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ABSTRACT

Reconstructing both geometry and appearance of a digital human from a single
image remains highly challenging. Existing approaches typically decouple ge-
ometry and appearance, employing separate models for each, which limits their
ability to reconstruct digital humans in a unified manner. In this paper, we pro-
pose JGA-LBD, which formulates human reconstruction as a bridge diffusion
task in a unified latent space, yielding a joint latent representation that encodes
both geometry and appearance. We address the challenge of human reconstruc-
tion from heterogeneous conditions, i.e., depth maps and SMPL models estimated
from RGB images. Directly combining heterogeneous modalities introduces sub-
stantial training difficulties, to overcome this, we unify all conditions into 3D
Gaussian representation and compress them into a unified latent space using a
sparse variantional autoencoder. All diffusion learning is then conducted within
this unified latent space, which markedly reduces optimization complexity. Our
setting strikingly lends itself to bridge diffusion: the depth map can be regarded as
a partial observation of the target latent code, enabling the model to focus solely
on inferring the missing components. Finally, a decoding module reconstructs
geometry and renders novel-view images from the latent representation. Exper-
iments demonstrate that JGA-LBD outperforms state-of-the-art methods in both
geometry and appearance, and generates plausible results on in-the-wild images.

1 INTRODUCTION

Reconstructing high-fidelity digital humans from single-view RGB images is a fundamental problem
in computer vision, with widely applications in virtual reality, gaming, autonomous driving and etc.
Despite recent advances, achieving accurate reconstruction of both human geometry and appearance
from a single image remains highly challenging, due to complex body shapes, diverse clothing, and
severe self-occlusions.

Existing methods for digital human reconstruction can be broadly grouped into implicit function-
based (Saito et al., 2019; 2020; Zhang et al., 2023c; 2024b; Ho et al., 2024), explicit point-based
(Tang et al., 2025b; Han et al., 2023; Zhuang et al., 2025), and image-generation-based approaches
(Zhang et al., 2025; Li et al., 2025a). Implicit function methods (Saito et al., 2019; 2020; Zhang
et al., 2023c; 2024b; Ho et al., 2024) extract pixel-aligned features, features from parametric hu-
man models such as SMPL, or other cues, and use MLPs to learn occupancy fields or SDFs for
surface reconstruction. While effective for geometry, they often fail to produce accurate appearance
because query points in 3D space rarely have exact color supervision; the closest surface point is
typically used as a proxy, causing the model to learn an approximation rather than ground truth
colors. Explicit point-based methods (Tang et al., 2025b; Han et al., 2023; Zhuang et al., 2025)
represent humans with point clouds derived from RGB images, often via estimated depth maps.
These approaches can reconstruct detailed geometry, but typically ignore appearance, or build ap-
pearance models on top of pre-reconstructed geometry or parametric models like SMPL, resulting
in multi-stage pipelines that may produce inconsistencies. Image-generation-based methods (Zhang
et al., 2025; Li et al., 2025a) leverage large generative models to synthesize multi-view images from
a single input view, and then reconstruct geometry using techniques such as continuous remeshing
(Palfinger, 2022). While promising, they also require multiple steps and are sensitive to artifacts
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in the synthesized views. In summary, existing methods either struggle with appearance, focus
solely on geometry, or rely on complex multi-stage pipelines. In summary, existing methods ei-
ther struggle with appearance, focus solely on geometry, or rely on complex multi-stage pipelines.
These limitations highlight two key requirements that remain unmet: first, accurate ground-truth of
both geometry and appearance supervision is necessary; second, a single-stage method capable of
jointly reconstructing geometry and appearance is required. Recently, 3D Gaussian representation
(Kerbl et al., 2023) has achieved remarkable success in digital human modeling (Zhuang et al., 2025;
Zhang et al., 2025; Qiu et al., 2025). As an explicit representation, it naturally encodes both geom-
etry and appearance, thereby effectively addressing the need for reliable ground-truth supervision
in joint reconstruction. However, the second requirement remains open: high-resolution model-
ing—typically involving over 100k Gaussians—poses a major challenge, namely how to efficiently
process and generate such large-scale representations. A natural solution is to compress 3D Gaus-
sians into a compact latent space and perform generative modeling there, leveraging diffusion mod-
els’ strength in high-dimensional distribution learning. Yet, existing 3D diffusion approaches fall
short: 3DShape2VecSet-based methods (Zhang et al., 2023a) only encode implicit fields and can-
not capture appearance, while Trellis (Xiang et al., 2025) requires generating intermediate sparse
structures before learning structured latents, preventing single-stage generation.

