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Abstract

New technologies for recording the activity of large neural populations during
complex behavior provide exciting opportunities for investigating the neural com-
putations that underlie perception, cognition, and decision-making. Nonlinear state
space models provide an interpretable signal processing framework by combining
an intuitive dynamical system with a probabilistic observation model, which can
provide insights into neural dynamics, neural computation, and development of
neural prosthetics and treatment through feedback control. It brings the challenge
of learning both latent neural state and the underlying dynamical system because
neither is known for neural systems a priori. We developed a flexible online learn-
ing framework for latent nonlinear state dynamics and filtered latent states. Using
the stochastic gradient variational Bayes approach, our method jointly optimizes
the parameters of the nonlinear dynamical system, the observation model, and the
black-box recognition model. Unlike previous approaches, our framework can
incorporate non-trivial distributions of observation noise and has constant time
and space complexity. These features make our approach amenable to real-time
applications and the potential to automate analysis and experimental design in
ways that testably track and modify behavior using stimuli designed to influence
learning.

1 Introduction

Discovering interpretable structure from a streaming high-dimensional time series has many appli-
cations in science and engineering. Since the invention of the celebrated Kalman filter, state space
models have been successful in providing a succinct, hence more interpretable, description of the
underlying dynamics that explains the observed time series as trajectories in a low-dimensional
state space. Taking a step further, state space models equipped with nonlinear dynamics provide an
opportunity to describe the latent “laws” of the system that is generating the seemingly entangled
time series [1, 2, 3]. Specifically, we are concerned with the problem of identifying a continuous
nonlinear dynamics in the state space x(t) ∈ Rd that captures the spatiotemporal structure of a noisy
observation y(t):

ẋ = Fθ(x(t),u(t)) (state dynamics) (1a)
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y(t) ∼ P (y(t) | Gθ(x(t),u(t))) (observation model) (1b)

where F and G are continuous functions that may depend on parameter θ, u(t) is control input,
and P denotes a probability distribution that captures the noise in the observation; e.g., Gaussian
distribution for field potentials or Poisson distribution for spike counts.

In practice, the continuous-time state dynamics is more conveniently formulated in discrete time as,

xt+1 = fθ(xt,ut) + εt (discrete time state dynamics) (2)

where εt is intended to capture the unobserved (latent) perturbations of the state xt. Such (spatially)
continuous state space models are natural in many applications where the changes are slow and the
underlying system follows physical laws and constraints (e.g., object tracking), or where learning
the laws are of great interest (e.g. in neuroscience and robotics) [4, 5, 6, 7, 8]. Specifically, in the
context of neuroscience, the state vector xt represents the instantaneous state of the neural population,
while f captures the time evolution of the population state. Further interpretation of f can provide
understanding as to how neural computation is implemented [9, 5, 10].

If the nonlinear state space model is fully specified, Bayesian inference methods can be employed to
estimate the current state [11, 12]. Conventionally, the estimation of latent states using only the past
observation is referred to as filtering – inference of the filtering distribution, p(xt | y≤t). If both past
and future observations are used, then the quantity of interest is usually the smoothing distribution,
p(x≤t | y≤t)). We are also interested in predicting the distribution over future states, p(xt:t+s | y≤t)
and observations, p(yt+1:t+s | y≤t) for s > 0. However, in many applications, the challenge is in
learning the parameters θ of the state space model (a.k.a. the system identification problem). We aim
to provide a method for simultaneously learning both the latent trajectory xt and the latent (nonlinear)
dynamical and observational system θ, known as the joint estimation problem [13].

Expectation maximization (EM) based methods have been widely used in practice [14, 15, 16, 17],
and more recently variational autoencoder methods [18, 19, 20, 21, 22, 23] have been proposed, all
of which are designed for offline analysis, and not appropriate for real-time applications. Recursive
stochastic variational inference has been successful in streaming data assuming independent sam-
ples [24], however, in the presence of temporal dependence, proposed variational algorithms (e.g. [7])
remain theoretical and lack testing.

In this study, we are interested in real-time signal processing and state space control setting [17] where
online algorithms are needed that can recursively solve the joint estimation problem on streaming
observations. A popular solution to this problem exploits the fact that online state estimators for
nonlinear state space models such as extended Kalman filter (EKF) or unscented Kalman filter
(UKF) can be used for nonlinear regression formulated as a state space model. By augmenting the
state space with the parameters, one can build an online dual estimator using nonlinear Kalman
filtering [25, 26]. However, they involve coarse approximation of Bayesian filtering, involve many
hyperparameters, do not take advantage of modern stochastic gradient optimization, and are not
easily applicable to arbitrary observation likelihoods. There are also closely related online version of
EM-type algorithms [4] that share similar concerns.

In hopes of lifting these concerns, we derive an online black-box variational inference framework,
referred to as variational joint filtering (VJF), applicable to a wide range of nonlinear state dynamics
(dynamic models) and observation models, that is, the computational demand of the algorithm is
constant per time step. Our approach aims at

1. Online adaptive learning: Our target application scenarios are streaming data. This allows
the inference during an experiment or as part of a neural prosthetics. If the system changes,
the inference will catch up with the altered system parameters.

