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ABSTRACT

In this paper, we introduce Watch-And-Help (WAH), a challenge for testing so-
cial intelligence in agents. In WAH, an AI agent needs to help a human-like agent
perform a complex household task efficiently. To succeed, the AI agent needs to i)
understand the underlying goal of the task by watching a single demonstration of
the human-like agent performing the same task (social perception), and ii) coordi-
nate with the human-like agent to solve the task in an unseen environment as fast
as possible (human-AI collaboration). For this challenge, we build VirtualHome-
Social, a multi-agent household environment, and provide a benchmark including
both planning and learning based baselines. We evaluate the performance of AI
agents with the human-like agent as well as with real humans using objective
metrics and subjective user ratings. Experimental results demonstrate that the
proposed challenge and virtual environment enable a systematic evaluation on the
important aspects of machine social intelligence at scale.1

1 INTRODUCTION

Humans exhibit altruistic behaviors at an early age (Warneken & Tomasello, 2006). Without much
prior experience, children can robustly recognize goals of other people by simply watching them act
in an environment, and are able to come up with plans to help them, even in novel scenarios. In
contrast, the most advanced AI systems to date still struggle with such basic social skills.

In order to achieve the level of social intelligence required to effectively help humans, an AI agent
should acquire two key abilities: i) social perception, i.e., the ability to understand human behavior,
and ii) collaborative planning, i.e., the ability to reason about the physical environment and plan its
actions to coordinate with humans. In this paper, we are interested in developing AI agents with
these two abilities.

Towards this goal, we introduce a new AI challenge, Watch-And-Help (WAH), which focuses on
social perception and human-AI collaboration. In this challenge, an AI agent needs to collaborate
with a human-like agent to enable it to achieve the goal faster. In particular, we present a 2-stage
framework as shown in Figure 1. In the first, Watch stage, an AI agent (Bob) watches a human-like
agent (Alice) performing a task once and infers Alice’s goal from her actions. In the second, Help
stage, Bob helps Alice achieve the same goal in a different environment as quickly as possible (i.e.,
with the minimum number of environment steps).

This 2-stage framework poses unique challenges for human-AI collaboration. Unlike prior work
which provides a common goal a priori or considers a small goal space (Goodrich & Schultz, 2007;
Carroll et al., 2019), our AI agent has to reason about what the human-like agent is trying to achieve
by watching a single demonstration. Furthermore, the AI agent has to generalize its acquired knowl-

1Code and documentation for the VirtualHome-Social environment are available at https://
virtual-home.org. Code and data for the WAH challenge are available at https://github.com/
xavierpuigf/watch_and_help. A supplementary video can be viewed at https://youtu.be/
lrB4K2i8xPI.
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Figure 1: Overview of the Watch-And-Help challenge. The challenge has two stages: i) in the
Watchstage, Bob will watch a single demonstration of Alice performing a task and infer her goal; ii)
then in theHelp stage, based on the inferred goal, Bob will work with Alice to help �nish the same
task as fast as possible in adifferentenvironment.

edge about the human-like agent's goal to a new environment in theHelpstage. Prior work does not
investigate such generalization.

To enable multi-agent interactions in realistic environments, we extend an open source virtual plat-
form, VirtualHome (Puig et al., 2018), and build a multi-agent virtual environment, VirtualHome-
Social. VirtualHome-Social simulates realistic and rich home environments where agents can inter-
act with different objects (e.g, by opening a container or grabbing an object) and with other agents
(e.g., following, helping, avoiding collisions) to perform complex tasks. VirtualHome-Social also
provides i) built-in agents that emulate human behaviors, allowing training and testing of AI agents
alongside virtual humans, and ii) an interface for human players, allowing evaluation with real hu-
mans and collecting/displaying human activities in realistic environments (a functionality key to
machine social intelligence tasks but not offered by existing multi-agent platforms). We plan to
open source our environment.