In this work, we present JGA-LBD, a bridge diffusion model that learns in a unified latent space
and enables single-step reconstruction of high-resolution 3D Gaussians of digital humans. Specif-
ically, we design a sparse VAE jointly trained with geometry and appearance supervision, which
maps input 3D Gaussians into compact latent representations. To fully exploit the rich information
embedded in images, we extract two complementary modalities—depth estimation and SMPL pre-
diction—from the input. However, their inherent discrepancies make direct utilization challenging.
To address this, we introduce a modality unification module that transforms both modalities into
3D Gaussian representations, which are subsequently compressed into the same latent space by the
sparse VAE. This design ensures that all subsequent diffusion learning is carried out in a unified
latent space, substantially reducing training complexity. Building on this unified latent design, we
reveal that bridge diffusion offers an unexpectedly suitable framework for human reconstruction,
since the depth-conditioned latent naturally corresponds to a partial observation of the target la-
tent code. Rather than generating from noise, the bridge diffusion model only needs to complete
the missing components, thereby significantly reducing the generative difficulty and improving the
quality of the learned latent representations. Finally, the decoded 3D Gaussians from the latent code
enables both geometry surface extraction and high-quality novel-view rendering via splatting-based
rasterization. Extensive experiments on two benchmarks, together with evaluations on in-the-wild
images, consistently demonstrate that JGA-LBD outperforms state-of-the-art methods in both quan-
titative accuracy and qualitative visual realism.

In summary, our contributions are:

• we design a sparse VAE that jointly compresses geometry and appearance of high-resolution 3D
Gaussian representations into a compact latent code, overcoming prior methods that either focus
solely on geometry or rely on additional sparse structural priors;

• we introduce a modality unification module that converts depth estimation and SMPL prediction
into latent structural guidance through a sparse U-Net and an SMPL inpainter, ensuring consistent
conditioning across heterogeneous modalities; and

• we adapt bridge latent diffusion to operate in the unified latent space, enabling efficient single-
stage generation of complete latent codes, simultaneously modeling geometry and appearance.

2 RELATED WORK

Diffusion Models (Ho et al., 2020) have achieved remarkable success in generative modeling across
diverse domains, including image synthesis, video generation, and audio processing. The core prin-
ciple is to learn data distributions by gradually denoising Gaussian noise. While powerful, directly
performing the diffusion process in pixel space is computationally expensive and often redundant.
To address this, latent diffusion (Rombach et al., 2022) compresses the input into a compact latent
space before applying the diffusion process, enabling efficient training while retaining high-quality
generation. This paradigm has since become the standard for large-scale image and video diffusion
models (Batifol et al., 2025; Peebles & Xie, 2023; Melnik et al., 2024).
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A parallel line of work focuses on conditional diffusion, which aims to guide generation with aux-
iliary inputs. Early approaches such as classifier guidance and classifier-free guidance (Dhariwal
& Nichol, 2021; Ho & Salimans, 2021) inject conditional signals during the sampling process.
Later methods, such as ControlNet (Zhang et al., 2023b), extend this idea by introducing train-
able networks that modulate intermediate features with external conditions, achieving fine-grained
controllability. Despite their effectiveness, these methods still initialize the diffusion process from
Gaussian noise, which may limit their ability to fully exploit structured priors. Bridge diffusion
models (Zhou et al., 2024b; Li et al., 2023) address this limitation by replacing the Gaussian prior
with a condition-driven source distribution, offering a more natural and efficient way to incorpo-
rate external structure. In this work, we build upon this idea and adopt bridge diffusion to leverage
structural priors extracted from depth, which provide strong guidance for the generative process.

