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ABSTRACT

Image denoisers have been shown to be powerful priors for solving inverse prob-
lems in imaging. In this work, we introduce a generalization of these methods
that allows any image restoration network to be used as an implicit prior. The pro-
posed method uses priors specified by deep neural networks pre-trained as gen-
eral restoration operators. The method provides a principled approach for adapt-
ing state-of-the-art restoration models for other inverse problems. Our theoretical
result analyzes its convergence to a stationary point of a global functional associ-
ated with the restoration operator. Numerical results show that the method using
a super-resolution prior achieves state-of-the-art performance both quantitatively
and qualitatively. Overall, this work offers a step forward for solving inverse prob-
lems by enabling the use of powerful pre-trained restoration models as priors.

1 INTRODUCTION

Many problems in computational imaging, biomedical imaging, and computer vision can be formu-
lated as inverse problems, where the goal is to recover a high-quality images from its low-quality
observations. Imaging inverse problems are generally ill-posed, thus necessitating the use of prior
models on the unknown images for accurate inference. While the literature on prior modeling of
images is vast, current methods are primarily based on deep learning (DL), where a deep model is
trained to map observations to images (Lucas et al., 2018; McCann et al., 2017; Ongie et al., 2020).

Image denoisers have become popular for specifying image priors for solving inverse prob-
lems (Venkatakrishnan et al., 2013; Romano et al., 2017; Kadkhodaie & Simoncelli, 2021; Kamilov
et al., 2023). Pre-trained denoisers provide a convenient proxy for image priors that does not require
the description of the full density of natural images. The combination of state-of-the-art (SOTA)
deep denoisers with measurement models has been shown to be effective in a number of inverse
problems, including image super-resolution, deblurring, inpainting, microscopy, and medical imag-
ing (Metzler et al., 2018; Zhang et al., 2017b; Meinhardt et al., 2017; Dong et al., 2019; Zhang et al.,
2019; Wei et al., 2020; Zhang et al., 2022) (see also the recent reviews (Ahmad et al., 2020; Kamilov
et al., 2023)). This success has led to active research on novel methods based on denoiser priors,
their theoretical analyses, statistical interpretations, as well as connections to related approaches
such as score matching and diffusion models (Chan et al., 2017; Romano et al., 2017; Buzzard et al.,
2018; Reehorst & Schniter, 2019; Sun et al., 2019; Sun et al., 2019; Ryu et al., 2019; Xu et al., 2020;
Liu et al., 2021; Cohen et al., 2021a; Hurault et al., 2022a;b; Laumont et al., 2022; Gan et al., 2023).

Despite the rich literature on the topic, the prior work has narrowly focused on leveraging the sta-
tistical properties of denoisers. There is little work on extending the formalism and theory to pri-
ors specified using other types of image restoration operators, such as, for example, deep image
super-resolution models. Such extensions would enable new algorithms that can leverage SOTA
pre-trained restoration networks for solving other inverse problems. In this paper, we address this
gap by developing the Deep Restoration Priors (DRP) methodology that provides a principled ap-
proach for using restoration operators as priors. We show that when the restoration operator is a
minimum mean-squared error (MMSE) estimator, DRP can be interpreted as minimizing a compos-
ite objective function that includes log of the density of the degraded image as the regularizer. Our
interpretation extends the recent formalism based on using MMSE denoisers as priors (Bigdeli et al.,
2017; Xu et al., 2020; Kadkhodaie & Simoncelli, 2021; Laumont et al., 2022; Gan et al., 2023). We
present a theoretical convergence analysis of DRP to a stationary point of the objective function
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under a set of clearly specified assumptions. We show the practical relevance of DRP by solving
several inverse problems by using a super-resolution network as a prior. Our numerical results show
the potential of DRP to adapt the super-resolution model to act as an effective prior that can outper-
form image denoisers. This work thus addresses a gap in the current literature by providing a new
principled framework for using pre-trained restoration models as priors for inverse problems.

All proofs and some details that have been omitted for space appear in the supplementary material.

