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ABSTRACT

The state space model (SSM) has garnered significant attention recently due to
its exceptional long-range modeling capabilities achieved with linear-time com-
plexity, enabling notable success in efficient super-resolution. However, apply-
ing SSMs to vision tasks typically requires scanning 2D visual data with a 1D-
sequence form, which disrupts inherent semantic relationships and introduce ar-
tifacts and distortions during image restoration. To address these challenges, we
propose a novel SP-MoMamba method that integrate SSMs with the semantic
preservation capability of superpixels and the efficiency advantage of Mixture-of-
Experts (MoE). Specifically, we pioneer the use of superpixel features as semantic
units to reconstruct the SSM scanning method, proposing the Superpixel-driven
State Space Model (SP-SSM) as a basic building block of SP-MoMamba. Fur-
thermore, we introduce the Multi-Scale Superpixel Mixture of State Space Experts
(MSS-MoE) scheme to strategically integrate SP-SSMs across scales, effectively
harnessing the complementary semantic information from multiple experts. This
multi-scale expert integration significantly reduces the number of pixels processed
by each SSM while enhancing the reconstruction of fine details through special-
ized experts operating at different semantic scales. This framework enables our
model to deliver superior performance with minimal computational overhead.

1 INTRODUCTION

Single-image super-resolution (SR) is a pivotal technique in image processing, aimed at reconstruct-
ing high-resolution (HR) images from their low-resolution (LR) counterparts to enhance image de-
tail and visual quality. This technology finds widespread application across diverse fields, including
medical imaging, surveillance systems, and satellite imagery. Numerous studies have leveraged con-
volutional neural networks (CNNs) Dong et al. (2015); Lim et al. (2017); Zhang et al. (2018) and
Transformer Liang et al. (2021); Li et al. (2023); Zhou et al. (2023) to learn this inherently ill-posed
mapping relationship. However, most of SR methods Lim et al. (2017); Zhang et al. (2018) relied on
deeper and more complex architectures to achieve superior performance. These methods often entail
high computational complexity, rendering real-time processing impractical on resource-constrained
devices and thereby limiting their deployment and widespread adoption in real-world scenarios. Al-
though some researchers have reduced computational complexity through methods such as neural
architecture search Chu et al. (2021), recursive networks Tai et al. (2017), and model distillation Liu
et al. (2020); Hui et al. (2018), these efforts have not yet fully addressed this issue.

Recently, state space models (SSMs), exemplified by Mamba Gu & Dao (2023), have opened new
avenues for Efficient SR. Mamba offers linear computational complexity and excels at modeling
long sequences, initially proving its value in high-level vision tasks such as image classification Liu
et al. (2024); Zhu et al. (2024) and object detection Zhang et al. (2025); Wang et al. (2024). On
this basis, researchers adapted Mamba for low-level vision tasks like image denoising Guo et al.
(2024), image SR Qiao et al. (2024), and low-light image enhancement Zou et al. (2024); Zhen
et al. (2024). For example, MambaIR Guo et al. (2024), based on visual SSM framework, achieved
reconstruction quality comparable to transformer-based methods while maintaining lower compu-
tational costs. These developments demonstrate that Mamba effectively balances performance and
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(a) Existing SSM Scanning Method
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(c) Efficiency Comparison

Figure 1: (a) The existing method Guo et al. (2024) suffers from the adverse effects of the scanning
method of Mamba (the multi-directional scans are not shown for presentation clarity). (b) The
proposed MSS-MoE scanning method can efficiently model the global information by a mixture
of experts at different scale, and embed the semantic consistency of superpixels into Mamba. (c)
Comparison between performance vs Inference times and GPU Memory on Manga109 ×4 dataset.
Inference times and GPU Memory are calculated on 720p HR image.

efficiency in Efficient SR, though additional optimizations are still required to tailor it to specific use
cases and achieve an ideal performance-efficiency trade-off.

The main challenge of Mamba-based SR methods currently is the inability to maintain correct se-
mantic relationships during global image scanning. Specifically, these methods convert 2D images
into 1D sequences during the scanning process, which disrupts inherent semantic information
and impairs SR model performance. As shown in Figure 1 (a), this unfolding process destroys
the semantic connections between spatially adjacent pixels (e.g., vertically neighboring pixels), hin-
dering the model’s ability to capture local structural details effectively. Although strategies such as
multi-directional scanning Guo et al. (2024) or cascaded Mamba Qiao et al. (2024) modules attempt
to mitigate this issue, they fail to address the fundamental problem of semantic disruption, instead
exacerbating computational overhead and parameter complexity. Furthermore, repetitive textures
in natural images, such as skies and water surfaces, are prone to semantic confusion in 1D
sequences, weakening the model’s grasp of overall image structure. This shows that there is still
much room for improvement in the processing efficiency and semantic preservation of the current
Mamba-based method.

To address the above challenges, we propose SP-MoMamba, an efficient SSM tailored for efficient
SR. Given that superpixel features naturally delineate distinct semantic regions, as shown in Fig-
ure 1 (b), our core innovation lies in integrating their semantic preservation capabilities into a SSM
framework. Technically, our SP-MoMamba is composed of stacked Layer of Experts (LoEs) for
dynamically selecting the pivotal features via experts, focusing on two different aspects. At the
macro level, each LoE contains two consecutive expert blocks: (a) Superpixel Global Modulating
Expert (SGME), which excels in modeling global semantic information, and (b) Local Spatial Mod-
ulating Expert (LSME), which is proficient in efficient reconstruction of local spatial details. At
the micro level, we design a Multi Scale Superpixel Mixture of State Space Experts (MSS-MoE) as
the foundational component of SGME, which dynamically selects the optimal scale of superpixel-
driven state space model (SP-SSM) for different inputs at different scales, to accurately capture the
correlation between global semantics. Specifically, SP-SSM compresses semantically homogeneous
features into superpixel units through superpixel sampling. Then, SSM calculates the similarity be-
tween superpixels. This similarity is propagated to the corresponding semantic regions to enhance
consistency within the regions. Overall, our method obtains different professional knowledge by
explicitly mining experts of different granularity for different expertise, thereby accurately recon-
structing more details. Our contributions are summarized below:

• To the best of our knowledge, SP-MoMamba is the first work that pioneers the use of super-
pixel features as fundamental semantic units to restructure the input for State Space Models
(SSMs). We correspondingly introduce a Superpixel-driven State Space Model (SP-SSM),
which effectively resolves the issue of semantic disruption inherent in the scanning process
of Mamba-based methods.
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• We propose a Multi-Scale Superpixel Mixture of State Space Experts (MSS-MoE), en-
abling comprehensive global modeling by dynamically selecting optimal experts across
scales to leverage semantic similarities.

