huang et al.| (2015)), and Mangal09 [Matsui et al.[(2015). We also quantify the effectiveness of our
method using the PSNR and SSIM metrics on the Y-channel from the YCbCr color space.

Implementation Details. To thoroughly train the proposed model, we augment the training data
by randomly cropping it into 64 x 64 patches and further augment it through random rotations,
horizontal and vertical flips. Consistent with Sun et al.| (2022), we employ the Adam Kingma &
Bal (2014) optimizer to minimize the L; norm between the SR output and the HR ground truth in
both pixel and frequency domains across 500K iterations. The batch size is set to 32, with an initial
learning rate of 1 x 10~3 which is halved at iterations [250K, 400K, 450K, 475K]. All experiments
are implemented using the PyTorch framework and conducted on a single RTX 4090 GPU. We
design two variants of the SP-MoMamba model with distinct parameter configurations, denoted as
SP-MoMamba-T and SP-MoMamba-B. For all MSS-MoE modules, we configure three experts with
downsampling factors of [1, 2, 4]. Further details are provided in the supplementary materials.

5.2 COMPARISONS WITH STATE-OF-THE-ART METHODS

Quantitative comparison. We report quantitative results for image SR at x2 and x4 scale factors,
with comparisons against current efficient state-of-the-art models presented in Table |1} including
CARN-M |Ahn et al| (2018), PAN [Zhao et al| (2020), DRSAN [Park et al| (2021), SAFMN [Sun
et al.| (2023), SeemoRe-T Zamfir et al. (2024), SRConvNet |[Li et al.| (2025b). Additionally, we
evaluate against lightweight SR models such as SwinlR |[Liang et al.| (2021), SRFormer |Zhou et al.
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Figure 5: Qualitative comparison of our SP-MoMamba-B with state-of-the-art methods on 4x SR.
(Zoom in for the best view)

(2023), SPIN [Zhang et al] (2023), MambalR (2024), CRAFT (20254), and
MambalRv2 [Guo et al.| (2025) in Table 2] Our proposed SP-MoMamba-T stands out as the most

efficient method, consistently surpassing all other methods across all benchmarks and scale factors.
For instance as clear from Table El, on Urban100 and Mangal09 (x2), SP-MoMamba-T exceeds
SeemoRe-T [Zamfir et al.| (2024) by 0.26 dB and 0.75 dB, respectively. Scaling our method up to a
comparable size with lightweight models yields comparable or superior results. As demonstrated in
Table 2] our SP-MoMamba-B exhibits the best PSNR performance on average across 5 benchmark
datasets. Among them, on Mangal09 (x2), our SP-MoMamba-B outperforms SeemoRe-L
and MambalRv2-light by 0.69 dB and 0.83 dB, respectively. As
demonstrated in Figure[Tfc), our SP-MoMamba strikes an optimal balance between performance and
efficiency, delivering higher-quality super-resolution results than leading methods while requiring
less computational time.

Qualitative comparison. In Figure[5] we compare the visual quality of our method against existing
state-of-the-art approaches. As evident from the figure, previous methods often struggle with chal-
lenging structural textures, resulting in distortions, or inaccurate texture reconstruction. In contrast,
our SP-MoMamba effectively preserves structural information and enhances clarity. For instance,
in images img_044 and img_076 from the Urban100 dataset, SeemoRe-L [Zamfir et al] (2024) and
MambalR-light fail to reconstruct the correct textures accurately. In contrast, our
method can recover regular textures and complex details. These visual comparisons emphasize SP-
MoMamba’s effectiveness in reconstructing high-quality images by leveraging global information
derived from superpixels.
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5.3 ABLATION STUDY

We devise a set of ablation studies to evaluate the contribution and efficacy of each proposed module.
All experiments are conducted on the x4 SP-MoMamba-T setting. More ablation studies are in
supplementary materials.

