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Abstract

Exploiting pre-trained diffusion models for restoration has recently become a
favored alternative to the traditional task-specific training approach. Previous
works have achieved noteworthy success by limiting the solution space using
explicit degradation models. However, these methods often fall short when faced
with complex degradations as they generally cannot be precisely modeled. In this
paper, we propose PGDiff by introducing partial guidance, a fresh perspective that
is more adaptable to real-world degradations compared to existing works. Rather
than specifically defining the degradation process, our approach models the desired
properties, such as image structure and color statistics of high-quality images, and
applies this guidance during the reverse diffusion process. These properties are
readily available and make no assumptions about the degradation process. When
combined with a diffusion prior, this partial guidance can deliver appealing results
across a range of restoration tasks. Additionally, PGDiff can be extended to handle
composite tasks by consolidating multiple high-quality image properties, achieved
by integrating the guidance from respective tasks. Experimental results demonstrate
that our method not only outperforms existing diffusion-prior-based approaches
but also competes favorably with task-specific models.

1 Introduction

Recent years have seen diffusion models achieve outstanding results in synthesizing realistic details
across various content [33, 29, 7, 15, 34]. The rich generative prior inherent in these models opens up
a vast array of possibilities for tasks like super-resolution, inpainting, and colorization. Consequently,
there has been a growing interest in formulating efficient guidance strategies for pre-trained diffusion
models, enabling their successful adaptation to various restoration tasks [9, 42, 20, 37].

A common approach [9, 42, 20] is to constrain the solution space of intermediate outputs during
the denoising process1. At each iteration, the intermediate output is modified such that its degraded
counterpart is guided towards the input low-quality (LQ) image. Existing works achieve this goal
either by using a closed-form solution [42, 20] or back-propagating simple losses [9]. These methods
are versatile in the sense that the pre-trained diffusion model can be adapted to various tasks without
fine-tuning, as long as the degradation process is known in advance.

While possessing great versatility, the aforementioned methods are inevitably limited in generaliz-
ability due to the need for prior knowledge of the degradation process. In particular, a closed-form
solution generally does not exist except for special cases such as linear operators. In addition,
back-propagating losses demand differentiability of the degradation process, which is violated for
many degradations such as JPEG compression. Importantly, degradations in the wild often consist

1It refers to the reverse diffusion process, not the image denoising task.
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Figure 1: Overview of Our PGDiff Framework for Versatile Face Restoration. Here, we take the
colorization task as an example to illustrate our inference pipeline. One may refer to Table 1 for the
corresponding details (e.g., property, classifier, and target) of other tasks. We show that our method
can handle a wide range of tasks, including (a) blind face restoration, (b) face colorization, (c) face
inpainting, and also composite tasks such as (d) old photo restoration.

of a mixture of degradations [41], and hence, it is difficult, if not impossible, to model them accu-
rately. As a result, existing works generally limit the scope to simplified cases, such as fixed-kernel
downsampling. The generalization to real-world degradations remains a formidable challenge.

Motivated by the above, instead of modeling the degradation process, we propose to model the
desired properties of high-quality (HQ) images. The merit of such guidance is the agnosticity to the
degradation process. However, it remains unclear what properties are desired and how appropriate
guidance can be constructed. Through our extensive experiments, we find that with diffusion prior
acting as a natural image regularization, one could simply guide the denoising process with easily
accessible properties, such as image structure and color statistics. For example, as shown in Fig. 1,
one could generate plausible outputs simply by providing guidance on the lightness and the statistics
(i.e., mean and variance) of each color channel, without knowing the exact decolorization process.
By constraining the HQ image space, our idea bypasses the difficulty of knowing the prior relation
between LQ and HQ images, thus improving generalizability.

In this work, we devise a simple yet effective instantiation named PGDiff by introducing partial
guidace. PGDiff adopts classifier guidance [7] to constrain the denoising process. Each image
property corresponds to a classifier, and the intermediate outputs are updated by back-propagating
the gradient computed on the loss between the classifier output and the target property. Since our
partial guidance is agnostic to the degradation process, it can be easily extended to complex tasks by
compositing multiple properties. For instance, the task of old photo restoration can be regarded as a
combination of restoration, inpainting, and colorization, and the resultant guidance is represented as
a weighted sum of the guidance in the respective task. We also demonstrate that common losses such
as perceptual loss [2, 16] and adversarial loss [22] can be incorporated for further performance gain.

Contributions. Our main contributions include i) a new concept of adapting diffusion models to
restoration without presumptions of the degradation process. We show that it suffices to guide the
denoising process with easily accessible properties in the HQ image space, with diffusion prior acting
as regularization, and ii) partial guidance, a versatile approach that is applicable to a broad range of
image restoration and enhancement tasks. Furthermore, it allows flexible combinations of guidance
for intricate tasks. We conduct extensive experiments to demonstrate the effectiveness of PGDiff on
a variety of challenging tasks including blind face restoration and old photo restoration. We also
demonstrate interesting applications, such as reference-based restoration. The results confirm the
superiority of PGDiff over previous state-of-the-art methods.