• Quantitative comparisons in Figure 1 (c) further confirm the advantages of our method: it
surpasses other efficient SR techniques in reconstruction fidelity and achieves a significant
reduction in inference time.

2 RELATED WORKS

Efficient Super-resolution Methods. Efficient super-resolution methods have been pursued
through lightweight architectures Ahn et al. (2018); Hui et al. (2018); Sun et al. (2023) and ef-
ficient transformers Zhang et al. (2022); Lu et al. (2022); Zou et al. (2022). CARN Ahn et al.
(2018) uses cascading for feature integration, IMDN Hui et al. (2018) employs feature distillation,
and SAFMN Sun et al. (2023) builds channel-aware pyramids. To reduce Transformer complex-
ity, methods like ELAN Zhang et al. (2022) and ESRT Lu et al. (2022) lower dimensionality, while
SCET Zou et al. (2022) uses pixel attention. Recently, SPIN Zhang et al. (2023) leverages superpixel
and cross-attention. However, balancing efficiency and performance remains challenging.

Recently, Mamba Gu & Dao (2023), a selective SSM, has been successfully adapted to the vision
domain, such as VMamba Liu et al. (2024) and VIM Zhu et al. (2024). Subsequently, its applica-
tion has been further explored in low-level vision tasks, yielding a variety of methods Zhen et al.
(2024); Zou et al. (2024) with promising results. MambaIR Guo et al. (2024), for instance, captures
spatial information and enhances channel interactions. However, these Mamba-based methods rely
on multi-directional scanning to process all pixels, disrupting semantic coherence and increasing
computation. In contrast, our approach uses superpixels to extract compressed semantic features,
modeling their spatial relationships with SSMs, preserving semantics while significantly reducing
complexity.

Mixture of Experts (MoE). Recently, the Mixture of Experts (MoE) method has gained widespread
adoption in large-scale language models due to its efficiency and scalability. Thus, MoE has been
extended to advanced vision tasks, including image classification Riquelme et al. (2021), object
detection Wu et al. (2022), as well as low-level vision tasks Emad et al. (2022); Zamfir et al. (2024);
Rossi et al. (2025). For instance, literatures Emad et al. (2022) and Liang et al. (2022) extract
latent degradation features to construct MoE-based adaptive networks, effectively addressing diverse
degradation patterns in blind SR. SeemoRe Zamfir et al. (2024) employs rank-modulated experts to
prioritize features with the highest information content, followed by spatial modulation experts to
achieve precise spatial enhancement. Similarly, Swin2-MoSE Rossi et al. (2025) enhances Swin2SR
Conde et al. (2022) by incorporating an MoE framework, yielding improved visual outcomes. While
these methods leverage the flexibility and efficiency of MoE to achieve commendable performance,
there remains potential for further improvement in image quality.

3 MOTIVATION

To extend state space models (SSMs) from 1D sequence data to 2D visual data, most current re-
searches Guo et al. (2024); Qiao et al. (2024); Liu et al. (2024) employ a 2D selective scanning
mechanism (SS2D) Liu et al. (2024) to capture the spatial correlations within 2D feature, as illus-
trated in Figure 1 (a). However, during the process of flattening an image into a 1D sequence, SS2D
often disrupts the inherent semantic relationships within the image. For example, two geese that are
spatially adjacent in the Figure 1 (a) might end up widely separated in the 1D sequence. This loss
of spatial proximity hinders the model’s ability to leverage their closeness to infer semantic con-
nections. Furthermore, images frequently contain many repetitive structures, such as skies, water
surfaces, and buildings, which tend to share similar textures and colors, thereby heightening the risk
of semantic confusion. Once the image is unfolded into a 1D sequence, the information from these
repetitive structures may be incorrectly associated at inappropriate positions, leading to erroneous
predictions during model processing. Thus, the limitation of the current SS2D method lies in its
inability to adequately preserve the critical spatial structure and semantic information of the image.

Compared to the traditional SS2D method, which systematically transforms 2D features into 1D se-
quences, superpixel sampling clusters perceptually similar pixels to generate corresponding super-

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

C
o

n
v

N
o

rm

M
S

S
-M

o
e

N
o

rm

G
at

ed
F

F
N

N
o

rm

L
M

A

N
o

rm

G
at

ed
F

F
N

C
o

n
v

C
o

n
v

P
ix

el
S

h
u
ff

le

Superpixel Global Modulating Experts 

Layer of Experts

Local Sptial Modulating Experts 

C
o

n
v

N
o

rm

M
S

S
-M

o
e

N
o

rm

G
at

ed
F

F
N

N
o

rm

L
M

A

N
o

rm

G
at

ed
F

F
N

C
o

n
v

C
o

n
v

P
ix

el
S

h
u
ff

le

Superpixel Global Modulating Experts 

Layer of Experts

Local Sptial Modulating Experts 

MSS-MoE

C
o
n
v

C
h
u
n

k

S
P

-S
S

M
S

iL
U

L
in

ea
r

ww

w L
in

ea
r

w

w
Router

Training

Inference

:Addition

:Multiplication

0 0

0 0

:i-th experts

Conv

C
h

an
n

el
A

tt
en

ti
o

n

S
w

in
M

H
S

A

Conv

LMA

× ×

Learnable factor:

C
o

n
v

N
o

rm

M
S

S
-M

o
e

N
o

rm

G
at

ed
F

F
N

N
o

rm

L
M

A

N
o

rm

G
at

ed
F

F
N

C
o

n
v

C
o

n
v

P
ix

el
S

h
u
ff

le

Superpixel Global Modulating Experts 

Layer of Experts

Local Sptial Modulating Experts 

MSS-MoE

C
o
n
v

C
h
u
n

k

S
P

-S
S

M
S

iL
U

L
in

ea
r

w

w
Router

Training

Inference

:Addition

:Multiplication

0 0

0 0

:i-th experts

Conv

C
h

an
n

el
A

tt
en

ti
o

n

S
w

in
M

H
S

A

Conv

LMA

× ×

Learnable factor:

