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Abstract

We introduce pyGSL, a Python library that provides efficient implementations
of state-of-the-art graph structure learning models along with diverse datasets to
evaluate them on. The implementations are written in GPU-friendly ways, allowing
one to scale to much larger network tasks. A common interface is introduced for
algorithm unrolling methods, unifying implementations of recent state-of-the-art
techniques and allowing new methods to be quickly developed by avoiding the
need to rebuild the underlying unrolling infrastructure. Implementations of dif-
ferentiable graph structure learning models are written in PyTorch, allowing us
to leverage the rich software ecosystem that exists e.g., around logging, hyperpa-
rameter search, and GPU-communication. This also makes it easy to incorporate
these models as components in larger gradient based learning systems where
differentiable estimates of graph structure may be useful, e.g. in latent graph
learning. Diverse datasets and performance metrics allow consistent comparisons
across models in this fast growing field. The full code repository can be found on
https://github.com/maxwass/pyGSL.

1 Introduction

Graph Learning (GL), also referred to as Network Topology Inference or Graph Structure Learning,
refers to the task of inferring graphs from data. Here we focus on learning undirected graphs in the
supervised setting. GL has deep roots in statistics [Dempster, 1972] with significant contributions
for probabilistic graphical model selection; see e.g. [Kolaczyk, 2009, Friedman et al., 2008, Drton
and Maathuis, 2017]. Approaches dubbed ‘latent graph learning’ have been used to learn interactions
among coupled dynamical systems [Kipf et al., 2018], or to obtain better task-driven representations
of relational data for machine learning (ML) applications [Wang et al., 2019, Kazi et al., 2020,
Veličković et al., 2020]; for the related task of link-prediction see [Hamilton, 2020] . Graph signal
processing (GSP) has been the source of recent advances using cardinal properties of network data
such as smoothness [Dong et al., 2016, Kalofolias, 2016] and graph stationarity [Segarra et al., 2017,
Pasdeloup et al., 2018], exploiting models of network diffusion [Wasserman et al., 2022, Daneshmand
et al., 2014], or taking a signal representation approach [Dong et al., 2019, Mateos et al., 2019].
These works, referred to as Model-Based (MB) graph learning, use such data models to formulate
the topology inference task as a (convex) optimization problem to be solved for each problem
instance. When datasets are available, one can build on these MB approaches by unrolling an iterative
solution procedure to produce a learned architecture optimized on the given data [Monga et al., 2021].
Such Unrolling-Based (UB) methods offer several advantages over MB methods: they tend to be
more expressive (MB methods are restricted to a small set of constraints expressible in a convex
manner), require fewer layers than the corresponding iterative algorithm for a given performance
requirement, and allow one to directly optimize for a (differentiable) metric of interest [Dong et al.,
2019, Wasserman et al., 2022, Shrivastava et al., 2019]. Thus by learning a distribution over such
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Figure 1: Class diagram of pyGSL’s learned unrollings with a subset of variables and methods shown.
For a specific learned unrolling, say GDN, we would replace the LearnedUnrolling class with a
GDN class which simply overwrites the setup(), shared_step(), and configure_optimizers() methods
from its parent class pl.LightningModule. Since the GDN class also mixes in UnrollingBase, it
automatically inherits functionality common to all UB methods.

graphs by investing time upfront in training a model we can obtain better task-specific performance
while avoiding expensively resolving each new problem instance.

While the interdisciplinary history of GL has been a source of progress, it has also been a hindrance:
these different fields use different tools (MATLAB/Octave, R, Python, etc) in implementing their
algorithms. This has slowed the spread of new algorithms and made comparing relative performance
of different algorithms difficult. Importantly, there has been little effort to ensure implementations
can leverage the increasing computation power of the GPU. Due to the reliance of GL algorithms
on matrix/vector operations, as well as the interest in handling ever increasing network sizes, GPUs
offer an ideal environment for such computation to occur. Thus the first aim of pyGSL is to provide
standardized GPU-compatible implementations of fundamental GL methods, along with datasets to
evaluate them on. The second aim is lowering the barrier to use and develop such GL methods. As
such, we provide a framework which makes it easy for researchers to extend - or build completely
new - graph learning methods without needing to rebuild all the underlying software machinery. By
consolidating wide-ranging GL methods into in a single GPU-compatible framework, pyGSL can be
seen as the most comprehensive Python library for GL to date.