2. Joint estimation: The proposed method is supposed to simultaneously learn the latent
states p(xt | y≤t), state dynamics f(xt,ut) and the observation model G(x,u). No offline
training is necessary to learn the system parameters.

3. Interpretability: Under the framework of state space modeling, rather than interpret the
system via model parameters, we employ the language of dynamical systems and capture
the characteristics of the system qualitatively via fixed point, limit cycle, strange attrac-
tor, bifurcation and so on which are key components of theories of neural dynamics and
computation.
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We focus on low-dimensional latent dynamics that often underlie many neuroscientific experiments
and allow for producing interpretable visualizations of complex collective network dynamics in this
study.

2 Variational Principle for Online Joint Estimation

The crux of recursive Bayesian filtering is updating the posterior over the latent state one step at a
time:

p(xt | y≤t) = p(yt | xt)︸ ︷︷ ︸
likelihood

p(xt | y<t)︸ ︷︷ ︸
prior at time t

/p(yt | y<t)︸ ︷︷ ︸
marginal likelihood

(3)

where the input ut and parameters θ are omitted for brevity. Unfortunately, the exact calculations of
Eq. (3) are not tractable in general, especially for nonlinear dynamic models and/or non-conjugate
distributions. We thus turn to approximate inference and develop a recursive variational Bayesian
filter by deriving an evidence lower bound for the marginal likelihood as the objective function. Let
q(xt) denote an arbitrary probability measure which will eventually approximate the filtering density
p(xt | y≤t). From Eq. (3), we can rearrange the marginal log-likelihood as

log p(yt | y<t)

= log
p(yt | xt)p(xt | y<t)

p(xt | y≤t)
for any xt

= Eq(xt)

[
log

p(yt | xt)p(xt | y<t)
p(xt | y≤t)

]
the marginal is constant to q(xt)

= Eq(xt)

[
log

p(yt | xt)p(xt | y<t)q(xt)
p(xt | y≤t)q(xt)

]
= Eq(xt) [log p(yt | xt)]︸ ︷︷ ︸

reconstruction log-likelihood

− DKL(q(xt) ‖ p(xt | y<t)) + DKL(q(xt) ‖ p(xt | y≤t))︸ ︷︷ ︸
variational gap #1

≥ Eq(xt) [log p(yt | xt)] + H(q(xt))︸ ︷︷ ︸
entropy

+ Eq(xt) [log p(xt | y<t)]

= Eq(xt) [log p(yt | xt)] + H(q(xt)) + Eq(xt)

[
logEp(xt−1|y<t) [p(xt | xt−1)]

]
= Eq(xt) [log p(yt | xt)] + H(q(xt)) + Eq(xt)

[
Ep(xt−1|y<t) [log p(xt | xt−1)]

]
+ Eq(xt) [DKL(p(xt−1 | y<t) ‖ p(xt−1 | xt,y<t))]︸ ︷︷ ︸

variational gap #2

≥ Eq(xt) [log p(yt | xt)] + H(q(xt)) + Eq(xt) Ep(xt−1|y<t) [log p(xt | xt−1)]

where H denotes Shannon’s entropy and DKL denotes the Kullback-Leibler (KL) divergence [27].
Maximizing this lower bound would result in a variational posterior q(xt) ≈ p(xt | y≤t) w.r.t. q(xt).
Naturally we plug in the previous step’s solution to the next time step, obtaining a loss function
suitable for recursive estimation:

L :=Eq(xt) [log p(yt | xt)] + H(q(xt)) + Eq(xt) Eq(xt−1) [log p(xt | xt−1)]︸ ︷︷ ︸
dynamics log-likelihood

(4)

This also results in consistent q(xt) for all time steps as they are in the same family of distribution.

Meanwhile, as it is aimed to jointly estimate the observation model p(yt | xt) and state dynamics
p(xt | xt−1), we achieve online inference by maximizing this objective L w.r.t. their parameters
(omitted for brevity) and the variational posterior distribution q(xt) simultaneously provided that
q(xt−1) takes some parameterized form and has been estimated from the previous time step. Max-
imizing the objective L is equivalent to minimizing the two variational gaps: (1) the variational
filtering posterior has to be close to the true filtering posterior, and (2) the filtering posterior from
the previous step needs to be close to p(xt−1 | xt,y<t). Note that the second gap is invariant to
q(xt) if p(xt−1 | xt,y<t) = p(xt−1 | y<t), that is, the one-step backward smoothing distribution is
identical to the filtering distribution.
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On the flip side, intuitively, there are three components in L that are jointly optimized: (1) recon-
struction log-likelihood which is maximized if q(xt) concentrates around the maximum likelihood
estimate given only yt, (2) the dynamics log-likelihood which is maximized if q(xt) concentrates
at around the maximum of Eq(xt−1) [log p(xt | xt−1)], and (3) the entropy that expands q(xt) and
prevents it from collapsing to a point mass.