We design an evaluation protocol and provide a benchmark for the challenge, including a goal in-
ference model for theWatchstage, and multiple planning and deep reinforcement learning (DRL)
baselines for theHelp stage. Experimental results indicate that to achieve success in the proposed
challenge, AI agents must acquire strong social perception and generalizable helping strategies.
These fundamental aspects of machine social intelligence have been shown to be key to human-
AI collaboration in prior work (Grosz & Kraus, 1996; Albrecht & Stone, 2018). In this work, we
demonstrate how we can systematically evaluate them in more realistic settings at scale.

The main contributions of our work are: i) a new social intelligence challenge, Watch-And-Help, for
evaluating AI agents' social perception and their ability to collaborate with other agents, ii) a multi-
agent platform allowing AI agents to perform complex household tasks by interacting with objects
and with built-in agents or real humans, and iii) a benchmark consisting of multiple planning and
learning based approaches which highlights important aspects of machine social intelligence.

2 RELATED WORK

Human activity understanding. An important part of the challenge is to understand human activi-
ties. Prior work on activity recognition has been mostly focused on recognizing short actions (Sig-
urdsson et al., 2018; Caba Heilbron et al., 2015; Fouhey et al., 2018), predicting pedestrian trajec-
tories (Kitani et al., 2012; Alahi et al., 2016), recognizing group activities (Shu et al., 2015; Choi
& Savarese, 2013; Ibrahim et al., 2016), and recognizing plans (Kautz, 1991; Ram�rez & Geffner,
2009). We are interested in the kinds of activity understanding that require inferring other people's
mental states (e.g., intentions, desires, beliefs) from observing their behaviors. Therefore, theWatch
stage of our challenge focuses on the understanding of humans' goals in a long sequence of actions
instead. This is closely related to work on computational Theory of Mind that aims at inferring
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Figure 2: The system setup for the WAH challenge. An AI agent (Bob) watches a demonstration of
a human-like agent (Alice) performing a task, and infers the goal (a set of predicates) that Alice was
trying to achieve. Afterwards, the AI agent is asked to work together with Alice to achieve the same
goal in a new environment as fast as possible. To do that, Bob needs to plan its actions based on i)
its understanding of Alice's goal, and ii) a partial observation of the environment. It also needs to
adapt to Alice's plan. We simulate environment dynamics and provide observations for both agents
in our VirtualHome-Social multi-agent platform. The platform includes a built-in agent as Alice
which is able to plan its actions based on the ground-truth goal, and can react to any world state
change caused by Bob through re-planning at every step based on its latest observation. Our system
also offers an interface for real humans to control Alice and work with an AI agent in the challenge.

humans' goals by observing their actions (Baker et al., 2017; Ullman et al., 2009; Rabinowitz et al.,
2018; Shum et al., 2019). However, in prior work, activities were simulated in toy environments
(e.g., 2D grid worlds). In contrast, this work provides a testbed for conducting Theory-of-Mind type
of activity understanding in simulated real-world environments.

Human-robot interaction. The helping aspect of the WAH challenge has been extensively studied
in human-robot interaction (HRI). However, prior work in HRI has been mainly restricted in lab
environments (Goodrich & Schultz, 2007; Dautenhahn, 2007; Nikolaidis et al., 2015; Rozo et al.,
2016), and the goals in the collaborative tasks were either shared by both agents or were de�ned in a
small space. The setup in WAH is much more challenging – the goal is sampled from a large space,
needs to be inferred from a single demonstration, and must be performed in realistic and diverse
household environments through a long sequence of actions.

Multi-agent virtual environments . There has been a large body of platforms for various multi-
agent tasks (Jaderberg et al., 2019; Samvelyan et al., 2019; OpenAI, 2018; Lowe et al., 2017; Resnick
et al., 2018; Shu & Tian, 2018; Carroll et al., 2019; Suarez et al., 2019; Baker et al., 2019; Bard et al.,
2020). However, these multi-agent platforms can only simulate simple or game-like environments
and do not support for human-AI collaborations on real-life activities. Existing platforms for real-
istic virtual environments mainly focus on single agent settings for tasks such as navigation (Savva
et al., 2019; Xia et al., 2018; Brodeur et al., 2017; Zhu et al., 2017; Xia et al., 2018) , embodied
question answering (Gordon et al., 2017; Wijmans et al., 2019; Das et al., 2018), or single agent task
completion (Puig et al., 2018; Shridhar et al., 2019; Misra et al., 2018; Gao et al., 2019). In contrast,
the proposed VirtualHome-Social environment allows AI agents to engage in multi-agent household
activities by i) simulating realistic and interactive home environments, ii) incorporating humanoid
agents with human-like behaviors into the system, iii) providing a wide range of commands and an-
imations for navigation and object manipulation, and iv) allowing human participation. Because of
these features, VirtualHome-Social can serve as a testbed for complex social perception and human-
AI collaboration tasks, which is complementary to existing virtual environments.

