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Abstract

Foundation models like SAM2 offer rich semantic features but suffer from fixed resolution,
transformer artifacts, and inconsistent representations across views, limiting their direct
use in 3D applications such as image segmentation. We extend FeatUp, a multi-view
self-supervised upsampling approach, to 3D by introducing explicit 3D position encodings
and through-plane augmentations. Our normalizer-free NFNet-based architecture enables
consistent, denoised, and resolution-agnostic feature inference in medical CT volumes. The
resulting 3D-aware representation supports interactive segmentation via point-wise, local
inference at native resolution.
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1. Introduction

Foundation computer vision models such as Segment Anything Model 2 (SAM2) (Ravi
et al., 2024) have demonstrated remarkable semantic understanding capabilities in medical
imaging, unlocking single- and few-shot interactive use. However, while semantically rich,
their feature representations lack spatial resolution and consistency. Artifacts stem from
block noise and checkerboard artifacts common in transformer architectures, and semantic
noise is amplified across slightly different views, such as adjacent slices in volumetric medical
data or in video sequences, hindering dense downstream prediction tasks (Dosovitskiy et al.,
2020; Wang et al., 2020; Hatamizadeh et al., 2021; Lu et al., 2022; Qian et al., 2021).

Our work builds upon FeatUp (Fu et al., 2024), a framework for upsampling deep fea-
tures via multi-view self-supervision. One key insight of FeatUp is that the predicted
foundation model semantic features from augmented views of an image should correspond
to the augmented and downsampled view of a canonical set of features defined in original
(the higher resolution) image space. We use the ”implicit” feature model approach to map
from coordinates to denoised high-resolution vision features. This model, similar to NERF
models (Mildenhall et al., 2021), compresses the canonical feature set for a specific image
and its augmented views in a model. The implicit model approach requires image-specific
model training but yields higher-quality features than learning an image-agnostic upsam-
pler, and it is orders of magnitude smaller than dense feature tensors (Fu et al., 2024) and
allows fast, flexible, and memory-efficient inference.

Contributions We propose a 3D-aware adaptation of FeatUp. Our key contribution is
extending FeatUp’s 2D framework to handle volumetric data and voxel-specific inference.
To achieve this, we use explicit 3D coordinates as input, implicit cross-slice consistency
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regularization and define the model as a smooth function in the voxel grid of the image,
not limited to discrete resolutions, locations, or orientations. Furthermore, we replace the
network used in FeatUp by a pointwise convolutional network without normalization layers
based on residual NFNets (Brock et al., 2021) to allow batched or single-voxel inference.
We evaluate our approach in a medical segmentation refinement task using linear probing,
demonstrating significant improvements in feature resolution and consistency.

2. Methods

Training method For multi-view generation, we sample random 2D slices from the volume
with small in- and through-plane rotations, in-plane shifts, and zooming to learn a consistent
3D feature representation. The objective function, adapted from FeatUp, includes four
key components: the reconstruction loss Lrecon (mean-squared error between the target
foundation model prediction and the VoxelFeat feature maps), the magnitude loss Lmag
(penalizing mismatches in feature vector magnitudes), a total variation loss LTV (promoting
spatial smoothness in the arbitrarily oriented 2D upsampled features), and a blur loss Lblur
(penalizing high-frequency artifacts). Unlike FeatUp, we exclude CT input to VoxelFeat to
avoid texture bias (see section 6.13 in (Fu et al., 2024)). Additional details are provided in
section 4.1.

Proposed VoxelFeat Model We replace the FeatUp upsampler with a point-wise
residual network that maps 3D coordinates directly into the SAM2 feature space. To enable
precise local inference and real-time applications, we use a normalization-free architecture
with residual connections. We capture SAM2.1-large features at native CT resolution in two
models: one for high-resolution blocks at 256 x 256, 128 x 128, and one for 64 x 64 resolution
feature block (32, 64, and 256 channels, respectively). The models’ feature predictions are
concatenated during inference.

Segmentation refinement experiments To assess the semantic meaning of refined
features, we evaluate the feature maps via a refinement task of a low-resolution label map
generated by the nearest-neighbor down-sampling of a ground-truth mask. We train a simple
point-wise linear probe with the low-resolution (noisy) mask as the target and evaluate it
against the ground truth mask. Training of the segmentation head is limited to voxels
within a bounding box of the noisy mask.