2 Related Work

Generative Prior for Restoration. Generative prior has been widely adopted for a range of image
restoration tasks, including super-resolution, inpainting, and colorization. One prominent approach in
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this field is the use of pre-trained generative adversarial networks (GANs) [10, 18, 1]. For instance,
GAN-inversion [26, 11, 28] inverts a corrupted image to a latent code, which is then used for
generating a clean image. Another direction is to incorporate the prior into an encoder-decoder
architecture [3, 4, 40, 44], bypassing the lengthy optimization during inference. VQVAE [35] is also
commonly used as generative prior. Existing works [48, 13, 43, 47] generally first train a VQVAE with
a reconstruction objective, followed by a fine-tuning stage to adapt to the subsequent restoration task.
Recently, diffusion models have gained increasing attention due to their unprecedented performance
in various generation tasks [33, 29, 7, 15, 34], and such attention has led to interest in leveraging
them as a prior for restoration.

Diffusion Prior. There has been a growing interest in formulating efficient guidance strategies for
pre-trained diffusion models, enabling their successful adaptation to various restoration tasks [9, 42,
20, 37, 39]. Among them, DDRM [20], DDNM [42], and GDP [9] adopt a zero-shot approach to
adapt a pre-trained diffusion model for restoration without the need of task-specific training. At each
iteration, the intermediate output is modified such that its degraded counterpart is guided towards the
input low-quality image. This is achieved under an assumed degradation process, either in the form
of a fixed linear matrix [42, 20] or a parameterized degradation model [9], with learnable parameters
representing degradation extents. In this work, we also exploit the generative prior of a pre-trained
diffusion model by formulating efficient guidance for it, but unlike existing works that limit the
solution space using explicit degradations [9, 42, 20], we propose to model the desired properties of
high-quality images. Such design is agnostic to the degradation process, circumventing the difficulty
of modeling the degradation process.

3 Methodology

PGDiff is based on diffusion models. In this section, we first introduce the background related to our
method in Sec. 3.1, and the details of our method are presented in Sec. 3.2.

3.1 Preliminary

Diffusion Models. The diffusion model [33] is a class of generative models that learn to model a
data distribution p(x). In particular, the forward process is a process that iteratively adds Gaussian
noise to an input x0 ∼ p(x), and the reverse process progressively converts the data from the noise
distribution back to the data distribution, often known as the denoising process.

For an unconditional diffusion model with T discrete steps, at each step t, there exists a transition
distribution q(xt|xt−1) with variance schedule βt [15]:

q(xt|xt−1) = N (xt;
√
1− βt xt−1, βtI). (1)

Under the reparameterization trick, xt can be written as:

xt =
√
αt xt−1 +

√
1− αt ϵ, (2)

where αt = 1− βt and ϵ ∼ N (ϵ;0, I). Recursively, let ᾱt =
∏t

i=1 αi, we have

xt =
√
ᾱt x0 +

√
1− ᾱt ϵ. (3)

During sampling, the process starts with a pure Gaussian noise xT ∼ N (xT ;0, I) and iteratively
performs the denoising step. In practice, the ground-truth denoising step is approximated [7] by
pθ(xt−1|xt) as:

pθ(xt−1|xt) = N (µθ(xt, t),Σθ(xt, t)), (4)

where Σθ(xt, t) is a constant depending on pre-defined βt, and µθ(xt, t) is generally parameterized
by a network ϵθ(xt, t):

µθ(xt, t) =
1√
αt

(xt −
βt√
1− ᾱt

ϵθ(xt, t)). (5)

From Eq. (3), one can also directly approximate x0 from ϵθ:

x̂0 =
1√
ᾱt

xt −
√

1− ᾱt

ᾱt
ϵθ(xt, t). (6)
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Algorithm 1 Sampling with partial guidance, given a diffusion model (µθ(xt, t),Σθ(xt, t)), classifier
pϕ(y|x̂0), target y, gradient scale s, range for multiple gradient steps Sstart and Send, and the number
of gradient steps N . The dynamic guidance weight snorm is omitted for brevity.

Input: a low-quality image y0
xT ← sample from N (0, I)
for t from T to 1 do

µ,Σ← µθ(xt, t),Σθ(xt, t)

x̂0 ← 1√
ᾱt
xt −

√
1−ᾱt

ᾱt
ϵθ(xt, t)

if Sstart ≤ t ≤ Send then ▷ Multiple Gradient Steps
repeat

xt ← sample from N (µ− sΣ∇x̂0∥y − pϕ(y|x̂0)∥22,Σ)
x̂0 ← 1√

ᾱt
xt −

√
1−ᾱt

ᾱt
ϵθ(xt, t)

until N − 1 times
end if
xt−1 ← sample from N (µ− sΣ∇x̂0

∥y − pϕ(y|x̂0)∥22,Σ)
end for
return x0

Table 1: Examples of Partial Guidance. Each image property corresponds to a classifier, and each
task involves one or multiple properties as guidance. The target value of each property is generally
obtained either from the input image y0 or the denoised intermediate output x̂0. For a composite
task, we simply decompose it into multiple tasks and combine the respective guidance. Here, Clean
denotes a pre-trained restorer detailed in Sec. 4.1, Identity refers to an identity mapping, and yref
represents a reference image containing entity with the same identity as y0.