C
o

n
v

N
o

rm

M
S

S
-M

o
e

N
o

rm

G
at

ed
F

F
N

N
o

rm

L
M

A

N
o

rm

G
at

ed
F

F
N

C
o

n
v

C
o

n
v

P
ix

el
S

h
u
ff

le

Superpixel Global Modulating Experts 

Layer of Experts

Local Sptial Modulating Experts 

C
o

n
v

N
o

rm

M
S

S
-M

o
e

N
o

rm

G
at

ed
F

F
N

N
o

rm

L
M

A

N
o

rm

G
at

ed
F

F
N

C
o

n
v

C
o

n
v

P
ix

el
S

h
u
ff

le

Superpixel Global Modulating Experts 

Layer of Experts

Local Sptial Modulating Experts 

MSS-MoE

C
o
n
v

C
h
u
n

k

S
P

-S
S

M
S

iL
U

L
in

ea
r

ww

w L
in

ea
r

w

w
Router

Training

Inference

:Addition

:Multiplication

0 0

0 0

:i-th experts

Conv

C
h

an
n

el
A

tt
en

ti
o

n

S
w

in
M

H
S

A

Conv

LMA

× ×

Learnable factor:

C
o

n
v

N
o

rm

M
S

S
-M

o
e

N
o

rm

G
at

ed
F

F
N

N
o

rm

L
M

A

N
o

rm

G
at

ed
F

F
N

C
o

n
v

C
o

n
v

P
ix

el
S

h
u
ff

le

Superpixel Global Modulating Experts 

Layer of Experts

Local Sptial Modulating Experts 

MSS-MoE

C
o
n
v

C
h
u
n

k

S
P

-S
S

M
S

iL
U

L
in

ea
r

w

w
Router

Training

Inference

:Addition

:Multiplication

0 0

0 0

:i-th experts

Conv

C
h

an
n

el
A

tt
en

ti
o

n

S
w

in
M

H
S

A

Conv

LMA

× ×

Learnable factor:

Figure 2: Architecture of our proposed method. SP-MoMamba is composed of several Layer of
Experts (LoEs). Each LoE is composed of a superpixel global modulation expert (SGME) and a
local spatial modulation expert (LSME). SGME uses multi-scale superpixel mixture of state space
experts (MSS-MOE) to select the optimal semantic correlation to refine the global texture, while
LMSE uses local mixed attention (LMA) to further restore the local texture.

pixels. Each superpixel comprises pixels sharing similar colors or textures, effectively reducing the
number of pixels requiring processing while maintaining the spatial structure and semantic integrity
of the image. Therefore, integrating superpixel algorithms into SSM provides a robust solution to
the inherent limitations of conventional SSMs when processing 2D images.

4 METHODOLOGY

In this section, we present our proposed SP-MoMamba, as illustrated in Figure 2. The complete
architecture of our pipeline integrates N layers of experts (LoEs) and upsampling layers. Initially, a
3× 3 convolutional operation is employed to extract shallow features from the input low-resolution
image. These features are then processed through a series of LoEs to recover deep features. Each
LoE consists of M paired sets of Superpixel Global Modulating Experts (SGME) and Local Spatial
Modulating Experts (LSME), collaboratively enhancing feature restoration. SGME adopts a collab-
orative reconstruction method by integrating a multi-scale superpixels mixture of state space experts
(MSS-MoE), maximizing the interaction of global information. LSME concentrates on refining lo-
cal features through a localized mixed attention mechanism, which enhances overall performance. In
addition, two residual connections with learnable scales β, and γ are introduced. Finally, the refined
deep features are transformed into high-resolution images via a pixelshuffle and convolution.

4.1 SUPERPIXEL GLOBAL MODULATING EXPERTS

Unlike SPIN Zhang et al. (2023) and MambaIR Guo et al. (2024), which rely on substantial compu-
tational resources, we prioritize efficiency by constructing global similarity relationships based on
interactions among the most relevant scale-specific superpixels. Here, we propose the MSS-MoE,
as shown in Figure 2. MSS-MoE employs superpixel-driven state space models (SP-SSMs) at dif-
ferent scales to independently model global features across different resolutions. By leveraging the
strengths of the mixture of experts scheme, it selectively integrates the resulting features, ensuring
optimal global modeling within each LoE. Then, a Gated Feed-Forward Network (GatedFFN) Chen
et al. (2023) is utilized to aggregate contextual information from these global features.

4
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Figure 3: Illustration of the superpixel-driven state space model (SP-SSM). One-hot mask should be
N ×M , which is converted into a 3D matrix (H ×W )×M for ease of understanding in the figure.

MSS-MoE. As shown in Figure 2, the output features from the last layer normalization serve as the
input features xin for this module. A Linear layer is first applied to increase the dimensionality of
the feature channels, followed by a split along the channel dimension to yield two distinct features,
x1 and x2. Subsequently, we employ a SP-SSM module to derive the global attention feature x′

from x1. Meanwhile, x2 is processed through an activation function to obtain the gating feature z.
Consequently, the formulation for each superpixel state space expert is expressed as follows:

Ei(x1, x2, s) = x′ ⊙ z = SP-SSM(x1, s)⊙ σ(x2) (1)

where SP-SSM(·) and σ(·) denote the SP-SSM module and the SiLU Shazeer (2020) activation
function, respectively. The ⊙ denotes Hadamard product. The s represents the scale parameter of
SP-SSM. We employ an SP-SSM to ensure robust modeling of global information while introducing
an residual connection to prevent the loss of local information.

However, the SP-SSM operating at a fixed scale may fail to fully exploit all internal information,
thereby limiting the model’s expressive capacity. To address this, we propose an ensemble approach
that integrates superpixel state space experts across multiple scales si. A routing network searches
the solution space to identify the optimal scale for the superpixel state space experts based on the
input and network depth. The final output xout of the MSS-MoE is formulated as follows:

xout =

n∑
i

G(x2)Ei(x1, x2, si) (2)

where G(·) and E(·) denote the router function and the i-th expert function, respectively. The si
represents the scale parameter of the i-th expert’s SP-SSM module. Specifically, a router G(·) is
composed of a linear mapping and Softmax to map input features into weights of different superpixel
state space experts. The sparsity inherent in the router function G(·) optimizes computation by
assigning greater weights to the top-k superpixel state space experts. During training, our method
learns from all superpixel state space experts, while during inference, it utilizes only the selected
top-k experts with higher routing weights for computation, thereby enhancing efficiency. Hence,
the computational complexity of the inference process becomes independent of the total number of
experts, further enhancing efficiency. We further provide the pseudocode for the proposed MSS-
MoE in the supplementary materials.