The segmentation head uses either the concatenated CT intensity and VoxelFeat pre-
dictions (353 channels per voxel, denoted VoxelFeat-Probe) or the intensity and linearly
upsampled raw SAM2 vision features (SAM-Probe). As references, we use SAM2.1-large
with two prompting strategies: (SAM-Autoprompt) point prompts are generated from
the noisy mask in each slice (positive inside mask, negative near edges), and (SAM-Video-
Prop) using a central slice prompt with point prompts and bidirectional propagation using
the video mode. As a further reference independent of SAM2 features, we smooth the
low-resolution mask with a Gaussian kernel (¢ = 3mm) and binarize it (Anti-Aliasing),
effectively performing anti-aliasing and upsampling. This baseline does not suffer from
ground-truth label noise and limits discrepancies to the vicinity of the original mask bound-
ary, except where isolated voxels were lost during downsampling. Predictions are not post-
processed, but the evaluation of all methods is limited to the bounding box of the ground-
truth mask dilated by 45 voxels to limit the domain to label refinement. We evaluated these
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methods on 14 CT imaages from TotalSegmentator 2.0.5 (Wasserthal et al., 2023) including
labels for left kidney, L1 vertebra, spleen, right autochthon, liver, and colon (see figure
2), and on 6 CT images from KiTS23 (Heller et al., 2023) with kidney and tumor labels
(see figure 3). Metrics are Dice similarity coefficient, 95th percentile Hausdorff distance
(HD95), and the average distance between ground-truth and predicted mask (dgT—pred)
and its complementary metric (dpred—GT)-

3. Results and Discussion

CT Volume SAM2 PCA 1-3 SAM2 PCA 46 VoxelFeat PCA 1-3 VoxelFeat PCA 4-6

Figure 1: Exemplary TotalSegmentator data and PCA-transformed feature maps.

VoxelFeat, similar to FeatUp, produces high-resolution semantic feature maps with visi-
bly reduced artifacts and sharp borders compared to upsampled SAM?2 features. Please see
figure 1 and section 4.4 for examples.

Based on surface distances and Dice scores, VoxelFeat-Probe and SAM-Probe approaches
perform similar, indicating that VoxelFeat captures most semantic information but learned
feature upsampling and denoising does not significantly benefit the segmentation refine-
ment tasks in our point-wise linear probing task. VoxelFeat-Probe yields the highest Dice
values for the spleen, liver, and right autochthon and all kidney and kidney tumor masks
with mean Dice scores between 0.87 and 0.95. The feature probing approach underper-
forms compared to slice-wise prompting for vertebra and colon labels presumably due to a
spatially ambiguous (adjacent vertebrae) and inconsistent feature space (background ramp,
heterogeneous image appearance in the colon). Examples are shown in figures 4, 5). For
label- and method-specific quantitative segmentation refinement results for both datasets
and all metrics, see tables 1 and 2.

Conclusion In this work, we introduced VoxelFeat, a method for learning spatially con-
sistent foundation model vision features for 3D medical data. VoxelFeat networks visually
improve feature quality and allow point-wise inference, making them suitable for real-time
3D applications. However, feature noise and resolution appear not to be the limiting fac-
tors in our linear probe medical image segmentation task. These findings highlight both the
promise and the current challenges of using vision feature representation for medical image
segmentation.
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4. Appendix
4.1. Objective function

The objective function is a L2-based reconstruction loss with regularization and follows
closely the loss of FeatUp (Fu et al., 2024). The main reconstruction term is the (weighted)
L2 norm between target foundation model feature channel f;(&), predicted from the aug-
mented image via the frozen foundation model, and the predicted featup feature maps F'(&);
at corresponding spatial locations & in (augmented) low-resolution feature space. The total
variation loss and blurring loss regularize high-frequency noise in the image plane, which in
our case, is sampled at oblique angles of the 3D medical image grid.