Task Property Target: y Classifier: pϕ(y|x̂0)

Homogeneous
Task

Inpainting Unmasked Region Mask(y0) Mask

Colorization Lightness rgb2gray(y0) rgb2gray
Color Statistics AdaIN(x̂0) [18] Identity

Restoration Smooth Semantics Clean(y0) Identity

Ref-Based Restoration Smooth Semantics Clean(y0) Identity
Identity Reference ArcFace(yref) ArcFace [6]

Task Composition
Composite

Task
Old Photo Restoration
(w/ scratches) Restoration + Inpainting + Colorization

Classifier Guidance. Classifier guidance is used to guide an unconditional diffusion model so that
conditional generation is achieved. Let y be the target and pϕ(y|x) be a classifier, the conditional
distribution is approximated as a Gaussian similar to the unconditional counterpart, but with the mean
shifted by Σθ(xt, t)g [7]:

pθ,ϕ(xt−1|xt, y) ≈ N (µθ(xt, t) + Σθ(xt, t)g,Σθ(xt, t)), (7)

where g = ∇x log pϕ(y|x)|x=µθ(xt,t). The gradient g acts as a guidance that leads the unconditional
sampling distribution towards the condition target y.

3.2 Partial Guidance

Our partial guidance does not assume any prior knowledge of the degradation process. Instead,
with diffusion prior acting as a regularization, we provide guidance only on the desired properties of
high-quality images. The key to PGDiff is to construct proper guidance for each task. In this section,
we will discuss the overall framework, and the formulation of the guidance for each task is presented
in Sec. 4. The overview is summarized in Fig. 1 and Algorithm 1.

Property and Classifier. The first step of PGDiff is to determine the desired properties which the
high-quality output possesses. As summarized in Table 1, each image property corresponds to a
classifier pϕ(y|x̂0), and the intermediate outputs xt are updated by back-propagating the gradient
computed on the loss between the classifier output and the target y.
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Figure 2: Comparison on Blind Face Restoration. Input faces are corrupted by real-world degrada-
tions. Our PGDiff produces high-quality faces with faithful details. (Zoom in for best view.)

Given a specific property (e.g., lightness), we construct the corresponding classifier (e.g., rgb2gray),
and apply classifier guidance during the reverse diffusion process as shown in Fig. 1. Although our
PGDiff is conceptually similar to classifier guidance, we find that the conventional guidance scheme
often leads to suboptimal performance. In this work, we borrow ideas from existing works [37, 5]
and adopt a dynamic guidance scheme, which introduces adjustments to the guidance weight and
number of gradient steps for enhanced quality and controllability.

Dynamic Guidance Scheme. Our dynamic guidance scheme consists of two components. First, we
observe that the conventional classifier guidance, which adopts a constant gradient scale s, often fails
in guiding the output towards the target value. This is especially unfavourable in tasks where high
similarity to the target is desired, such as inpainting and colorization. To alleviate this problem, we
calculate the gradient scale based on the magnitude change of the intermediate image [37]:

snorm =
∥xt − x′

t−1∥2
∥g∥2

· s, (8)

where x′
t−1∼N (µθ,Σθ). In this way, the dynamic guidance weight snorm varies along iterations,

more effectively guiding the output towards the target, thus improving the output quality.

Second, the conventional classifier guidance typically executes a single gradient step at each denoising
step. However, a single gradient step may not sufficiently steer the output toward the intended target,
particularly when the intermediate outputs are laden with noise in the early phases of the denoising
process. To address this, we allow multiple gradient steps at each denoising step [5] to improve
flexibility. Specifically, one can improve the guidance strength of a specific property by increasing
the number of gradient steps. The process degenerates to the conventional classifier guidance when
the number of gradient steps is set to 1. During inference, users have the flexibility to modulate the
strength of guidance for each property as per their requirements, thus boosting overall controllability.

Composite Guidance. Our partial guidance controls only the properties of high-quality outputs, and
therefore can be easily extended to complex degradations by stacking respective properties. This is
achieved by compositing the classifiers and summing the loss corresponding to each property. An
example of composite tasks is shown in Table 1. In addition, we also demonstrate that additional
losses such as perceptual loss [2, 16] and adversarial loss [22] can be incorporated for further quality
improvement. Experiments demonstrate that our PGDiff achieves better performance than existing
works in complex tasks, where accurate modeling of the degradation process is impossible.
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Table 2: Quantitative comparison on the real-world LFW-Test, WebPhoto-Test, and WIDER-Test
datasets. Red and blue indicate the best and the second best performance, respectively.

Dataset Metric CNN/Transformer-based Methods Diffusion-prior-based Methods
GFP-GAN [40] CodeFormer [48] DifFace [45] Ours

LFW-Test FID↓ 72.45 74.10 67.98 71.62
NIQE↓ 3.90 4.52 5.47 4.15

WebPhoto-Test FID↓ 91.43 86.19 90.58 86.18
NIQE↓ 4.13 4.65 4.48 4.34

WIDER-Test FID↓ 40.93 40.26 38.54 39.17
NIQE↓ 3.77 4.12 4.44 3.93

Table 3: Quantitative comparison on the synthetic CelebRef-HQ dataset. Red and blue indicate the
best and the second best performance, respectively.

