Published in Transactions on Machine Learning Research (01/2026)

The Confusion is Real: GRAPHIC — A Network Science
Approach to Confusion Matrices in Deep Learning

Johanna S. Frohlich johanna.froehlich@fau.de
Friedrich-Alerander- Universitat Erlangen-Nirnberg
Erlangen, Germany

Bastian Heinlein bastian.heinlein@fau.de
Friedrich-Alezander- Universitat Erlangen-Nirnberg

Erlangen, Germany

Technical University of Darmstadt

Darmstadt, Germany

Jan U. Claar jan.u.claar@fau.de
Friedrich-Alezander- Universitat Erlangen-Nirnberg
Erlangen, Germany

Hans Rosenberger hans.rosenberger@fau.de
Friedrich-Alerander- Universitat Erlangen-Nirnberg
Erlangen, Germany

Vasileios Belagiannis vasileios. belagiannis@fau.de
Friedrich-Alezander- Universitat Erlangen-Nirnberg
Erlangen, Germany

Ralf R. Miiller ralf.r.mueller@fau.de
Friedrich-Alerander- Universitat Erlangen-Nirnberg
Erlangen, Germany

Reviewed on OpenReview: |https: //openreview. net/ forum? id=UP9bzlWJwR

Abstract

Explainable artificial intelligence has emerged as a promising field of research to address
reliability concerns in artificial intelligence. Despite significant progress in explainable arti-
ficial intelligence, few methods provide a systematic way to visualize and understand how
classes are confused and how their relationships evolve as training progresses. In this work,
we present GRAPHIC, an architecture-agnostic approach that analyzes neural networks on
a class level. It leverages confusion matrices derived from intermediate layers using linear
classifiers. We interpret these as adjacency matrices of directed graphs, allowing tools from
network science to visualize and quantify learning dynamics across training epochs and in-
termediate layers. GRAPHIC provides insights into linear class separability, dataset issues,
and architectural behavior, revealing, for example, similarities between flatfish and man and
labeling ambiguities validated in a human study. In summary, by uncovering real confusions,
GRAPHIC offers new perspectives on how neural networks learn. The code is available at
https://github.com/Johanna-S-Froehlich/GRAPHIC.

https://openreview.net/forum?id=UP9bx1WJwR
https://github.com/Johanna-S-Froehlich/GRAPHIC

Published in Transactions on Machine Learning Research (01/2026)

1 Introduction

Neural networks (NNs) pave the way for automated decision-making in areas that have previously eluded
automation due to their high complexity, e.g., self-driving cars (Di Feng et all 2021) and medical diagnos-
tics (Zhou et al., 2021). Because NNs are usually perceived as black bozes, they are often not considered
trustworthy (Guol, [2020} Zhang et al., 2021} [von Eschenbach) 2021)); therefore, the area of explainable artifi-
cial intelligence (XAI) has seen a steep rise of interest in recent years (Mersha et al.}2024). By understanding
the learning dynamics of NNs, XAI does not only increase trust in NNs, but can also be utilized to improve
model performance (Chefer et al., |2022; [Yan et al. 2015) or identify dataset issues.

Explainability methods can be applied at different stages of model development: during model design,
training, or inference. While inherently explainable models, e.g., [Letham et al.| (2015) and [Lakkaraju et al.
(2016), are important especially in high risk applications (Rudinl 2019), these ante-hoc methods are not
yet feasible for certain tasks (Singh et al., |2024; |Atrey et al., [2025; Mumuni & Mumunil |2025) and cannot
be extended to other preexisting models. For this reason, post-hoc explainability methods, which aim to
analyze models after training without requiring changes to architecture or data, have become the dominant
approach.

Unfortunately, many of these post-hoc approaches are limited in scope and offer no insights into the model’s
overall state. Local explainability methods illustrate decisions for individual samples and, for example,
use visualizations to gain insights into which features of an image were most relevant for the eventual
prediction of an NN (Selvaraju et al., 2020; \Wang & Wang}, 2022} Bach et al., [2015). Other methods focus
on decision regions and their boundaries: Ribeiro et al. (2016|) approximated a complex model’s decision
boundary locally with an interpretable linear model to explain individual predictions, and [Karimi et al.
(2019) created adversarial examples to identify these boundaries on a more global level. Both approaches
rely on explanations derived from individual samples, which may be flawed due to labeling errors or sampling
bias and persist in commonly used datasets (Northcutt et al., [2021)).

In general, understanding NNs globally, i.e., how and what they learn, is often more relevant than under-
standing single decisions. Therefore, global explainability methods like concept activation vectors (Kim et al.|
2018) and, more recently, concept activation regions (Crabbé & van der Schaar], |2022) have been proposed
to understand how concepts, such as whether an image includes stripes, are distributed in the feature space
of NNs and how they relate to each other. Building on this idea, Rigotti et al. (2022) incorporated such
predefined concepts directly into the design of NNs. A major limitation of these approaches lies in their
reliance on human-defined concepts, which may not align with the abstract representations actually learned
by the network, potentially leading to incorrect interpretations or oversimplified conclusions.

Another branch of global explainability focuses on analyzing the structure and complexity of the feature
representations within NNs. For instance, [Valeriani et al.| (2023)), Kornblith et al.| (2019)), and |Ansuini et al.
(2019) tried to explain the organization of the feature space and quantify the complezity of its representations.
In most of these methods, the relationship between individual samples is exploited to gain insights into the
global behavior and structure of NNs; however, some are only applicable to transformer models.

So far, few explainability methods have been proposed to understand the feature representations and the
training process on a class level utilizing network science. As we have seen, existing approaches focus
on individual samples, making them vulnerable to labeling noise and dataset artifacts, or rely on pre-
defined concepts, which can influence the explanations. In contrast, our explainability approach Graph-based
Representation and Analysis of Predictions and Hidden-layer Interpretability via Confusion (GRAPHIC),
introduces a global explainability approach based on structural patterns of class confusions. One major
obstacle to class-level understanding is that there is no straightforward way to construct confusion matrices
(CMs) for hidden layers. CMs indicate how often certain class pairs are mistaken for each other. We suggest
employing a simple linear classifier (LC) according to |Alain & Bengio| (2016]) on the feature representations
in the hidden layers to generate CMs. Rather than only training the LCs on true labels, we also train
them on the labels predicted by the model. This not only sheds light on the feature space and the linear
separability of classes, but also gives an accurate understanding of the class learning over the training
process without relying on individual samples. These CMs are then analyzed as graphs, enabling us to

Published in Transactions on Machine Learning Research (01/2026)

trace how class-level structure evolves across layers and training epochs. Unlike methods that rely on
predefined concepts or feature attribution, GRAPHIC draws insights directly from data-driven structure,
without manual intervention.

Our approach uncovered several important phenomena. In early training, a few dominant classes emerged
as confusion hubs, and the order of training data — not just model initialization — shaped early predictions.
Over time, semantically meaningful communities (e.g., animals or trees) formed, while confusion between
groups decreased. We also identified dataset-specific biases and labeling challenges. For example, the
network used seasonal color cues to distinguish tree species, revealing a bias correctable by more diverse data.
Finally, we observed that while convolutional neural networks (CNNs) gain linear separability steadily, visual
transformers show a decline in separability across early decoders. Our claims are supported by empirical
evidence on a CNN and a transformer using two image datasets, as detailed in Section

The main contributions of this work are three-fold:

1. We propose the novel architecture-agnostic analysis approach GRAPHIC, in which we generate
CMs for intermediate layers of modern NNs using LCs. The LCs are trained with a custom cross-
entropy loss function, integrating both the true and predicted labels. Then, we interpret these
CMs as adjacency matrices of graphs and employ two standard methods from network science to
analyze the resulting graphs. We demonstrate how these methods can be leveraged to improve our
understanding of NN training.

2. We also use GRAPHIC and its visualization ability to discuss and analyze datasets and identify issues
that are hidden behind the large number of classes but can be easily spotted using our proposed
graph representation. Additionally, we validate these findings with a human study.

3. As a third contribution, we observe the linear separability of intermediate layers. Insights into this
property emerge naturally from our methodology. While this idea is not new in general, we observe
a decrease in linear separability in early decoders of the analyzed visual transformer.

2 Related Work

Class-Level Explainability Approaches. While most explainability approaches fall into either local or
global categories, few methods address the intermediate level of analysis, where insights into the learning
dynamics and the predictions of NNs are gained on a class level from, e.g., CMs. A prominent example is
the work by [Hinterreiter et al.| (2020]), which visualizes CMs over time to reveal hierarchical class structures
for the final network layer. Other methods use the idea of class hierarchy in order to improve model
performance (Yan et al., 2015; Bilal et al., 2018]). These methods lack the graph visualization and use of
network science for an internal data-driven analysis. The closest related approach is Confusion Graph (Jin
et al.l |2017), which constructs graphs from CMs and applies community detection algorithms from network
science to identify groups of classes that are often confused with each other. While their visualization
technique is closely related to ours, their analysis only focuses on the final layer and the converged model
without discussing the evolution of temporal patterns. A major difference is their use of only the top-7
predicted classes per sample to construct CMs, potentially missing important yet less prominent connections.
A more detailed comparison between the approaches is given in Appendix

Dataset Visualization. Visualizing high-dimensional datasets is a common approach for discovering
structure within the data. Methods such as t-SNE (Maaten & Hinton, 2008), UMAP (Mclnnes et al.
2018), LargeVis (Tang et al., [2016), and PCA (Jolliffe, |1986) embed high-dimensional features into a lower-
dimensional space suitable for visualization, either of datasets (Pareek & Jacobj 2021) or of their feature
representation in NNs (Chan et all 2018} |Alaiz et all 2020). Most of these methods aim to preserve local
relationships, so that points, in this case image vectors or their representation in NNs, that are close in
high-dimensional space remain close in the visualization. On the downside, these methods can be sensitive
to hyperparameters, and often fail to capture more complex structures (Wattenberg et al. [2016; Bohm
et al, 2023). Methods such as ¢t-SimCNE (Bohm et all|2023) go further by integrating contrastive learning

Published in Transactions on Machine Learning Research (01/2026)

Generate CMs Compute Metrics

\

N

o

0 15 30 45 60
Epochs

Apply LC to Feature Vectors Create Graphs

Figure 1: Proposed analysis workflow. LCs are trained using feature vectors from hidden layers. The
trained LCs are then used to generate CMs on previously unseen feature vectors. Subsequently, these
matrices are used to generate graphs that can be analyzed using methods from network science.

with neighbor-embedding techniques, producing visualizations that reveal semantic structure well enough to
identify issues and ambiguities within datasets. While we share the goal of revealing these problems, our
approach differs fundamentally in how semantically meaningful structures are derived. Instead of visualizing
the feature vectors of individual images extracted from an NN, we take a class-based approach: each class
is represented as a node in a graph, and edges encode NN confusions. This class-based perspective comple-
ments existing approaches that visualize individual images, providing an alternative way to depict datasets
and identify their issues.

Network Science. Our method also applies network science, which is concerned with the physics of
complex systems, i.e., systems with many interacting components (Artime & de Domenicol, 2022} [Strogatz]
. In network science, these systems are modeled as graphs, with components represented as nodes and
their relations as edges. Over time, a large set of tools to analyze graphs has been developed for among others
community detection (Newman|, 2004} [Leicht & Newman), 2008), assessing homophily (Newman, 2003b)), and
understanding structural properties of networks (Newman, 2003a)), for various applications (Zhao et al.,
[2018; Brockmann et al., [2006; |Gosak et al. 2018). These tools can also be used beyond complex systems,
as long as the underlying data structure can be described as a graph (or network).