3D Generative Models. Generating 3D models is inherently more challenging than 2D image or
video synthesis due to the diversity of 3D representations, which has led to two main research direc-
tions: multi-view based generation and direct 3D representation generation. Multi-view approaches
first synthesize multiple 2D views and then reconstruct 3D content. For example, Zero123 (Liu
et al., 2023) employs Stable Diffusion to generate multi-view images, after which a NeRF is op-
timized—following the SJC formulation (Wang et al., 2023)—to fit these synthesized views, and
meshes are extracted via marching cubes from the learned density field. Leveraging the higher effi-
ciency of 3D Gaussian Splatting (3DGS) compared to NeRF, methods such as DreamGaussian (Tang
et al., 2024b) and LGM (Tang et al., 2024a) use image diffusion to produce multi-view images and
subsequently fit 3DGS, though they often struggle to deliver high-resolution meshes. In contrast,
direct 3D generation methods bypass multi-view supervision. DiffGS (Zhou et al., 2024a) encodes a
3DGS scene into a triplane latent and learns in latent space with DiT (Peebles & Xie, 2023); Crafts-
Man3D (Li et al., 2025b) compacts shapes into vecsets (Zhang et al., 2023a) and trains DiT to learn
an implicit field before extracting meshes at inference; and Trellis (Xiang et al., 2025) compresses
3DGS with sparse CNNs to support multiple downstream representations but requires an additional
stage to provide geometric cues (sparse structure) and cannot unify geometry and appearance within
a single latent. In contrast, our framework jointly compacts geometry and appearance into a unified
latent representation and employs bridge diffusion to learn it in a single stage.

Implicit-based 3D Human Reconstruction. PiFU (Saito et al., 2019) is a pioneering work that
reconstructs colored 3D humans using pixel-aligned features. Subsequent methods enhance implicit
representations with additional cues: SiTH (Ho et al., 2024) generates a back-view image via Con-
trolNet and uses a skinned mesh to resolve 3D ambiguity; GTA (Zhang et al., 2023c) introduces a
ViT-based encoder–decoder to reconstruct clothed avatars with tri-plane features; and SIFU (Zhang
et al., 2024b) leverages SMPL-X–guided cross-attention and a diffusion-based texture refinement
pipeline to improve robustness in the wild. Despite these advances, implicit approaches lack ground-
truth color supervision—appearance is approximated from the nearest surface point—limiting their
ability to model high-fidelity textures.

3DGS-based 3D Human Reconstruction. Recently, 3DGS has emerged as a powerful explicit rep-
resentation for human reconstruction. IDOL (Zhuang et al., 2025) leverages a large-scale dataset
and a transformer-based predictor to reconstruct animatable Gaussian avatars efficiently. MultiGo
(Zhang et al., 2025) introduces multi-level geometry learning with skeleton, joint, and wrinkle re-
finement, while LHM (Qiu et al., 2025) employs a multimodal transformer to preserve fine clothing
and facial details. These methods demonstrate the strength of 3DGS in capturing both geometry and
appearance, though challenges remain in compact representation learning and efficient generative
modeling.

3 PROPOSED METHOD

JGA-LBD is a 3DGS-based method that reconstructs a 3D Gaussian representation G =
{G1, ..., Gn} from a single-view RGB image, where each element Gi = {pi, ci, si, ri, oi} encodes
its corresponding 3D Gaussian attributes such as voxel grid pi, color ci, scale si, rotation ri and
opacity oi. The resulting representation supports high-fidelity 3D surface reconstruction and novel-
view appearance synthesis. To provide reliable supervision, we prepare ground-truth 3D Gaussians
following the regularizations of (Tang et al., 2025a), with each scene containing about 130k∼150k
Gaussians. As illustrated in Fig. 1, JGA-LBD consists of four key modules: (i) a modality unifica-
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Figure 1: The pipeline of JGA-LBD. Given a single-view RGB image, depth and SMPL priors are
converted into 3D Gaussians, which are compressed into latent codes by a sparse VAE. A bridge
diffusion model generates latent codes conditioned on depth and SMPL priors, and the decoder
refines them into a high-fidelity 3D Gaussians for surface reconstruction and novel-view rendering.

tion module to unify the depth maps and SMPL vertices into the same sparse 3D Gaussian format;
(ii) a sparse VAE that compresses both human 3D Gaussians and the converted conditions into la-
tent codes in a unified latent space; (iii) a bridge diffusion model that learns the distribution of
latent human 3D Gaussians conditioned on structural priors; and (iv) a decoder that transforms the
denoised latent code back to a 3D Gaussian representation, followed by refinement to improve its
fidelity before surface reconstruction and novel-view rendering. In what follows, we will detail each
module.