2 Architecture

Both MB and UB methods rely heavily on matrix/vector operations, often require hyperparameter
search capabilities, and are typically applied to problems with large graph sizes and/or large sets of
graphs; see Section 3 for further details on said GL approaches. For these reasons, pyGSL implements
all methods in PyTorch which has a rich ecosystem of software to interface with GPUs, run and
visualize hyperparameter searches via W&B [Biewald, 2020], and abstract away the bug-prone
training, validation and optimization logic required in gradient based training via PyTorch-Lightning
[Falcon and The PyTorch Lightning team, 2019].

Implementations of UB methods share significant structure, motivating our novel UnrollingBase
class, which encapsulates this shared functionality; see Fig. 1. This minimizes repeated code, and
makes implementing new UB methods as simple as defining the core layer-wise logic for that specific
unrolling. By doing so, users can (i) cut their development time down significantly by relying on
pretested methods; and (ii) automatically gain functionality such as intermediate output visualization
and metric logging. See Appendix A.4 for a code snippet showing how pyGSL can be used.

3 A Unifying View of Graph Learning Methods

The GL problem is to infer a graph from data to uncover a latent complex information structure.
Here, we focus on undirected and weighted graphs G(V, E), where V = {1, . . . , N} is the set of
nodes (henceforth common to all graphs), and E ⊆ V × V collects the edges. A graph signal
x = [x1, . . . , xN ] ∈ RN is a map x : V → R which assigns a real value (say, a feature) to each
vertex. We collect the P graph signal observations together into data matrix X = [x(1), · · · ,x(P )].
A similarity function S(X) : RN×P 7→ RN×N is chosen to compute the observed direct similarity
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Table 1: Model-Based methods with the associated Unrolling-Based method it inspires.

Data Model MB Iterative Solution Procedure UB Model

Gaussian Alternating Minimization GLAD
Smoothness Primal-Dual Splitting L2G
Diffusion Proximal Gradient Descent GDN

between nodes. Common choices for S include sample covariance/correlation or Euclidean distance.
We can conceptualize the output of S(X) as the symmetric adjacency matrix of an observed graph
from which we would like to recover a latent graph with symmetric adjacency matrix denoted
AL ∈ RN×N

+ . Below we discuss three popular approaches to tackle the GL task which exemplify the
link between S(X) and AL; for discussions on Deep Learning (DL) methods for GL and tradeoffs
between the three methods refer to A.2 and A.3, respectively.

Model-Based Graph Learning. These GL approaches postulate some data model relating the
observed data X to the latent graph GL via X ∼ F(AL). This model can be the result of a network
process, e.g. linear network diffusion, or statistical where X follows a distribution determined by
AL e.g. in probabilistic graphical models. Thus the GL task reduces to an attempt to invert this
relation F−1(X). To do so, these techniques formulate a (convex) optimization problem which can
be solved via iterative optimization methods. These MB GL problems have the general form

A∗ ∈ argmin
A∈C

{Ldata(A,X) + Lreg(A)}, (1)

where Ldata(A,X) is the data fidelity term, Lreg(A) is the regularization term incorporating the
structural priors (e.g., ∥A∥1 for sparsity), and C encodes a convex constraint on the optimization
variable A, e.g., symmetry, non-negativity, or hollow diagonal. We inject our assumptions about
the generative model into the objective of the problem. Note that we parameterize the canonical
problem form with an adjacency A for notational convenience, but many methods use other graph
shift operators such as the Laplacian L := diag(A1)−A or its normalized counterparts.

To make this clear, consider the following data models and resulting optimization formulations for
graph recovery, summarized in Table 1. When the data X are assumed to be Gaussian, the GL
task is to estimate the precision matrix; the sparsity-regularized log-likelihood function for such
a precision matrix is convex argminA⪰0 {Tr(S(X)A)+α∥A∥1 − β log detA}, where S(X) is
the sample covariance matrix [Friedman et al., 2008]. When the data is assumed to be smooth on
GL, i.e., the total variation Tr(X⊤LX) of the signals on the graph is small, a standard GL for-
mulation is argminA∈C

{
∥A⊙ S(X)∥1−α1⊤log(A1) + β∥A∥2F

}
, where S(X) is the Euclidean

distance matrix [Kalofolias, 2016]. When the observed graph S(X) satisfies a graph convolutional
relationship with AL, i.e. S(X) =

∑K
i=0 αiA

i
L, as is the case in linear network diffusion where

again S(X) is the sample covariance matrix, we can pose the GL task as the non-convex problem
argminA∈C

{
∥S(X)−

∑K
i=0 αiA

i
L∥2F+β∥A∥1

}
[Wasserman et al., 2022].