3 Problem Definition

Our objective is to expose and explain how NNs learn by modeling class-level confusion as graphs, apply-
ing community detection methods from network science, and interpreting their evolution over the training
process. To formalize this, we define a directed graph as a set of nodes connected by weighted, directed
edges. Each edge (4, j) from node i to node j carries a weight A; ; € REI, with all weights summarized in the
square adjacency matrix A. In our setting, each node in the graph corresponds to a class in the dataset,
and edge weights represent the probability that a sample from class 4 is predicted as class j. The in-degree
deg+(i) and out-degree deg™ (i) of a node i correspond to the sum of incoming and outgoing confusions,
respectively. To obtain these graphs, we extract the activations h(®) of an intermediate layer k and pass

gﬁ) and bias vector bl(i]fl). The classifier output is

them through an LC, parameterized by weight matrix W,
given by z*) = softmax (‘/Vlgﬁ)h(k) + bl(i?), which represents the predicted class probabilities at layer k.
By comparing these predictions with the true labels, we construct a CM for each layer and epoch, interpret
them as adjacency matrices of directed graphs and apply community detection algorithms.

1Scalars, vectors, and matrices are denoted by regular (non-bold), lowercase bold, and uppercase bold letters, i.e., s, , and
A, respectively. Sets are denoted by double-struck letters A and the cardinality of the set is denoted by |A|.

Published in Transactions on Machine Learning Research (01/2026)

4 Methods

Proposed Approach. The analysis workflow is depicted in Figure [l] We begin by training an LC using
feature vectors of the hidden layers of the considered NN. Following this, the LC is employed to classify
previously unseen feature vectors. The classification results are then used to compute the CMs. Subsequently,
these CMs are utilized to generate graphs. Finally, these graphs, and thereby the underlying CMs, are
analyzed by applying methods from network science to reveal how and if NNs untangle different classes.

4.1 Background: Network Science and Community Detection

Assortative Mixing in Networks. The structure of a network reveals the relationships between its nodes.
In network science, the tendency of a vertex to connect to a vertex with a shared or opposite characteristic can
be analyzed using the so-called assortativity coefficient. Following the formulation from Newman| (2003b)),
we compute the assortativity coefficients of our generated confusion graphs to verify whether predefined
concepts like superclasses of a dataset truly align with the structure learned by the model.

As a shared characteristic, concepts relevant to the human understanding are assigned a group label
g € {l,---, M}, where M is the number of different groups. Two of these concepts are “man-made” and
“natural”, where man-made refers to objects or environments created by humans (e.g., buildings, vehicles),
while natural refers to those that occur in nature without human intervention (e.g., animals, landscapes).

The group of a class or vertex ¢ is denoted by G (c) and the set of classes belonging to group g as G4. The
assortativity can then be computed utilizing the normalized association matrix E € RM*M that takes the
group size |G| into account in accordance to Karimi & Oliveiral (2023). With the adjacency matrix C*d the
entries of the association matrix E are computed as (cf. Karimi & Oliveira |2023))

— ad
Eu,'u - |G ||G | Z Z Ci,_j I (1)

1€G, \JEG,
with 4,5 € {1,---,N }2. The matrix E is then normalized elementwise. The assortativity r is computed
according to [Newman| (2003b]) as
2
=——F
1-|ElF

where ||-|| z denotes the Frobenius norm and Tr(-) the trace of a matrix.

Community Detection Using Modularity. While grouping classes by some contrived concept can be
used to confirm if and when a concept is learned, it is also interesting to examine the community structure
that emerges naturally from the network topology. Grouping with a predefined concept relies on external
labels, which may not align with intrinsic patterns. One common approach to uncovering these internal
communities is through the use of a measure called modularity). This metric compares the density of edges
within communities to the expected density of a random network with the same degree distribution. By
maximizing this metric, communities can be found and the quality of the division of a network quantified.
The metric is defined by Newman| (2004)) and |Leicht & Newman| (2008) as

aa _ deg” (i) deg™ (j)
zz:Vj Gz):c; () (Cm t) 7 ®)

where t = Ziv Z;V Cz‘}. We employ the method introduced by |[Dugué & Perez| (2015) to identify community
structures. As this method automatically detects the number of communities, it supports intrinsic evaluation
by inferring community structure directly from the CMs.

4.2 Generating Graphs Using Linear Classifiers

Training LCs. We employ LCs to gain insight into both the linear separability of features and the actual
“understanding” of an NN under analysis. Contrary to previous works (Alain & Bengiol 2016; |Graziani

Published in Transactions on Machine Learning Research (01/2026)

et al., |2019; Liang et al., [2022)), we introduce a novel training approach in which the LC is not only trained
on the true labels, but also on the model predictions, similar in spirit to knowledge distillation (Hinton et al.
2015). Thus, we define the following loss function

E(z(k)a yv’g) = A‘6(31'3(2"(]6)?/!/) + (1 - A) [’CE(Z(k)a g)7 (4)

where z(*) denotes the outputs or predictions of the LC, Lcg denotes the cross entropy loss, y denotes a
one-hot encoded vector containing the true label and y denotes the label predicted by the NN under analysis.
The parameter A € [0, 1] weights the influence of the true labels and the model predictions. Here, we explore
the two boundary cases that reveal distinct and complementary insights:

1. A =1 (true labels): The LC is trained only on ground-truth labels. Its accuracy directly translates
to class separability.

2. A = 0 (predicted labels): The LC is trained on the model’s current predictions. Because the LC
receives no information beyond the model output, its accuracy does not exceed that of the model
(cf. Appendix ; it matches the model’s true performance and gives insights into the training
process and the class learning. It is therefore preferred for the interpretability investigations.

Intermediate A-values yield results that lie between these two cases and are discussed in Appendix [A23] In
addition, the impact of training with weight decay is discussed in Appendix [A-4]

Generation of CMs. LCs are employed to generate CMs. In this paper, we use normalized CMs C,
where the entry C; describes the fraction of samples belonging to class s that are classified as class t. So
the rows of the CMs represent the true labels of the dataset and the columns the labels predicted by the LC.
We create CMs for both the training and validation sets. For this, the training set is split into two parts:
one is used to train the LCs, while the other is used to compute CMs based on feature vectors that were not
seen during LC training. The trained LCs are also applied to the validation set to generate CMs from its
feature vectors.

Generation of Weighted Graphs. Next, a graph is created for each layer leveraging the previously
generated CMs. The graph is described by its adjacency matrix C*4 € R¥*N where N is the number of
classes. We set C*! = C —C @I, as we are only interested in the erroneous predictions, where ® represents
the Hadamard product and Iy the identity matrix of size N x N. This leads to a weighted and directed
graph.

5 Experiments and Results

We first describe our experimental setup for both the NN training and the training of the LCs in Section [5.1]
In Section [5.2] we discuss the evolution of confusion communities and show our graph visualizations. In
Section dataset issues are uncovered, and we investigate the linear separability of classes in Section

5.1 Experimental Setup

Model and Dataset. Unless specified otherwise, all experiments were conducted on CIFAR-
100 (Krizhevsky et all [2009), a dataset which contains images of 100 classes, each of which belongs to
one of 20 superclasses. We used this dataset due to its open availability and low computational require-
ments, which allow reproducibility even with limited hardware resources. Additionally, we present results
on Tiny ImageNet (Le & Yang, 2015), which contains 200 classes to demonstrate the generalization and
scalability of our approach to larger datasets and discuss further scalability adjustments in Appendix [A-5]

We trained ResNet-50 (He et al. [2016]) without pretraining on CIFAR-100 with batch size 1,024 and learning
rate 0.003 for 71 epochs with the Adam (Kingma & Bal [2015) optimizer. For the vision transformer intro-
duced by |Saghar Irandoust et al.| (2022)), which we refer to as EffVit throughout this work for readability,
we followed their training setup and used batch size 64, learning rate 0.001 and AdamW (Ilya Loshchilov &

Published in Transactions on Machine Learning Research (01/2026)

Frank Hutter], [2019) optimizer for both CIFAR-100 and Tiny ImageNet. The model was trained for 1,000
and 341 epochs, respectively. We chose these networks as we are interested in analyzing two different archi-
tectures. For CNNs, ResNet-50 serves as a widely recognized baseline and is frequently used in literature,
making it a suitable choice (Rangel et al., 2024]). As we are also interested in transformer-based models and
want to provide easily reproducible results, we trained EffVit as it is accessible to a broad audience. It can
be trained in 24h using a single GPU. In all our evaluations we use a single 32 GB NVIDIA V100 GPU.

LC Implementation. At every 5 training epochs for ResNet-50 and every 10 for EffVit, one LC was
trained on the feature vectors from the model: for ResNet-50, from the output of each block; and for EffVit,
from the outputs of five decoder stages. Due to the varying dimensionality of layer outputs in ResNet-50,
we used four different learning rates for the LCs: 0.0001, 0.0002, 0.0006, and 0.001. For EffVit, we trained
the LCs for both datasets with learning rate 0.01 for each decoder, as the dimensionality of the features is
the same. We trained the LCs on 80 % of the images from the training partition, while the remaining 20 %
and the validation split were used to compute the CMs for the generation of the graphs. We present results
for a single initialization of the LCs and demonstrate their robustness to initialization and hyperparameters
in Appendix [A-6] The computational overhead introduced by this as well as practical guidelines on choosing
which epochs to analyze are discussed in Appendices [A77] and respectively.

5.2 Confusion Communities

In this section we identify confusion communities (CCs) from the introduced graph representation and discuss
how they evolve over the training process and through the layers. We are interested in the learning process
of NNs, and therefore look at the graphs created with A = 0 for the training images, i.e., the LC is trained
on the predictions of the NN and evaluated on unseen images from the training set. We identified CCs
by maximizing the modularity of the groupings (cf. Section [4.1). The modularities for both ResNet-50
and EffVit are depicted in Appendix [AJ9] Figures [30] - B4l Figure [2| shows the graph representations for
Resnet-50 for epochs 1, 26, and 71 for the final layer, where the CCs are depicted by proximity and color
of the nodes. The epochs were chosen to represent three stages of the training; mostly untrained (accuracy
3.14%), mediocre classification performance (accuracy 54.95%) and converged model (accuracy 70.26%).
The thickness of the edges indicates their weight, and arrows denote directionality. Graph sparsity and its
implications are discussed in Appendix For a more detailed analysis, full-resolution vector graphics
are available in the accompanying GitHub repository. The graphics were created using Gephi (Bastian et al.,
2009).

Early Training Confusion Hubs. After training for just one epoch, few classes in our representation
nodes emerged as hubs in the graph. Hubs are nodes with a large in-degree. As highlighted in Figure [2]in
the left plot for ResNet-50 the most predicted classes are computer keyboard, sea and possum. The same
is observed for EffVit (cf. Appendix Figure : the hubs here are different to the ones of ResNet-50,
as the architecture, number of parameters and initialization are also different. When reversing the order
of the dataset and shuffling the dataset with a set seed, we observe that this also changes which classes
are predicted most often in the first epoch (cf. Appendix Figure . Since the weight initialization
in our case is the same, any variation in predictions here can be attributed solely to the data ordering.
This suggests that the order of the training dataset is important for the performance in early stages of the
training. It also shows that the initial predictions are not only inherent to the model initialization, but also
rely on the initialization of the dataset. These hubs also end up in different CCs for the converged models.
This observation also raises the question whether some classes are inherently more difficult to learn than
others, which is investigated in Appendix [A-T12]

Main Takeaway: In the first training epoch, a few dominant classes act as confusion hubs, and the dataset
ordering — not just model initialization — plays a key role in shaping early predictions.

Emergence of Semantic Groupings Over Training. As we continue the training process, in Figure
in the right plot, we can see the emergence of clear patterns, where humans, trees, animals, things, etc.
are already grouped together. The CCs are still heavily intertwined at this stage. In comparison, for the
converged model (bottom plot) we observe a reduced intergroup connectivity, accompanied by an increased

Published in Transactions on Machine Learning Research (01/2026)

,//

_ Snail Rose
ir Aquarium fish
: Poj

Epoch 71

Figure 2: Confusion evolution of ResNet-50 using the training set. Visualization of CCs for layer 4
at early (left), intermediate (right), and final (bottom) epochs using our graph representation for the training
set.

number of groupings. While this trend arises in all layers of ResNet-50, the difference is in the certainty of the
grouping and the intergroup connectivity. In the final training epoch, early layers show more connections, so
more confusions, than the final one. The groups are also less refined and the modularity is lower. Evaluating
the LC on the validation set leads to similar groups with a higher connectivity between groups; the tree and
scenery communities are merged for the final layer in the final epoch. The corresponding graphs are depicted
in Appendix [A-T1] Figure[37 It is also noteworthy that certain classes like oak and maple tree are very often
confused with each other. The same is apparent for humans. These strong connections can be interpreted
as an indicator for issues in the dataset and are discussed in Section A similar behavior is observed
for EffVit. The confusion graph evolutions for the training and the validation set of Eff Vit can be found in
Appendix [A7TT] Figures[3§ and [39] After the full training, the graph using the training images in the final
decoder is, however, barely interpretable as the accuracy is almost 100 % and there are few connections in
the final epoch.