SP-SSM. As shown in Figure 3, given the input feature xin ∈ RH×W×C , we use 3× 3 convolution
and SiLU activation function to map features. Then, these features are downsampled by a factor of
s, and superpixel sampling is performed to obtain the corresponding M superpixel features xsp ∈
RM×C and similarity matrix Msim ∈ RN×M (where N = H ×W ). It is formulated as follows:

xsp,Msim = SPS(σ(Conv(xin)) ↓s) (3)

where SPS(·) denotes the superpixel sampling operation. ↓s represents the downsampling operation
by a factor of s. Subsequently, a SSM is employed to perform global information modeling on
the superpixel feature xsp, yielding an enhanced superpixel feature x′

sp ∈ RM×C . The similarity
matrix Msim is transformed into a differentiable one-hot mask Mmask ∈ RN×M using the Gumbel-
Softmax Jang et al. (2016) technique applied to log probabilities, enabling the indexing of the most
similar superpixel for each pixel. Then, matrix multiplication followed by a sigmoid function is

5
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utilized to derive the global attention feature A ∈ RN×C , as follows:

x′
sp = SSM(xsp) (4)

Mmask = Gumbel-Softmax(Msim) (5)

A = Sigmoid(Mmask ⊗ x′
sp) (6)

where Sigmoid(·) and ⊗ denote sigmoid function and matrix multiplication. The final output of this
module is obtained by multiplying the attention feature A with x′

in, followed by the addition of the
original transformed feature xin, as follows:

xout = (A ⊙ x′
in) ↑s +xin (7)

Since superpixels encapsulate comprehensive semantic information, the resulting output features
effectively capture correlations among distinct semantics.

Similarity Matrix

Initial by average pooling

Attention FeatureSuperpixel 
Sampling

Superpixel 
Attention 
Weighting

Superpixel features

…

Figure 4: Superpixel sampling of our method,
which initializes the superpixel features by av-
erage pooling, and then generates the superpixel
features and similarity matrix.

Superpixel Sampling. We follow the soft k-
means-based superpixel algorithm in SSN Jam-
pani et al. (2018) to perform superpixel sam-
pling on images. Given input as x ∈ RN×C

(where N = H × W ), M superpixels s ∈
RM×C and similarity matrix Msim ∈ RN×M

are obtained through T iterations, maximizing
their association with the corresponding pixels.
Firstly, as shown in Figure 4, we use average
pooling to initialize superpixels s0. Then, we
conduct iterations using a similarity matrix that
calculates the similarity between each pixel and
superpixel. It can be formulated as follows:

Mt
sim(i, j) = e−||x(i)−st−1(j)||22 (8)

Notably, superpixel sampling solely evaluates
the similarity mapping between each pixel and
its neighboring superpixels. This preserves the local coherence of superpixels, thereby enhancing
computational efficiency. Subsequently, we can obtain the superpixel st by computing a weighted
sum of all pixels, defined as:

stj =
1

zt(j)

∑
i

Mt
sim(i, j)x(i) (9)

where zt(j) =
∑

i Mt
sim(i, j) denote the normalization term along the column. After T iterations,

we can obtain the final similarity matrix MT
sim and superpixels sT . Using the similarity matrix,

we can assign each pixel to its most similar superpixel, thus generating the corresponding mask, as
depicted in Figure 4. Therefore, with the superpixels and their respective masks, we can perform
superpixel-based attention weighting on pixels across distinct regions. Our proposed SP-SSM uti-
lizes this critical insight by employing a SSM to assign weights to superpixels, enabling weighted
processing of semantic information across distinct regions.

4.2 LOCAL SPATIAL MODULATING EXPERTS

After the proposed MSS-MoE primarily leverages superpixels to capture global semantic relation-
ships, we enhance its capability by incorporating Local Spatial Modulation Experts (LSME) to
strengthen the processing of local information. Given that MSS-MoE requires scanning only a lim-
ited number of superpixels, this property is insufficient for the modeling of local correlation. Con-
sequently, we adopt a robust combination of shift window-based multi-head self-attention (SWin-
MHSA) and channel attention to construct a Local Mixed Attention Module (LMA), as depicted in
Figure 2. Channel attention recalibrates features across channels to emphasize salient local informa-
tion; subsequently, Swin-MHSA captures fine-grained spatial dependencies within local windows.
GatedFNN then refines features by integrating global and local information, preserving prior seman-
tics while enhancing detail capture, thus improving overall model performance.
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Set5 Set14 BSD100 Urban100 Manga109Scale Model Params (M)↓ GMACs↓ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑
CARN-M 412K 91 37.53 0.9583 33..26 0.9141 31.92 0.8960 31.23 0.9193 — —
PAN 261K 71 38.00 0.9605 33.59 0.9181 32.18 0.8997 32.01 0.9273 38.70 0.9773
DRSAN 370K 86 37.99 0.9606 33.57 0.9177 32.16 0.8999 32.10 0.9279 — —
SAFMN 228K 52 38.00 0.9605 33.54 0.9177 32.16 0.8995 31.84 0.9266 38.71 0.9771
SeemoRe-T 220K 45 38.06 0.9608 33.65 0.9186 32.23 0.9004 32.22 0.9286 39.01 0.9777
SRConvNet 387K 74 38.00 0.9605 33.58 0.9186 32.16 0.8995 32.05 0.9272 38.87 0.9774

×2

SP-MoMamba-T (ours) 259K 85 38.16 0.9612 33.81 0.9199 32.29 0.9011 32.48 0.9312 39.76 0.9820
CARN-M 415K 33 31.92 0.8903 28.42 0.7762 27.44 0.7304 25.62 0.7694 — —
PAN 272K 28 32.13 0.8948 28.61 0.7822 27.59 0.7363 26.11 0.7854 30.51 0.9095
DRSAN 410K 31 32.15 0.8935 28.54 0.7813 27.54 0.7364 26.06 0.7858 — —
SAFMN 240K 14 32.18 0.8948 28.60 0.7813 27.58 0.7359 25.97 0.7809 30.43 0.9063
SeemoRe-T 232K 12 32.31 0.8965 28.72 0.7840 27.65 0.7384 26.23 0.7883 30.82 0.9107
SRConvNet 382K 22 32.18 0.8951 28.61 0.7359 27.57 0.7359 26.06 0.7845 30.35 0.9075

×4

SP-MoMamba-T (ours) 271K 22 32.35 0.8970 28.77 0.7850 27.69 0.7398 26.40 0.7939 31.01 0.9160

Table 1: Comparison to efficient SR models. PSNR (dB ↑) and SSIM (↑) metrics are reported on
the Y-channel. Best and second best performances are highlighted. GMACs (G) are computed by
upscaling to a 1280 × 720 HR image.