3 THE WATCH-AND-HELP CHALLENGE

The Watch-And-Help challenge aims to study AI agents' ability to help humans in household ac-
tivities. To do that, we design a set of tasks de�ned by predicates describing the �nal state of the
environment. For each task, we �rst provide Bob a video that shows Alice successfully performing
the activity (Watchstage), and then place both agents in a new environment where Bob has to help
Alice achieve the same goal with the minimum number of time steps (Helpstage).
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Figure 2 provides an overview of the system setup for the Watch-And-Help challenge. For this chal-
lenge, we build a multi-agent platform, VirtualHome-Social (Section 4), that i) supports concurrent
actions from multiple agents and ii) provides observations for the agents. Alice represents a built-in
agent in the system; she plans her actions based on her own goal and a partial observation of the
environment. Bob serves as an external AI agent, who does not know Alice's ground-truth goal and
only has access to a single demonstration of Alice performing the same task in the past. During the
Helpstage, Bob receives his observation from the system at each step and sends an action command
back to control the avatar in the environment. Alice, on her part, updates her plan at each step based
on her latest observation to re�ect any world state change caused by Bob. We also allow a human to
control Alice in our system. We discuss how the system and the built-in agent work in Section 4.

Problem Setup.Formally, each task in the challenge is de�ned by Alice's goalg (i.e., a set of goal
predicates), a demonstration of Alice taking actions to achieve that goalD = f st

Alice; at
AlicegT

t =1 (i.e.,
a sequence of statesst

Alice and actionsat
Alice), and a new environment where Bob collaborates with

Alice and help achieve the same goal as quickly as possible. During training, the ground-truth goal
of Alice is shown to Bob as supervision; during testing, Bob no longer has access to the ground-truth
goal and thus has to infer it from the given demonstration.

Goal De�nitions. We de�ne the goal of a task as a set of predicates and their counts, which describes
the target state. Each goal has 2 - 8 predicates. For instance, “ON(plate, dinnertable):2 ;
ON(wineglass, dinnertable):1 ” means “putting two plates and one wine glass onto the
dinner table.” The objects in a predicate refer to object classes rather than instances, meaning that
any object of a speci�ed class is acceptable. This goal de�nition re�ects different preferences of
agents (when setting up a dinner table, some prefer to put water glasses, others may prefer to put
wine glasses), increasing the diversity in tasks. We design �ve predicate sets representing �ve types
of household activities: 1) setting up a dinner table, 2) putting groceries / leftovers to the fridge, 3)
preparing a simple meal, 4) washing dishes, and 5) reading a book while having snacks or drinks.
In total, there are 30 different types of predicates. In each task, the predicates of a goal are sampled
from one of the �ve predicate sets (as a single household activity). More details about the predicate
sets and goal de�nitions are listed in Appendix B.1.

4 VIRTUAL HOME-SOCIAL

Building machine social intelligence for real-life activities poses additional challenges compared to
typical multi-agent settings, such as far more unconstrained goal and action spaces, and the need to
display human actions realistically for social perception.

With that in mind, we create VirtualHome-Social, a new environment where multiple agents (includ-
ing real humans) can execute actions concurrently and observe each other's behaviors. Furthermore,
we embed planning-based agents in the environment as virtual humans that AI agents can reason
about and interact with.

In the rest of this section, we describe the observations, actions, and the built-in human-like agent
provided in VirtualHome-Social. Appendix A includes more information.

Observation space. The environment supports symbolic and visual observations, allowing agents
to learn helping behaviors under different conditions. The symbolic observations consist on a scene
graph, with nodes representing objects and edges describing spatial relationships between them.