Macro Architecture. As shown in Table[3|(a),

we assess the effectiveness of our proposed key Method [ SGME LSME BSDI00 Urbanl00
architectural components by comparing them Baseline a B 742 2555
against a baseline model composed solely of v . 27.63 26.14
residual block which consists of depthwise and ~ SP-MoMamba-T | - v 27.61 26.10
point-wise convolutions, more details in Sup- v v 2769 26.40
plemental. The incorporation of the proposed (a) Contribution of key components.
modules into the baseline framework yields sig-  yiohod Block Order _ BSD100 _ Urban100
nificant enhancements in performance. Specifi-

cally, the addition of SGME and LSME inde.  SPMoMambat | LSMEZSGME 27658 2635
pendently augments the baseline by 0.21 dB

and 0.19 dB, respectively. Although each mod- (b) Block order.

ule demonstrates superior performance relative ) . ¢
to the baseline in isolation, the interleaved ap- Table 3: Ablation on key components of SP-

plication of SGME and LSME maximizes the MoMamba. We show PSNR results for x4 up-
expressive capacity of the architecture. Over- SCaling.

all, these advancements culminate in our SP-

MoMamba-T achieving pronounced improvements, with gains of 0.27 dB on BSD100 and 0.85 dB
on Urban100. In addition, empirical evidence presented in Table [3| (b) illustrates the influence of
module sequencing on performance outcomes, underscoring the superiority of a design that priori-
tizes superpixel-driven global feature before local feature.

Design choices of MSS-MoE. We explore the

demgn choices of the MSS-MoE moldule DY TSP MoMambaT #& Scale  GMACs BSDI00 Urbanl00
varying the number of experts and their corre- 1
sponding scale factor parameters, as illustrated 2

in Table ] To determine the optimal number i [Elililh ggg %Z:gg 52:;21
of experts and scale factors, we devise two sim- 1 2 96 2765 2611
2
3
4

1 22G 27.65 26.17

Adding experts [1,1] 26G 27.67 26.31

ple scenarios: one increasing the number of ex- [1,2] 2G 2768 26.33

; _ [124]  23G 2769 2640
per.ts at the same scal.e, and the other incorpo [1548]  23G T e
rating experts at varying scales. As evidenced

in Table 4] employing experts across different  Taple 4: Adding experts and scales yield optimal
scales outstanding enhances performance with performance in terms of computational complex-

only a modest increase in computational cost, ity (GMACs) and PSNR. #& denotes the number
outperforming the method of adding experts at  of experts.

a uniform scale. Basis on these experiments,

we assert that downsampling beyond a factor of

4 results in substantial loss of semantic information, introducing many semantic correlations into the
network and consequently degrading performance. Therefore, we select experts with scale factors
of [1, 2, 4] as the final configuration.

Adding scale

6 CONCLUSION

In this study, we propose SP-MoMamba, a superpixel-driven mixture of state space experts model.
Unlike the other state space models, SP-MoMamba addresses the computational inefficiencies in-
herent in existing mamba-based restoration methods dependent on global scanning by integrating
superpixel sampling with state space frameworks. This approach effectively balances robust global
semantic modeling with precise local detail enhancement while minimizing complexity. In our
method, the MSS-MoE module achieves comprehensive global modeling by dynamically selecting
optimal experts across multiple scales, while the LSME refines local features through a synergistic
combination of self-attention and channel attention mechanisms. Experimental results confirm that
SP-MoMamba surpasses state-of-the-art lightweight models across various benchmark datasets.
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ETHICS STATEMENT

We confirm that we have read and committed to complying with ICLR’s ethical guidelines. This
study focuses on image super-resolution technology. Although it does not directly involve human
subjects, we recognize that it may be misused to generate misleading content (such as deepfakes).
We are committed to responsible research and hope that this technology can be applied to beneficial
fields such as medical image enhancement. All experiments are based on publicly available datasets,
and we have made every effort to ensure the reproducibility and impartiality of the research.

REPRODUCIBILITY STATEMENT

To support the reproducibility of our work, we have made the following efforts. The implementa-
tion details of our proposed SP-MoMamba-T and SP-MoMamba-B architecture, including training
configurations and hyperparameters, are thoroughly described in Section [5.1] and the Appendix [C|
The source code for the model and training scripts has been provided in our anonymized supple-
mentary materials. Furthermore, all experiments are conducted on publicly available benchmark
datasets, and the specific data preprocessing steps are clearly outlined in Section[5.1] We hope these
resources will facilitate the replication of our results.