Main Takeaway: As training progresses, semantic groupings like animals or trees begin to form, with clearer,
more refined communities and reduced intergroup confusion at convergence.

Published in Transactions on Machine Learning Research (01/2026)

I I I
1 | ===- Natural vs. Man-Made =
_— Superclasses
Z 0.75] R
> ,,,_—_—_'-'-'-‘::_ -----------------------
=z 057 N
@
<
0.25 -
Layers
0 | | | |
0 15 30 45 60
Epochs

Figure 3: Layer-wise assortativity over training epochs. Assortativity computed by superclasses (solid
lines) and by natural vs. man-made grouping (dashed lines), for layers 1 through 4 of ResNet-50.

Comparison to CIFAR-100 Superclasses. The identified CCs, as depicted in Figure [2| are different
from the superclasses, used in CIFAR-100. From a human perspective this is easily explained by the nature
of the superclasses. Mammals are, for example, present in several superclasses as small mammals, medium-
sized mammals or large carnivores. From a human perspective they all fall into the group mammals. This
observation is also confirmed when we analyze the assortativity, as plotted in Figure Following the
categorization by |Al Musawi et al.[(2022), we consider networks with r > 0.7 to show high assortativity, those
with 0.25 < r < 0.7 as moderately assortative, and values below r < —0.25 as indicative of disassortative
mixing. The assortativity for the superclasses through all layers remains relatively low, but still increases
with the training and is higher for deeper layers. This means that only a weak assortative pattern can be
found in regard to the superclasses. If we split the dataset into two groups, namely natural things and
things made by man, we can see that the assortativity after just one training epoch is already fairly high
and increases to show a clear assortative structure of the confusion graphs. This can be interpreted as the
NN quickly learning to distinguish natural and man-made things, but is also partially due to difference in
group sizes. In Appendix we discuss the influence of the group size in regard to random groupings,
where we assign classes to a group at random and compute the assortativity for these random groupings.

Main Takeaway: The network quickly learns to distinguish natural from man-made objects, while the pre-
defined CIFAR-100 superclasses show only weak alignment with the confusion-based groupings.

5.3 Dataset Issues

Leaf Color Bias in Tree Classification. GRAPHIC can also be used to analyze potential issues within
the dataset, as it highlights which classes cannot be separated by an NN. To get a first idea, we look at the
final layer of the converged model (cf. Figure [2f bottom graph). We find that maple trees are often confused
with oak trees and vice versa, even though less pronounced. Taking a look at the images it becomes clear
that the coloring may influence the network decision. We find that maple trees are often shown in fall with
red or yellow leaves, whereas oak trees are mostly colored in green. To test this hypothesis, we changed the
color of 10 images, 5 from the class oak tree and 5 from the class maple tree, respectively. An example is
depicted in Figure [d] the other images are in Appendix Figure [46]

The original image is incorrectly classified as oak tree by ResNet-50. With the color change maple tree is
correctly identified. The color changes for the oak trees lead to a consistent decrease in the probability of
the class oak tree. This suggests a strong relationship between the leaf color and the predicted classes. We
show detailed results for the other images in the appendix. This issue could be addressed by adjusting the
dataset to include a balanced number of trees from all seasons, so that color becomes less indicative of a
specific tree type.

Published in Transactions on Machine Learning Research (01/2026)

Original Modified

Figure 4: Effect of leaf color on classification. Example image of a maple tree before (left) and after
(right) color manipulation.

Boy Boy

Man Baby Man Baby

Woman Girl Woman Oirl

Human Predictions NN Predictions

Figure 5: Human CC created from human and NN predictions. Visualization of the confusion graph
of the human labeling (left) and of the NN predictions (right).

Main Taokeaway: NNs rely on seasonal leaf color for distinguishing oak and maple trees, indicating a dataset
bias that could be mitigated through more diverse, seasonally balanced data.

Ambiguous Human Class Labels. A second inconsistency can be found when looking at the classes
man, woman, boy, girl and baby. Apparently these classes are hard to distinguish, as the classes, i.e., nodes
in the graph, show strong connections and are in one CC. While this makes sense as all images show humans,
the strength of the connection leads us to check the images from the validation set. We quickly spot potential
issues: a man or woman holding a baby, boys and girls hardly distinguishable due to the poor quality of the
images, at what age is a baby a boy or girl and at what age a man or woman?

To further study this issue we enlisted 31 people from ages 21 to 66 to label the human images (man, woman,
boy, girl and baby) of the validation set. For more details about the participants refer to Appendix
Exemplary images we consider ambiguous due to high disagreement among participants are depicted in
Appendix [A-T5] Figure[d7] The study was split into 5 questionnaires with 100 questions each. Two thirds of
the images were different across the five questionnaires. Each participant saw all five questionnaires, which
were the same for each participant. One third of duplicate images was added to see whether these images
were labeled the same or different as the previous time by each participant. The results for this are in

Appendix

The confusion graph created without duplicate images is depicted in Figure Comparing this to the
prediction of the NN the value of the wrong predictions is in general lower, however, the confusion trends are
similar. Like the NN humans confuse the classes boy, girl, and baby with each other. This is not surprising,
as toddlers could be interpreted as babies, boys or girls. Further, the gender can often only be interpreted
using gender stereotypes, like the color of a shirt.

Main Takeaway: CCs reveal that classes like boy, girl, and baby are difficult to distinguish — even for humans
— due to labeling ambiguity and image quality.

Contextual Bias in Flatfish Images. If we take a look at the graphs of earlier layers like layer 2 of
ResNet-50, we often see a strong connection between the class flatfish and the class man (cf. Appendix

10

Published in Transactions on Machine Learning Research (01/2026)

Tailed frog
Trilobite
Mantis Bullfiog o constrictor
Adie Grasshopper Jellyfish
Walking stick American alligator - Coral reef Beach wagon Convertible
~ Scorpion i Snorkel
Monarch Centliat Brain coral Goldfish -
S b S5 ing penguin P . Sports car
Dragonfly ; Slux;a CUCUMBEr Lo e =2 g P! %“ = P@ousme Go-kart
B FIY — Snail Seaslig pyghroom - NESSSE
European fire salamander 2 Police van Lawn mower -
/ Ladybugc S Dugong Birdhouse S = Movingvan
Tarantula — S s ¢ B American lobster
Black widow Nail Chain Cannon
27 Spiny lobster
Ji Pizza
/ aten toner School bus Freight car Mashed potato Meat I0af
_ Water tower
X 75 Trolleybus Plate Wooden spoon
- T : S
- Crane plagpole S SSS Guacamole % S Potpie
7 Alp = Pomegranate Frying pan
Gondola Barn > = ~ - Cauliflower Pretzel -
== - Obelisk Orinis
~~ Lifeboat seashore y, o = > Bell pepper H
_ Triumphal arch = - Cliff S Sulphur butterfly
= =57 Bannister o . Lemon
Projectile - Lakeside CIiff dwelling
o= Suspension bridge Viaduct Ree(l‘
7 Dumbbell bttt keybomd
= SR e Ipod Rocking chair Syringe
al
S 2 Cardigall)'l : Remote control Jinrikisha Candle
D oncho Brass Bucket i
i Torch Pill bottle
Vestment | Swimming trunks Backpack Butcher shop Stopwatch Water jug B bottle
Al s e M: : B u;
Christmas stocking PO Kimono Bikini Broom ey Altar
s O . Volleyball Barbershop S Tunstile . Popbottle
Sock MillErinifong Basketball Pay-phone gpace heater T8 Teapot
Bow tie Oboe 5 Hick Scoreboard s Potierrwheel Confectionery
amask Umbrella Ghiine N
Teddy Miniskirt ; Chest Lampshade Plunger Dining table
Sandal Bullet train Comic book NS CD plager
Academic gown SR Ice lolly Hourglass Punching bag Refrigerator
- Bamrel Sewing machine
Binoculars Sunglasses

Figure 6: Confusion graph of EffVit for Tiny ImageNet using the validation set. Visualization of
CCs for decoder 12 at the final epoch using our graph representation for the validation set.

Figure . The connection is interesting, as men are not confused with flatfish, but flatfish are confused
with men, so the connection is not reciprocal. Flatfish is also sometimes part of the CC of the human classes.
When we look at the images of the flatfish class it becomes apparent why flatfish are confused for men. The
class contains many images where proud anglers hold up their catch. This issue with the dataset has already
been addressed in literature (Wei et al., 2022; Bohm et al. 2023); nevertheless, it highlights how GRAPHIC
is able to visualize dataset errors.

Main Takeaway: Strong confusion between flatfish and man stems from contextual artifacts in the dataset
rather than actual visual similarity.

Dataset Ambiguities in Tiny ImageNet. Examining the graph representation for the validation set of
Tiny ImageNet (Figure @, we can observe several clear patterns indicative of dataset issues. For example,
convertibles are often predicted as sports cars and tabby and Egyptian cats are confused with each other,
but not with Persian cats. If we look at the images of the dataset this not surprising. Many of the sports car
images in the dataset are in fact convertibles. This overlap creates ambiguity in the labels. The confusion
between tabby and Egyptian cat is also related to the dataset: tabby is not a breed but a description of a fur
pattern (Cambridge University Press| [2025)), and many Egyptian cats in the dataset show these markings,
while Persian cats do not show this pattern.

Main Takeaway: Even in larger and more complex datasets, GRAPHIC effectively reveals confusions arising
from ambiguous or inconsistent labels rather than model shortcomings.

11

Published in Transactions on Machine Learning Research (01/2026)

I I
---- Training Set

A~ —— Validation Set
. 0.75 - =
Q
z
S 05| |
< N
sl f

o]

’ Decoders
| |

| |
0 200 400 600 800 1000
Epochs

0

Figure 7: Linear separability trends in EffVit. Accuracy of CMs generated by LCs trained on true
labels for decoders 1, 3, 6, 9, and 12 of EffVit, shown over the training epochs.

5.4 Linear Separability

We analyzed the linear separability of features in Eff Vit by training LCs on the true labels (i.e., with A = 1).
The accuracy of these LCs serves as a direct measure of linear separability throughout the network (Alain
& Bengiol, 2016)). According to |Alain & Bengio (2016), linear separability is enforced by the final layer and
increases over the training epochs and for deeper layers. For ResNet-50, we found the expected trend; it is
depicted in Appendix [A72] Figure [T1]

As shown in Figure [7] we observe that for EffVit in early training epochs, accuracy increases across all
decoders, indicating growing separability. While this trend continues for the later decoders, the early decoders
begin to unlearn this separability as training progresses. To investigate whether this is tied to model depth
or the specific dataset, we trained EffVit variants with 12, 8, and 4 decoders for CIFAR-100 and with 12
decoders for Tiny ImageNet (cf. Appendix Figures |§| and . In all cases, we consistently observe
an initial rise, followed by a decline in linear separability in the early decoders. The decoders seem to learn
differently from CNNs. This is supported by the observation that visual transformers have to learn locality
behavior through training, instead of inherently “knowing” this concept like CNNs (Raghu et al., 2021)).
This work found that early layers attend both locally and globally, while later layers attend mostly globally,
which may be an explanation for the separability behavior.