Metric CNN/Transformer-based Methods Diffusion-prior-based Methods
GFP-GAN [40] CodeFormer [48] DifFace [45] Ours (w/o ref) Ours (w/ ref)

FID↓ 186.88 129.17 123.18 119.98 121.25
MUSIQ↑ 63.33 69.62 60.98 67.26 64.67

LPIPS↓ 0.49 0.36 0.35 0.34 0.35
IDS↑ 0.36 0.55 0.56 0.44 0.76

4 Applications

By exploiting the diffusion prior, our PGDiff applies to a wide range of restoration tasks by selecting
appropriate guidance. In this section, we will introduce the guidance formulation and provide
experimental results.

4.1 Blind Face Restoration

Partial Guidance Formulation. The objective of blind face restoration is to reconstruct a high-
quality face image given a low-quality input corrupted by unknown degradations. In this task, the most
straightforward approach is to train a network with the MSE loss using synthetic pairs. However, while
these methods are able to remove the degradations in the input, it is well-known [26] that the MSE loss
alone results in over-smoothed outputs. Therefore, extensive efforts have been devoted to improving
the perceptual quality, such as incorporating addition losses (e.g., GAN loss) [22, 10, 16, 46, 8] and
components (e.g., codebook [48, 13, 43, 47, 35] and dictionary [23, 24, 12, 8]). These approaches
often require multi-stage training and experience training instability.

In our framework, we decompose a high-quality face image into smooth semantics and high-frequency
details, and provide guidance solely on the smooth semantics. In this way, the output x̂0 in each diffu-
sion step is guided towards a degradation-free solution space, and the diffusion prior is responsible for
detail synthesis. Given an input low-quality image y0, we adopt a pre-trained face restoration model
f to predict smooth semantics as partial guidance. Our approach alleviates the training pressure of
the previous models by optimizing model f solely with the MSE loss. This is because our goal is to
obtain smooth semantics without hallucinating unnecessary high-frequency details. Nevertheless, one
can also provide guidance of various forms by selecting different restorers, such as CodeFormer [48].
The loss for classifier guidance is computed as: Lres = ||x̂0 − f(y0)||22.

Qualitative Results. We evaluate the proposed PGDiff on three real-world datasets, namely LFW-
Test [40], WebPhoto-Test [40], and WIDER-Test [48]. We compare our method with both task-specific
CNN/Transformer-based restoration models [48, 26, 40] and diffusion-prior-based models2 [9, 42, 45].
As shown in Fig. 2, existing diffusion-prior-based methods such as GDP [9] and DDNM [42] are
unable to generalize to real-world degradations, producing outputs with notable artifacts. In contrast,
our PGDiff successfully removes the degradations and restores the facial details invisible in the input

2Among them, GDP [9] and DDNM [42] support only 4× fixed-kernel downsampling, while DifFace [45] is
a task-specific model for blind face restoration.
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images. Moreover, our PGDiff performs favorably over task-specific methods even without extensive
training on this task.

Quantitative Results on Real-world Datasets. To compare our performance with other methods
quantitatively on real-world datasets, we adopt FID [14] and NIQE [27] as the evaluation metrics and
test on three real-world datasets: LFW-Test [40], WebPhoto-Test [40], and WIDER-Test [48]. LFW-
Test consists of the first image from each person whose name starts with A in the LFW dataset [40],
which are 431 images in total. WebPhoto-Test is a dataset comprising 407 images with medium
degradations collected from the Internet. WIDER-Test contains 970 severely degraded images from
the WIDER Face dataset [40]. As shown in Table 2, our method achieves the best or second-best
scores across all three datasets for both metrics. Although GFP-GAN achieves the best NIQE scores
across datasets, notable artifacts can be observed, as shown in Fig. 2. Meanwhile, our method shows
exceptional robustness and produces visually pleasing outputs without artifacts.

Quantitative Results on Synthetic Dataset. We present a quantitative evaluation on the synthetic
CelebRef-HQ dataset [24] in Table 3. Considering the importance of identity-preserving in blind
face restoration, we introduce reference-based restoration in Sec. 4.5 in addition to the general
restoration in Sec. 4.1. Table 3 shows that our methods achieve best or second best scores across both
no-reference (NR) metrics for image quality (i.e., FID and MUSIQ) and full-reference (FR) metrics
for identity preservation (i.e., LPIPS and IDS). Since we employ heavy degradation settings when
synthesizing CelebRef-HQ, it is noteworthy that identity features are largely distorted in severely
corrupted input images. Thus, it is almost impossible to predict an identity-preserving face without
any additional identity information. Nevertheless, with our reference-based restoration, we observe
that a high-quality reference image of the same person helps generate personal characteristics that are
highly similar to the ground truth. The large enhancement of identity preservation is also indicated in
Table 3, where our reference-based method achieves the highest IDS, increasing by 0.32.

4.2 Face Colorization

Partial Guidance Formulation. Motivated by color space decomposition (e.g., YCbCr, YUV),
we decompose our guidance into lightness and color, and provide respective guidance on the two
aspects. For lightness, the input image acts as a natural target since it is a homogeneous-color image.
Specifically, we guide the output lightness towards that of the input using the simple rgb2gray
operation. Equivalently, the loss is formulated as follows: Ll = ||rgb2gray(x̂0)− rgb2gray(y0)||22.
The lightness guidance can also be regarded as a dense structure guidance. This is essential in
preserving image content.