We use explicit coordinate mappings to facilitate efficient resampling, which also allows
our adapted reconstruction loss Lyecon to be locally weighted by w;(x), the normalized
expected feature channel variance o;(2) of the foundation model against features from a
reference view f; to reduce the influence of high-variance semantic noise. Furthermore, we
use resampling instead of pooling operations, allowing us to define the model in the native
CT space. To prevent model degradation due to non-injective mapping between (padded)
coordinates (or VoxelFeat predictions) and foundation model predictions on padded images,
the loss is only computed in voxels that were not padded.
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4.2. Training method

The VoxelFeat model has 24 million parameters and was trained using the NAdam optimiser
for 300 epochs with a learning rate of 0.002, with 10 epochs linear warmup followed by
cosine decay. Each epoch involved 200 randomly augmented slices generating SAM2 vision
features, with loss weights set at 0.001 for the magnitude loss term, 0.001 for the total
variation term, and 0.1 for the Gaussian blur term. Augmentations included mirror padding
(up to 15 voxels), random zoom (up to 20% of the padded image size), random cropping of
the zoomed and padded image, and random rotations (both in-plane and through-plane) up
to 7 degrees. To stabilize training, as commonly required by normalizer-free networks (Brock
et al., 2021), we use gradient clipping, learnable residual branch skipping (”SkipInit”), and
activation-based gradient scaling of the residual branch (only during the backward pass to
ensure perfect point-wise predictions at inference time).

The segmentation head is single-layer point-wise convolutional architecutre with layer
normalization of the inputs and a sigmoid activation. It was trained on randomly sampled
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2D slices for 200 epochs using AdamW optimiser with an initial learning rate of 0.01, with
a cosine annealing learning rate scheduler.

Figure 3: KiTS23 kidney (red) and tumor
(blue) ground truth label maps.
Both kidneys are predicted jointly.

Figure 2: Exemplary CT and target masks
of TotalSegmentator data: Top
shows selected labels used for eval-
uation; bottom shows bounding
box, low-resolution, and ground
truth kidney masks.
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4.3. Label refinement results

Table 1: Segmentation metrics on TotalSegmentator data for
the anti-aliasing baseline and SAM2-based methods (mean =+
std over samples). The best performance using SAM features
is shown in bold. Labels: 1: spleen, 3: kidney left, 5: liver,
20: colon, 31: L1 vertebra, 87: right autochthon.

Label Method Dice 1 HD95 | 0CT—Pred 4 OPred—GT 4
1 Anti-Aliasing 0.93 + 0.01 2.90 £+ 0.26 0.94 £+ 0.06 0.90 £+ 0.07
1 SAM-Video-Prop 0.81 £0.17  23.70 + 15.87 1.76 + 1.26 6.35 £+ 5.57
1 SAM-Autoprompt  0.88 + 0.03 7.93 £+ 3.45 0.66 £+ 0.16 2.36 £+ 0.83
1 SAM-Probe 0.94 £+ 0.01 2.71 £ 0.54 0.60 + 0.09 0.83 £ 0.19
1 VoxelFeat-Probe 0.95 + 0.01 2.21 £+ 0.59 0.64 £+ 0.18 0.69 + 0.20
3 Anti-Aliasing 0.90 £ 0.01 2.89 + 0.19 0.98 £ 0.05 0.92 £+ 0.04
3 SAM-Video-Prop 0.86 £ 0.07 14.99 £ 2.48 2.99 + 0.94 1.80 £ 1.51
3 SAM-Autoprompt  0.89 + 0.03 4.88 4+ 0.71 0.86 £ 0.13 1.45 + 0.31
3 SAM-Probe 0.92 £+ 0.01 2.53 = 0.63 0.60 £+ 0.07 0.79 £ 0.15
3 VoxelFeat-Probe 0.93 £+ 0.01 2.86 + 1.73 0.74 + 0.24 0.65 + 0.11
5 Anti-Aliasing 0.96 £+ 0.01 3.00 £ 0.00 1.00 + 0.08 0.94 £+ 0.08
5 SAM-Video-Prop 0.73 £0.26 51.37 + 37.34 5.99 + 6.41  17.16 + 15.76
5 SAM-Autoprompt  0.91 + 0.02 12.38 4+ 4.57 1.00 £ 0.17 3.33 + 0.87
5 SAM-Probe 0.95 + 0.01 7.53 £ 2.62 0.99 + 0.23 1.96 + 0.57
5! VoxelFeat-Probe 0.95 + 0.01 4.54 + 1.30 1.18 + 0.30 1.30 = 0.25
20 Anti-Aliasing 0.90 £ 0.02 2.94 £ 0.15 1.00 £+ 0.03 0.95 £ 0.02
20 SAM-Video-Prop 0.43 £ 0.20 108.49 4+ 50.82 25.85 + 18.63 18.87 4+ 13.68
20 SAM-Autoprompt 0.83 + 0.03 7.31 + 2.86 0.80 £ 0.25 2.35 £+ 0.61
20 SAM-Probe 0.76 + 0.10  21.84 + 12.59 1.89 + 0.58 4.98 +£ 1.92
20 VoxelFeat-Probe 0.80 £ 0.06 24.08 £ 15.05 2.11 £ 0.76 4.73 + 2.65
31 Anti-Aliasing 0.82 £ 0.01 3.08 £ 0.15 1.23 + 0.09 1.01 £ 0.06
31 SAM-Video-Prop 0.51 4+ 0.06 24.59 + 4.97 3.18 £ 1.12 7.56 £ 1.71
31 SAM-Autoprompt 0.79 + 0.03 4.77 £+ 0.46 1.03 £ 0.20 1.66 + 0.23
31 SAM-Probe 0.76 4+ 0.04 7.34 + 2.23 1.14 £+ 0.20 1.98 £+ 0.47
31 VoxelFeat-Probe 0.67 + 0.09 9.75 + 2.66 1.86 4+ 0.56 2.52 + 0.64
87 Anti-Aliasing 0.91 £ 0.01 3.00 £ 0.00 1.09 £+ 0.04 1.05 £+ 0.04
87 SAM-Video-Prop 0.62 + 0.21  42.20 4+ 14.87 4.76 £+ 3.96 12.26 + 7.85
87 SAM-Autoprompt  0.84 4 0.02 6.91 £+ 1.62 0.70 + 0.08 2.38 £ 0.33
87 SAM-Probe 0.90 + 0.03 6.09 + 4.78 0.87 £ 0.14 1.76 + 0.90
87 VoxelFeat-Probe 0.90 + 0.03 4.35 + 1.58 1.05 £+ 0.27 1.41 + 0.37