Main Taokeaway: EffVit’s early decoders initially gain, but then lose linear separability during training. This
effect persists across architectures with 4, 8, and 12 decoders, suggesting a possible difference in how visual
transformers learn compared to CNNs, where linear separability increases monotonously through training.

6 Limitations and Conclusion

GRAPHIC detects dataset-related issues by visualizing how NNs confuse classes. It reveals architectural
differences and similarities between NNs and offers insights into the linear separability of features. By
providing interpretable, class-based visualizations of the training process, GRAPHIC opens new avenues
for debugging and dataset design. Additionally, it draws on concepts from network science to analyze class
confusions from a data-driven perspective. While the experiments presented focus on image recognition tasks,
GRAPHIC can be extended to any classification task as long as labeled data is available. Exploring extensions
in areas like speech classification or text sentiment analysis are promising avenues for understanding NNs
in the future. A current limitation is, however, the overhead created by training the LCs. As future work
will focus on integrating graph construction directly into the training pipeline, we plan to explore strategies
such as reusing LCs pretrained from the previous epoch in order to reduce this overhead and increase the
method’s accessibility. Additionally, fully leveraging GRAPHIC requires manual interpretation of the results
to understand the semantic meaning of the observed confusions. The ability to uncover real confusions has

12

Published in Transactions on Machine Learning Research (01/2026)

direct implications for high-stakes applications, such as medical imaging, where understanding systematic
errors is crucial to reliable and trustworthy use. GRAPHIC provides an actionable method to guide dataset
design, improve model reliability, and enable safer deployment of NNs in critical domains.

Acknowledgments

The authors gratefully acknowledge the scientific support and HPC resources provided by the Erlangen Na-
tional High Performance Computing Center (NHRQFAU) of the Friedrich-Alexander-Universitit Erlangen-
Niwnberg (FAU). The hardware is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation). We would also like to thank Amy G. Schol, Peter M. Frohlich, and Peter R. Frohlich for their
helpful feedback on the manuscript. This work was supported by the DFG under the projects Computation
Coding (MU-3735/8-1 and RE 4182/4-1) and GRK 2950 (Project-ID 509922606).

References

Charu C Aggarwal, Alexander Hinneburg, and Daniel A Keim. On the surprising behavior of distance metrics
in high dimensional space. In International Conference on Database Theory, pp. 420-434. Springer, 2001.

Ahmad F Al Musawi, Satyaki Roy, and Preetam Ghosh. Identifying accurate link predictors based on
assortativity of complex networks. Scientific Reports, 12(1):18107, 2022.

Guillaume Alain and Yoshua Bengio. Understanding intermediate layers using linear classifier probes. arXiv
preprint arXiv:1610.01644, 2016.

Carlos M Alaiz, Angela Fernandez, and José R Dorronsoro. Visualization of the feature space of neural
networks. Proceedings of the European Symposium on Artificial Neural Networks, 2020.

Alessio Ansuini, Alessandro Laio, Jakob H. Macke, and Davide Zoccolan. Intrinsic dimension of data repre-
sentations in deep neural networks. Advances in Neural Information Processing Systems, 32, 2019.

Oriol Artime and Manlio de Domenico. From the origin of life to pandemics: Emergent phenomena in
complex systems. Philosophical Transactions of the Royal Society A, 380(2227), 2022.

Pranjal Atrey, Michael P. Brundage, Min Wu, and Sanghamitra Dutta. Demystifying the accuracy-
interpretability trade-off: A case study of inferring ratings from reviews. arXiv preprint arXiv:2503.07914,
2025.

Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus-Robert Miiller, and
Wojciech Samek. On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance
propagation. PloS One, 10(7), 2015.

Mathieu Bastian, Sebastien Heymann, and Mathieu Jacomy. Gephi: An open source software for exploring
and manipulating networks. In Proceedings of the International AAAI Conference on Web and Social
Media, volume 3, pp. 361-362, Mar. 2009.

Alsallakh Bilal, Amin Jourabloo, Mao Ye, Xiaoming Liu, and Liu Ren. Do convolutional neural networks
learn class hierarchy? IEEE Transactions on Visualization and Computer Graphics, 24(1):152-162, 2018.
doi: 10.1109/TVCG.2017.2744683.

Jan Niklas Béhm, Philipp Berens, and Dmitry Kobak. Unsupervised visualization of image datasets using
contrastive learning. In International Conference on Learning Representations. 2023.

Dirk Brockmann, Lars Hufnagel, and Theo Geisel. The scaling laws of human travel. Nature, 439(7075):
462-465, 2006.

Cambridge University Press. Cambridge dictionary - tabby, 2025. URL https://dictionary.cambridge.
org/de/worterbuch/englisch/tabby.

13

https://dictionary.cambridge.org/de/worterbuch/englisch/tabby
https://dictionary.cambridge.org/de/worterbuch/englisch/tabby

Published in Transactions on Machine Learning Research (01/2026)

David M Chan, Roshan Rao, Forrest Huang, and John F Canny. t-SNE-CUDA: GPU-accelerated t-SNE
and its applications to modern data. In Proceedings of the 30th International Symposium on Computer
Architecture and High Performance Computing, pp. 330-338. IEEE, 2018.

Hila Chefer, Idan Schwartz, and Lior Wolf. Optimizing relevance maps of vision transformers improves
robustness. Advances in Neural Information Processing Systems, 35:33618-33632, 2022.

Jonathan Crabbé and Mihaela van der Schaar. Concept activation regions: A generalized framework for
concept-based explanations. Advances in Neural Information Processing Systems, 35:2590-2607, 2022.

Di Feng, Christian Haase-Schiitz, Lars Rosenbaum, Heinz Hertlein, Claudius Glédser, Fabian Timm, Werner
Wiesbeck, and Klaus Dietmayer. Deep multi-modal object detection and semantic segmentation for au-
tonomous driving: datasets, methods, and challenges. IEFE Transactions on Intelligent Transportation
Systems, 22(3):1341-1360, 2021.

Nicolas Dugué and Anthony Perez. Directed Louvain: mazimizing modularity in directed networks. PhD
thesis, Université d’Orléans, 2015.

Marko Gosak, Rene Markovi¢, Jurij Dolensek, Marjan Slak Rupnik, Marko Marhl, Andraz Stozer, and
Matjaz Perc. Network science of biological systems at different scales: A review. Physics of Life Reviews,
24:118-135, 2018.

Mara Graziani, Henning Muller, and Vincent Andrearczyk. Interpreting intentionally flawed models with
linear probes. In Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops,
pp. 743-777, 2019.

Weisi Guo. Explainable artificial intelligence for 6g: Improving trust between human and machine. IEFE
Communications Magazine, 58(6):39-45, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770-778, 2016.

Andreas Hinterreiter, Peter Ruch, Holger Stitz, Martin Ennemoser, Jiirgen Bernard, Hendrik Strobelt, and
Marc Streit. Confusionflow: A model-agnostic visualization for temporal analysis of classifier confusion.
IEEF Transactions on Visualization and Computer Graphics, 28(2):1222-1236, 2020.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Conference on
Learning Representations. 2019.

Ruochun Jin, Yong Dou, Yueqing Wang, and Xin Niu. Confusion graph: Detecting confusion communities
in large scale image classification. In Proceedings of the International Joint Conference on Artificial
Intelligence, pp. 1980-1986, 2017.

Tan T Jolliffe. Principal component analysis and factor analysis, pp. 115-128. Springer, 1986.

Fariba Karimi and Marcos Oliveira. On the inadequacy of nominal assortativity for assessing homophily in
networks. Scientific Reports, 13(1):21053, 2023.

Hamid Karimi, Tyler Derr, and Jiliang Tang. Characterizing the decision boundary of deep neural networks.
arXiv preprint arXiv:1912.11460, 2019.

Been Kim, Martin Wattenberg, Justin Gilmer, Carrie Cai, James Wexler, Fernanda Viegas, et al. Inter-
pretability beyond feature attribution: Quantitative testing with concept activation vectors (TCAV). In
International Conference on Machine Learning, pp. 2668-2677, 2018.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International Confer-
ence on Learning Representations. 2015.

14

Published in Transactions on Machine Learning Research (01/2026)

Pang Wei Koh, Thao Nguyen, Yew Siang Tang, Stephen Mussmann, Emma Pierson, Been Kim, and Percy
Liang. Concept bottleneck models. In Hal Daumé IIT and Aarti Singh (eds.), International Conference
on Machine Learning, volume 119 of Proceedings of Machine Learning Research, pp. 5338-5348. PMLR,
13-18 Jul 2020.

Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neural network
representations revisited. In International Conference on Machine Learning, pp. 3519-3529, 2019.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. pp. Master’s
thesis, University of Toronto, 2009.

Anders Krogh and John Hertz. A simple weight decay can improve generalization. Advances in neural
information processing systems, 4, 1991.

Himabindu Lakkaraju, Stephen H. Bach, and Jure Leskovec. Interpretable decision sets: A joint framework
for description and prediction. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 1675-1684, 2016.

Yann Le and Xuan Yang. Tiny imagenet visual recognition challenge. Stanford CS 231N, 7(7):3, 2015.

Elizabeth A. Leicht and Mark E. J. Newman. Community structure in directed networks. Physical Review
Letters, 100(11):118703, 2008.

Benjamin Letham, Cynthia Rudin, Tyler H. McCormick, and David Madigan. Interpretable classifiers using
rules and bayesian analysis: Building a better stroke prediction model. The Annals of Applied Statistics,
9(3):1350-1371, 2015.

Yuanzhi Liang, Linchao Zhu, Xiaohan Wang, and Yi Yang. A simple episodic linear probe improves visual
recognition in the wild. In Proceedings of the IEEE/CVFE Conference on Computer Vision and Pattern
Recognition, pp. 9559-9569, 2022.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE. Journal of Machine Learning
Research, 9(Nov):2579-2605, 2008.

Leland MclInnes, John Healy, Nathaniel Saul, and Lukas Groberger. UMAP: Uniform manifold approxima-
tion and projection. Journal of Open Source Software, 3(29):861, 2018.

Melkamu Mersha, Khang Lam, Joseph Wood, Ali K Alshami, and Jugal Kalita. Explainable artificial
intelligence: A survey of needs, techniques, applications, and future direction. Neurocomputing, 599:
128111, 2024.

Fuseini Mumuni and Alhassan Mumuni. Explainable artificial intelligence (xai): From inherent explainability
to large language models. arXiv preprint arXiv:2501.09967, 2025.

M. E. J. Newman. The structure and function of complex networks. STAM Review, 45(2):167-256, 2003a.
Mark E. J. Newman. Mixing patterns in networks. Physical Review E, 67(2):026126, 2003b.

Mark E. J. Newman. Analysis of weighted networks. Physical Review E—Statistical, Nonlinear, and Soft
Matter Physics, 70(5):056131, 2004.

Curtis G Northcutt, Anish Athalye, and Jonas Mueller. Pervasive label errors in test sets destabilize machine
learning benchmarks. In Proceedings of the Conference on Neural Information Processing Systems Datasets
and Benchmarks Track (Round 1), volume 35, 2021.

Jyoti Pareek and Joel Jacob. Data compression and visualization using PCA and t-SNE. In Advances in
Information Communication Technology and Computing, pp. 327-337. Springer Singapore, 2021.

PyTorch Foundation. Reducelronplateau — pytorch 2.7 documentation, 2025. URL https://docs.pytorch.
org/docs/stable/generated/torch.optim.lr_scheduler.ReduceLROnPlateau.html.

15

https://docs.pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.ReduceLROnPlateau.html
https://docs.pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.ReduceLROnPlateau.html

Published in Transactions on Machine Learning Research (01/2026)

Maithra Raghu, Thomas Unterthiner, Simon Kornblith, Chiyuan Zhang, and Alexey Dosovitskiy. Do vision
transformers see like convolutional neural networks? Advances in Neural Information Processing Systems,
34:12116-12128, 2021.

Gabriela Rangel, Juan C. Cuevas-Tello, Jose Nunez-Varela, Cesar Puente, and Alejandra G. Silva-Trujillo.
A survey on convolutional neural networks and their performance limitations in image recognition tasks.