With the lightness guidance constraining the structure of the output, we could guide the color synthesis
process with a lenient constraint – color statistics (i.e., mean and variance of each color channel).
In particular, we construct the target by applying AdaIN [18] to x̂0, using a pre-determined set of
color statistics for each R, G, B channel. Then we push x̂0 towards the color-normalized output:
Lc = ||x̂0 − sg (AdaIN(x̂0,P)) ||22, where P refers to the set of color statistics and sg(·) denotes the
stop-gradient operation [35]. The overall loss is formulated as: Lcolor = Ll + α · Lc, where α is
a constant that controls the relative importance of the structure and color guidance. To construct a
universal color tone, we compute the average color statistics from a selected subset of the CelebA-HQ
dataset [17]. We find that this simple strategy suffices to produce faithful results. Furthermore, our
PGDiff can produce outputs with diverse color styles by computing the color statistics from different
reference images.

Experimental Results. As shown in Fig. 3, GDP [9] and DDNM [42] lack the capability to produce
vibrant colors. In contrast, our PGDiff produces colorized outputs simply by modeling the lightness
and color statistics. Furthermore, our method is able to generate outputs with diverse color styles by
calculating color statistics from various reference sets.

4.3 Face Inpainting

Partial Guidance Formulation. Since diffusion models have demonstrated remarkable capability in
synthesizing realistic content [33, 29, 7, 15, 34], we apply guidance only on the unmasked regions,
and rely on the synthesizing power of diffusion models to generate details in the masked regions.
Let B be a binary mask where 0 and 1 denote the masked and unmasked regions, respectively.
We confine the solution by ensuring that the resulting image closely resembles the input image
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Figure 3: Comparison on Face Colorization. Our PGDiff produces diverse colorized output with
various color statistics given as guidance. The first column of our results is guided by the average
color statistics of a subset of the CelebA-HQ dataset [17], and the guiding statistics for the remaining
three columns are represented as an image in the top right corner.DDNMGround Truth Input GDP Ours

Various Color Styles

Ground Truth Input GDP DDNM Ours

Various Random Seeds

GPEN CodeFormer

Figure 4: Comparison on Face Inpainting on Challenging Cases. Our PGDiff produces natural
outputs with pleasant details coherent with the unmasked regions. Moreover, different random seeds
give various contents of high quality.

within the unmasked regions: Linpaint = ||B ⊗ x̂0 −B ⊗ y0||22, where ⊗ represents the pixel-wise
multiplication.

Experimental Results. We conduct experiments on CelebRef-HQ [24]. As depicted in Fig. 4,
GPEN [44] and GDP [9] are unable to produce natural outputs, whereas CodeFormer [48] and
DDNM [42] generate outputs with artifacts, such as color incoherence or visual flaws. In contrast,
our PGDiff successfully generates outputs with pleasant details coherent to the unmasked regions.

4.4 Old Photo Restoration

Partial Guidance Formulation. Quality degradations (e.g., blur, noise, downsampling, and JPEG
compression), color homogeneity, and scratches are three commonly seen artifacts in old photos.
Therefore, we cast this problem as a joint task of restoration, colorization, and inpainting3. Similar to
face colorization that composites the loss for each property, we composite the respective loss in each
task, and the overall loss is written as: Lold = Lres + γcolor · Lcolor + γinpaint · Linpaint, where
γinpaint and γcolor are constants controlling the relative importance of the different losses.

Experimental Results. We compare our PGDiff with BOPB [38], GFP-GAN [40] and DDNM [42].
Among them, BOPB is a model specifically for old photo restoration, GFP-GAN (v1) is able to
restore and colorize faces, and DDNM is a diffusion-prior-based method that also claims to restore
old photos with scratches. As shown in Fig. 5, BOPB, GFP-GAN, and DDNM all fail to give natural
color in such a composite task. While DDNM is able to complete scratches given a proper scratch
map, it fails to give a high-quality face restoration result. On the contrary, PGDiff generates sharp
colorized faces without scratches and artifacts.

3We locate the scratches using an automated algorithm [38], and then inpaint the scratched regions.
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Figure 5: Comparison on Old Photo Restoration on Challenging Cases. For a severely damaged
old photo, with one eye masked with scratch, while only DDNM [42] is able to complete the missing
eye, its restoration quality is significantly low. In contrast, our PGDiff produces high-quality restored
outputs with natural color and complete faces.

Input ℒ!"# ℒ!"$ Ground Truth Input Ground Truthℒ!"# ℒ!"$

Input ℒ!"# ℒ!"$ Ground TruthInput Ground Truthℒ!"# ℒ!"$

Ref Ref

Figure 6: Reference-Based Face Restoration. Our PGDiff, using Lref with identity loss as guidance,
produces personal characteristics that are hard to recover without reference, i.e., using Lres only.
(Zoom in for details)

4.5 Reference-Based Restoration

Partial Guidance Formulation. In reference-based restoration, a reference image from the same
identity is given to improve the resemblance of personal details in the output image. Most existing
works exploiting diffusion prior [9, 42, 20, 45] are not applicable to this task as there is no direct
transformation between the reference and the target. In contrast, our partial guidance is extensible to
more complex tasks simply by compositing multiple losses. In particular, our PGDiff can incorporate
personal identity as a partial attribute of a facial image. By utilizing a reference image and incor-
porating the identity loss into the partial guidance, our framework can achieve improved personal
details. We extract the identity features from the reference image using a pre-trained face recognition
network, such as ArcFace [6]. We then include the negative cosine similarity to the loss term Lres

in blind face restoration (Sec. 4.1): Lref = Lres − β · sim(vx̂0
, vr), where β controls the relative

weight of the two losses. Here sim(·) represents the cosine similarity, and vx̂0
and vr denote the

ArcFace features of the predicted denoised image and the reference, respectively.