2 BACKGROUND

Inverse Problems. Many imaging problems can be formulated as inverse problems that seek to
recover an unknown image = € R™ from from its corrupted observation

y=Azxz+e, (D

where A € R™*"™ is a measurement operator and e € R™ is the noise. A common strategy for
addressing inverse problems involves formulating them as an optimization problem

Z € argmin f(x) with f(x) =g(x)+ h(x), (2)
xER"
where g is the data-fidelity term that measures the fidelity to the observation y and h is the regular-

izer that incorporates prior knowledge on x. For example, common functionals in imaging inverse

problems are the least-squares data-fidelity term g(z) = 1 Az — y H; and the total variation (TV)

regularizer h(x) = 7 || Dx||,, where D is the image gradient, and 7 > 0 a regularization parameter.

Deep Learning. DL is extensively used for solving imaging inverse problems (McCann et al., 2017;
Lucas et al., 2018; Ongie et al., 2020). Instead of explicitly defining a regularizer, DL methods often
train convolutional neural networks (CNNs) to map the observations to the desired images (Wang
et al., 2016; Jin et al., 2017; Kang et al., 2017; Chen et al., 2017; Delbracio et al., 2021; Delbracio
& Milanfar, 2023). Model-based DL (MBDL) is a widely-used sub-family of DL algorithms that
integrate physical measurement models with priors specified using CNNs (see reviews (Ongie et al.,
2020; Monga et al., 2021)). The literature of MBDL is vast, but some well-known examples include
plug-and-play priors (PnP), regularization by denoising (RED), deep unfolding (DU), compressed
sensing using generative models (CSGM), and deep equilibrium models (DEQ) (Bora et al., 2017;
Romano et al., 2017; Zhang & Ghanem, 2018; Hauptmann et al., 2018; Gilton et al., 2021; Liu et al.,
2022). These approaches come with different trade-offs in terms of imaging performance, compu-
tational and memory complexity, flexibility, need for supervision, and theoretical understanding.

Denoisers as Priors. PnP (Venkatakrishnan et al., 2013; Sreehari et al., 2016) is one of the most
popular MBDL approaches for inverse problems based on using deep denoisers as imaging priors
(see recent reviews (Ahmad et al., 2020; Kamilov et al., 2023)). For example, the proximal-gradient
method variant of PnP can be written as (Hurault et al., 2022a)

xb prox,yg(zk) with 2F « 2F71 —~y7(2F~1 — D, (7)), 3)

where D,, is a denoiser with a parameter ¢ > 0 for controlling its strength, 7 > 0 is a regularization
parameter, and v > 0 is a step-size. The theoretical convergence of PnP methods has been estab-
lished for convex functions g using monotone operator theory (Sreehari et al., 2016; Sun et al., 2019;
Ryu et al., 2019), as well as for nonconvex functions based on interpreting the denoiser as a MMSE
estimator (Xu et al., 2020) or ensuring that the term (I — D, ) in (3) corresponds to a gradient Vh of
a function h parameterized by a deep neural network (Hurault et al., 2022a;b; Cohen et al., 2021a).
Many variants of PnP have been developed over the past few years (Romano et al., 2017; Metzler
et al., 2018; Zhang et al., 2017b; Meinhardt et al., 2017; Dong et al., 2019; Zhang et al., 2019; Wei
et al., 2020), which has motivated an extensive research on its theoretical properties (Chan et al.,
2017; Buzzard et al., 2018; Ryu et al., 2019; Sun et al., 2019; Tirer & Giryes, 2019; Teodoro et al.,
2019; Xu et al., 2020; Sun et al., 2021; Cohen et al., 2021b; Hurault et al., 2022a; Laumont et al.,
2022; Hurault et al., 2022b; Gan et al., 2023).

This work is most related to two recent PnP-inspired methods using restoration operators instead of
denoisers (Zhang et al., 2019; Liu et al., 2020). Deep plug-and-play super-resolution (DPSR) (Zhang
et al., 2019) was proposed to perform image super-resolution under arbitrary blur kernels by using
a bicubic super-resolver as a prior. Regularization by artifact removal (RARE) (Liu et al., 2020)
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was proposed to use CNNs pre-trained directly on subsampled and noisy Fourier data as priors for
magnetic resonance imaging (MRI). These prior methods did not leverage statistical interpretations
of the restoration operators to provide a theoretical analysis for the corresponding PnP variants.