Set5 Set14 BSD100 Urban100 Manga109Scale Model Params (M)↓ GMACs↓ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑
SwinIR-Light 910K 244 38.14 0.9611 33.86 0.9206 32.31 0.9012 32.76 0.9340 39.12 0.9783
SRFormer-Light 853K 236 38.23 0.9613 33.94 0.9209 32.36 0.9019 32.91 0.9353 39.28 0.9785
SPIN 497K 320 38.20 0.9615 33.90 0.9215 32.31 0.9015 32.79 0.9340 39.18 0.9784
MambaIR-light 905K 334 38.13 0.9610 33.95 0.9208 32.31 0.9013 32.85 0.9349 39.20 0.9782
SeemoRe-L 931K 197 38.27 0.9616 34.01 0.9210 32.35 0.9018 32.87 0.9344 39.49 0.9790
CRAFT 738K 197 38.23 0.9615 33.92 0.9211 32.33 0.9016 32.86 0.9343 39.39 0.9786
MambaIRv2-light 774K 286 38.26 0.9615 34.09 0.9221 32.36 0.9019 33.26 0.9378 39.35 0.9785

×2

SP-MoMamba-B (ours) 543K 170 38.27 0.9616 34.04 0.9219 32.38 0.9022 32.99 0.9357 40.18 0.9827
SwinIR-Light 897K 64 32.44 0.8976 28.77 0.7858 27.69 0.7406 26.47 0.7980 30.91 0.9151
SRFormer-Light 873K 63 32.51 0.8988 28.82 0.7872 27.73 0.7422 26.67 0.8032 31.17 0.9165
SPIN 555K 90 32.48 0.8983 28.80 0.7862 27.70 0.7415 26.55 0.7998 30.98 0.9156
MambaIR-light 930K 64 32.42 0.8977 28.74 0.7847 27.68 0.7400 26.52 0.7983 30.94 0.9135
SeemoRe-L 969K 50 32.51 0.8990 28.92 0.7881 27.77 0.7428 26.79 0.8046 31.48 0.9181
CRAFT 753K 52 32.52 0.8989 28.85 0.7872 27.72 0.7418 26.56 0.7995 31.18 0.9168
MambaIRv2-light 790K 76 32.51 0.8992 28.84 0.7878 27.75 0.7425 26.82 0.8079 31.24 0.9182

×4

SP-MoMamba-B (ours) 559K 46 32.56 0.8992 28.93 0.7885 27.78 0.7426 26.76 0.8030 31.51 0.9210

Table 2: Comparison to lightweight SR models. PSNR (dB ↑) and SSIM (↑) metrics are reported on
the Y-channel. Best and second best performances are highlighted. GMACs (G) are computed by
upscaling to a 1280 × 720 HR image.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Datasets and Evaluation. Following the previous SR methods Liang et al. (2021); Zamfir et al.
(2024), we utilize two widely-used datasets, DIV2K Timofte et al. (2017) and Flickr2K Lim et al.
(2017) for training. We assess our method performance on five classical benchmark datasets for SR,
Set5 Bevilacqua et al. (2012), Set14 Zeyde et al. (2010), BSD100 Martin et al. (2001), Urban100
Huang et al. (2015), and Manga109 Matsui et al. (2015). We also quantify the effectiveness of our
method using the PSNR and SSIM metrics on the Y-channel from the YCbCr color space.

Implementation Details. To thoroughly train the proposed model, we augment the training data
by randomly cropping it into 64 × 64 patches and further augment it through random rotations,
horizontal and vertical flips. Consistent with Sun et al. (2022), we employ the Adam Kingma &
Ba (2014) optimizer to minimize the L1 norm between the SR output and the HR ground truth in
both pixel and frequency domains across 500K iterations. The batch size is set to 32, with an initial
learning rate of 1× 10−3 which is halved at iterations [250K, 400K, 450K, 475K]. All experiments
are implemented using the PyTorch framework and conducted on a single RTX 4090 GPU. We
design two variants of the SP-MoMamba model with distinct parameter configurations, denoted as
SP-MoMamba-T and SP-MoMamba-B. For all MSS-MoE modules, we configure three experts with
downsampling factors of [1, 2, 4]. Further details are provided in the supplementary materials.

5.2 COMPARISONS WITH STATE-OF-THE-ART METHODS

Quantitative comparison. We report quantitative results for image SR at ×2 and ×4 scale factors,
with comparisons against current efficient state-of-the-art models presented in Table 1, including
CARN-M Ahn et al. (2018), PAN Zhao et al. (2020), DRSAN Park et al. (2021), SAFMN Sun
et al. (2023), SeemoRe-T Zamfir et al. (2024), SRConvNet Li et al. (2025b). Additionally, we
evaluate against lightweight SR models such as SwinIR Liang et al. (2021), SRFormer Zhou et al.
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HR Bicubic SAFMN SwinIR-light

SRFormer-light MambaIR-light SeemoRe-L OursSet14: img_002

HR Bicubic SAFMN SwinIR-light

SRFormer-light MambaIR-light SeemoRe-L OursUrban100: img_044

HR Bicubic SAFMN SwinIR-light

SRFormer-light MambaIR-light SeemoRe-L OursManga109: MomoyamaHaikagura

HR Bicubic SAFMN SwinIR-light

SRFormer-light MambaIR-light SeemoRe-L OursUrban100: img_076

Figure 5: Qualitative comparison of our SP-MoMamba-B with state-of-the-art methods on 4× SR.
(Zoom in for the best view)

(2023), SPIN Zhang et al. (2023), MambaIR Guo et al. (2024), CRAFT Li et al. (2025a), and
MambaIRv2 Guo et al. (2025) in Table 2. Our proposed SP-MoMamba-T stands out as the most
efficient method, consistently surpassing all other methods across all benchmarks and scale factors.
For instance as clear from Table 1, on Urban100 and Manga109 (×2), SP-MoMamba-T exceeds
SeemoRe-T Zamfir et al. (2024) by 0.26 dB and 0.75 dB, respectively. Scaling our method up to a
comparable size with lightweight models yields comparable or superior results. As demonstrated in
Table 2, our SP-MoMamba-B exhibits the best PSNR performance on average across 5 benchmark
datasets. Among them, on Manga109 (×2), our SP-MoMamba-B outperforms SeemoRe-L Zamfir
et al. (2024) and MambaIRv2-light Guo et al. (2025) by 0.69 dB and 0.83 dB, respectively. As
demonstrated in Figure 1(c), our SP-MoMamba strikes an optimal balance between performance and
efficiency, delivering higher-quality super-resolution results than leading methods while requiring
less computational time.