3.1 MODALITY UNIFICATION MODULE

From a single RGB image, both a depth map and a corresponding SMPL model can be obtained.
The depth map can be projected into a partial point cloud using camera parameters, while the SMPL
model provides a complete geometric prior. Although both exist in 3D space, they belong to distinct
modalities: the point cloud encodes (x, y, z, r, g, b) values with appearance information, whereas
the SMPL mesh contains only geometric vertices and faces. This discrepancy prevents them from
being directly used as unified conditional inputs for supervision. To address this, both modalities
are first transformed into a consistent 3D Gaussian representation, achieving modality unification.

For the partial point cloud, we first perform nearest-neighbor search to associate each point with
its closest Gaussian in the target human 3D Gaussians, using these attributes as ground truth for
supervision. A sparse U-Net based on Minkowski Engine (Choy et al., 2019) is then trained to
map (r, g, b) values of the partial point cloud to 3D Gaussian attributes. For the SMPL mesh, we
first project it onto the image plane, where only visible vertices receive color information, leaving
occluded vertices uncolored. This partially observed mesh is then passed through another sparse
Minkowski U-Net to predict complete 3D Gaussian attributes for all vertices, effectively generating
3D Gaussian representation. Note that the resulting colors are coarse and not intended as precise ap-
pearance supervision, this process primarily ensures that SMPL provides global structural guidance
in a unified 3DGS format. By transforming heterogeneous modalities into 3D Gaussians, we obtain
consistent and complementary conditional inputs for the diffusion process.

3.2 JOINT GEOMETRY-APPEARANCE COMPRESSION VAE

Voxel is a common 3D representation that is compatible with standard CNNs. However, accurately
representing a 3D object typically requires very high-resolution voxel grids (at least 5123), which
is infeasible for training due to excessive GPU memory requirements. Inspired by latent diffusion
Rombach et al. (2022), we employ a sparse VAE to compress 3D Gaussians into a compact latent
representation, enabling efficient modeling with standard CNNs in a unified latent space.

Given the ground-truth human 3D Gaussian attributes G, converted depth 3D Gaussian attributes D,
and SMPL 3D Gaussian attributes S, our goal is to encode them into a unified latent representation
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that jointly captures both geometry and appearance. Specifically, we build the sparse VAE with
Minkowski Engine (Choy et al., 2019). The encoder E of the sparse VAE consists of several resnet
blocks, the output z of encoder E serves as the ground truth for diffusion model. To avoid learning
a high-variance latent space, we impose a slight KL-penalty to z to make it learn a latent with
standard normal distribution. The decoder D is a key module in the sparse VAE, as it should decode
the denoised z of diffusion model independently without any sparse structure cues like Trellis (Xiang
et al., 2025). Hence, we adopt the generative sparse transpose convolutions to build the decoder E,
which enables generate new coordinates that does not need the cache coordinates from the encoder
as in standard sparse transpose convolutions. It starts from z and proceeds by progressively pruning
excessive voxels with the occupancy loss, and finally reaching the resolution of G after several
layers. We use MSE loss to supervise the reconstruction of 3D Gaussian attributes, however, the
predicted voxel grid and the ground-truth voxel grid are not strictly aligned and we cannot directly
apply the MSE loss on the sparse tensors. Converting sparse tensors into dense form introduces a
vast number of non-active voxels (e.g., only about 130k∼150k active voxels out of 5123), which
seriously dilutes gradients and hinders effective learning. Therefore, we compute the MSE loss only
on the intersection of active voxels between the prediction and the ground truth:

LAttr =
1

|I|
∑
i∈I

∥ap(i)− ag(i)∥22 , (1)

where I denotes the intersection of active voxel indices, and ap(i), ag(i) are the predicted and gt
3D Gaussian attributes (i.e., p, c, s, r, o) at location i. However, supervising only on the intersec-
tion inevitably leaves certain regions unsupervised. To address this limitation, we introduce a loss
by rendering the predicted 3DGS into 2D images and enforcing consistency with the ground-truth
images. The rendering loss combines the L1 loss, SSIM loss and LPIPS loss:

LRender = λ1∥Ip − Ig∥1 + λ2

(
1− SSIM(Ip, Ig)

)
+ λ3 LPIPS(Ip, Ig), (2)

where Ip and Ig denote the rendered and gt images, respectively, and λ1, λ2, λ3 are balancing
weights. The overall training objective of the sparse VAE is:

LVAE = λ4LKL + λ5LOcc + λ6LAttr + λ7LRender, (3)

where λ4, λ5, λ6, λ7 are balancing weights. The encoded results of G,D and S are converted to
dense latent representations for the diffusion training, denoted as GL,DL and SL respectively.

3.3 BRIDGE DIFFUSION IN UNIFIED LATENT SPACE

Diffusion models are typically designed to transport data distributions into a standard Gaussian prior.
However, in our setting, the depth-derived latent code DL can be regarded as a structural subset of
the full human Gaussian representation. Thus, instead of relying on diffusion models, we adopt the
more powerful bridge diffusion model (Zhou et al., 2024b), which learns a transport path between
two arbitrary distributions. Specifically, the goal is to translate from the structural prior distribution
pDL

to the target distribution pGL
, while being conditioned on the SMPL prior SL.

Formally, a bridge diffusion process is represented by a sequence of time-indexed variables {xt}Tt=0.
Using Doob’s h-transform (Doob & Doob, 1984), the conditional stochastic bridge can be expressed
as:

dxt = f(xt, t | SL) dt+ g(t)2 h(xt, t, y, T | SL) dt+ g(t) dwt, (4)
where x0 ∼ pGL

(x | SL), xT = y, and y ∼ pDL
. The term h(x, t, y, T | SL) = ∇x log p(xT = y |

xt = x,SL) denotes the drift adjustment introduced by the h-transform to ensure that the process
interpolates between the endpoints. Reversing this bridge process yields the conditional reverse SDE

dxt =
[
f(xt, t | SL)− g(t)2

(
Uθ(xt, t, y, T | SL)− h(xt, t, y, T | SL)

)]
dt+ g(t) dw̄t, (5)

and the associated probability flow ODE

dxt =
[
f(xt, t | SL)− g(t)2

(
1
2Uθ(xt, t, y, T | SL)− h(xt, t, y, T | SL)

)]
dt, (6)

where Uθ denotes the neural network with parameters θ approximation of the bridge score function.
To learn this score function, we adopt denoising bridge score matching, which minimizes the dis-
crepancy between the predicted score and the closed-form conditional score of the Gaussian bridge:

L(θ) = Ext,x0,xT ,t

[
w(t)

∥∥Uθ(xt, xT , t | SL)−∇xt
log q(xt | x0, xT ,SL)

∥∥2], (7)
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Table 1: Quantitative comparisons of different methods on 2K2K and CustomHuman. The best
results are highlighted in bold. ↑: the higher the better. ↓: the lower the better.

Method
Metric 2K2K CustomHuman

PSNR↑ SSIM↑ LPIPS↓ CD↓ P2S↓ Normal↓ PSNR↑ SSIM↑ LPIPS↓ CD↓ P2S↓ Normal↓

GTA (NeurIPS 23) 24.15 0.921 0.080 1.156 1.114 2.127 28.86 0.920 0.088 1.249 1.123 2.552
SIFU (CVPR 24) 23.47 0.910 0.088 1.154 1.135 2.180 29.62 0.928 0.092 1.365 1.205 2.696
SiTH (CVPR 24) 24.30 0.920 0.076 0.891 0.944 2.019 26.47 0.911 0.095 2.244 2.367 3.365
IDOL (CVPR 25) 27.18 0.929 0.076 1.095 1.138 2.454 31.02 0.934 0.076 1.119 1.188 2.416
MultiGO (CVPR 25) 28.80 0.939 0.059 0.636 0.655 1.474 31.72 0.934 0.075 1.750 1.809 2.440
Trellis (CVPR 25) 25.47 0.927 0.069 0.771 0.743 1.929 31.33 0.934 0.069 1.202 1.219 2.370
JGA-LBD 29.91 0.943 0.059 0.489 0.507 1.202 32.60 0.945 0.069 0.674 0.670 1.469