REFERENCES

Namhyuk Ahn, Byungkon Kang, and Kyung-Ah Sohn. Fast, accurate, and lightweight super-
resolution with cascading residual network. In Proceedings of the European conference on com-
puter vision (ECCV), pp. 252-268, 2018.

Marco Bevilacqua, Aline Roumy, Christine Guillemot, and Marie Line Alberi-Morel. Low-
complexity single-image super-resolution based on nonnegative neighbor embedding. 2012.

Zheng Chen, Yulun Zhang, Jinjin Gu, Linghe Kong, Xiaokang Yang, and Fisher Yu. Dual aggre-
gation transformer for image super-resolution. In Proceedings of the IEEE/CVF international
conference on computer vision, pp. 12312-12321, 2023.

Xiangxiang Chu, Bo Zhang, Hailong Ma, Ruijun Xu, and Qingyuan Li. Fast, accurate and
lightweight super-resolution with neural architecture search. In 2020 25th International con-
ference on pattern recognition (ICPR), pp. 59-64. IEEE, 2021.

Marcos V Conde, Ui-Jin Choi, Maxime Burchi, and Radu Timofte. Swin2sr: Swinv2 transformer
for compressed image super-resolution and restoration. In European Conference on Computer
Vision, pp. 669—687. Springer, 2022.

Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. Image super-resolution using deep
convolutional networks. IEEE transactions on pattern analysis and machine intelligence, 38(2):
295-307, 2015.

Mohammad Emad, Maurice Peemen, and Henk Corporaal. Moesr: Blind super-resolution using
kernel-aware mixture of experts. In Proceedings of the IEEE/CVF Winter Conference on Appli-
cations of Computer Vision, pp. 3408-3417, 2022.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Hang Guo, Jinmin Li, Tao Dai, Zhihao Ouyang, Xudong Ren, and Shu-Tao Xia. Mambair: A simple
baseline for image restoration with state-space model. In European conference on computer
vision, pp. 222-241. Springer, 2024.

Hang Guo, Yong Guo, Yaohua Zha, Yulun Zhang, Wenbo Li, Tao Dai, Shu-Tao Xia, and Yawei Li.
Mambairv2: Attentive state space restoration. In Proceedings of the Computer Vision and Pattern
Recognition Conference, pp. 28124-28133, 2025.

J. Huang, A. Singh, and N. Ahuja. Single image super-resolution from transformed self-exemplars.
In 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5197-5206,
2015. doi: 10.1109/CVPR.2015.7299156.

10



Under review as a conference paper at ICLR 2026

Zheng Hui, Xiumei Wang, and Xinbo Gao. Fast and accurate single image super-resolution via
information distillation network. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 723-731, 2018.

Varun Jampani, Deqing Sun, Ming-Yu Liu, Ming-Hsuan Yang, and Jan Kautz. Superpixel sampling
networks. In Proceedings of the European Conference on Computer Vision (ECCV), pp. 352-368,
2018.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. arXiv
preprint arXiv:1611.01144, 2016.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Ao Li, Le Zhang, Yun Liu, and Ce Zhu. Exploring frequency-inspired optimization in transformer
for efficient single image super-resolution. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2025a.

Feng Li, Runmin Cong, Jingjing Wu, Huihui Bai, Meng Wang, and Yao Zhao. Srconvnet: A
transformer-style convnet for lightweight image super-resolution. International Journal of Com-
puter Vision, 133(1):173-189, 2025b.

Yawei Li, Yuchen Fan, Xiaoyu Xiang, Denis Demandolx, Rakesh Ranjan, Radu Timofte, and Luc
Van Gool. Efficient and explicit modelling of image hierarchies for image restoration. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.
18278-18289, June 2023.

Jie Liang, Hui Zeng, and Lei Zhang. Efficient and degradation-adaptive network for real-world
image super-resolution. In European Conference on Computer Vision, pp. 574-591. Springer,
2022.

Jingyun Liang, Jiezhang Cao, Guolei Sun, Kai Zhang, Luc Van Gool, and Radu Timofte. Swinir:
Image restoration using swin transformer. In Proceedings of the IEEE/CVF international confer-
ence on computer vision, pp. 1833-1844, 2021.