Experimental Results. We use the CelebRef-HQ dataset [24], which contains 1, 005 entities and
each person has 3 to 21 high-quality images. To build testing pairs, for each entity, we choose one
image and apply heavy degradations as the input, and then we select another image from the same
identity as the reference. In Fig. 6, we observe that without the identity loss term sim(vx̂0

, vr), some
of the personal details such as facial wrinkles and eye color cannot be recovered from the distorted
inputs. With the additional identity loss as guidance, such fine details can be restored. In addition,
our PGDiff can be used to improve identity preservation of arbitrary face restorers. For instance, as
shown in Fig. 7 (a), by using CodeFormer [48] as our restorer and incorporating the identity loss,
the fine details that CodeFormer alone cannot restore can now be recovered. Quantitative results are
included in Table 3 and discussed in Sec. 4.1.

4.6 Quality Enhancement

Partial Guidance Formulation. Perceptual loss [16] and adversarial loss [10] are two common
training losses used to improve quality. Motivated by this, we are interested in whether such losses
can also be used as the guidance for additional quality gain. We demonstrate this possibility in the task
of blind face restoration using the following loss: Lquality = Lres + λper · ||VGG(x̂0)− VGG(y)||22 +
λGAN ·D(x̂0), where λper and λGAN are the relative weights. Here VGG and D represent pre-trained
VGG16 [32] and the GAN discriminator [19], respectively.

Experimental Results. We demonstrate in Fig. 7 (b) that perceptual loss and adversarial loss can
boost the blind restoration performance in terms of higher fidelity with photo-realism details.
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(a) Referenced-based CodeFormer (b) Quality enhancement

Figure 7: (a) Using CodeFormer as the restorer with our identity guidance improves the reconstruc-
tion of fine details similar to the ground truth. (b) The comparison results show that the quality
enhancement loss is able to enhance fidelity with photo-realism details.

Input " = 1 " = 2 " = 3Input Constant ' Dynamic '%&!'
(a) Effect of dynamic guidance weight (b) Effect of multiple guidance steps

Figure 8: Ablation Study of Dynamic Guidance. The comparison results on the dynamic guidance
scheme verify its effectiveness over the conventional classifier guidance scheme.

5 Ablation Studies

In this section, we perform ablation studies on the dynamic guidance scheme mentioned in Sec. 3.2
to verify its effectiveness over the conventional classifier guidance scheme.

Effectiveness of Dynamic Guidance Weight. We first investigate the effectiveness of dynamic
guidance weight snorm in the face inpainting task, where the unmasked regions of the output image
should be of high similarity to that of the input. As shown in Fig. 8 (a), without the dynamic
guidance weight, although plausible content can still be generated in the masked area, the similarity
and sharpness of the unmasked regions are remarkably decreased compared with the input. With
snorm replacing the constant s, the output is of high quality with unmasked regions nicely preserved.
The results indicate that our dynamic guidance weight is the key to ensuring high similarity to the
target during the guidance process.

Effectiveness of Multiple Gradient Steps. To verify the effectiveness of multiple gradient steps, we
compare the blind restoration results with the number of guidance steps N set to be 1, 2, and 3. While
N = 1 is just the conventional classifier guidance, we set N = 2 during the first 0.5T steps and set
N = 3 during the first 0.3T steps. As shown in Fig. 8 (b), artifacts are removed and finer details
are generated as N increases. These results suggest that multiple gradient steps serve to improve the
strength of guiding the output toward the intended target, particularly when the intermediate outputs
are laden with noise in the early phases of the denoising process.

6 Conclusion

The generalizability of existing diffusion-prior-based restoration approaches is limited by their
reliance on prior knowledge of the degradation process. This study aims to offer a solution that
alleviates this constraint, thereby broadening its applicability to the real-world degradations. We find
that through directly modeling high-quality image properties, one can reconstruct faithful outputs
without knowing the exact degradation process. We exploit the synthesizing power of diffusion models
and provide guidance only on properties that are easily accessible. Our proposed PGDiff with partial
guidance is not only effective but is also extensible to composite tasks through aggregating multiple
properties. Experiments demonstrate that PGDiff outperforms diffusion-prior-based approaches in
both homogeneous and composite tasks and matches the performance of task-specific methods.

Acknowledgement. This study is supported under the RIE2020 Industry Alignment Fund – Industry
Collaboration Projects (IAF-ICP) Funding Initiative, as well as cash and in-kind contribution from
the industry partner(s).
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Appendix

In this supplementary material, we provide additional discussions and results. In Sec. A, we present
additional implementation details including the inference requirements, choice of hyperparameters
involved in the inference process, and discussions on the pre-trained restorer for blind face restoration.
In Sec. B, we provide more results on various tasks, i.e., blind face restoration, old photo restoration,
reference-based restoration, face colorization, and inpainting. Sec. C and Sec. D discuss the limitations
and potential negative societal impacts of our work, respectively.