The MB methods that admit iterative solutions take the generic form: A[i+ 1] = hθ(A[i], S(X))
where A[i] is output on the i-th iteration, hθ is the contractive function, and θ are the regularization
parameters. We implement the function hθ using GPU compatible operations in PyTorch and wrap it
in a loop until uniform convergence is achieved.

Unrolling-Based Graph Learning. Algorithm unrolling uses iterative algorithms, like those often
used in signal processing, as an inductive bias in the design of the neural network architectures.
The algorithm is unrolled into a deep network by associating each layer to a single iteration in
the truncated algorithm, producing a finite number of stacked layers as shown in Figure 2. We
transform the regularization parameters of the iterative algorithms into learnable parameters of the
neural network. Using a dataset, such parameters can be optimized for a given task by choosing an
appropriate loss function and backproprogating gradients; see [Monga et al., 2021] for more details.

All UB models share a significant amount of code in their construction, training, and evaluation.
We consolidate this code into the novel UnrollingBase class. To instantiate a new UB model, one
simply inherits from UnrollingBase and Pytorch-Lightning’s LightningModule, declares a layers’
learnable parameters θi, and implements the hθi(A[i], S(X)) function - denoted as shared_step
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Figure 2: Schematic of a generic UB method. Figure 3: Intermediate outputs plotted via pyGSL.

in the users class. Recall that each layer of the resulting unrolled network performs the same
operation represented by hθ(A[i], S(X)) here; thus specifiying the entire unrolled network reduces
to providing a desired depth and specifying h for a single layer. The UnrollingBase mixin takes
care of stacking the layers together, feeding outputs of one layer as inputs of the next, and implements
the required interface to allow the LightningModule to automate the training and optimization.

4 Data

Synthetics As discussed in Section 3, MB methods motivate the optimization problem through
an assumed generative model on the observed data. Since UB methods are inspired by their MB
counterparts, synthetic datasets which match these assumed generative models are important for
model validation across GL methods. We thus provide (i) an efficient graph sampling interface using
NetworkX [Hagberg et al., 2008] for a broad range of random graph ensembles; and (ii) an ability to
generate signals conforming to smoothness, linear network diffusion (x =

∑p
i=0 αiA

i
Lw, where w

is typically white), or Gaussianity (x ∼ N (0,A−1)). These datasets can be accessed via the smooth,
diffuse, and gaussian classes, respectively, in the gl.data subdirectory.

Real Data We provide real datasets to evaluate the models on, including over 1000 Structural
Connectivity (SC) and Functional Connectivity (FC) pairs extracted from the HCP-YA neuroimaging
dataset [Glasser et al., 2016], as well as co-location and social network data from the Thiers13
dataset [Génois and Barrat, 2018]. We also provide the ability to create ‘Pseudo-synthetic’ data by
using the graphs from the real datasets, and sampling synthetic signals on top of them that are e.g.,
smooth, diffused, or Gaussian. This provides a gentler transition to real data, which we found useful
when developing and validating GL methods.

See Appendix A.1 for a further discussion on the data and its associated class layout in pyGSL.

5 Related Work

While there has been an explosion of software development in adjacent fields such as geometric
DL [Fey and Lenssen, 2019] and network-based modeling of complex systems [Traxl et al., 2016],
there has been little in the way of comprehensive GL packages. GSPBox is (unmaintained) Matlab
toolkit which focuses on traditional GSP tasks and offers a single function to perform GL on the
smooth signal case [Perraudin et al., 2016]. There are many algorithms for Gaussian graphical
model selection from a likelihood based [Yuan and Lin, 2007, Friedman et al., 2008], regression
based [Meinshausen and Bühlmann, 2006, Peng et al., 2009], and constrained ℓ1-minimization [Cai
et al., 2011] approaches; almost all implementations are in R or Matlab. Recently Choi et al. [2021]
released an R-based GPU implementation of CONCORD-PCD, a regression based approach which
uses parallelized coordinate descent for fast inference. Software in [Lassance et al., 2020] offers
benchmarks for MB approaches. To the best of the authors knowledge, no encompassing framework
exists for UB methods, only standalone implementations released by the respective methods’ authors.