B. Lim, S. Son, H. Kim, S. Nah, and K. M. Lee. Enhanced deep residual networks for single
image super-resolution. In 2017 IEEE Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW), pp. 1132-1140, 2017. doi: 10.1109/CVPRW.2017.151.

Jie Liu, Jie Tang, and Gangshan Wu. Residual feature distillation network for lightweight image
super-resolution. In Computer vision—-ECCV 2020 workshops: Glasgow, UK, August 23-28,
2020, proceedings, part Il 16, pp. 41-55. Springer, 2020.

Yue Liu, Yunjie Tian, Yuzhong Zhao, Hongtian Yu, Lingxi Xie, Yaowei Wang, Qixiang Ye, and
Yunfan Liu. Vmamba: Visual state space model. arXiv preprint arXiv:2401.10166, 2024.

Zhisheng Lu, Juncheng Li, Hong Liu, Chaoyan Huang, Linlin Zhang, and Tieyong Zeng. Trans-
former for single image super-resolution. In Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, pp. 457-466, 2022.

D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human segmented natural images
and its application to evaluating segmentation algorithms and measuring ecological statistics. In
Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001, volume 2,
pp- 416423 vol.2, 2001. doi: 10.1109/ICCV.2001.937655.

Yusuke Matsui, Kota Ito, Yuji Aramaki, Toshihiko Yamasaki, and Kiyoharu Aizawa. Sketch-based
manga retrieval using mangal09 dataset. 2015.

Karam Park, Jae Woong Soh, and Nam Ik Cho. A dynamic residual self-attention network for
lightweight single image super-resolution. /EEE Transactions on Multimedia, 25:907-918, 2021.

Junbo Qiao, Jincheng Liao, Wei Li, Yulun Zhang, Yong Guo, Yi Wen, Zhangxizi Qiu, Jiao Xie, Jie
Hu, and Shaohui Lin. Hi-mamba: Hierarchical mamba for efficient image super-resolution. arXiv
preprint arXiv:2410.10140, 2024.

11



Under review as a conference paper at ICLR 2026

Carlos Riquelme, Joan Puigcerver, Basil Mustafa, Maxim Neumann, Rodolphe Jenatton, André
Susano Pinto, Daniel Keysers, and Neil Houlsby. Scaling vision with sparse mixture of experts.
Advances in Neural Information Processing Systems, 34:8583-8595, 2021.

Leonardo Rossi, Vittorio Bernuzzi, Tomaso Fontanini, Massimo Bertozzi, and Andrea Prati. Swin2-
mose: A new single image supersolution model for remote sensing. IET Image Processing, 19
(1):e13303, 2025.

Noam Shazeer. Glu variants improve transformer. arXiv preprint arXiv:2002.05202, 2020.

Long Sun, Jinshan Pan, and Jinhui Tang. Shufflemixer: An efficient convnet for image super-
resolution. Advances in Neural Information Processing Systems, 35:17314-17326, 2022.

Long Sun, Jiangxin Dong, Jinhui Tang, and Jinshan Pan. Spatially-adaptive feature modulation for
efficient image super-resolution. In Proceedings of the IEEE/CVF international conference on
computer vision, pp. 13190-13199, 2023.

Ying Tai, Jian Yang, and Xiaoming Liu. Image super-resolution via deep recursive residual network.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3147—

3155, 2017.

R. Timofte, E. Agustsson, L. V. Gool, M. Yang, L. Zhang, B. Lim, S. Son, H. Kim, S. Nah, and
K. M. Lee et al. Ntire 2017 challenge on single image super-resolution: Methods and results. In
2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp.
1110-1121, 2017. doi: 10.1109/CVPRW.2017.149.

Zeyu Wang, Chen Li, Huiying Xu, and Xinzhong Zhu. Mamba yolo: Ssms-based yolo for object
detection. arXiv preprint arXiv:2406.05835, 2024.

Lemeng Wu, Mengchen Liu, Yinpeng Chen, Dongdong Chen, Xiyang Dai, and Lu Yuan. Residual
mixture of experts. arXiv preprint arXiv:2204.09636, 2022.