Qualitative comparison. In Figure 5, we compare the visual quality of our method against existing
state-of-the-art approaches. As evident from the figure, previous methods often struggle with chal-
lenging structural textures, resulting in distortions, or inaccurate texture reconstruction. In contrast,
our SP-MoMamba effectively preserves structural information and enhances clarity. For instance,
in images img 044 and img 076 from the Urban100 dataset, SeemoRe-L Zamfir et al. (2024) and
MambaIR-light Guo et al. (2024) fail to reconstruct the correct textures accurately. In contrast, our
method can recover regular textures and complex details. These visual comparisons emphasize SP-
MoMamba’s effectiveness in reconstructing high-quality images by leveraging global information
derived from superpixels.
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5.3 ABLATION STUDY

We devise a set of ablation studies to evaluate the contribution and efficacy of each proposed module.
All experiments are conducted on the ×4 SP-MoMamba-T setting. More ablation studies are in
supplementary materials.

Method SGME LSME BSD100 Urban100

Baseline - - 27.42 25.55

SP-MoMamba-T
✔ - 27.63 26.14
- ✔ 27.61 26.10
✔ ✔ 27.69 26.40

(a) Contribution of key components.
Method Block Order BSD100 Urban100

SP-MoMamba-T LSME→SGME 27.68 26.35
SGME→LSME 27.69 26.40

(b) Block order.

Table 3: Ablation on key components of SP-
MoMamba. We show PSNR results for ×4 up-
scaling.

Macro Architecture. As shown in Table 3 (a),
we assess the effectiveness of our proposed key
architectural components by comparing them
against a baseline model composed solely of
residual block which consists of depthwise and
point-wise convolutions, more details in Sup-
plemental. The incorporation of the proposed
modules into the baseline framework yields sig-
nificant enhancements in performance. Specifi-
cally, the addition of SGME and LSME inde-
pendently augments the baseline by 0.21 dB
and 0.19 dB, respectively. Although each mod-
ule demonstrates superior performance relative
to the baseline in isolation, the interleaved ap-
plication of SGME and LSME maximizes the
expressive capacity of the architecture. Over-
all, these advancements culminate in our SP-
MoMamba-T achieving pronounced improvements, with gains of 0.27 dB on BSD100 and 0.85 dB
on Urban100. In addition, empirical evidence presented in Table 3 (b) illustrates the influence of
module sequencing on performance outcomes, underscoring the superiority of a design that priori-
tizes superpixel-driven global feature before local feature.

SP-MoMamba-T #E Scale GMACs BSD100 Urban100

Adding experts

1 1 22G 27.65 26.17
2 [1,1] 26G 27.67 26.31
3 [1,1,1] 30G 27.67 26.32
4 [1,1,1,1] 33G 27.68 26.34

Adding scale

1 2 19G 27.63 26.11
2 [1,2] 22G 27.68 26.33
3 [1,2,4] 23G 27.69 26.40
4 [1,2,4,8] 23G 27.67 26.24

Table 4: Adding experts and scales yield optimal
performance in terms of computational complex-
ity (GMACs) and PSNR. #E denotes the number
of experts.

Design choices of MSS-MoE. We explore the
design choices of the MSS-MoE module by
varying the number of experts and their corre-
sponding scale factor parameters, as illustrated
in Table 4. To determine the optimal number
of experts and scale factors, we devise two sim-
ple scenarios: one increasing the number of ex-
perts at the same scale, and the other incorpo-
rating experts at varying scales. As evidenced
in Table 4, employing experts across different
scales outstanding enhances performance with
only a modest increase in computational cost,
outperforming the method of adding experts at
a uniform scale. Basis on these experiments,
we assert that downsampling beyond a factor of
4 results in substantial loss of semantic information, introducing many semantic correlations into the
network and consequently degrading performance. Therefore, we select experts with scale factors
of [1, 2, 4] as the final configuration.

6 CONCLUSION

In this study, we propose SP-MoMamba, a superpixel-driven mixture of state space experts model.
Unlike the other state space models, SP-MoMamba addresses the computational inefficiencies in-
herent in existing mamba-based restoration methods dependent on global scanning by integrating
superpixel sampling with state space frameworks. This approach effectively balances robust global
semantic modeling with precise local detail enhancement while minimizing complexity. In our
method, the MSS-MoE module achieves comprehensive global modeling by dynamically selecting
optimal experts across multiple scales, while the LSME refines local features through a synergistic
combination of self-attention and channel attention mechanisms. Experimental results confirm that
SP-MoMamba surpasses state-of-the-art lightweight models across various benchmark datasets.
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ETHICS STATEMENT

We confirm that we have read and committed to complying with ICLR’s ethical guidelines. This
study focuses on image super-resolution technology. Although it does not directly involve human
subjects, we recognize that it may be misused to generate misleading content (such as deepfakes).
We are committed to responsible research and hope that this technology can be applied to beneficial
fields such as medical image enhancement. All experiments are based on publicly available datasets,
and we have made every effort to ensure the reproducibility and impartiality of the research.

REPRODUCIBILITY STATEMENT

To support the reproducibility of our work, we have made the following efforts. The implementa-
tion details of our proposed SP-MoMamba-T and SP-MoMamba-B architecture, including training
configurations and hyperparameters, are thoroughly described in Section 5.1 and the Appendix C.
The source code for the model and training scripts has been provided in our anonymized supple-
mentary materials. Furthermore, all experiments are conducted on publicly available benchmark
datasets, and the specific data preprocessing steps are clearly outlined in Section 5.1. We hope these
resources will facilitate the replication of our results.
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APPENDIX

In this Appendix, we declare The Use of Large Language Models (LLMs). In addition, we present
the principle of state space model and provide implementation details, additional experimental re-
sults and analysis.

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

A large language model was used during the preparation of this work solely for text polishing and
grammar correction. The authors are solely responsible for the entire scientific content, including
all ideas, findings, and interpretations presented herein.

B STATE SPACE MODELS

Parameters SP-MoMamba-T SP-MoMamba-S

Num. RGs 3 4
Num. SGMEs and LSMEs 2 2
Channel dimension 36 48
MLP-Ratio 2
Num. superpixels 64
Num. Experts E 3
Top-k experts 1
Scale list [1,2,4]
Training Dataset DIV2K+Flickr2K
Optimizer Adam
Batch size 32
Total Num. Iterations 500K
FFT Loss weights 0.1
LR-Rate 1.00E-03
LR-Decay Rate 0.5
LR-Decay Milestones [250K,400K, 450K, 475K]

Table 5: Implementation Details.