In order for this recursive estimation to be real-time, we choose q(xt) to be a multivariate normal with
diagonal covariance N (µt, st) where µt is the mean vector and st is the diagonal of the covariance
matrix in this study. Moreover, to amortize the computational cost of optimization to obtain the best
q(xt) on each time step, we employ the variational autoencoder architecture [28] to parameterize
q(xt) with a recognition model. Intuitively, the recognition model embodies the optimization process
of finding q(xt), that is, it performs an approximate Bayesian filtering computation (in constant time)
of Eq. (3) according to the objective function L. We use a recursive recognition model that maps
q(xt−1) and yt to q(xt). In particular, the recognition model takes a deterministic recursive form:

[µt, st] = h(yt,ut−1,µt−1, st−1) (5)

Specifically h takes a simple the form of the multi-layer perceptron (MLP) [29] in this study, and
we refer to its parameters as the recognition model parameters. Note that the recursive architecture
of the recognition model reflects the Markovian structure of the assumed dynamics (c.f., smoothing
networks often use bidirectional recurrent neural network (RNN) [30] or graphical models [18, 20]).

The expectations appearing in the reconstruction log-likelihood and dynamics log-likelihood are not
always tractable in general. For those intractable cases, one can use the reparameterization trick and
stochastic variational Bayes [31, 32]: rewriting the expectations over q as expectation over a standard
normal random variable, i.e., µt + s

1
2
t N (0, 1), and using a single sample for each time step. Hence,

in practice, we optimize the following objective function (the other variables and parameters are
omitted for brevity),

L̂ = log p(yt | x̃t, θ) + Eq(xt) log p(xt | x̃t−1, θ) +H(q(xt)) (6)

where x̃t and x̃t−1 represent random samples from q(xt) and q(xt−1) respectively. Note that
the remaining expectation over q(xt) has closed form solution under our Gaussian state noise, εt,
assumption. Thus, our method can handle arbitrary observation and dynamic model unlike dual form
nonlinear Kalman filtering methods that usually suffer difficulties in sampling, e.g. transforming
Gaussian random numbers into point process observations.

The schematics of the proposed inference algorithm is summarized by two passes in Figure 1. In the
forward pass, the previous latent state generates the new state through the dynamic model, and the
new state transforms into the observation through the observation model. In the backward pass, the
recognition model recovers the current latent state from the observation, and the observation model,
recognition model and dynamic model, are updated by backpropagation.

Algorithm 1 is an overview of the recursive estimation algorithm. Denoting the set of all parameters
by Θ of the observation model, recognition model and dynamic models, the objective function in
Eq. (6) is differentiable w.r.t. Θ, and thus we employ empirical Bayes and optimize it through
stochastic gradient ascent (using Adam [33]). We outline the algorithm for a single vector time series,
but we can filter multiple time series with a common state space model simultaneously, in which case
the gradients are averaged across the instantiations. Note that this algorithm has constant time and
space complexity per time step.

In practice, the measurements yt and input ut are sampled at a regular interval. Algorithm 1 is called
after every such observation event, which will return the state estimate along with the parameters and
the dynamical system. One can visualize these for real-time for monitoring, and/or have it streamed
to another system for further automated processing (e.g. detect anomalies and raise an alarm or
deliver feedback controls).

3 Application to Latent Neural Dynamics

Our primary applied aim is real-time neural interfaces where a population of neurons are recorded
while a low-dimensional stimulation is delivered [34, 35, 36]. State-space modeling of such neural
time series have been successful in describing population dynamics [37, 8]. Moreover, models of
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dynamic model

recognition
model

observation
model

forward

backward

Figure 1: Schematics of variational joint filtering. Blue arrows indicates forward pass in which the
previous latent state generates the new state through the state dynamics, and the new state transforms
into the observation through the observation model. Red arrows indicate backward pass in which
the recognition model recovers the current latent state from the observation. The three components,
observation model, recognition model and dynamical system, are updated by backpropagation.

Algorithm 1 Variational Joint Filtering (single step)
procedure VJF(yt,ut−1,µt−1, st−1,Θ)

εt ← N (0, I), εt−1 ← N (0, I) . Draw random samples
[µt, st] := h(yt,ut−1,µt−1, st−1) . State estimation
x̃t := µt + s

1/2
t εt

x̃t−1 := µt−1 + s
1/2
t−1εt−1

Update Θ with∇Θ L̂(Θ; yt, x̃t, x̃t−1,ut−1) . Model update
return µt, st and Θ

end procedure

neural computation are often described as dynamical systems [38, 39, 40]. For example, attractor
dynamics where the convergence to one of the attractors represents the result of computation [41, 42].
Here we propose a parameterization and tools for visualization of the model suitable for studying
neural dynamics and building neural interfaces [9]. In this section, we provide methodological details
for the results presented in the next section.

3.1 Parameterization of the state space model

Having in mind high-temporal resolution neural spike trains where each time bin has at most one
action potential per channel, we describe the case for point process observation. However, note that
our method generalizes to arbitrary observation likelihoods that are appropriate for other modalities,
including calcium imaging or local field potentials. The observed point process time series yt is a
stream of sparse binary vectors. All experiments of point process observation were binned finely so
that the time bins contain one event each at most in this study.