Action space. Agents can navigate in the environment and interact with objects in it. To interact
with objects, agents need to specify an action and the index of the intended object (e.g., “grabh3i ”
stands for grabbing the object with id 3). An agent can only interact with objects that are within its
�eld of sight, and therefore its action space changes at every step.

Human-like agents. To enable a training and testing environment for human-AI interactions, it is
critical to incorporate built-in agents that emulate humans when engaging in multi-agent activities.
Carroll et al. (2019) has attempted to train policies imitating human demonstrations. But those
policies would not reliably perform complex tasks in partially observable environments. Therefore,
we devise a planning-based agent with bounded rationality, provided as part of the platform. This
agent operates on the symbolic representation of its partial observation of the environment. As
shown in Figure 3, it relies on two key components: 1) a belief of object locations in the environment
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Figure 3: Overview
of the human-like
agent.

Figure 4: The overall design of the baseline models. A goal inference
model infers the goal from a demonstrationD and feeds it to a helping pol-
icy (for learning-based baselines) or to a planner to generate Bob's action.
We adopt a hierarchical approach for all baselines.

(Figure 13 in Appendix A.3), and 2) a hierarchical planner, which uses Monte Carlo Tree Search
(MCTS) (Browne et al., 2012) and regression planning (RP) (Korf, 1987) to �nd a plan for a given
goal based on its belief. At every step, the human-like agent updates its belief based on the latest
observation, �nds a new plan, and executes the �rst action of the plan concurrently with other agents.
The proposed design allows agents to robustly perform tasks in partially observable environments
while producing human-like behaviors2. We provide more details of this agent in Appendix A.3.

5 BENCHMARK

5.1 EVALUATION PROTOCOL

Training and Testing Setup. We create a training set with 1011 tasks and 2 testing sets (test-1,
test-2). Each test set has 100 tasks. We make sure that i) the helping environment in each task is
different from the environment in the pairing demonstration (we sample a different apartment and
randomize the initial state), and ii) goals (predicate combinations) in the test set are unseen during
training. To evaluate generalization, we also hold out 2 apartments for theHelpstage in the test sets.
For the training set and test-1 set, all predicates in each goal are from the same predicate set, whereas
a goal in test-2 consists of predicates sampled from two different predicates sets representing multi-
activity scenarios (e.g., putting groceries to the fridge and washing dishes). Note that during testing,
the ground-truth goals are not shown to the evaluated Bob agent. More details can be found in
Appendix B. An episode is terminated once all predicates in Alice's goal are satis�ed (i.e., a success)
or the time limit (250 steps) is reached (i.e., a failure).

Evaluation Metrics. We evaluate the performance of an AI agent by three types of metrics: i)
success rate, ii) speedup, and iii) a cumulative reward. For speedup, we compare the episode length
when Alice and Bob are working together (L Help) with the episode length when Alice is working
alone (L Alice), i.e.,L Alice=LBob � 1. To account for both the success rate and the speedup, we de�ne
the cumulative reward of an episode withT steps asR =

P T
t =1 1(st = sg) � 0:004, wherest is the

state at stept, sg is the goal state.R ranges from -1 (failure) to 1 (achieving the goal in zero steps).

5.2 BASELINES

To address this challenge, we propose a set of baselines that consist of two components as shown in
Figure 4: a goal inference model and a goal-conditioned helping planner / policy. In this paper, we
assume that the AI agent has access to the ground-truth states of objects within its �eld of view (but
one could also use raw pixels as input). We describe our approach for the two components below.

Goal inference. We train a goal inference model based on the symbolic representation of states in
the demonstration. At each step, we �rst encode the state using a Transformer (Vaswani et al., 2017)
over visible objects and feed the encoded state into a long short-term memory (LSTM) (Hochreiter
& Schmidhuber, 1997). We use average pooling to aggregate the latent states from the LSTM over
time and build a classi�er for each predicate to infer its count. Effectively, we build 30 classi�ers,
corresponding to the 30 predicates in our taxonomy and the fact that each can appear multiple times.