A Implementation Details

A.1 Inference Requirements

The pre-trained diffusion model we employ is a 512× 512 denoising network trained on the FFHQ
dataset [18] provided by [45]. The inference process is carried out on NVIDIA RTX A5000 GPU.

A.2 Inference Hyperparameters

During the inference process, there involves hyperparameters belonging to three categories. (1)
Sampling Parameters: The parameters in the sampling process (e.g., gradient scale s). (2) Par-
tial Guidance Parameters: Additional parameters introduced by our partial guidance, which are
mainly relative weights for properties involved in a certain task (e.g., α that controls the relative
importance between the structure and color guidance in face colorization). (3) Optional Parameters:
Parameters for optional quality enhancement (e.g., the range for multiple gradient steps to take place
[Sstart, Send]). While it is principally flexible to tune the hyperparameters case by case, we provide
a set of default parameter choices for each homogeneous task in Table 4.

Table 4: Default hyperparameter settings in our experiments.

Task Sampling Partial Guidance Optional

snorm s
Unmasked

Region Lightness Color
Statistics

Smooth
Semantics

Identity
Reference N = 2 N = 3

Perceptual
Loss

GAN
Loss

Restoration 0.1 - - - Lres - T ∼ 0.5T T ∼ 0.7T 1e-2 1e-2
Colorization ✓ 0.01 - Ll 0.01Lc - - - - - -
Inpainting ✓ 0.01 Linpaint - - - - - - - -
Ref-Based Restoration 0.1 - - - Lres 10sim(vx̂0

, vr) T ∼ 0.5T T ∼ 0.7T 1e-2 1e-2

A.3 Restorer Design

Network Structure. In the blind face restoration task, given an input low-quality (LQ) image y0,
we adopt a pre-trained face restoration model f to predict smooth semantics as partial guidance. In
this work, we employ the ×1 generator of Real-ESRGAN [41] as our restoration backbone. The
network follows the basic structure of SRResNet [22], with RRDB being its basic blocks. In a ×1
generator, the input image is first downsampled 4 times by a pixel unshuffling [31] layer before any
convolution operations. In our work, we deal with 512× 512 input/output pairs, which means that
most computation is done only in a 128× 128 resolution scale. To employ it as the restorer f , we
modify some of its settings. Empirically we find that adding xt and t as the input alongside y0 can
enhance the sample quality in terms of sharpness. Consequently, the input to f is a concatenation of
y0, xt, and t, with t embedded with the sinusoidal timestep embeddings [36].

Training Details. f is implemented with the PyTorch framework and trained using four NVIDIA
Tesla V100 GPUs at 200K iterations. We train f with the FFHQ [18] and CelebA-HQ [17] datasets
and form training pairs by synthesizing LQ images Il from their HQ counterparts Ih, following
a common pipeline with a second-order degradation model [41, 23, 40, 44]. Since our goal is to
obtain smooth semantics without hallucinating unnecessary high-frequency details, it is sufficient to
optimize the model f solely with the MSE loss.

Model Analysis. To investigate the most effective restorer for blind face restoration, we compare the
sample quality with restorer being f(y0) and f(y0, xt, t), respectively. Here, f(y0, xt, t) is the one
trained by ourselves as discussed above, and f(y0) is SwinIR [25] from DifFace [45], which is also
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Table 5: Quantitative comparison on the synthetic CelebA-Test dataset on inpainting and colorization
tasks. Red indicates the best performance.

Task Inpainting Colorization
Metric FID↓ NIQE↓ MUSIQ-KonIQ↑ FID↓ NIQE↓ MUSIQ-AVA↑
DDNM [42] 137.57 5.35 59.38 146.66 5.11 4.07
CodeFormer [48] 120.93 4.22 72.48 126.91 4.43 4.91
Ours 115.99 3.65 73.20 119.31 4.71 5.23

trained with MSE loss only. As shown in Fig. 9, when all the other inference settings are the same,
we find that the sample quality with restorer f(y0, xt, t) is higher in terms of sharpness compared
with that of f(y0). One may sacrifice a certain degree of sharpness to achieve higher inference speed
by substituting the restorer with f(y0), whose output is constant throughout T timesteps.

Input Output with
Restorer !(#!)

Output with
Restorer !(#!, &" , ')

Input Output with
Restorer !(#!)

Output with
Restorer !(#!, &" , ')

Figure 9: Visual comparison of the restoration outputs with different restorers f in blind restoration.
We observe that including xt and t as the input to f enhances the sharpness of the restored images.

15



B More Results

B.1 More Results on Blind Face Restoration

In this section, we provide more qualitative comparisons with state-of-the-art methods, including
(1) task-specific CNN/Transformer-based restoration methods: PULSE [26], GFP-GAN [40], and
CodeFormer [48] and (2) diffusion-prior-based methods: GDP [9], DDNM [42] and DifFace [45].

PULSE OursCodeFormerInput GFP-GAN DifFaceDDNMGDP

CNN/Transformer-based Methods Diffusion-prior-based Methods

Figure 10: Comparison on Blind Face Restoration. Input faces are corrupted by real-world
degradations. Our PGDiff produces high-quality faces with faithful details. (Zoom in for best view)
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B.2 More Results on Old Photo Restoration

We provide more visual results of old photo restoration on challenging cases both with and without
scratches, as shown in Fig. 11. The test images come from both the CelebChild-Test dataset [40]
and the Internet. We compare our method with GFP-GAN (v1) [40] and DDNM [42]. Our method
demonstrates an obvious advantage in sample quality, especially in terms of vibrant colors, fine
details, and sharpness.