Our observation model, Eq. (7), assumes that the observation vector yt is sampled from a probability
distribution P determined by the latent state xt though a linear-nonlinear map possibly together with
extra parameters at each time t,

yt ∼ P (g(Cxt + b)) (7)

where g : R→ R is a point-wise map. We use the canonical link g(·) = exp(·) for Poisson likelihood
and identity for Gaussian likelihood in this study. Note that this observation model is not identifiable
since Cxt = (CR)(R−1xt) where R is an arbitrary invertible matrix. We normalize the loading
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matrix C in each iteration. It is straightforward to include more additive exogenous variables,
history-filter for refractory period, coupling between processes, and stimulation artifacts [43, 44].

For state dynamic model, we propose to use a specific additive parameterization with state transition
function and input interaction as a special case of Eq. (2),

xt+1 = xt + f(xt) + Btut + εt+1 (8a)
f(xt) = Wφ(xt) (8b)

x0, εt ∼ N (0, σ2I) (8c)

where φ(·) is a vector of r continuous basis functions, i.e. φ(·) = (φ1(·), . . . , φr(·))>, W is
the weight matrix of the radial basis functions, and Bt is the interaction with the input ut. The
interaction Bt can be globally linear, parameterized as a matrix independent from xt, or locally
linear, parameterized as a matrix-valued function of xt using also RBF networks. i.e. vec(B(xt)) =
WBφ(xt) where WB is the respective weight matrix. In this study, we used squared exponential
radial basis functions [4, 7, 6, 9],

φi(x) = exp

(
−1

2
γi‖x− ci‖22

)
(9)

with centers ci and corresponding inverse squared kernel width γi. Though the dynamics can be
modeled by other universal approximators such as percepton and RNN, we chose the radial basis
function network for the reasons of non-wild extrapolation (zero velocity when the state is far away
from data) and fast computation.

The time complexity of our algorithm is O(mpr + n(m + p + q)) where n,m, p, q, r denote the
dimensions of observation, latent space, input, the numbers of hidden units and radial basis functions
for this specific parameterization. Practically to achieve realistic computation time for real-time
applications in neuroscience, the number of radial basis functions and hidden units are constrained by
the requirement. Note that the time complexity does not grow with time that enable efficient online
inference. If we compare this to an efficient offline algorithm such as PLDS [37] run repeatedly for
every new observation (“online mode”), its time complexity is O(t · (m3 +mn)) per time step at
time t which grows as time passes, making it impractical for real-time application.

3.2 Phase portrait analysis

Phase portrait displays key qualitative features of dynamics, and with a little bit of training, it provides
a visual means to interpreting dynamical systems. The law that governs neural population dynamics
captured in the inferred function f(x) directly represents the velocity field of an underlying smooth
dynamics (1a) in the absence of input [4, 9]. In the next section, we visualize the estimated dynamics
as phase portrait which consists of the vector field, example trajectories, and estimated dynamical
features (namely fixed points) [45]. We can numerically identify candidate fixed points x∗ that satisfy
f(x∗) ≈ 0. For the synthetic experiments, we performed an affine transformation to orient the phase
portrait to match the canonical equations in the main text when the simulation is done through the
proposed observation model if the observation model is unknown and estimated.

3.3 Prediction

For state space models, we can predict both future latent trajectory and future observations. The
s-step ahead prediction can be sampled from the predictive distributions:

p(xt+1:t+s | y≤t) =Eq(xt)[p(xt+1:t+s | xt)] (10a)

p(yt+1:t+s | y≤t) =Ep(xt+1:t+s|y≤t)[p(yt+1:t+s | xt+1:t+s)] (10b)

given estimated parameters by current time t without seeing the data yt+1:t+s during these steps. In
the figures of experiments, we plot the mean of the predictive distribution as trajectories.

4 Experiments on Theoretical Models of Neural Computation

We demonstrate our method on a range of nonlinear dynamical systems relevant to neuroscience.
Many theoretical models have been proposed in neuroscience to represent different schemes of

6



computation. For the purpose of interpretable visualization, we choose to simulate from two or
three dimensional dynamical systems. We apply the proposed method to four such low-dimensional
models: a ring attractor model as a model of internal head direction representation, an nonlinear
oscillator as a model of rhythmic population-wide activity, a biophysically realistic cortical network
model for a visual discrimination experiment and a chaotic attractor.

In the synthetic experiments, we first simulated state trajectories by respective differential equations,
and then generated either Gaussian or point process observations (to mimic spikes) via Eq. (7)
with corresponding distributions. The parameters C and b were randomly drawn, and they were
constrained to keep firing rate < 60 Hz on average for realistic spiking behavior. All observations are
spatially 200-dimensional unless otherwise mentioned. We refer to their conventional formulations
under different coordinate systems, but our simulations and inferences are all done in Cartesian
coordinates. Note that we focus on online learning in this study and always train our model with
streaming data, even while comparing with offline methods.

The approximate posterior distribution is defined recursively in Eq. (5) as diagonal Gaussian with
mean and variance determined by corresponding observation, input and previous step via a recurrent
neural network. We used a one-hidden-layer MLP in this study. Typically the state noise variance σ2

is unknown and has to be estimated from data. To be consistent with Eq. (8c), we set the starting
value of σ2 to be 1, and hence µ0 = 0, s0 = I. We initialize the loading matrix C by factor analysis,
and column-wisely normalize it by `2 norm every iteration to keep the system identifiable.