Journal of Sensors, 2024(1):2797320, 2024.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Why should i trust you? explaining the predictions
of any classifier. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 1135-1144, 2016.

Mattia Rigotti, Christoph Miksovic Czasch, loana Giurgiu, Thomas Gschwind, and Paolo Scotton. Attention-
based interpretability with concept transformers. In International Conference on Learning Representations.
2022.

Cynthia Rudin. Stop explaining black box machine learning models for high stakes decisions and use inter-
pretable models instead. Nature Machine Intelligence, 1(5):206-215, 2019.

Saghar Irandoust, Thibaut Durand, Yunduz Rakhmangulova, Wenjie Zi, and Hossein Hajimirsadeghi. Train-
ing a vision transformer from scratch in less than 24 hours with 1 gpu. In Has it Trained Yet? NeurIPS
2022 Workshop, 2022.

Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh, and
Dhruv Batra. Grad-CAM: Visual explanations from deep networks via gradient-based localization. Inter-
national Journal of Computer Vision, 128(2):336-359, 2020.

Chandan Singh, Jeevana Priya Inala, Michel Galley, Rich Caruana, and Jianfeng Gao. Rethinking inter-
pretability in the era of large language models. arXiv preprint arXiv:2402.01761, 2024.

Steven H. Strogatz. Exploring complex networks. Nature, 410(6825):268—-276, 2001.

Jian Tang, Jingzhou Liu, Ming Zhang, and Qiaozhu Mei. Visualizing large-scale and high-dimensional data.
In Proceedings of the International Conference on World Wide Web, pp. 287-297, 2016.

Surat Teerapittayanon, Bradley McDanel, and Hsiang-Tsung Kung. Branchynet: Fast inference via early
exiting from deep neural networks. In Proceedings of the International Conference on Pattern Recognition,
pp- 2464-2469, 2016.

The GIMP Development Team. Gnu image manipulation program (gimp), version 3.0.4. community, free
software (license gplv3), 2025. URL https://gimp.org/.

Lucrezia Valeriani, Diego Doimo, Francesca Cuturello, Alessandro Laio, Alessio Ansuini, and Alberto Caz-
zaniga. The geometry of hidden representations of large transformer models. Advances in Neural Infor-
mation Processing Systems, 36:51234-51252, 2023.

Warren J. von Eschenbach. Transparency and the black box problem: Why we do not trust Al. Philosophy
& Technology, 34(4):1607-1622, 2021.

Yipei Wang and Xiaoqgian Wang. “Why not other classes?”: Towards class-contrastive back-propagation
explanations. Advances in Neural Information Processing Systems, 35:9085-9097, 2022.

Martin Wattenberg, Fernanda Viégas, and Ian Johnson. How to use t-SNE effectively. Distill, 2016.

Jiaheng Wei, Zhaowei Zhu, Hao Cheng, Tongliang Liu, Gang Niu, and Yang Liu. Learning with noisy
labels revisited: A study using real-world human annotations. In International Conference on Learning
Representations. 2022.

Zhicheng Yan, Hao Zhang, Robinson Piramuthu, Vignesh Jagadeesh, Dennis DeCoste, Wei Di, and Yizhou
Yu. Hd-cnn: Hierarchical deep convolutional neural networks for large scale visual recognition. In Pro-
ceedings of the IEEE International Conference on Computer Vision, pp. 2740-2748, 2015.

16

https://gimp.org/

Published in Transactions on Machine Learning Research (01/2026)

Mert Yuksekgonul, Maggie Wang, and James Zou. Post-hoc concept bottleneck models. In International
Conference on Learning Representations, 2023.

Yu Zhang, Peter Tino, Ales Leonardis, and Ke Tang. A survey on neural network interpretability. IEFE
Transactions on Emerging Topics in Computational Intelligence, 5(5):726-742, 2021.

Longfeng Zhao, Gang-Jin Wang, Mingang Wang, Weiqi Bao, Wei Li, and H. Eugene Stanley. Stock market
as temporal network. Physica A: Statistical Mechanics and its Applications, 506:1104-1112, 2018.

S. Kevin Zhou, Hayit Greenspan, Christos Davatzikos, James S. Duncan, Bram van Ginneken, Anant Mad-
abhushi, Jerry L. Prince, Daniel Rueckert, and Ronald M. Summers. A review of deep learning in medical
imaging: Imaging traits, technology trends, case studies with progress highlights, and future promises.
Proceedings of the IEEE, 109(5):820-838, 2021.

A Appendix

The appendix is structured as follows: GRAPHIC is compared to existing approaches in Appendix
Appendix [A72] discusses linear separability trends in EffVit and ResNet-50, while Appendix [A-3] covers A
values between 0 and 1. Training LCs with weight decay is considered in Appendix [A-4] and Appendix [A75]
provides strategies for scaling the approach to datasets with more classes. The robustness of the LCs is
verified in Appendix At the same time, Appendices [A.7] and provide wall-clock time measure-
ments and practical guidelines on how to choose which layers and epochs to probe. Additional information
on modularity is provided in Appendix [A29] while the evolution of sparsity in the graphs is examined in
Appendix [ATT0] Further graph visualizations are depicted in Appendix [A-T1] and the difficulty of classes is
analyzed in Appendix[A-T2] Appendix[AT3]discusses the effect of group size on assortativity. Appendix[A.17]
analyzes the influence of leaf color on tree classification, Appendix discusses ambiguous image labeling,
and Appendix presents additional results of the human study.

A.1 Relation to Existing Explainability and Visualization Methods

GRAPHIC relates to several existing approaches in XAI and model analysis, but differs in its assumptions,
scope, and level of supervision. Concept bottleneck models (Koh et al.,|2020) are intrinsically interpretable
architectures that explicitly decompose prediction into two stages: predicting human-defined concepts and
then using these concepts to predict the final class. This requires a dataset, where concept annotations must
be available during training. Post-hoc concept bottleneck models have also been proposed (Yuksekgonul
et al., 2023)), but still rely on predefined concepts. GRAPHIC is a post-hoc method that operates on
standard classification datasets and can be applied to any NN without modifying its architecture, affecting
its behavior or annotating the existing dataset.

Concept activation vectors (Kim et al., [2018]) is a post-hoc interpretability method that defines concepts
through user-provided examples: a set of samples that exhibit a given concept and a corresponding set
that does not. An LC is then trained on intermediate feature activations to distinguish between these two
groups, but not utilized to generate CMs or graphs. Instead, resulting in a concept activation vector that
represents the direction of the concept in the feature space. This direction can be used to quantify how
sensitive predictions of an NN are to changes along the concept direction, either at the level of individual
predictions or in aggregate, for example, by measuring the fraction of samples in a class that are positively
influenced by the concept. Again, our approach does not rely on concepts.

Our method could, however, be extended to include this analysis. While we work with true labels and model
predictions as labels, we could define concepts as labels to train the LCs as well. With that, one could
analyze how these concepts relate to each other, e.g., whether the concepts striped and dotted are often
confused with each other. While this would require additional labels, this is interesting for datasets with
very few classes, where class confusions can give only few new insights.

t-SNE (Maaten & Hinton) [2008) and UMAP (Mclnnes et al., 2018|) visualize representations by first com-
puting pairwise similarities between samples and then mapping them into a low-dimensional space. When

17

Published in Transactions on Machine Learning Research (01/2026)

these similarities are computed in the input space, however, it is not guaranteed that distance measures such
as the Euclidean distance in high-dimensional settings are semantically meaningful (Aggarwal et al., |2001)).
Prior work has identified dataset artifacts, such as the flatfish confusion (Bohm et all 2023), by looking at
where individual images are grouped into classes, but utilized contrastive learning for the representation.
In contrast, GRAPHIC operates directly on class-level confusions and therefore does not rely on pairwise
image similarities. Furthermore, while t-SNE and UMAP produce one point per image, GRAPHIC analyzes
behavior at the class level.

ConfusionFlow by [Hinterreiter et al.| (2020)) visualizes how confusions evolve over time directly in the cells
of a CM. While this provides a temporal view of misclassifications and gives insights into which classes are
how often confused with others, the approach is limited in scalability. The authors note that it is practical
for datasets with up to 20 classes, as larger class counts quickly become difficult to visualize due to screen
resolution constraints. In contrast, GRAPHIC does not visualize metrics in the CMs directly, but visualizes
the confusions as weighted graphs and extends the analysis to intermediate layers of the network. This
graph-based formulation allows for the use of community detection and metrics from network science to
learn more about class relations and, as shown in the paper, is applicable to datasets with more than 20
classes.

The closest related work to our method is Confusion Graph (Jin et all 2017)). Both methods visualize CMs
as confusion graphs and use tools form network science to analyze CCs. However, this formulation differs
from GRAPHIC in several fundamental ways. First, restricting the graph construction to the top-7 predicted
classes can lead to confusions being missed, even when they are systematic. An example of this can be seen
when looking at their representation of CIFAR-100. By removing weak confusions of the final layer they
miss the connection between the classes flatfish and man. While this is also not a dominant confusion in
our representation in the converged final layer, it is consistently found in the graph through close inspection.
This is also why GRAPHIC is designed for visualizing not only the final layer. As we have discussed in
Section [5.3] the class flatfish is part of the human CC for the converged model in layer 2, but not in layer
4, which makes it easier to spot in early layers. Furthermore, the CCs of Confusion Graph are generally
smaller than the ones we find, as nodes are less connected overall.

Another difference lies in the directionality of the depicted graphs. While GRAPHIC utilizes directed graphs
in an effort to preserve asymmetries in the CMs, Jin et al.| (2017) construct undirected graphs, which can
lead to non-reciprocal connections being averaged and thus be overlooked.

This effect is visible in the analysis of tree classes. [Jin et al.| (2017) attribute these confusions broadly to
similarities in texture and color. While this explanation is generally valid, it obscures more specific dataset
effects. GRAPHIC shows that confusions between trees are especially strong from maple trees to oak trees.
As discussed in Section [5.3] this is likely caused by the seasonal bias in the data. When represented as an
undirected edge, this asymmetric pattern is averaged, reducing its apparent strength in comparison to other
confusions between trees and making the underlying color-driven bias harder to detect.

Finally, as our goal is not solely to visualize confusion patterns in NN, but also to understand the training
process, the temporal aspect of GRAPHIC extends the analysis of Confusion Graph in that direction. This
allows us to study how class confusions emerge, evolve and in some cases disappear over time, providing
additional insights into the learning dynamics of the NN.

A.2 Accuracy

The linear separability trends (the accuracies of the LCs) for EffVit with 8 and 4 decoders are depicted in
Figures [§] and [0] respectively. As discussed, they show a continuous increase in the linear separability over
the training process for later decoders, but show an early increase and then a gradual decrease for early
decoders. The same trend is observed for Eff Vit trained on Tiny ImageNet as depicted in Figure This
is interesting, as it differs from the linear separability trends in ResNet-50, as plotted in Figure It shows
the accuracy of the different layers of ResNet-50 determined by LCs trained on the true labels in comparison
to the true accuracy of ResNet-50. Here we see an increase ending in a stagnation, rather than a drop.

18

Published in Transactions on Machine Learning Research (01/2026)

1r ---- Training Set
A —— Validation Set
. 0.75 | .
[]
=
S 05| |
<

T ——

0.25 },,_M

Decoders
| |

| |
0 200 400 600 800 1000
Epochs

Figure 8: Linear separability trends in EffVit with 8 decoders. Accuracy of CMs generated by LCs
trained on true labels for decoders 1, 2, 4, 6, and 8 of EffVit, shown over the training epochs.

I I
---- Training Set |
N —— Validation Set

0.75

Accuracy
e
ot

Decoders
| |

| |
0 200 400 600 800 1000
Epochs

Figure 9: Linear separability trends in EffVit with 4 decoders. Accuracy of CMs generated by LCs
trained on true labels for decoders 1, 2, 3, and 4 of EffVit, shown over the training epochs.