2We conducted a user study rating how realistic were the trajectories of the agents and those created by hu-
mans, and found no signi�cant difference between the two groups. More details can be found in Appendix D.4.
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Helping policy/planner. Due to the nature of the tasks in our challenge – e.g., partial observability,
a large action space, sparse rewards, strict preconditions for actions – it is dif�cult to search for a
helping plan or learn a helping policy directly over the agent's actions. To mitigate these dif�culties,
we propose a hierarchical architecture with two modules for both planning and RL-based approaches
as shown in Figure 4. At every step, given the goal inferred from the demonstration,ĝ, and the
current observation of Bob, a high-level policy or planner will output a predicate as the best subgoal
to pursue for the current step; the subgoal is subsequently fed to a low-level policy or planner which
will yield Bob's actionat

Bob at this step. In our baselines, we use either a learned policy or a planner
for each module. We use the symbolic representation of visible objects as Bob's observationot

Bob
for all models. We summarize the overall design of the baseline models as follows (please refer to
Appendix C for the details of models and training procedures):

HP: A hierarchical planner, where the high-level planner and the low-level planner are implemented
by MCTS and regression planning (RP) respectively. This is the same planner as the one for Alice,
except that i) it has its own partial observation and thus a different belief from Alice, and ii) when
given the ground-truth goal, the high-level planner uses Alice's plan to avoid overlapping with her.

Hybrid : A hybrid model of RL and planning, where an RL policy serves as the high-level policy and
an RP is deployed to generated plans for each subgoal sampled from the RL-based high-level policy.
This is to train an agent equipped with basic skills for achieving subgoals to help Alice through RL.

HRL : A hierarchical RL baseline where high-level and low-level policies are all learned.

Random: A naive agent that takes a random action at each step.

To show the upper bound performance in the challenge, we also provide two oracles:

OracleB: An HP-based Bob agent with full knowledge of the environment and the true goal of Alice.

OracleA, B: Alice has full knowledge of the environment too.

5.3 RESULTS

We evaluate theWatchstage by measuring the recognition performance of the predicates. The pro-
posed model achieves a precision and recall of 0.85 and 0.96 over the test-1 set. To evaluate the
importance of seeing the full demonstration, we test a model that takes as input the graph represen-
tation of the last observation, leading to a precision and recall of 0.79 and 0.75. When using actions
taken by Alice as the input, the performance increases to a precision and recall of 0.99 and 0.99.
The chance precision and recall is 0.08 and 0.09.

We report the performance of our proposed baselines (average and standard error across all episodes)
in theHelpstage in Figure 5. In addition to the full challenge setup, we also report the performance
of the helping agents using true goals (indicated by the subscriptTG) and using random goals (byRG),
and the performance of Alice working alone. Results show that planning-based approaches are the
most effective in helping Alice. Speci�cally,HPTG achieves the best performance among non-oracle
baselines by using the true goals and reasoning about Alice's future plan, avoiding redundant actions
and collisions with her (Figure 6 illustrates an example of collaboration). Using the inferred goals,
both HP andHybrid can offer effective help. However, with a random goal inference (HPRG), a
capable Bob agent becomes counter productive – frequently undoing what Alice has achieved due
to their con�icting goals (con�icts appear in 40% of the overall episodes, 65% forPut Groceries
andSet Meal). This calls for an AI agent with the ability to adjust its goal inference dynamically
by observing Alice's behavior in the new environment (e.g., Alice correcting a mistake made by
Bob signals incorrect goal inference).HRL works no better thanRandom, even though it shares
the same global policy withHybrid . While the high level policy selects reasonable predicates to
perform the task, the low level policy does not manage to achieve the desired goal. In most of
the cases, this is due to the agent picking the right object, but failing to put it to the target location
afterwards. This suggests that it is crucial for Bob to develop robust abilities to achieve the subgoals.
There is no signi�cant difference betweenRandomandAlice baselines (t(99) = � 1:38, p = 0 :17).

We also evaluate the baselines in the test-2 set, containing tasks with multiple activities. The goal
inference model achieves a precision and recall of 0.68 and 0.64. The performance gap from test-1
indicates that the model fails to generalize to generalize to multi-activity scenarios, over�tting to
predicate combinations seen during training. For theHelp stage, we evaluate the performance of
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