4.1 Ring attractor

Continuous attractors are often used as models for neural representation of continuous variables [6, 5].
For example, a bump attractor network with ring topology is proposed as the dynamics underlying the
persistently active set of neurons that are tuned for the angle of the animal’s head direction [46]. Here
we use the following 2-variable reduction of the ring attractor system: First, we study the following
two-variable ring attractor system:

τr ṙ = r0 − r
τϕϕ̇ = I

(11)

where ϕ represents the direction driven by input I , and r is the radial component representing an
internal circular variable, such as head direction. We simulated 100 trajectories (1000 steps) with
step size ∆t = 0.1, r0 = 1, τr = 1, τϕ = 1 with Gaussian state noise (std = 0.005) added each
step. Though the ring attractor is defined in polar coordinate system, we transformed it into Cartesian
system for simulation and training. In simulation we used strong input (tangent drift) to keep the
trajectories flowing around the ring clockwise or counter-clockwise. The point process observations
were generated by passing the states through a linear-nonlinear map (Eq. (7)) and sampling from a
Poisson distribution. We streamed the observations into the proposed algorithm that consists of point
process likelihood, dynamic model with 20 radial basis functions and locally linear input interaction
in Eq. (2) and a recognition MLP with 100 hidden units.

Figure 2A illustrates one latent trajectory (black) and its variational posterior mean (blue). These two
trajectories start at green circle and diamond respectively and end at the red markers. The inference
starts near the center (origin) that is relatively far from the true location because the initial posterior
mean is set at zero. The final states are very close which implies that the recognition model works
well. Figure 2B shows the reconstructed velocity field by the model. We visualized the velocity as
colored directional streamlines. We can see the velocity toward the ring attractor and the speed is
smaller closer to the ring. The model also identifies a number of fixed points arranged around the
ring attractor via numerical roots finding. Figure 2C shows the distribution of posterior means of
all data points in the state space. We have more confidence of the inferred dynamical system in the
denser area.

Figure 2D shows the three components of Eq. (4) and the objective lower bound clearly, demonstrating
the convergence of the algorithm. We can see each component reaches a plateau within 400 sec.
As the reconstruction and dynamics log-likelihoods increase, the recognition model and dynamical
model are getting more accurate while the decreasing entropy indicates the increasing confidence
(inverse posterior variance) on the inferred latent states. The average computation time of a joint
estimation step is 1.1 ms (hardware specification: Intel Xeon E5-2680 2.50G Hz, 128GB RAM, no
GPU).
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Figure 2: Ring attractor model. (A) One latent trajectory (black) in the training set and the
corresponding filtered mean µt (blue). (B) Velocity field reconstructed from the trained proposed
model. The colored streamlines indicates the speed and the directions. The black crosses are
candidate fixed points obtained from inferred dynamics. Note the collection of fixed points around
the ring shape. The central fixed point is unstable. (C)Density of the posterior means. The density
of inferred means of all trajectories in the training set. The higher it is, the more confidence we
have on the inferred dynamics where we have more data. (D) Convergence on the ring attractor. We
display the three components of the objective lower bound: reconstruction log-likelihood, dynamics
log-likelihood, entropy, and the lower bound itself from Eq. (4). The average computation time per
step is 1.1 ms (more than 900 data points per sec).

4.2 Nonlinear oscillator

Dynamical systems have been a successful application in the biophysical models of single neuron in
neuroscience. We used a relaxation oscillator, the FitzHugh-Nagumo (FHN) model [47], which is a
2-dimensional reduction of the Hodgkin-Huxley model: We used a with the following nonlinear state
dynamics:

v̇ = v(a− v)(v − 1)− w + I,

ẇ = bv − cw, (12)

where v is the membrane potential, w is a recovery variable and I is the magnitude of stimulus
current in modeling single neuron biophysics. This model was also used to model global brain state
that fluctuates between two levels of excitability in anesthetized cortex [48]. We use the following
parameter values a = −0.1, b = 0.01, c = 0.02 and I = 0.1 to simulate 100 trajectories of 1000
steps with step size 0.5 and Gaussian noise (std=0.002). At this regime, unlike the ring attractor, the
spontaneous dynamics is a periodic oscillation, and the trajectory follows a limit cycle. The point
process observations were also sampled via the observation model of the same parametric form as
that of the ring attractor example. We used 20 radial basis functions for dynamic model and 100
hidden units for recognition model. While training the model, the input was clamped to zero, and
expect the model to learn the spontaneous oscillator.
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We compare the state estimation with the standard particles filtering (PF) which are powerful online
methods theoretically capable of producing arbitrarily accurate filtering distribution. We run two
variants of the particle filter with different proposal distributions. One used diffusion as the proposal,
i.e. xt = xt−1 + εt where x is the vector of state variables v and w, and the other, a.k.a. bootstrap
particle filter [49], used the true dynamics in Eq. (12). We provided the true parameters for the
observation model and noise term to PF which gives them an advantage. Both particle filters and
VJF were run on 50 realizations of 5000-step long observation series. Figure 3 shows the root mean
squared deviations (RMSE) (mean and standard error over 50 realizations). It is expected that the
bootstrap particle filter outperformed the diffusion particle filter since the former utilized the true
dynamics. One can see the state estimation by VJF improved as learning carrying on and eventually
outperformed both particle filters. Note that VJF had to learn the parameters of likelihood, dynamic
model and recognition model during the run. We varied the number of RBFs (20 and 30) but the
results are not substantially different.