The accuracy for the LCs trained on the true labels also represents the true potential or the linear separability
of the layer outputs at that stage. An LC trained on the true labels is basically a decision maker that is
allowed additional training in comparison to the last layer of the NN. This is also why the LC initially
outperforms the accuracy of the NN, but converges to a similar accuracy as the model. The final difference
in accuracy can be attributed to the split in the training set. Due to this split, the LC is not trained on all
images the NN is trained on. In the early training it gives an upper bound of the accuracy. Interestingly,
the accuracies for layer 3 and layer 4 are almost the same. This means that instead of using ResNet-50 for
the inference phase, one could also train an LC on the features of layer 3 and use the LC to reduce the cost
of inference. A similar observation was made by |Teerapittayanon et al.| (2016]).

If the LCs are trained on the predicted labels, they give an accurate representation of the true “understand-
ing” of the model. Figure depicts the layer-wise accuracy created through these LCs. The accuracy of
the final layer aligns with the accuracy of the model. The differences, e.g., between epochs 25 and 30, stem
from the differing evaluation intervals, as the model’s accuracy is recorded at each epoch, while the CMs are
evaluated every five epochs.

19

Published in Transactions on Machine Learning Research (01/2026)

I I
1r ---- Training Set ||
~ —— Validation Set
. 0751 =
Q
&
=
g 051 N
<
0.25 — -
/ Decoders
L
0 | | |
0 100 200 300

Epochs

Figure 10: Linear separability trends in EffVit for Tiny ImageNet. Accuracy of CMs generated by
LCs trained on true labels for decoders 1, 3, 6, 9, and 12 of EffVit, shown over the training epochs.

1l |
. 0.75 |- -
Q
&
=
g 0.5 A
/: A ---- Training Set
0.25 | '/ — Validation Set | |
!.' Layers — ResNet-50
0 / | | I I
0 15 30 45 60
Epochs

Figure 11: Linear separability trends in ResNet-50. Accuracy of CMs generated by LCs trained on
true labels for layers 1 to 4, shown over the training epochs. The graph also includes the true accuracy of
ResNet-50 as a baseline.

0.75 |- .

Accuracy
()
ot
I

P ---- Training Set
0.25 |- // — Validation Set | |
/ Layers ———— ResNet-50
s | | I I
00 15 30 45 60
Epochs

Figure 12: Linear separability trends in ResNet-50. Accuracy of CMs generated by LCs trained on
predicted labels for layers 1 to 4, shown over the training epochs. The graph also includes the true accuracy
of ResNet-50 as a baseline.

20

Published in Transactions on Machine Learning Research (01/2026)

1 | |
075 B y
= A=0.75

A =0.50
0.25 - —A=1025]]
A\ —— A =0.00
0 _ | | I I
0 15 30 45 60

Epochs

Figure 13: Linear separability trends in ResNet-50 across several)\ values. Accuracy of CMs
generated by LCs trained on several A values for layer 4, shown over the training epochs for the validation
set.

I
1+ A =1.00 |
A=0.75
075 |)\ - 0.50 N
g —A=10.25
5 — A =0.00
g 051 =
<ﬂ /
0.25 I N
A
0 | | | |
0 15 30 45 60
Epochs

Figure 14: Layer-wise modularity trends in ResNet-50 across several A values. Modularity of CMs
generated by LCs trained on several A values for layer 4, shown over the training epochs for the validation
set.

A.3 Custom Loss Function

As explained in Section [4.2] of the main text, the LCs are trained on a custom loss function. While we focus
on the boundary cases (A = 1 for true labels, A = 0 for model predictions), Figures and show the effect
of intermediate A values.

As discussed, training LCs on the ground truth leads to a de facto upper bound of the accuracy of the NN
under analysis at this stage of training. In contrast, the accuracy of LCs trained on the model predictions
can only be as accurate as the NN and thereby gives insights into the model state.

Intermediate A values interpolate between these two extremes, especially in the early to mid stages of the
training. Once the model training converges, the curves for different A values also converge. Training
with a mixture of true and predicted labels, such as A\ = 0.5, leads to an LC that is partially informed
by ground truth, while still reflecting the internal decision boundaries of the NN under analysis. As the
contribution of the true labels increases, the accuracy of the LCs generally improves and the number of
incorrect predictions decreases. This may make it easier to distinguish problematic confusions arising from
the dataset for datasets with many classes. In regard to the modularity, we find that it is fairly stable across

21

Published in Transactions on Machine Learning Research (01/2026)

I I
1 —_ Baseline R

—— Regularization

0.75

Loss

0.5

0.25

Epochs

Figure 15: Loss curves for training LCs with and without regularization. Training (dashed) and
validation (solid) loss of LCs trained on predicted labels for layer 4 of ResNet-50 at epoch 1, shown over the
training epochs.

T I I

1 % Baseline R

i —— Regularization
0.75 f+)

g

= 0.5 A |
0.25 *'\ s
0 \"-\ ------ P demmmne | P

0 20 40 60 80 100

Epochs

Figure 16: Loss curves for training LCs with and without regularization. Training (dashed) and
validation (solid) loss of LCs trained on predicted labels for layer 4 of ResNet-50 at epoch 71, shown over
the training epochs.

all \ values. This suggests that meaningful group structures can be found and analyzed for any of these
settings.

All X experiments were conducted using identical LC training settings (learning rate, batch size, optimizer,
initialization), and no parameter fine-tuning was performed. The consistent behavior of accuracy and mod-
ularity across different A values therefore indicates that training the LCs is robust to this parameter.

A.4 Regularization

The LCs are so far trained without regularization. To analyze the effect of weight decay
on the results and the LC training Figures [15] and [16] depict the loss curves of training an LC with
and without weight decay for layer 4 for epochs 1 and 71, respectively. As we can see, the loss curves are
very similar. This is also confirmed when looking at the accuracy and modularity of the CMs in Figures [I§]
and As discussed in Appendix our results are robust to the LC training and this is confirmed here
again.

22

Published in Transactions on Machine Learning Research (01/2026)

I I
1 ---- Baseline 8
—— Regularization

0.75 n

Modularity
()
ot
I
|

0.25 |, n

Layers

0 | | | |
0 15 30 45 60

Epochs

Figure 17: Layer-wise modularity over training epochs for ResNet-50 with and without regu-
larization. Modularity of CCs generated from CMs for the LCs trained on predicted labels for layers 1 to
4 over the training epochs for the validation set.

1 | |
0.75 =
&
&
=
g 05 —
< /’__/f

0.25 |- / _—— Baseline

Layers —— Regularization

O | | I I
0 15 30 45 60

Epochs

Figure 18: Linear separability trends in ResNet-50 with and without regularization. Accuracy of
CMs generated by LCs trained on predicted labels for layers 1 to 4, shown over the training epochs for the
validation set.

A.5 Scalability

As GRAPHIC relies on visual cues to identify dataset errors, scalability to datasets with many classes is
discussed here. There are several possible strategies. If visual clutter is caused by numerous confusions
a fraction (e.g., 20% or 40%) can be removed for plotting only. Since all metrics can still be computed
and analyzed for the dense graph, the emerging CCs are still based on the full CMs. This approach is
depicted in Figure [I9] Even though the number of nodes remains unchanged, the reduced edge set leads to
fewer overlapping structures. This can be especially helpful in the early stages of training as there are more
confusions overall.

To address larger numbers of classes, a second approach is to inspect individual CCs instead of the full
graph. The strongest confusions typically cluster together, so looking at CCs one by one greatly reduces
complexity while preserving the relevant structure. As an example of this, Figure [20] depicts the CCs of the
animals and creepy-crawlies. As there are far fewer classes, dominant and, to human interpreters, surprising
confusions can easily be spotted. This scalability approach is also not limited to just CCs in general, any
subset of nodes of interest can be analyzed that way. The CCs are, however, a suitable subset as explained.

23

Published in Transactions on Machine Learning Research (01/2026)

Original 20% Sparsity

40% Sparsity

Figure 19: Sparse confusion graphs of EffVit for Tiny ImageNet. Visualization of CCs for decoder
12 at the final epoch for the validation set (left), the graph with 20% of the edges removed (right), and the
graph with 40% of the edges removed (bottom).

As a complementary insight to understand how CCs interact with each other, nodes could also be aggregated
to supernodes. A straightforward way to do that is to group all nodes in a CC together into one node
representing that community, in the example, one could imagine “animals” and “creepy-crawlies” as two
such supernodes. Edges between these supernodes would then be derived by summing the weights of all
edges that originally connected the corresponding classes. This would provide the missing information when
analyzing CCs individually.

24

Published in Transactions on Machine Learning Research (01/2026)

Tailed frog
Bullfrog ~ American lobster
Goldfish Boa constrictor Spiny lobster
Brain coral European fire salamander
Jellyfish ~ Acorn PN Centipede
Sea cucumber Trilobite P
Coral reef Snail Slug Mushroom]
Sea slug Walking stick ~ Nail
American alligator
Ladybug - Reel ;
Grasshopper =~ Mantis Chain

Scorpion Tarantula
Bee Dingonily Black widow

NMorands Spider web

Sulphur butterfly T

Cockroach

Animals

Creepy-Crawlies

Figure 20: Separate CC graphs of EffVit for Tiny ImageNet. Visualization of the CCs of the animals
(left) and creepy-crawlies (right) for decoder 12 at the final epoch for the validation set.

1 [|
& 0.7 1
.é
£ 05f |
o | e e EEE————
= —
0.25 77 3
Layers
O | | | |
0 15 30 45 60

Epochs

Figure 21: Mean layer-wise modularity over training epochs for ResNet-50. Mean modularity with
three standard deviations of CCs generated from CMs for the LCs trained on true labels for the training set
for layers 1 to 4 over the training epochs. Results are averaged over five seeds.

A.6 Robustness of Linear Classifier Training

To assess the sensitivity of LCs to initialization, we train them on the same features using five different
seeds. In Figure 2I] we plot the mean and three standard deviations of the modularity. Both mean and
its variation across seeds are very stable. While the confusion graphs for different seeds and epochs may
not look identical, the main characteristics remain consistent. This confirms that the training of LCs is
largely independent of initialization, and that the observed CCs are due to the underlying features rather
than random factors in training. Furthermore, we analyze the robustness of the LC training to changes in
the learning rates and batch sizes. For this we trained LCs on layer 4 of ResNet-50 for different batch sizes
and learning rates. Figures 22] and 23] as well as Figures 24] and [25] show the loss curves of the training of
layer 4 for different batch sizes and learning rates, respectively. While we see differences in the loss curves,
the resulting CMs are very similar and the accuracies in Figures [26] and [27] show only negligible variations.
These findings support the robustness of our approach and reinforce the reliability of the insights drawn
from GRAPHIC.

25

Published in Transactions on Machine Learning Research (01/2026)

I

1 4000 |

2000

— 1000
0.75 500 [
= 0.5 R
0.25 |

0 | | | | | N
0 20 40 60 80 100

Epochs

Figure 22: Loss curves for training LCs across several batch sizes. Training (dashed) and validation
(solid) loss of LCs trained on predicted labels for layer 4 of ResNet-50 at epoch 1, shown over the training
epochs.

I
4000

1 .
2000
—— 1000

0.75 — o 1

Loss

,;L——rﬂ——.-,-b’, ————

0.5

0.25

=

SnnE | | |

0 20 40 60 80 100
Epochs

Figure 23: Loss curves for training LCs across several batch sizes. Training (dashed) and validation
(solid) loss of LCs trained on predicted labels for layer 4 of ResNet-50 at epoch 71, shown over the training
epochs.

{ I I
1y Double |
—— Baseline
075 [— Half

Loss

0.5

0.25

| | | | |
0 0 20 40 60 80 100

Epochs

Figure 24: Loss curves for training LCs across several learning rates. Training (dashed) and
validation (solid) loss of LCs trained on predicted labels for layer 4 of ResNet-50 at epoch 1, shown over the
training epochs.