Input DDNMGFP-GAN Ours Input DDNMGFP-GAN Ours

Figure 11: Comparison on Old Photo Restoration on Challenging Cases. Our PGDiff is able to
produce high-quality restored outputs with natural color and complete faces.
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B.3 More Results on Reference-Based Restoration

We provide more visual results on the reference-based restoration in Fig. 12, which is our exploratory
extension based on blind face restoration. Test images come from the CelebRef-HQ dataset [24],
which contains 1, 005 entities and each person has 3 to 21 high-quality images. With identity loss
added, we observe that our method is able to produce personal characteristics similar to those of the
ground truth.

Input ℒ!"# ℒ!"$ Ground TruthReference

Figure 12: Comparison on Reference-Based Face Restoration. Our PGDiff produces personal
characteristics which are hard to recover without reference.
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B.4 More Results on Face Inpainting

In this section, we provide quantitative and more qualitative comparisons with state-of-the-art methods
in Fig. 13, including (1) task-specific methods: GPEN [44] and CodeFormer [48] and (2) diffusion-
prior-based methods: GDP [9] and DDNM [42]. As shown in Fig. 4 and Fig. 13, since DDNM and
CodeFormer are relatively more competitive than others, we make quantitative comparisons of our
methods against them.

We can observe from Fig. 13 that our method is able to recover challenging structures such as glasses.
Moreover, diverse and photo-realism outputs can be obtained by setting different random seeds.
As for quantitative comparisons in Table 5, we believe that the ability to produce diverse results is
also crucial in this task, and the evaluation should not be constrained to the similarity to the ground
truth. Thus, we opt to employ NR metrics including FID, NIQE, and MUSIQ instead of FR metrics.
Regarding the MUSIQ metric, it has been trained on different datasets featuring various purposes [21].
For inpainting, we employ MUSIQ-KonIQ which focuses on quality assessment. Our method is able
to achieve the highest score across all metrics.

Various Random Seeds

Ground Truth Input GDP DDNM OursGPEN CodeFormer

Figure 13: Comparison on Face Inpainting on Challenging Cases. Our PGDiff produces natural
outputs with pleasant details coherent to the unmasked regions. Moreover, different random seeds
give various contents of high quality.
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B.5 More Results on Face Colorization

In this section, we provide quantitative and more qualitative comparisons with state-of-the-art
methods in Fig. 14, including (1) task-specific methods: CodeFormer [48] and (2) diffusion-prior-
based methods: GDP [9] and DDNM [42]. As shown in Fig. 3 and Fig. 14, since DDNM and
CodeFormer are relatively more competitive than others, we make quantitative comparisons of our
methods against them.

We can observe from Fig. 14 that our method produces more vibrant colors and finer details than
DDNM and CodeFormer. Moreover, our method demonstrates a desirable diversity by guiding with
various color statistics. As for quantitative comparisons in Table 5, we believe that the ability to
produce diverse results is also crucial in this task, and the evaluation should not be constrained to
the similarity to the ground truth. Thus, we opt to employ NR metrics including FID, NIQE, and
MUSIQ instead of FR metrics. Regarding the MUSIQ metric, it has been trained on different datasets
featuring various purposes [21]. For colorization, we choose MUSIQ-AVA that puts more emphasis
on aesthetic assessment. Although CodeFormer has a better score in NIQE, it clearly alters the input
identity (see Fig. 14) and requires training a separate model for each task. On the contrary, our
method requires only a pre-trained diffusion model for both inpainting and colorization, and is able
to achieve best scores across almost all metrics.

DDNMGround Truth Input GDP OursCodeFormer

Various Color Styles

Figure 14: Comparison on Face Colorization. Our PGDiff produces diverse colorized outputs with
various color statistics given as guidance.
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C Limitations

As our PGDiff is based on a pre-trained diffusion model, our performance largely depends on the
capability of the model in use. In addition, since a face-specific diffusion model is adopted in this
work, our method is applicable only to faces in its current form. Nevertheless, this problem can be
resolved by adopting stronger models trained for generic objects. For example, as shown in Fig.
15, we employ an unconditional 256 × 256 diffusion model trained on the ImageNet dataset [30]
provided by [7], and achieve promising results on inpainting and colorization. Further exploration
on natural scene restoration will be left as our future work.

(a) Inpainting (b) Colorization

Input Ours Ground Truth Input Ours Ground Truth

Figure 15: Extension on natural images for the inpainting and colorization tasks. By employing an
unconditional 256× 256 diffusion model trained on the ImageNet dataset [30] provided by [7], our
method achieves promising results.

D Broader Impacts

This work focuses on restoring images corrupted by various forms of degradations. On the one
hand, our method is capable of enhancing the quality of images and improving user experiences. On
the other hand, our method could generate inaccurate outputs, especially when the input is heavily
corrupted. This could potentially lead to deceptive information, such as incorrect identity recognition.
In addition, similar to other restoration algorithms, our method could be used by malicious users for
data falsification. We advise the public to use our method with care.
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