6 Concluding remarks

We introduced the pyGSL framework for GPU-aware fast and scalable GL. We provide several
synthetic and real datasets for model evaluation, as well as a novel class for UB architectures which
dramatically lowers the time and expertise required to use and build such methods. It also ensures
their compatibility as sub-modules in larger gradient-based learning systems. This is an active project,
and we plan to add more benchmark datasets and the latest GL methods as they are published. We
welcome more researchers and engineers to join, develop, maintain, and improve this toolkit to push
forward the research and deployment of network topology inference algorithms.
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Figure 4: Class diagram of pyGSL’s provided datasets

A Appendix

A.1 Data Class Diagram

There are three main categories of data provided by pyGSL as shown in A.1. The first being Synthetics,
which are constructed as to be faithful to a generative model assumed by at least one of the provided
MB methods, e.g. diffused and GDNs. The second are Real Data, particularly FC-SC pairs derived
from HCP-YA neuroimaging data [Van Essen et al., 2013] and a large Sensor Co-location - Facebook
Friend Network graph pair derived from the Theirs13 dataset [Génois and Barrat, 2018]. The last
category of data are the ‘Pseudo-synthetic’ data which is a compromise between real and synthetic
data: we use real observed graphs but sample synthetic signals - either smooth, diffused, or Gaussian
- on top of them. This provides a smoother transition from synthetic to the more difficult real data.

Raw HCP-YA data can be found here, and use of raw data - and derivative forms of such data - is
subject to the HCP Data Use Agreement. If the processed SC’s are used, please cite [Zhang et al.,
2018, 2019].

A.2 Deep Learning Approach to GL

Classic Graph Neural Networks (GNN) can be manipulated to perform the GL task, often by decoding
latent node feature vectors into predicted edges. Due to low inductive bias and poor scaling properties
DL models struggle on many GL tasks, but we include two popular GNNs, Graph Convolutional
Network (GCN) [Kipf and Welling, 2017] and Graph Isomorphism Networks (GIN) [Xu et al.,
2018], with appropriate adjustments for tackling the GL task.

A.3 Tradeoffs in GL Approaches

Factors which influence the decision of which GL method to use include training and inference
complexity, scaling properties, expressive power, parameter efficiency, and empirical performance.

Inference in MB methods involves solving an optimization problem which often has cubic run-time
and memory complexity w.r.t. the number of nodes O(N3). Training in MB methods involves
performing a hyperparameter search, which involves solving many such optimization problems,
posing the same problematic run-time and memory issues. MB methods are highly parameter
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(here regularization coefficients) efficient - a characteristic of convex optimization problems, but
lack expressivity due to the limited constraints expressible in a convex form. These methods are
empirically observed to perform well when the graphs are small enough such that comprehensive
searches over the regularization coefficients can be performed.

Inference and training in DL methods involves forward passes (and backward passes for training)
through the deep network which is typically quadratic in run-time and memory w.r.t the number of
nodes O(N2). These methods tend to be highly expressive, and while more parameter efficient than
MLPs due to parameter sharing, they still typically require on the order of 103 − 106 parameters, and
often even more, depending on the particular GNN. For reasonable performance they tend to require
a significant amount of data, more than is typically available in most use cases.

While one could categorize UB methods as DL methods - because they do in fact generate a deep NN
architecture - they are unique enough for their own category. Training and inference is identical to
other DL methods, involving forward passes of the data through the network (and the corresponding
backward pass to propagate gradients for training) with the associated quadratic run-time and memory
complexities. These methods have significant inductive bias inherited from the associated MB
iterative algorithm, making them highly parameter efficient but also more expressive because the
(now learnt) parameters can be tuned on a dataset via gradient based learning. Empirically, these
methods tend to perform best in most cases.

An additional note is that MB and UB methods are naturally inductive, meaning you can train on
graphs of size Ntrain and deploy that same model on graphs of size Ntest >> Ntrain, while - in
general - DL methods do not have this property. This is because DL methods can often use features
of the graph which functionally depend on the graph size - tieing them to the particular graph size in
inference. With some adjustment, it is possible to break this dependence and make these methods
inductive.

A.4 Python Example

import graph_learning as gl
import pytorch −lightning as pl

graph_sampling = {’graphs’: ’ER’, ’n’: 100, ’p’: 0.5}
data_size = {’train’: 500, ’val’: 100, ’test’: 100}
dm = gl.data.smooth(graph_sampling , * * data_size)

model = gl.models.unroll.glad(depth=20)

trainer = pl.Trainer(max_epochs=200, ’gpus’: 1)
trainer.fit(model, datamodule=dm)
trainer.test(model, datamodule=dm, ckpt_path=’best’)

Figure 5: Example of how to use the package. All training loops, optimization, and GPU communica-
tion are abstracted away, simplifying the interface.

Figure 5 shows how pyGSL would be used in a simple example of training a GLAD network - an UB
method motived from a MB method which postulaes a Gaussian generative data model - of depth 20
on ’smooth’ data, see Section 3 for details.
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