Eduard Zamfir, Zongwei Wu, Nancy Mehta, Yulun Zhang, and Radu Timofte. See more details:
Efficient image super-resolution by experts mining. In Forty-first International Conference on
Machine Learning, 2024.

Roman Zeyde, Michael Elad, and Matan Protter. On single image scale-up using sparse-
representations. 2010.

Aiping Zhang, Wenqi Ren, Yi Liu, and Xiaochun Cao. Lightweight image super-resolution with su-
perpixel token interaction. In Proceedings of the IEEE/CVF international conference on computer
vision, pp. 12728-12737, 2023.

Guowen Zhang, Lue Fan, Chenhang He, Zhen Lei, ZHAO-XIANG ZHANG, and Lei Zhang. Voxel
mamba: Group-free state space models for point cloud based 3d object detection. Advances in
Neural Information Processing Systems, 37:81489-81509, 2025.

Xindong Zhang, Hui Zeng, Shi Guo, and Lei Zhang. Efficient long-range attention network for
image super-resolution. In European conference on computer vision, pp. 649-667. Springer,
2022.

Yulun Zhang, Kunpeng Li, Kai Li, Lichen Wang, Bineng Zhong, and Yun Fu. Image super-
resolution using very deep residual channel attention networks. In Proceedings of the European
conference on computer vision (ECCV), pp. 286-301, 2018.

Hengyuan Zhao, Xiangtao Kong, Jingwen He, Yu Qiao, and Chao Dong. Efficient image super-
resolution using pixel attention. In Computer Vision—ECCV 2020 Workshops: Glasgow, UK,
August 23-28, 2020, Proceedings, Part I1I 16, pp. 56—72. Springer, 2020.

Zou Zhen, Yu Hu, and Zhao Feng. Freqmamba: Viewing mamba from a frequency perspective for
image deraining. arXiv preprint arXiv:2404.09476, 2024.

Yupeng Zhou, Zhen Li, Chun-Le Guo, Song Bai, Ming-Ming Cheng, and Qibin Hou. Srformer:
Permuted self-attention for single image super-resolution. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision, pp. 12780-12791, 2023.

12



Under review as a conference paper at ICLR 2026

Lianghui Zhu, Bencheng Liao, Qian Zhang, Xinlong Wang, Wenyu Liu, and Xinggang Wang. Vi-
sion mamba: Efficient visual representation learning with bidirectional state space model. arXiv
preprint arXiv:2401.09417, 2024.

Wenbin Zou, Tian Ye, Weixin Zheng, Yunchen Zhang, Liang Chen, and Yi Wu. Self-calibrated ef-
ficient transformer for lightweight super-resolution. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 930-939, 2022.

Wenbin Zou, Hongxia Gao, Weipeng Yang, and Tongtong Liu. Wave-mamba: Wavelet state space
model for ultra-high-definition low-light image enhancement. In Proceedings of the 32nd ACM
International Conference on Multimedia, pp. 1534-1543, 2024.

APPENDIX

In this Appendix, we declare The Use of Large Language Models (LLMs). In addition, we present
the principle of state space model and provide implementation details, additional experimental re-
sults and analysis.

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

A large language model was used during the preparation of this work solely for text polishing and
grammar correction. The authors are solely responsible for the entire scientific content, including
all ideas, findings, and interpretations presented herein.

B STATE SPACE MODELS

State space models (SSMs) |Gu & Dao| (2023)
are mathematical models used in control the-