0 2000 4000 0 2000 4000
step

R
M

S
E

N
eu

ro
n

step

A B
Diffusion PF
FHN PF
VJF (20 RBFs)
VJF (30 RBFs)

1.6

0.8

0.0

Figure 3: Nonlinear oscillator (FitzHugh-Nagumo) observation and state estimation. (A) The
synthetic spike train. (B) RMSEs (the shades are s.e.m.) of state estimation on the observation in (A).
We report the RMSE of estimated states among the proposed method VJF and two particle filters,
one with diffusion dynamics and the other with the true FHN dynamics. Varying the number of RBFs
did not substantially change the quality of the results.

We also reconstructed the phase portrait (Fig. 4B) comparing to the truth (Fig. 4C). The two dashed
lines are the theoretical nullclines of the true model on which the velocity of corresponding dimension
is zero. The reconstructed field shows a low speed valley overlapping with the nullcline especially on
the right half of the figure. At the intersection of the two nullclines there is an unstable fixed point.
We can see the identified fixed point is close to the intersection. As most of the trajectories lie on
the oscillation path (limit cycle) with merely few data points elsewhere, the inferred system shows
the oscillation dynamics similar to the true system around the data region. The difference mostly
happens in the region far from the trajectories because of the lack of data.

We run a long-term prediction using VJF without seeing the future data yt+1:T during these steps
(T = 1000 steps = 1 sec) beginning at the final state of training data. We show the truth and
prediction in figure 4D. The upper row is the true latent trajectory and corresponding observations.
The lower row is the filtered trajectory and prediction by the proposed method. The light-colored
parts are the 500 steps of inference before prediction and the solid-colored parts are 1000 steps truth
and prediction. We also show the sample observations from the trained observation model during the
prediction period.

One of the popular latent process modeling tools for point process observation that can make
prediction is the Poisson Linear Dynamical System (PLDS) [37] which assumes latent linear dynamics.
We compared PLDS fit with EM on its long-term prediction on both the states and spike trains (Fig. 4).
This demonstrates the nonlinear dynamical model outperforming the linear model even in the unfair
online setting.

To compare to the methods with nonlinear dynamical models, we also run latent factor analysis via
dynamical systems (LFADS) [50] offline using the same data. LFADS implements its dynamical
model with the gated recurrent unit (GRU) [51] that requires high dimensions. For this 2D system,
we tried different GRU dimensionalities. We made minimal changes to its recommended setting
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Figure 4: Nonlinear oscillator (FitzHugh-Nagumo) dynamical system and prediction. (A) One
inferred latent trajectory and the density of posterior means of all trajectories. Most of the inferred
trajectory lie on the oscillation path. (B) Velocity field reconstructed by the inferred dynamical
system. (C) Velocity field of the true dynamical system. The dashed lines are two nullclines of the
true model on which the gradients are zero so as the velocity. (D) 1000-step prediction continuing
the trajectory and sampled spike trains compared to ground truth from (A). (E) Mean (solid line) and
standard error (shade) of root mean square error of prediction of 2000 trials. The prediction started
at the same states for the true system and models. Note that PLDS fails to predict long term due to
its linear dynamics assumption. A linear dynamical system without noise can only produce damped
oscillations.

including only the generator dimensionality, batch and no controller. The result shows that LFADS
requires much higher dimension than the true system to capture the oscillation (Fig. S1). (The figure
of its inferred trajectories is shown in the supplement.) We report the fitted log-likelihood per time
bin −0.1274, −0.1272 and −0.1193 for 2D, 20D and 50D GRU respectively. In comparison, the
log-likelihood of the proposed approach is −0.1142 with a 2D dynamical model (higher the better).

4.3 Fixed point attractor for decision-making

Perceptual decision-making paradigm is a well-established cognitive task where typically a low-
dimensional decision variable needs to be integrated over time, and subjects are close to optimal
in their performance. To understand how the brain implements such neural computation, many
competing theories have been proposed [40, 5, 52, 41, 53]. We test our method on a simulated
biophysically realistic cortical network model for a visual discrimination experiment [41]. In the
model, there are two excitatory subpopulations that are wired with slow recurrent excitation and
feedback inhibition to produce attractor dynamics with two stable fixed points (Fig. 5A). Each fixed
point represents the final perceptual decision, and the network dynamics amplify the difference
between conflicting inputs and eventually generates a binary choice.

Note that, different from the former examples that use a linear-nonlinear map of latent states, the
point process observations (spikes) of this experiment were directly sampled from the spiking neural
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network 1(1 ms binwidth) that was governed by its own high-dimensional intrinsic dynamics. It is
filling the gap between fully specified state space models and real neuron populations.