where w(t) denotes a time-dependent weighting function that adjusts the relative importance of
different diffusion steps during training.

Remark. We augment each grid of the dense latent representation with an occupancy value {0, 1},
allowing the bridge diffusion model to jointly learn both the latent features and their occupancy.
During inference, the dense latent representation is converted into a sparse latent representation by
retaining only the grids with predicted occupancy greater than 0.5.

3.4 DECODE MODULE

We compress the original sparse 3D Gaussian attributes of size (5123, 20) into a latent represen-
tation of size (643, 4) using a sparse VAE, significantly reducing GPU memory consumption and
enabling feasible training. However, this aggressive compression inevitably leads to information
loss, which is further exacerbated after the diffusion generation process. To alleviate this, following
recent advances in large-scale 3D generative models (Xiang et al., 2025; Ren et al., 2024; Li et al.,
2025b), we append a Minkowski Engine–based U-Net after the VAE decoder to refine the outputs
of the diffusion model.
Mesh Extraction. For each reconstructed 3D Gaussians, we recover the human surface using its
position attributes. Vertex normals are estimated via WNNC (Lin et al., 2024), and the surface is
reconstructed with screened Poisson (Kazhdan & Hoppe, 2013). To further enhance geometric fi-
delity, the reconstructed surface is refined using depth supervision: the surface is rendered into a
depth map with PyTorch3D, and an L1 loss is computed against the predicted depth map.
Novel View Synthesis. For novel-view rendering, we adopt the standard 3D gaussian splatting
pipeline, where the refined 3D Gaussians is rendered from arbitrary viewpoints using the corre-
sponding camera parameters.

4 EXPERIMENTS

Datasets. We conduct experiments on Thuman2.1 (Yu et al., 2021), 2K2K (Han et al., 2023) and
CustomHuman (Ho et al., 2023). Specifically, 1600 scans from Thuman2.1 are used as ground
truth to prepare the ground truth 3D Gaussian attributes, which are used for training the sparse VAE
and the bridge latent diffusion model. For evaluation, we use 25 scans from 2K2K and 40 scans
from CustomHuman. In addition, we assess the generalization ability of JGA-LBD on in-the-wild
images collected from the Internet.
Evaluation metrics. All 3DGS and mesh outputs are normalized to the cube (−1, 1). For
appearance reconstruction, we report peak signal-to-noise ratio (PSNR), structural similarity index
(SSIM), and learned perceptual image patch similarity (LPIPS). For geometry reconstruction, we
evaluate Chamfer distance (CD), point-to-surface distance (P2S), and normal error.

4.1 COMPARISON WITH STATE-OF-THE-ART METHODS

We mainly compare our JGA-LBD with three representative 3DGS-based approaches. IDOL
(Zhuang et al., 2025) leverages an explicit SMPL model as a geometry prior to guide 3D Gaus-
sians generation. MultiGo (Zhang et al., 2025) generates a complete 3D Gaussian scene using a
large model, while encoding SMPL as Fourier features to provide structural guidance. Trellis (Xi-
ang et al., 2025) learns a compact latent space that jointly encodes both geometry and appearance

6
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Input OursIDOL MultiGoGT Trellis

Figure 2: Geometry comparisons of our method against 3DGS-based methods, i.e., IDOL, MultiGo
and Trellis. Û Zoom in for details.