. 1 . Parameters SP-MoMamba-T ~ SP-MoMamba-S
ory and signal processing to describe the dy- . gras 3 1
namic systems. The following equation defines Num. SGMEs and LSMEs 2 2
the standard SSMs: Channel dimension 36 48
MLP-Ratio 2
4 — Num. superpixels 64
h (t) Ah(t) + B:L'(t) (10) Num. Experts £ 3
y(t) = Ch(t) + Dx(t) (11) Top-k experts 1
Scale list [1,2,4]
where A, B, C, and D are the system parame- graiylir}g Dataset DlV2II§;Flickr2K
ters. (t),h(t) and y(t) denote input, hidden o o
state, and output. In deep learning, the exist- Total Num. Iterations 500K
ing SSM-based methods, like Mamba, employ E‘;TRLOSS weights 108}; 03
zero-order hold (ZOH) to discretize continu- g pecay Rate T
ous state space equations, enabling them to ef- LR-Decay Milestones [250K,400K, 450K, 475K]
ficiently process long sequence data and apply
to various sequence modeling tasks. It is repre- Table 5: Implementation Details.
sented by the following equations:
hiy = Ah;_1 + Bx; (12)
ys = Chy + Dy (13)
A =exp(AA) (14)
B = (AA)"!(exp(AA) — I)(AB) (15)

where A, B are discrete counterparts of A and B. A denotes timescale parameter, which is used to
convert the continuous parameters A and B into discrete ones A, and B.

C FURTHER IMPLEMENTATION DETAILS

Table [5] details the architectural configurations and training parameters utilized to obtain the results
presented in this study. To ensure reproducibility, we maintained a consistent random seed across all

13
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Algorithm 1 Multi-Scale Superpixel Mixture of State space Experts (MSS-MoE)

[

: Input: Input feature z; and o

Parameters: n experts £, Router G, Scale factor s = s1, s9, ..., S,, Superpixel state space
module (SP-SSM), Top-k expert

3: Compute router outputs: g = G(x3)

4: Normalize weights: w = Softmax(g)

5: Select top-k expert: Wip.r, = topk(w, k)

6

7

8

N

: Set all other weights to zero: w; = 0 for 7 # top-k
. if training then
. foreachic & do

9: y; = SP-SSM(x1, 8;) ® o(x2)

10:  end for

11:  Compute final output: y = >_1" | w; - y;
12: else

13:  Compute final output: ¥ = Wiop-k * Yiop-k
14: end if

15: Output: Final output y

experiments. Our implementation leverages the publicly available PyTorch-based BasicSR frame-
work for both architecture design and training. Additionally, we employ the fvcore Python package
to calculate GMACs and parameter counts. The pseudocode for the proposed MSS-MOoE is provided
in Algorithm 1]

C.1 COMPARISON TO LIGHTWEIGHT SR MDOELS (x3).

In Table[6] [7] we present the performance of our SP-MoMamba-T and SP-MoMamba-B model for
x3 upscaling, extending the results from Table [T} 2] in the main text. Our SP-MoMamba-T and
SP-MoMamba-B can achieve competitive performance with lower parameter and computational
complexity.

Set5 Setl4 BSD100 Urban100 Mangal09
Scale Model Params (M)}, GMACsl poNpe SsIMf PSNRT  SSIMP PSNRT SSIM{ PSNRT  SSIM{ PSNRTg SSIM1
CARN-M 415K 6 3399 09236 3008 08367 2891 08000 2755 08385  — =
PAN 261K 39 3440 09271 3036 08423 29.01 08050 28.11 08511 33.61 09448
DRSAN 410K 43 3441 09272 3027 08413 2908 08056 28.19 08529  — —
w3 SAFMN 233K 23 3434 09270 3033 0.8418 29.08 0.8048 2795 08474 3352 09437
SeemoRe-T 225K 20 3446 09276 3044 0.8445 29.15 0.8063 2827 08538 33.92  0.9460
SRConvNet 387K 33 3440 09272 3030 08416 2907 08500 28.04 08474 3356 09443
SP-MoMamba-T (ours) 264K 37 3453 09284 30.50 0.8448 29.19 0.8080 2843 0.8572 3416 0.9504

Table 6: Comparison to efficient SR models. PSNR (dB 1) and SSIM (1) metrics are reported on
the Y-channel. Best and second best performances are highlighted. GMACs (G) are computed by
upscaling to a 1280 x 720 HR image.