VOXELFEAT

Table 2: Segmentation metrics on KiTS23 data for the base-
line and SAM2-based methods (mean =+ std over samples).
The best performance using SAM features is shown in bold.
Labels: 1: kidney, 2: tumor.

Label Method Dice 1 HD95 | 0GT—Pred 4 OPred—GT |
1 Anti-Aliasing 0.91 £ 0.01 6.91 £ 1.66 1.79 + 0.26 0.95 4+ 0.06
1 SAM-Video-Prop 0.90 £ 0.05 20.33 £19.15 1.58 + 0.63 2.73 £ 2.32
1 SAM-Autoprompt  0.91 + 0.02 5.77 &£ 1.53 1.09 £ 0.31 1.24 + 0.25
1 SAM-probe 0.92 + 0.01 4.87 £+ 1.06 1.15 £ 0.15 0.97 £ 0.32
1 VoxelFeat-Probe 0.92 + 0.01 5.01 £+ 1.26 1.21 £ 0.23 0.96 £+ 0.30
2 Anti-Aliasing 0.83 £ 0.04 3.90 £ 0.59 1.35 + 0.04 1.08 £ 0.11
2 SAM-Video-Prop 0.75 £+ 0.08 14.74 4+ 4.63 1.06 £ 0.21 4.29 + 1.85
2 SAM-Autoprompt  0.84 + 0.03 4.60 + 1.07 0.84 £ 0.19 1.41 + 0.19
2 SAM-Probe 0.86 £ 0.04 3.50 £ 0.84 0.86 £ 0.12 0.91 £ 0.17
2 VoxelFeat-Probe 0.87 £ 0.03 3.35 £ 0.56 0.82 + 0.08 0.81 £+ 0.06

4.4. Qualitative results

FExemplary PCA projections of SAM2 feature maps for TotalSegmentator and KiTS23 are
shown in figures 4 and 5. The first 6 components cumulatively capture 42% and 44% of the
variance of the raw SAM2 predictions, respectively.
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Figure 4: CT volume and first 6 PCA components of the low-res SAM2 vision features
for exemplary TotalSegmentator data and corresponding VoxelFeat features pro-
jected onto the same PCA basis.
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Figure 5: CT volume and first 6 PCA components of the low-res SAM2 vision features for
exemplary KiTS23 data and corresponding VoxelFeat features projected onto the
same PCA basis.
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