We subsampled 480 selective neurons out of 1600 excitatory neurons from the simulation to be
observed by our algorithm. The simulated data is organized into decision-making trials where each
trial lasts for 2 sec and with different strength of visual evidence, controlled by “coherence”. Our
method with 20 radial basis functions learned the dynamics from 140 training trials (20 per coherence
level c, c = −1,−0.2,−0.1, 0, 0.1, 0.2, 1).

Figure 5C shows the velocity field at zero coherence stimulus as colored streamlines. Note that our
approach did not have prior knowledge of the network dynamics as the mean-field reduction [53]
in Figure 5B. Although the absolute arrangement is dissimilar, the topology and relation of the
five identified fixed points show correspondence with the mean-field reduction. The inference was
completely data-driven (partial observation of spike trains) while the mean-field method required
knowing the true dynamical model of the network and careful approximation by [53]. We showed
that our method can provide a qualitatively similar result to the theoretical work which reduces the
dimensionality and complexity of the original network.

4.4 Chaotic dynamics

Chaotic dynamics (or edge-of-chaos) have been postulated to support asynchronous states in the
cortex, and neural computation over time by generating rich temporal patterns [54, 55]. We consider
the 3-dimensional standard Lorenz attractor as an example chaotic system to demonstrate the flexibility
of our method. We simulated 216 latent trajectories from:

ẋ = 10(y − x), ẏ = x(28− z)− y, ż = xy − 8

3
z. (13)

The each coordinate of the initial states are on the uniform grid of 6 values in [−50, 50] inclusively,
of which the combination results in 216 unique states. We discarded the first 500 transient steps
of each trajectory and then use the following 1000 steps. We generated 200-dimensional Gaussian
observations driven by the trajectories. Figure 6A shows estimated latent trajectory and the ground
truth. One can see that the estimation lies in a similar manifold. In addition, we predicted 500 steps
of future latent states without knowing the respective observations. Figure 6B shows 4 predicted
trajectories starting from different initial states. One can see that the inferred system could generate
qualitatively similar trajectory at most initial states but not perfectly for the true system is chaotic.

4.5 Nonstationary system

Another feature of our method is that its state dynamics estimate never stops. As a result, the algorithm
is adaptive, and can potentially track slowly varying (nonstationary) latent dynamics. To test this
feature, we compared a dual EKF and the proposed approach on nonstationary linear dynamical
system. A spiral-in linear system was suddenly changed from clockwise to counter-clockwise at the
2000th step and the latent state was perturbed (Fig. 7). To adapt EKF, we used Gaussian observations
that were generated through linear map from 2-dimensional state to 200-dimensional observation
with additive noise (N (0, 0.5)). To focus on the dynamics, we fixed all the parameters except the
transition matrix for both methods, while our approach still has to learn the recognition model in
addition. Figure 7 shows that our approach achieved better online performance as dual EKF in this
experiment.

5 Real Neurophysiological Application

We applied the proposed method to a large scale recording to validate that it picks up meaningful
dynamics. The dataset [56] consists of 148 simultaneously recorded single units from the primary
cortex (V1) while directional drifting gratings were presented to an anesthetized monkey for around
1.3s per trial (Fig. 8A). We used the spike trains from 63 well-tuned units. The spike times were
binned with a 1ms window (max 1 spike per bin). There is one continuous circular variables in the
stimuli space: temporal phase of oscillation induced by the drifting gratings.

1The detail of the spiking neural network can be found in [41] and the code can be found at https:
//github.com/xjwanglab/book/tree/master/wang2002.
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Figure 5: Fixed point attractor for decision-making. (A) Schematics of the neural network. There
are two excitatory populations that are wired with slow recurrent excitation and feedback inhibition
to produce attractor dynamics. The simulation was organized into decision-making trials. Each trial
begins with a 0.5s period of spontaneous activity, and then the input is given to the two excitatory
populations for 1.5s. We subsampled 480 selective neurons out of 1600 excitatory neurons from the
simulation to be observed by our algorithm. (B) Mean field reduction of the network. Theoretical
work has shown that the collective population dynamics can be reduced to 2 dimensions [53]. (C)
VJF inferred dynamical model. The red dots are the inferred final states of zero-coherent trials.
The black dots are fixed points (the solid are stable and the gray are unstable). Although the
absolute arrangement is dissimilar, the topology and relation of the five identified fixed points show
correspondence (indicated by purple lines).

A partial warm-up helps with the training. We chose a good initialization for the observation model,
specifically the loading matrix and bias. There are 72 motion directions in total, each repeated 50
trials. We used the trials corresponding to 0 deg direction to initialize the observation model with
dimensionality reduction methods such as variational latent Gaussian processes [8], and then trained
VJF with a 2D dynamic model fully online on the trials corresponding to 180 deg direction that it had
not seen before. Since we do not have long enough continuously-recorded trials, we concatenated
the trials (equivalent to 500s) as if they were continuously recorded to mimic an online setting. As
expected, Figure 8B and C shows the inferred dynamical system is able to implement the oscillation.
The two goodness of fit measures (log-likelihood and ELBO) in Figure 8D shows that our method
benefits from but does not necessarily require such a warm-up. The model with warm-up initialization
has better starting goodness of fit than the random initialized model but the random initialized model
eventually achieved similar goodness of fit with adequate amount of data.
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are the mean RMSEs of one-step-ahead prediction of nonstationary system during online learning
(50 trials). The linear system was changed and the state was perturbed at the 2000th step (center).
The lines are average RMSEs. Both online algorithms quickly learned the change after a few steps.