o o . SetS Setl4 BSD100 Urban100 Mangal09

scale Model Params (M) GMACs  poyp™ 'sSIM PSNR SSIM. PSNR SSIM PSNR SSIM PSNR  SSIM
SwinIR-Light 918K TIT 3462 09289 3054 08463 2920 08082 28.66 08624 3398 09478
SRFormer-Light 861K 105 3467 09296 3057 08469 2026 08099 2881 08655 3419 0.9489
SPIN 569K 176 3465 09293 3057 08464 2923 08089 2871 08627 3424 0.9489

x3  MambalR-light 913K 149 3463 09288 3054 08450 2923 08084 2870 08631 3412 09479
SeemoRe-L 959K 87 3470 09297 30.60 0.8469 2929 08101 28.86 08653 3453 0.9496
CRAFT 744K 88 3471 09295 30.61 08469 2924 08093 28.77 08635 3429 09491
MambalRv2-light 781K 127 3471 09297 30.68 08483 2926 08098 29.01 0.8689 3441 09497
SP-MoMamba-B (ours) 550K 75 3471 09297 3065 08478 2929 0.8104 2884 08652 34.67 0.9530

Table 7: Comparison to lightweight SR models. PSNR (dB 1) and SSIM () metrics are reported on
the Y-channel. Best and second best performances are highlighted. GMACs (G) are computed by
upscaling to a 1280 x 720 HR image.

C.2 DETAILED COMPARISON OF MODEL COMPLEXITY
We provide a detailed comparison of memory usage and runtime as shown in Table [§] From the

table, it can be seen that compared to the current best method, our SP-MoMamba-T has lowest
inference time and GPU memory, and achieves more competitive performance.
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Method Time (s) GPU Memory PSNR
SwinIR-Light 0.631 6802.7 30.91
SRFormer-Light 0.734 7319.4 31.17
SPIN 0.654 7083 30.98
Mambairv2-Light  0.833 13652.3 31.24
CATANet 0.745 21962 31.31
SeemoRe-L 0.145 10464.7 31.48
SP-MoMamba-T 0.084 4258.1 31.01
SP-MoMamba-B 0.236 6572.9 31.51

Table 8: Comparison between performance vs Inference times and GPU Memory on Mangal09 x4
dataset. Inference times and GPU Memory are calculated on 720p HR image.

D MORE ABLATIONS

D.1 ABLATION FOR LMA.

As a core component of the LSME module, the Local Mixed Attention (LMA) employs diverse
strategies for focusing on local information, thereby effectively enhancing localized feature repre-
sentation. Table [9] demonstrates that window multi-head self-attention (Swin MHSA)
(2021), owing to its efficient window-based self-attention mechanism, achieves superior perfor-
mance compared to the channel attention (CA) mechanism [Zhang et al| (2018). However, Swin
MHSA is restricted to spatially capturing local information, overlooking similarity relationships be-
tween different channels. Consequently, integrating CA with Swin MHSA can significantly enhance
local features, leading to finer textures and improved performance. As demonstrated in Table[9] with
the incorporation of CA and Swin MHSA, the model achieves optimal performance.

Method \ Params GMACs BSDI00 Urbanl00
Swin MHSA | 224K 20 27.67 26.28
CA 240K 13 27.65 25.22
LMA 271K 22 27.69 26.40

Table 9: Ablation on the Local Mixed Attention (LMA) mechanism. We show results for x4 up-
scaling.

A0 At =
50 100 150 200 250 300 350 50 100 150 200 250 300 350

After SGME After LSME

Figure 6: Visualizations of feature maps before and after applying the proposed SGME and LSME
modules, demonstrating enhanced activation sharpness through SGME and refined representations
via LSME. (Zoom in for the best view)
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D.2 FEATURE VISUALIZATION.

To substantiate the importance of the proposed SGME and LSME modules, we analyzed the feature
maps before and after their integration into the Layer of Experts (LoEs), as illustrated in Figure [6]
This analysis vividly highlights the strengths of employing MSS-MoE within the SGME module
for global information extraction and the advantages of utilizing Swin MHSA combined with CA
in the LSME module for local information refinement. Specifically, as indicated by the red arrows,
structural global textures are markedly enhanced in the SGME module and subsequently refined
further in the LSME module. Notably, as shown by the purple arrows, textures lost during the
SGME filtering process are effectively recovered and complemented in the LSME stage, thereby
synergistically enhancing the feature representation.