State space models (SSMs) Gu & Dao (2023)
are mathematical models used in control the-
ory and signal processing to describe the dy-
namic systems. The following equation defines
the standard SSMs:

h′(t) = Ah(t) + Bx(t) (10)
y(t) = Ch(t) + Dx(t) (11)

where A,B,C, and D are the system parame-
ters. x(t), h(t) and y(t) denote input, hidden
state, and output. In deep learning, the exist-
ing SSM-based methods, like Mamba, employ
zero-order hold (ZOH) to discretize continu-
ous state space equations, enabling them to ef-
ficiently process long sequence data and apply
to various sequence modeling tasks. It is repre-
sented by the following equations:

ht = Āht−1 + B̄xt (12)
yt = Cht +Dxt (13)

Ā = exp(∆A) (14)

B̄ = (∆A)−1(exp(∆A)− I)(∆B) (15)

where Ā, B̄ are discrete counterparts of A and B. ∆ denotes timescale parameter, which is used to
convert the continuous parameters A and B into discrete ones Ā, and B̄.

C FURTHER IMPLEMENTATION DETAILS

Table 5 details the architectural configurations and training parameters utilized to obtain the results
presented in this study. To ensure reproducibility, we maintained a consistent random seed across all

13
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Algorithm 1 Multi-Scale Superpixel Mixture of State space Experts (MSS-MoE)

1: Input: Input feature x1 and x2

2: Parameters: n experts E , Router G, Scale factor s = s1, s2, ..., sn, Superpixel state space
module (SP-SSM), Top-k expert

3: Compute router outputs: g = G(x2)
4: Normalize weights: w = Softmax(g)
5: Select top-k expert: wtop-k = topk(w, k)
6: Set all other weights to zero: wi = 0 for i ̸= top-k
7: if training then
8: for each i ∈ E do
9: yi = SP-SSM(x1, si)⊙ σ(x2)

10: end for
11: Compute final output: y =

∑n
i=1 wi · yi

12: else
13: Compute final output: y = wtop-k · ytop-k
14: end if
15: Output: Final output y

experiments. Our implementation leverages the publicly available PyTorch-based BasicSR frame-
work for both architecture design and training. Additionally, we employ the fvcore Python package
to calculate GMACs and parameter counts. The pseudocode for the proposed MSS-MoE is provided
in Algorithm 1.

C.1 COMPARISON TO LIGHTWEIGHT SR MDOELS (×3).

In Table 6, 7, we present the performance of our SP-MoMamba-T and SP-MoMamba-B model for
×3 upscaling, extending the results from Table 1, 2 in the main text. Our SP-MoMamba-T and
SP-MoMamba-B can achieve competitive performance with lower parameter and computational
complexity.

Set5 Set14 BSD100 Urban100 Manga109Scale Model Params (M)↓ GMACs↓ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑
CARN-M 415K 46 33.99 0.9236 30.08 0.8367 28.91 0.8000 27.55 0.8385 — —
PAN 261K 39 34.40 0.9271 30.36 0.8423 29.11 0.8050 28.11 0.8511 33.61 0.9448
DRSAN 410K 43 34.41 0.9272 30.27 0.8413 29.08 0.8056 28.19 0.8529 — —
SAFMN 233K 23 34.34 0.9270 30.33 0.8418 29.08 0.8048 27.95 0.8474 33.52 0.9437
SeemoRe-T 225K 20 34.46 0.9276 30.44 0.8445 29.15 0.8063 28.27 0.8538 33.92 0.9460
SRConvNet 387K 33 34.40 0.9272 30.30 0.8416 29.07 0.8500 28.04 0.8474 33.56 0.9443

×3

SP-MoMamba-T (ours) 264K 37 34.53 0.9284 30.50 0.8448 29.19 0.8080 28.43 0.8572 34.16 0.9504

Table 6: Comparison to efficient SR models. PSNR (dB ↑) and SSIM (↑) metrics are reported on
the Y-channel. Best and second best performances are highlighted. GMACs (G) are computed by
upscaling to a 1280 × 720 HR image.

Set5 Set14 BSD100 Urban100 Manga109scale Model Params (M) GMACs PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
SwinIR-Light 918K 111 34.62 0.9289 30.54 0.8463 29.20 0.8082 28.66 0.8624 33.98 0.9478
SRFormer-Light 861K 105 34.67 0.9296 30.57 0.8469 29.26 0.8099 28.81 0.8655 34.19 0.9489
SPIN 569K 176 34.65 0.9293 30.57 0.8464 29.23 0.8089 28.71 0.8627 34.24 0.9489
MambaIR-light 913K 149 34.63 0.9288 30.54 0.8459 29.23 0.8084 28.70 0.8631 34.12 0.9479
SeemoRe-L 959K 87 34.70 0.9297 30.60 0.8469 29.29 0.8101 28.86 0.8653 34.53 0.9496
CRAFT 744K 88 34.71 0.9295 30.61 0.8469 29.24 0.8093 28.77 0.8635 34.29 0.9491
MambaIRv2-light 781K 127 34.71 0.9297 30.68 0.8483 29.26 0.8098 29.01 0.8689 34.41 0.9497

×3

SP-MoMamba-B (ours) 550K 75 34.71 0.9297 30.65 0.8478 29.29 0.8104 28.84 0.8652 34.67 0.9530

Table 7: Comparison to lightweight SR models. PSNR (dB ↑) and SSIM (↑) metrics are reported on
the Y-channel. Best and second best performances are highlighted. GMACs (G) are computed by
upscaling to a 1280 × 720 HR image.

C.2 DETAILED COMPARISON OF MODEL COMPLEXITY

We provide a detailed comparison of memory usage and runtime as shown in Table 8. From the
table, it can be seen that compared to the current best method, our SP-MoMamba-T has lowest
inference time and GPU memory, and achieves more competitive performance.
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Method Time (s) GPU Memory PSNR
SwinIR-Light 0.631 6802.7 30.91
SRFormer-Light 0.734 7319.4 31.17
SPIN 0.654 7083 30.98
Mambairv2-Light 0.833 13652.3 31.24
CATANet 0.745 21962 31.31
SeemoRe-L 0.145 10464.7 31.48
SP-MoMamba-T 0.084 4258.1 31.01
SP-MoMamba-B 0.236 6572.9 31.51

Table 8: Comparison between performance vs Inference times and GPU Memory on Manga109 ×4
dataset. Inference times and GPU Memory are calculated on 720p HR image.

D MORE ABLATIONS

D.1 ABLATION FOR LMA.