26

Published in Transactions on Machine Learning Research (01/2026)

I I
1 Double [+
—— Baseline
0.75 | — Half
2
3 05]) .
0.25 |
Hememme oo J [
0 80 100

Figure 25: Loss curves for training LCs across several learning rates. Training (dashed) and
validation (solid) loss of LCs trained on predicted labels for layer 4 of ResNet-50 at epoch 71, shown over
the training epochs.

1 | |
. 075 ,) y
% -
=
8 0.5 — N
= 4000
, 2000
0.25 —1000 | |
—— 500
0 | | | T
0 15 30 15 60

Epochs

Figure 26: Linear separability trends in ResNet-50 across several batch sizes. Accuracy of CMs
generated by LCs trained on predicted labels for layer 4, shown over the training epochs for the training
(dashed) and the validation (solid) set.

1 - |
. 0.75 |- e -
Q
&
=
g 051
<

Double
0.25 - —— Baseline | |
—— Half
0 | | I I
0 15 30 45 60

Epochs
Figure 27: Linear separability trends in ResNet-50 across several learning rates. Accuracy of CMs

generated by LCs trained on predicted labels for layer 4, shown over the training epochs for the training
(dashed) and the validation (solid) set.

27

Published in Transactions on Machine Learning Research (01/2026)

Table 1: Wall-clock times for training LCs on ResNet-50 for CIFAR-100. Total times for full
training and with early stopping enabled on four different GPUs.

GPU Model Layer | Without Early Stopping With Early Stopping
Layer 1 | 17,418s (approx. 5h) 5,247s (approx. 1.5h)
NVIDIA A100 Layer 2 | 18,011s (approx. 5h) 5,022s (approx. 1.5h)
Layer 3 | 18,347s (approx. 5.5h) 6,589s (approx. 2h)
Layer 4 | 20,559s (approx. 6h) 8,749s (approx. 2.5h)
Layer 1 | 24,136s (approx. 7h) 7,389s (approx. 2h)
NVIDIA V100 Layer 2 | 25,934s (approx. 7h) 7,377s (approx. 2h)
Layer 3 | 28,513s (approx. 8h) 9,235s (approx. 2.5h)
Layer 4 | 31,121s (approx. 9h) 13,190s (approx. 4h)
Layer 1 | 19,988s (approx. 5.5h) 6,071s (approx. 2h)
NVIDIA RTX 3080 Layer 2 | 21,124s (approx. 6h) 6,201s (approx. 2h)
Layer 3 | 22,777s (approx. 6.5h) 7,315s (approx. 2h)
Layer 4 | 24,004s (approx. 7h) 10,195s (approx. 3h)
Layer 1 | 24,897s (approx. 7h) 7,622s (approx. 2h)
NVIDIA RTX 2080 Ti Layer 2 | 28,625s (approx. 8h) 7,830s (approx. 2h)
Layer 3 | 31,207s (approx. 9h) 10,516s (approx. 3h)
Layer 4 | 33,004s (approx. 9h) 13,987s (approx. 4h)

A.7 Computational Overhead

Training L.Cs at multiple layers and epochs introduces a non-negligible computational overhead. To support
practitioners in assessing what analyses are feasible for their own models and datasets, we discuss the wall-
clock time required for generating CMs with GRAPHIC. All experiments in this section were conducted on
ResNet-50 trained on CIFAR-100.

Table [1) reports the total wall-clock time required to train LCs for fifteen epochs for four layers, both for full
training over 110 epochs and with early stopping enabled. Here, for early stopping we report the training
time of the best LC with 5 epochs added as a simulated patience. Measurements are provided for four
different GPUs: an 11 GB NVIDIA RTX 2080 Ti, a 10 GB NVIDIA RTX 3080, a 32 GB NVIDIA V100,
and a 40 GB NVIDIA A100. The reported times include the training of the LCs, creating the CMs takes
approximately 3s per matrix on all GPUs.

All LCs were trained for the full number of epochs and the best-performing LC subsequently selected.
This choice was made to ensure comparability across experiments. We additionally observe systematic
differences across layers, with LCs for earlier layers generally converging faster than deeper ones. In practical
applications, however, using early stopping is advised.

To further understand the factors influencing runtime, we analyze how training time with early stopping
varies dependent on the NN epoch and the layer for which the LCs are trained. Figure shows that LC
training is less expensive for later epochs, reflecting the increased separability of the representations and
therefore quicker convergence time of the LCs. As shallower layers have smaller hidden dimensions, the
training time for the LCs is generally shorter. Another general factor is how much data is used for the
training.

28

Published in Transactions on Machine Learning Research (01/2026)

2000 1
1500 ¢ =
(]
.g A
g 1000 |- Layers |
) _
| /_ ~
0 | | | |
0 15 30 45 60

Epochs

Figure 28: Layer-wise training time of LCs over epochs. Runtime of training the LCs on the predicted
labels for layers 1 to 4, shown over the training epochs.

0.6 - 2
> L
ﬁi 045 AN i H H 8‘ ‘
= ° X R|e
T 03} 2
= H
0.15 1 o Training Set
Layers e Validation Set
O | | I
0 0.2 0.4 0.6 0.8
Accuracy

Figure 29: Modularity accuracy trends in ResNet-50. Modularity of CMs generated by LCs trained
on true labels for layers 1 to 4, shown over the accuracy of ResNet-50.

A.8 Practical Guidelines

To assist practitioners in choosing when and where to probe their models, we provide empirical guidelines
derived from our experiments. Our analysis indicates a clear positive relationship between the accuracy of
the NN and the modularity of the resulting graphs. While this relationship is not strictly linear, Figure 29]
shows a consistent trend: higher accuracy generally coincides with higher modularity in all layers, with
modularity eventually plateauing for earlier layers.

Practitioners interested primarily in identifying mistakes in the dataset can rely more heavily on the final
epochs, where the model has converged; however, as with the flatfish man confusion, not all dataset issue
may be visible in the final layer. For this reason, we recommend analyzing several layers at the last epoch.

When the goal is to study the evolution of class structures, LCs should be computed for multiple epochs. To
reduce training time, the accuracy of the NN can serve as a guide for selecting which epochs to probe. Early
in training, when accuracy increases rapidly, smaller gaps between epochs are recommended, whereas in the
later stages, larger gaps are likely sufficient. For earlier layers, once some LCs have already been trained, the
accuracy of the CMs can be monitored to decide whether changes still occur and additional LCs are helpful.

29

Published in Transactions on Machine Learning Research (01/2026)

I I
1r ---- Training Set ||
—— Validation Set

0.75

Modularity
()
ot
I
|

S
0.25 *//7 N
Layers
0 | | | |
0 15 30 45 60
Epochs

Figure 30: Layer-wise modularity over training epochs for ResNet-50. Modularity of CCs generated
from CMs for the LCs trained on predicted labels for layers 1 to 4 over the training epochs.

A.9 Modularity

The modularity, i.e., the measure used to group the classes and assess the strength of the grouping (cf.
Section of the main text), is plotted for both ResNet-50 and EffVit for the predicted and true labels for
all layers. Modularity values below zero indicate weaker-than-random groupings, while values above 0.3 are
interpreted as evidence of meaningful community structure according to |Newman! (2004).

For ResNet-50, the LCs trained on the predicted labels (cf. Figure show an interesting trend. The
modularity for layer 4 on the training set tracks the accuracy (cf. Figure , with similar steps. The steps
stem from the used scheduler ReduceLROnPlateau (PyTorch Foundation, 2025)), which reduces the learning
rate if the loss stagnates. For both the predicted labels and the true labels (cf. Figure 7 the grouping
strength for layers 3 and 4 is very similar.

For EffVit, the modularity of the groupings for the predicted and the true labels are depicted in Figure [32]
and [33] respectively. Here, the issue mentioned earlier is also visible: for the training set with the LC trained
on the predicted labels the accuracy is so high that there are almost no confusions, and the groupings become
obsolete and the modularity high. This starts happening between epochs 600 and 800. For the true labels,
this issue is less apparent as the accuracy is lower. The modularity may seem more volatile compared to
ResNet-50, but this is just due to plotting over 1,000 epochs compared to 71.

For Tiny ImageNet, the modularity of the of CCs for CMs created with LCs trained on the true labels is
illustrated in Figure For later decoders, it is higher than for early ones and for the training set the
modularity increases slightly starting around epoch 270. Because EffVit is trained for only 24 hours rather
than to full convergence, the increase in modularity is small as the number of confusions is still relatively
high.

30

Published in Transactions on Machine Learning Research (01/2026)

1r ---- Training Set ||
—— Validation Set
1= 0.75 - N
=
e
"g 0 5 [A —
s = ——
= —
0.25 |7 B
Layers
0 | | | |
0 15 30 45 60

Epochs

Figure 31: Layer-wise modularity over training epochs for ResNet-50. Modularity of CCs generated
from CMs for the LCs trained on true labels for layers 1 to 4 over the training epochs.

0.75 -

Modularity
o
ot
I
[

e it St A e s S P
R e o e | Jamd
0.25 ﬁ -=--- Training Set
Decoders | — Validation Set
| I
0 0 200 400 600 800 1000
Epochs

Figure 32: Layer-wise modularity over training epochs for EffVit. Modularity of CCs generated
from CMs for the LCs trained on predicted labels for decoders 1, 3, 6, 9 and 12 over the training epochs.

0.75

Modularity
(@)
ot

0.25 S -=-=-- Training Set
Decoders | — Validation Set
0 | I
0 200 400 600 800 1000
Epochs

Figure 33: Layer-wise modularity over training epochs for EffVit. Modularity of CCs generated
from CMs for the LCs trained on true labels for decoders 1, 3, 6, 9 and 12 over the training epochs.

31

Published in Transactions on Machine Learning Research (01/2026)

I
1} |==-=-- Training Set n
—— Validation Set

0.75 B

Modularity
()
ot

0.25

Decoders

| | |
0 0 100 200 300

Epochs

Figure 34: Layer-wise modularity over training epochs EffVit for Tiny ImageNet. Modularity of
CCs generated from CMs for the LCs trained on true labels for decoders 1, 3, 6, 9 and 12 over the training

epochs.

1 | —
R I .
o .
2 7
z
2 05) .
n
0.25 - ---- Training Set
Layers — Validation Set
0
0 15 30 45 60
Epochs

Figure 35: Layer-wise sparsity over training epochs for ResNet-50. Fraction of zero entries of CMs
generated by LCs trained on true labels for layers 1 to 4, shown over the training epochs.

A.10 Graph Sparsity

In addition to accuracy and modularity, we examined how sparsity evolves in the graphs over the training.
The sparsity of the CMs or graphs is here defined as the percentage of zero entries of the CMs and depicted in
Figures 35 and [36] for the LCs trained on the true labels and predicted labels, respectively. Here we observed
an interesting development. At the beginning of training, the graphs created from LCs trained on predicted
labels are considerably sparser than those created from LCs trained on the ground truth. This difference
is likely caused by early layer confusion hubs: the LCs trained on predicted labels learn to reproduce these
hubs, leading them to overpredict these classes while rarely predicting the remaining ones. So there are more
zero entries as the in-degree of the regular classes, this is not equivalent with a high accuracy. The LCs
trained on true labels do not learn to predict the confusion hubs and this sparsification does not occur.

32

Published in Transactions on Machine Learning Research (01/2026)

NG ———— :

2
2
g 05) |
n
0.25 - ---- Training Set
Layers —— Validation Set
0 | | I I
0 15 30 45 60
Epochs

Figure 36: Layer-wise sparsity over training epochs for ResNet-50. Fraction of zero entries of CMs
generated by LCs trained on predicted labels for layers 1 to 4, shown over the training epochs.

A.11 Graphs

This section depicts the additional graphs created when training the LCs on the predicted labels, i.e., A = 0,
for both ResNet-50 and EffVit. Figures and [39] show the graphs for ResNet-50 for the validation set,
for EffVit for the training and the validation set, respectively.

As mentioned in Section [5.2]of the main text, the final epoch for the training set for EffVit is less interpretable
(cf. Figure . When the LC is trained on the predicted labels, the accuracy is so high that there are only
few classes left that are incorrectly predicted, meaning that the NN cannot distinguish them. This again
hints at the poor quality of the images, since, for example, leopard and tiger or worm and snake are confused.