Input OursIDOL MultiGoGT Trellis

Figure 3: Appearance comparisons of our method against 3DGS-based methods, i.e., IDOL,
MultiGo and Trellis. Û Zoom in for details.

for structured generative modeling with multiple stages. We further compare JGA-LBD with several
recent implicit-based methods (Ho et al., 2024; Zhang et al., 2023c; 2024b). As shown in Table 1,
JGA-LBD achieves the best performance across all metrics on both benchmark datasets.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Input Input

Input Input Input

Figure 4: The reconstructed results of our JGA-LBD on in-the-wild images. Û Zoom in for details.

Geometry Comparison. IDOL (Zhuang et al., 2025) heavily relies on the SMPL model without
any refinement, and therefore, as shown in Figure 2, it often produces incorrect poses. Moreover,
due to the strong regularization imposed by SMPL, it fails to handle loose clothing such as dresses
(see the third case). Although MultiGo (Zhang et al., 2025) employs a wrinkle refinement network,
its geometric reconstruction still lacks fine details. Moreover, as observed in the third and fourth
cases in Figure 2, the reconstructed bodies exhibit a forward-leaning tendency. This indicates that,
although MultiGo avoids the pose inaccuracies introduced by directly using SMPL, its 2D diffusion
model is insufficient to correct pose errors in 3D space. Trellis (Xiang et al., 2025) suffers from
low mesh resolution, which severely limits the reconstruction of fine details. In addition, the recon-
structed poses are often inaccurate, with head rotations consistently misaligned with the input across
all cases. In contrast, our JGA-LBD is able to reconstruct fine geometric details and handle loose
clothing, while maintaining accurate overall human poses.
Appearance Comparison. IDOL (Zhuang et al., 2025) suffers from severe misalignment caused by
wrong SMPL poses. As shown in the Figure. 3, it can only capture relatively simple color patterns
and fails to represent fine-grained textures such as stripes in the second case. In addition, noticeable
jagged artifacts can be observed along the edges. MultiGo (Zhang et al., 2025) performs well on
the front side, but its back-side reconstructions remain poor. For example, in the second case it fails
to recover the stripe patterns, and in the third case the back of the head incorrectly contains facial
details instead of black hair. Beyond its failure to reconstruct fine details such as stripes, Trellis
(Xiang et al., 2025) also suffers from severe geometry–appearance inconsistencies. For instance, in
the second and third cases, the reconstructed arms are noticeably inconsistent with those shown in
Figure. 2. In contrast, our JGA-LBD not only reconstructs fine details such as stripes and back-side
wrinkles, but also maintains geometric consistency with the reference in Figure. 2.
Overall, both quantitative metrics and qualitative comparisons demonstrate that our JGA-LBD con-
sistently outperforms state-of-the-art methods. We further conducted experiments on in-the-wild
images with challenging poses, as shown in Fig. 4, where JGA-LBD successfully reconstructs plau-
sible appearances and detailed 3D surfaces. More visual results are shown in Fig. A1 in Appendix.

4.2 ABLATION STUDIES

Visual Results of Sparse VAE. To evaluate the effectiveness of the sparse VAE, we conduct exper-
iments on reconstructing human 3D Gaussian representations directly from the compressed latent
space. Specifically, the input 3D Gaussians are compressed from (5123, 20) into a latent tensor
of size (643, 4), and subsequently decoded to recover 3D Gaussian attributes. As shown in Fig. 5
(a), the sparse VAE is able to preserve the overall geometry and coarse appearance of the human
body, demonstrating that the latent space effectively encodes both structural and visual information.
However, fine-grained details such as sharp geometric boundaries and high-frequency textures are
noticeably degraded due to the high compression ratio. This observation motivates the introduction
of a decode module after the VAE decoder to enhance reconstruction fidelity.

Effectiveness of Bridge Diffusion. We further compare the bridge diffusion employed in our work
with the popular rectified flow method (Liu et al., 2022), the quantitative results are shown in Table
2. The visual results in Fig. 5 (b) show that rectified flow tends to generate 3D Gaussians with
many holes, and the reconstructed back surfaces are heavily corrupted by noise. This observation
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Input

Bridge Diffusion

Rectified Flow

(b) (c) (d)
Input W/O Decode Module With Decode ModuleVAE GT

(a)

Figure 5: Ablation visual results. (a). The visualization comparison between VAE results and GT.
(b). Comparison between rectified flow and bridge diffusion. (c). Training loss curve of image
and SMPL feature level supervision. (d). Comparison between visual results without and with the
decode module. Û Zoom in for details.

highlights the advantage of bridge diffusion: since the starting depth is already part of the complete
3D Gaussians, bridge diffusion does not need to allocate excessive capacity to the visible front side
but instead focuses on learning the missing regions. As a result, our strategy of adopting bridge
diffusion achieves superior reconstruction quality.