As a core component of the LSME module, the Local Mixed Attention (LMA) employs diverse
strategies for focusing on local information, thereby effectively enhancing localized feature repre-
sentation. Table 9 demonstrates that window multi-head self-attention (Swin MHSA) Liang et al.
(2021), owing to its efficient window-based self-attention mechanism, achieves superior perfor-
mance compared to the channel attention (CA) mechanism Zhang et al. (2018). However, Swin
MHSA is restricted to spatially capturing local information, overlooking similarity relationships be-
tween different channels. Consequently, integrating CA with Swin MHSA can significantly enhance
local features, leading to finer textures and improved performance. As demonstrated in Table 9, with
the incorporation of CA and Swin MHSA, the model achieves optimal performance.

Method Params GMACs BSD100 Urban100

Swin MHSA 224K 20 27.67 26.28
CA 240K 13 27.65 25.22
LMA 271K 22 27.69 26.40

Table 9: Ablation on the Local Mixed Attention (LMA) mechanism. We show results for ×4 up-
scaling.

Before LoE

After SGME After LSME

Input

Figure 6: Visualizations of feature maps before and after applying the proposed SGME and LSME
modules, demonstrating enhanced activation sharpness through SGME and refined representations
via LSME. (Zoom in for the best view)
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D.2 FEATURE VISUALIZATION.

To substantiate the importance of the proposed SGME and LSME modules, we analyzed the feature
maps before and after their integration into the Layer of Experts (LoEs), as illustrated in Figure 6.
This analysis vividly highlights the strengths of employing MSS-MoE within the SGME module
for global information extraction and the advantages of utilizing Swin MHSA combined with CA
in the LSME module for local information refinement. Specifically, as indicated by the red arrows,
structural global textures are markedly enhanced in the SGME module and subsequently refined
further in the LSME module. Notably, as shown by the purple arrows, textures lost during the
SGME filtering process are effectively recovered and complemented in the LSME stage, thereby
synergistically enhancing the feature representation.

Method experts Num superpixels GMACs BSD100 Urban100

SP-MoMmaba-T
3 [64,64,64] 22 27.69 26.40
3 [16,32,64] 21 27.65 26.28
3 [32,64,128] 39 27.66 26.30

Table 10: Analysis of the impact of the number of superpixels on the performance of MSS-MoE.

D.3 NUMBER OF SUPERPIXEL ON MSS-MOE

Since superpixels represent the most relevant pixels within the same semantic region, a higher num-
ber of superpixels leads to finer semantic segmentation. To further investigate the impact of super-
pixel quantity on the performance of MSS-MoE, we conducted a series of ablation experiments, as
presented in Table 10. The results indicate that increasing the number of superpixels does not nec-
essarily yield better performance; it has minimal impact on network accuracy but noticeably affects
computational efficiency. This stems from the fact that a greater number of superpixels merely sub-
divides identical semantic regions without capturing semantic information across different scales.
Consequently, incorporating multi-scale superpixels proves more effective in enhancing model per-
formance.

Method Params GMACs BSD100×4
SP-MoMamba-T PSNR SSIM

k=1 271K 22.87 27.69 0.7398
k=2 271K 23.61 27.68 0.7394
k=3 271K 24.36 27.69 0.7398

Table 11: Ablation experiments with k values

D.4 THE IMPACT OF THE PARAMETER k

Table 11 presents an ablation study on the impact of the parameter k within our model. The results
indicate that varying k from 1 to 3 has a minimal effect on super-resolution performance, as the
PSNR and SSIM values on the BSD100 dataset remain nearly identical. However, the computational
cost (GMACs) shows a consistent increase with higher k values, while the parameter count remains
unchanged. This key finding suggests that a smaller k value (e.g., k = 1) is optimal for our model,
as it delivers the same high reconstruction quality with the lowest computational complexity.

Method L1 FFT BSD100 Urban100

SP-MoMmaba-T
1.0 0.0 27.65 26.26
1.0 0.1 27.69 26.40
1.0 0.2 27.68 26.32

Table 12: Loss function. SP-MoMamba was trained on DIV2K and Flickr2K. We report PSNR (dB
↑) on the Y-Channel for ×4 upscaling.
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D.5 LOSS FUNCTION

We use FFT loss and L1 loss to jointly optimize the network. The specific expression is as follows:

Ltotal = L1 + w ∗ LFFT (16)
L1 = ||Igt − ISR||1 (17)

LFFT = ||FFT (Igt)− FFT (ISR)||1 (18)

where the FFT (·) denotes the Fourier Transformation. The Igt and ISR represent the ground-truth
image and super-resolution image. To verify the effectiveness of the loss function, we designed a
group of ablation experiments, as shown in Table 12. As can be seen from the table, compared with
using only L1 loss, the added FFT loss can effectively add constraints in the frequency domain to
the model, so as not to over smooth the texture and make the performance better.

E VISUAL RESULTS

In Figure 7, we provide additional visual comparisons for the BSD100 benchmark, and in Figure
8 for the Urban100 benchmark (×4). Our SP-MoMamba framework consistently delivers visually
appealing results, even when applied to intricate architectural structures. For example, as demon-
strated by img021 in Figure 7, our model significantly outperforms other methods in reconstructing
patterns with greater fidelity. Moreover, the reconstruction of img096 in Figure 8 exhibits reduced
blur and sharper edges, thereby improving overall visual clarity.

HR Bicubic SAFMN SwinIR-light

SRformer-light MambaIR-light SeemoRe-L Ours
BSD100:img_021

BSD100:img_095

HR Bicubic SAFMN SwinIR-light

SRformer-light MambaIR-light SeemoRe-L Ours

HR Bicubic SAFMN SwinIR-light

SRformer-light MambaIR-light SeemoRe-L Ours
BSD100:img_021

BSD100:img_095

HR Bicubic SAFMN SwinIR-light

SRformer-light MambaIR-light SeemoRe-L Ours

Figure 7: Visual comparison of SP-MoMamba with state-of-the-art methods on challenging cases
for ×4 SR from the BSD100 benchmark
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HR Bicubic SAFMN SwinIR-light

SRformer-light MambaIR-light SeemoRe-L OursUrban100:img_005

HR Bicubic SAFMN SwinIR-light

SRformer-light MambaIR-light SeemoRe-L Ours
Urban100:img_096

HR Bicubic SAFMN SwinIR-light

SRformer-light MambaIR-light SeemoRe-L OursUrban100:img_005

HR Bicubic SAFMN SwinIR-light

SRformer-light MambaIR-light SeemoRe-L Ours
Urban100:img_096

Figure 8: Visual comparison of SP-MoMamba with state-of-the-art methods on challenging cases
for ×4 SR from the Urban100 benchmark
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