6 Discussion

Neurotechnologies for recording the activity of large neural populations during meaningful behavior
provide exciting opportunities for investigating the neural computations that underlie perception,
cognition, and decision-making. However, the datasets provided by these technologies currently
require sophisticated offline analyses that slow down the scientific cycle of experiment, data analysis,
hypothesis generation, and further experiment. Moreover, in closed-loop neurophysiological setting,
real-time adaptive algorithms are extremely valuable [57].

To fulfill this demand, we proposed an online algorithm for recursive variational Bayesian inference
that simultaneously performs system identification and state filtering under the framework of state
space modeling, in hope that it can greatly impact neuroscience research and biomedical engineering.
There is no other method capable of all features, hence we compared several methods in different
measures, often giving them the advantage. We showed that our proposed method consistently
outperforms the state-of-the-art methods.

13



speed

low

initial state

final state

A

B

high

C

visual motion

phase of oscillation

response

Monkey
Visual 
System

0ms 1280ms

ne
ur

on
s

D

10− 3 10− 2 10− 1 100 101 102

time (s)

−80

−60

−40

−20

0

go
od

ne
ss

 o
f �

t

LL (random)
ELBO (random)
LL (warm-up)
ELBO (warm-up)

Figure 8: (A) Neurophysiological experiment. Drifting gratings were shown to the monkey (on
the left). The neural spike trains (63 neurons, 1280 ms) from area V1 during the motion onset were
recorded (on the right). Each row is one neuron and the binwidth is 1 ms. The phase of the oscillation
forms a circular variable. (B) Phase portrait of the inferred dynamical system (arrows: direction,
blue: low speed, red: high speed). The flow shows that the inferred system forms an oscillator.
(C) Trajectories simulated from the inferred dynamical system. We simulated 10 state trajectories
using the inferred system with random initial states (1000 steps each, black lines: trajectories, green
circles: initial states, red diamonds: final states). The trajectories also confirm that the inferred
system captured the oscillation underlying the data. (D) Convergence of the online method in terms
of its goodness-of-fit. We calculated two goodness-of-fit measures (mean ± standard deviation, 10
repetitions), log-likelihood (LL) and ELBO for two strategies of initializing the observation model,
warm-up and random initialization. Warm-up indicates that we initialized the observation model using
dimensionality reduction methods before VJF; Random initialization indicates that the parameters of
observation model were randomly drawn and learned completely by VJF.

Using the language of dynamical systems, we interpret the target system not via model parameters
but via dynamical features: fixed points, limit cycles, strange attractors, bifurcations and so on.
In our current approach, this interpretation heavily relies on visual inspection of the qualitative
nonlinear dynamical system features. In contrast, most popular state space models assume linear
dynamics [11, 37, 58] which is appropriate for smoothing latent states, but not expressive enough
to recover the underlying vector field. Recently the Koopman theory that allows representation
of general nonlinear dynamics as linear operators in infinite dimensional spaces [59] has gained
renewed interest in modeling nonlinear dynamics. Although elegant in theory, in practice, however,
the Koopman operators need to be truncated to a finite dimensional space with linear dynamics [60].
We note that the resulting linear models do not allow for topological features such as multiple isolated
fixed points, nonlinear continuous attractors, stable limit cycles—features critical for non-trivial
neural computation.
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Our algorithm is highly flexible and general—it allows a wide range of observation models (likeli-
hoods) and dynamic models, is computationally tractable, and produces interpretable visualizations
of complex collective network dynamics. Our key assumption is that the dynamics consists of a
continuous and slow flow, which enable us to parameterize the velocity field directly. This assump-
tion reduces the complexity of the nonlinear function approximation, thus it is easy to identify the
fixed/slow points. Specifically we chose the radial basis function network to model the dynamics for
our experiments, which regularizes and encourages the dynamics to occupy a finite phase volume
around the origin.

Our method has a number of hyperparameters. In the experiments, the differentiable hyperparameters
were learnt via gradient descent while the selection of the other hyperparameters were made simple.
In general, our method was robust; Perturbing the number of RBFs did not produce qualitatively
different results (Fig. 3). [61] discussed growing radial basis function network adaptively which
could be incorporated in our method to enable online tuning of the number of RBFs. The depth
and width of neural networks were chosen empirically to improve the interpretability of resulting
dynamical systems, but tuning did not result in large changes in the results.

This work opens many avenues for future work. One direction is to apply this model to large-scale
neural recording from a behaving animal. We hope that further development would enable on-the-fly
analysis of high-dimensional neural spike train during electrophysiological experiments. Clinically, a
nonlinear state space model provides a basis for nonlinear feedback control as a potential treatment
for neurological diseases that arise from diseased dynamical states.
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