Method experts  Num superpixels GMACs BSD100 Urban100
3 [64,64,64] 22 27.69 26.40
SP-MoMmaba-T 3 [16,32,64] 21 27.65 26.28
3 [32,64,128] 39 27.66 26.30

Table 10: Analysis of the impact of the number of superpixels on the performance of MSS-MoE.

D.3 NUMBER OF SUPERPIXEL ON MSS-MOE

Since superpixels represent the most relevant pixels within the same semantic region, a higher num-
ber of superpixels leads to finer semantic segmentation. To further investigate the impact of super-
pixel quantity on the performance of MSS-MoE, we conducted a series of ablation experiments, as
presented in Table The results indicate that increasing the number of superpixels does not nec-
essarily yield better performance; it has minimal impact on network accuracy but noticeably affects
computational efficiency. This stems from the fact that a greater number of superpixels merely sub-
divides identical semantic regions without capturing semantic information across different scales.
Consequently, incorporating multi-scale superpixels proves more effective in enhancing model per-
formance.

Method BSD100x4
SP-MoMamba-T~ Yarams  GMACs —eqp—comy
k=1 271K 2287 27.69 0.7398
k=2 271K 2361  27.68 0.7394
k=3 271K 2436 27.69 0.7398

Table 11: Ablation experiments with k values

D.4 THE IMPACT OF THE PARAMETER &

Table [TT] presents an ablation study on the impact of the parameter & within our model. The results
indicate that varying k£ from 1 to 3 has a minimal effect on super-resolution performance, as the
PSNR and SSIM values on the BSD100 dataset remain nearly identical. However, the computational
cost (GMACs) shows a consistent increase with higher k values, while the parameter count remains
unchanged. This key finding suggests that a smaller & value (e.g., kK = 1) is optimal for our model,
as it delivers the same high reconstruction quality with the lowest computational complexity.

Method L1 FFT BSDI100 Urbanl00

1.0 00 27.65 26.26
SP-MoMmaba-T 1.0 0.1 27.69 26.40
1.0 02 27.68 26.32

Table 12: Loss function. SP-MoMamba was trained on DIV2K and Flickr2K. We report PSNR (dB
1) on the Y-Channel for x4 upscaling.
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D.5 Loss FUNCTION

We use FFT loss and L1 loss to jointly optimize the network. The specific expression is as follows:

Liotat = L1 +w * Lrppr (16)
Ly = |14t — Isrlh (17)
LFFTZ||FFT(Igt)—FFT(ISR)||1 (18)

where the F'F'T(-) denotes the Fourier Transformation. The I, and Is g represent the ground-truth
image and super-resolution image. To verify the effectiveness of the loss function, we designed a
group of ablation experiments, as shown in Table[I2] As can be seen from the table, compared with
using only L1 loss, the added FFT loss can effectively add constraints in the frequency domain to
the model, so as not to over smooth the texture and make the performance better.

E VISUAL RESULTS

In Figure [7] we provide additional visual comparisons for the BSD100 benchmark, and in Figure
[] for the Urban100 benchmark (x4). Our SP-MoMamba framework consistently delivers visually
appealing results, even when applied to intricate architectural structures. For example, as demon-
strated by img021 in Figure[7} our model significantly outperforms other methods in reconstructing
patterns with greater fidelity. Moreover, the reconstruction of img096 in Figure [] exhibits reduced
blur and sharper edges, thereby improving overall visual clarity.

N
el et

Bicubic SAFMN SwinIR-light
MambalR-light SeemoRe-L Ours

SRformer-light MambalR-light SeemoRe-L Ours

BSD100:img_095

Figure 7: Visual comparison of SP-MoMamba with state-of-the-art methods on challenging cases
for x4 SR from the BSD100 benchmark
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SAFMN  SwinlR-light

Urban100:img_005 SRform-Iight MambalR-light SeemoRe-L Ours

N R AR

Bicubic SAFMN SwinIR-light

) 1) O

SRformer-light MambalR-light SeemoRe-L Ours

Urban100:img_096

Figure 8: Visual comparison of SP-MoMamba with state-of-the-art methods on challenging cases
for x4 SR from the Urban100 benchmark
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