Necessity of Structural Prior. We further validate the necessity of introducing structural priors.
Following GaussianCube (Zhang et al., 2024a), we extract image features using DINOv2 (Oquab
et al., 2023) and SMPL features using Point-M2AE (Zhang et al., 2022), and employ both features
to supervise the training process of bridge diffusion model. However, the training often fails to
converge: as shown in Fig. 5 (c), the loss decreases at the beginning but suddenly rises after several
epochs, eventually leading to divergence. We attribute this to the modality gap between images and
SMPL, which makes it difficult for the model to learn meaningful representations when directly
using such heterogeneous features. This observation underscores the importance of our unified
latent space, where features from different modalities are mapped into a shared representation,
substantially reducing training difficulty and improving stability.

Table 2: Ablation studies on 2K2K.

Method
Metric PSNR↑ SSIM↑ LPIPS↓ CD↓ P2S↓ Normal↓

Rectified Flow 28.32 0.931 0.074 0.568 0.535 1.436
Feature Condition Fail Fail Fail Fail Fail Fail
w/o Decode Module 27.68 0.931 0.073 0.498 0.497 1.287
Full Model 29.91 0.943 0.059 0.489 0.507 1.202

Necessity of Decode Module. Due to the aggres-
sive compression ratio of the VAE, inevitable in-
formation loss is introduced. In addition, the dif-
fusion model itself cannot achieve perfectly error-
free reconstruction, and such residual errors further
amplify the loss caused by compression, making it
difficult to capture and recover high-frequency de-
tails. To address this issue, we introduce a decoding
module after the diffusion model to refine and enhance the generated results. As shown in Table 2,
the decode module brings significant improvement on both appearance and geometry metrics. Fig.
5 (d), we can also observe enhanced details in both appearance and geometry. Moreover, it is worth
noting that even without the additional decode module, the results already achieve the best perfor-
mance in terms of geometry and deliver appearance reconstruction that remains competitive with
state-of-the-art methods.

5 CONCLUSION

In this work, we introduce JGA-LBD, a framework that reconstructs both geometry and appearance
of a human in a single generation step. Experimental results demonstrate that our method achieves
superior performance in both geometry and appearance reconstruction compared to state-of-the-art
methods. Unlike existing methods that decouple geometry and appearance, JGA-LBD performs
joint modeling, thereby ensuring better consistency between geometry and appearance. In future
work, we will exploit a more powerful sparse VAE capable of capturing high-frequency details, and
explore diffusion architectures that eliminate the need for an additional refinement decoder, further
improving both efficiency and reconstruction quality.
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Figure A1: More visual results. Û Zoom in for details.

A APPENDIX

A.1 IMPLEMENTATION DETAILS.

The sparse VAE was trained using Minkowski Engine 0.5.4 with a batch size of 8 for 200,000 it-
erations. The Adam optimizer was employed with a learning rate of 0.00035. The loss weights
λ1 ∼ λ7 were set as 0.8, 0.2, 0.1, 5 × 10−7, 1, 1, 1, respectively. (To improve training stability,
LAttr and LRender were introduced only after 10,000 iterations.) For bridge diffusion, both train-
ing and inference followed the original DDBM setting (Zhou et al., 2024b), where the parameters
CHURN STEP RATIO and GUIDANCE were set to 0.1 and 1, respectively. The batch size was set
to 16, and the number of training iterations was 100,000. The Adam optimizer was employed with
a learning rate of 0.00035. Depth Anything V2 (Yang et al., 2024) was adopted as the backbone
for depth estimation and PIXIE (Feng et al., 2021) was selected to predict the SMPL models. All
training and testing were conducted on a server equipped with four NVIDIA A6000 GPUs.
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