To study how the order of training data affects the learned representations, we reversed the dataset before
shuffling. Since we use a fixed random seed for shuffling, reversing the input order leads to a different shuffled
sequence. Figure [0 shows the graph of layer 4 after just one epoch of training under this altered data order.
Notably, compared to Figure |2 of the main text, the dominant hubs shifts from sea to road and from possum
to bear, although computer keyboard remains a hub. This indicates that the early learning process — and
thus the emerging structure in the graph — is partially influenced by the order in which the data is presented.

As a third aspect of the section, we show the confusion of the class flatfish with the class man. An example
of the visualization of this behavior can be found in Figure It depicts the human CC of layer 2 of the
converged ResNet-50 model.

33

Published in Transactions on Machine Learning Research (01/2026)

Epoch 71

Figure 37: Confusion evolution of ResNet-50 using the validation set. Visualization of CCs for
layer 4 at early (left), intermediate (right), and final (bottom) epochs using our graph representation for the
validation set.

34

Published in Transactions on Machine Learning Research (01/2026)

Epoch 201

Ve

Qe Lo
Tiger
Epoch 1000
Figure 38: Confusion evolution of EffVit using the training set. Visualization of CCs for decoder

12 at early (left), intermediate (right), and final (bottom) epochs using our graph representation for the
training set.

35

Published in Transactions on Machine Learning Research (01/2026)

e

Epoch 1000

Figure 39: Confusion evolution of EffVit using the validation set. Visualization of CCs for decoder
12 at early (left), intermediate (right), and final (bottom) epochs using our graph representation for the
validation set.

Figure 40: Effect of dataset order on graph structure. Graph constructed from an LC trained on the
predicted labels for the training set at epoch 1 for layer 4 after reversing the dataset order.

36

Published in Transactions on Machine Learning Research (01/2026)

Boy Flatfish

Baby Man

Girl
Woman

Figure 41: CC of humans including flatfish. Visualization of the human CC of layer 2 of ResNet-50
created using the training set including the class flatfish.

I I
1k ---- Easiest Classes |
—— Hardest Classes
o 0.75
[}
&b
<
X 0.5
=
o]
0.25 sl |
0 ‘ -T--‘-'-'":'T'l-'l-'lﬂ--_-n.--‘---—_ =
0 15 30 45 60

Epochs

Figure 42: Evolution of class difficulty in ResNet-50. Out-degree of the five most difficult (solid lines)
and five easiest (dashed lines) classes identified in epoch 71 for layer 4, shown over the training epochs.

A.12 Class Difficulty

We further investigate whether certain classes are inherently difficult by analyzing the out-degree of the
confusion graphs. We consider the fully converged models and identify the five classes with the highest and
lowest out-degree for both ResNet-50 and EffVit. Figures [42] and [43] depict the evolution of the out-degree
of these ten classes over the training epochs.

For ResNet-50, the classes with the highest out-degree are otter, man, lizard, seal, and girl (ordered from
highest to lowest), while wardrobe, motorcycle, road, sunflower, and mountain are confused the least (ordered
from lowest to highest). For EffVit, the most difficult classes are boy, bowl, girl, otter, and pine tree,
whereas motorcycle, orange, sunflower, pickup truck, and road are among the easiest. Since the out-degree
corresponds to the fraction of misclassified samples of a class and there is a clear overlap between the two
models, these results suggest that some classes are intrinsically harder to recognize than others. Notably,
several of the difficult classes (man, boy, and girl) align with the ambiguous labels discussed in Section

37

Published in Transactions on Machine Learning Research (01/2026)

I I
1 ’f ---- Best Classes |
—— Worst Classes

0.75 B

)

: :\

o0 1

% .

L 051

= l‘I
o F !

oz5ﬂg&
0 VG r':”;(:.":':;’«v":-"'.:\-y".._ﬁ‘{o.a,“.ﬁ ARSGEBrrerindy
0 200 400 600 800 1000

Epochs

Figure 43: Evolution of class difficulty in EffVit. Out-degree of the five most difficult (solid lines) and
five easiest (dashed lines) classes identified in epoch 1000 for decoder 12, shown over the training epochs.

Table 2: Mapping between groups and superclasses. Grouping of the superclasses into natural and
man-made categories.

Groups Superclasses

Natural aquatic mammals, fish, flowers, fruit and vegetables, insects, large carnivores, large natural
outdoor scenes, large omnivores and herbivores, medium-sized mammals, non-insect inver-
tebrates, people, reptiles, small mammals, trees

Man-made | food containers, household electrical device, household furniture, large man-made outdoor
things, vehicles 1, vehicles 2

A.13 Assortativity

We also investigate how the number of groups affects assortativity (cf. Section of the main text). We
have shown that splitting the classes into the two groups natural and man-made leads to a moderate to high
assortativity for all layers. The groups are depicted in Table 2] For the evaluation of the superclasses as
groups the assortativity is drastically lower. Additionally, we introduce a third grouping, where we analyze
the following groups of intuitive concepts: terrestrial animals, aquatic animals, humans, everyday objects &
vehicles, natural & built environments, plants & fungi. In Figure [44] we show that the assortativity for this
division into six groups lies between the others, but is close to the assortativity of the two groups natural
and man-made. This suggests a limited influence of the group size, but also indicates that the group size
alone is not responsible for the assortativity difference.

Next, we randomly assign the classes to two sets according to the group sizes of the split into natural and
man-made and compute the association matrix and with that the assortativity of the split. This is depicted
in Figure The assortativity is similar for all layers and around 0.3. It increases slightly for layer three
and four for the later training epochs. This still suggests a group structure, though it is much less distinct
than with the correct group assignments. Since we are working with only two classes, many individual
categories — whether labeled as man-made or natural — are grouped together, which results in a weak group
structure overall. This is different if we assign the classes randomly to superclasses. Here, we have more
groups and “similar” classes are less likely to be placed together, leading to lower assortativity. For our
random assignments according to the group structure of the intuitive groups, the assortativity is between
the others.

38

Published in Transactions on Machine Learning Research (01/2026)

T I I
1H === Natural vs. Man-Made N
...... Intuitive
. _— Superclasses
= 0751 P
2
I
5 05
%
< :
0.25 =
Layers
0 ‘ | ‘ |
0 15 30 45 60

Epochs

Figure 44: Layer-wise assortativity over training epochs. Assortativity computed by superclasses
(solid lines), intuitive groups (dotted lines), and natural vs. man-made grouping (dashed lines), for layers 1

through 4 of ResNet-50.

I T T
1 {|-=--- Natural vs. Man-Made i
""" Intuitive
0.75 11— Superclasses |

Assortativity
(@)
ot
I
|

0.25 |7

Epochs

Figure 45: Layer-wise assortativity over training epochs for random groups. Assortativity com-
puted for random groups with group size matching those of superclasses (solid lines), intuitive groups (dotted
lines), and natural and man-made things (dashed lines), for layers 1 through 4 of ResNet-50.

A.14 Modified Images

As previously discussed, maple trees are often depicted in fall with yellow, orange or red leaves, whereas oak
trees are often depicted in green. In our representation using graphs, strong confusion between the classes
becomes obvious (cf., e.g., Figure . To analyze the effect of the leaf color on the prediction, we change the
tree color manually using the software GIMP (The GIMP Development Team), 2025|). Figure |46 depicts the
original and modified maple and oak trees. Three out of five images of a maple tree, originally in yellow,
orange or red, were changed to green. Changing the leaf color switches two of the predictions with ResNet-50
from maple tree to oak tree. The bottom image is predicted as a willow tree instead. The top green image
of a maple tree is already correctly identified as a maple tree. Here, a color change increases the probability
of maple tree in the NN’s output distribution from 14.62% to 15.67%. The final image is initially predicted
as oak tree and through the color change, the label is corrected to maple tree. Together, these results show
that there is a direct connection between the tree color and the prediction in the case of maple tree. For
the oak trees the results are not as distinct. The second image from the top and the second image from the
bottom were both originally predicted as oak trees and with the color change predicted as maple trees. For
the three other images, the probability for maple tree increased, but the image is still predicted as oak tree.

39

Published in Transactions on Machine Learning Research (01/2026)

Original Modified Original Modified

Original Modified Origina.l . Modiﬁe:l
. .
Original Modified Original Modified
‘ ‘
Original Modified _ Original - Modified N
ﬂ a
Original Modified Original Modified

Maple trees Oak trees

Figure 46: Effect of leaf color on classification for maple and oak trees. Example images of maple
and oak trees before and after color manipulation.

40

Published in Transactions on Machine Learning Research (01/2026)

‘Woman

Man Girl

Figure 47: Images frequently misclassified by humans. These examples are images from CIFAR-100
that were often confused by human participants during labeling. The true labels are shown below the images.

A.15 Ambiguous Labels and Study Details

As discussed in Section [5.3] of the main text, there are images that are apparently hard to correctly label
for both humans and NNs. Figure [{7] depicts example images that were classified differently by many
participants. Each image has the true label as its caption. The image of a boy was often confused with girl
or baby as the age makes it hard to identify the gender, and there is no clear boundary between baby and
toddler. The woman was confused with a man and the man was often confused with baby, as he has a baby
in his arms. Finally, the girl was confused as being a woman. Again, it is not clear at what age a girl is
perceived as a woman and vice versa. From the study we also derive the NN predicts women as girls and
girls as women. The humans confuse girls as women, but far fewer women as girls. One reason for this may
be that many images of women show them in bikinis. If the NN learns this as a main identifier, fully clothed
women may be mislabeled as girls.

The study involved 31 human participants between the ages of 21 and 66. Of these, 17 identified as male
and 14 as female. Seventeen participants reported using vision correction (e.g., glasses or contact lenses),
while the remaining 14 did not require any correction.

A.16 Duplicate Images

A third of the images labeled by the human participants in our study is made up of duplicate images, so
images appear again in other questionnaires. We did this to evaluate the uncertainty within the labeling.
Many participants split the questionnaires over several days and did not label all images at once. Even if all
questionnaires were done in a single session, there are still differences in the labels of the first and second
encounter. If we check the decisions per participant for each duplicate image, we find the repeat accuracy
to be 83%. This means that 17% of the duplicates were labeled differently from the previous label.

One could argue that this is due to careless labeling errors — instances where participants accidentally selected
a label they did not intend. Across 100 images, participants identified at most two such slip-ups in their
own responses. This again suggests that the images are ambiguous. Examples of ambiguous labeling are
depicted in Figure For the image of the boy the accuracy for the first image is 42%, the duplicate is
identified with 61% accuracy. For the image of the girl the initial labeling accuracy is 39%, the duplicate is
labeled correctly with an accuracy of 23%. 71% of the participants changed their mind about their initial

41

Published in Transactions on Machine Learning Research (01/2026)

Boy Girl

Figure 48: Ambiguity in image labeling. One image shows a boy (left) and was labeled as boy, girl or
woman, the other image shows a girl (right) and was labeled as boy, girl, and baby by humans. For the boy
71% of participants changed their label, for the duplicate image for the girl 48%.

label of the boy, and 48% changed their label of the girl. These results are not surprising, as the age limit
for baby is not clearly defined, and young boys and girls cannot be distinguished given the poor quality of
the images.

42

	Introduction
	Related Work
	Problem Definition
	Methods
	Background: Network Science and Community Detection
	Generating Graphs Using Linear Classifiers

	Experiments and Results
	Experimental Setup
	Confusion Communities
	Dataset Issues
	Linear Separability

	Limitations and Conclusion
	Appendix
	Relation to Existing Explainability and Visualization Methods
	Accuracy
	Custom Loss Function
	Regularization
	Scalability
	Robustness of Linear Classifier Training
	Computational Overhead
	Practical Guidelines
	Modularity
	Graph Sparsity
	Graphs
	Class Difficulty
	Assortativity
	Modified Images
	Ambiguous Labels and Study Details
	Duplicate Images