It is also worth highlighting the work of Gribonval and colleagues on theoretically exploring the
relationship between MMSE restoration operators and proximal operators (Gribonval, 2011; Gri-
bonval & Machart, 2013; Gribonval & Nikolova, 2021). Some of the observations and intuition in
that prior line of work is useful for the theoretical analysis of the proposed DRP methodology.

Our contribution. (1) Our first contribution is the new method DRP for solving inverse problems
using the prior implicit in a pre-trained deep restoration network. Our method is a major extension
of recent methods (Bigdeli et al., 2017; Xu et al., 2020; Kadkhodaie & Simoncelli, 2021; Gan et al.,
2023) from denoisers to more general restoration operators.(2) Our second contribution is a new
theory that characterizes the solution and convergence of DRP under priors associated with the
MMSE restoration operators. Our theory is general in the sense that it allows for nonsmooth data-
fidelity terms and expansive restoration models. (3) Our third contribution is the implementation of
DRP using the popular SwinIR (Liang et al., 2021) super-resolution model as a prior for two distinct
inverse problems, namely deblurring and super-resolution. We publicly share our implementation
that shows the potential of using restoration models to achieve SOTA performance.

3 DEEP RESTORATION PRIOR

Image denoisers are currently extensively used as priors for solving inverse problems. We extend
this approach by proposing the following method that uses a more general restoration operator.

Algorithm 1 Deep Restoration Priors (DRP)

1: input: Initial value 2° € R™ and parameters v, 7 > 0

2: fork=1,2,3,... do

3: 2P« zF=1 — y7G(x*~ 1) where G(z) == = — R(Hz)
4 aF « sprox,,(z")

5: end for

The prior in Algorithm 1 is implemented in Line 3 using a deep model R : RP — R” pre-trained to
solve the following restoration problem

s=Hzx+n with z~pg n~N(00), 4)

where H € RP*™ is a degradation operator, such as blur or downscaling, and n € R is the additive
white Gaussian noise (AWGN) of variance 2. The density p,, is the prior distribution of the desired
class of images. Note that the restoration problem (4) is only used for training R and doesn’t have
to correspond to the inverse problem in (1) we are seeking to solve. When H = I, the restoration
operator R reduces to an AWGN denoiser used in the traditional PnP methods (Romano et al., 2017;
Kadkhodaie & Simoncelli, 2021; Hurault et al., 2022a). The goal of DRP is to leverage a pre-trained
restoration network R to gain access to the prior.

The measurement consistency is implemented in Line 4 using the scaled proximal operator

T . 1
sprox.,,(z) = proxt} Y (z) = arg min {2”33 — 2|3 + *yg(a:)} , (5)
xzeR™
where ||v||gtg = v H"Hwv denotes the weighted Euclidean seminorm of a vector v. When

HT"H is positive definite and g is convex, the functional being minimized in (5) is strictly convex,
which directly implies that the solution is unique. On the other hand, when ¢ is not convex or HTH
is positive semidefinite, there might be multiple solutions and the scaled proximal operator simply
returns one of the solutions. It is also worth noting that (5) has an efficient solution when g is the
least-squares data-fidelity term (see for example the discussion in (Kamilov et al., 2023) on efficient
implementations of proximal operators of least-squares).

The fixed points of Algorithm 1 can be characterized for subdifferentiable g (see Chapter 3 in (Beck,
2017) for a discussion on subdifferentiability). When DRP converges, it converges to vectors £* €
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R™ that satisfy (see formal analysis in Supplement A.1)
0 € dg(x*) + TH HG(z") (6)

where Og is the subdifferential of g and G is defined in Line 3 of Algorithm 1. As discussed in
the next section, under additional assumptions, one can associate the fixed points of DRP with the
stationary points of a composite objective function f = g + h for some regularizer h.

4 CONVERGENCE ANALYSIS OF DRP

In this section, we present a theoretical analysis of DRP. We first provide a more insightful interpre-
tation of its solutions for restoration models that compute MMSE estimators of (4). We then discuss
the convergence of the iterates generated by DRP. Our analysis will require several assumptions.

We will consider restoration models that perform MMSE estimation of € R"™ for the problem (4)

R(s) = E [z]|s] :/ccpm‘s(sc;s)dm :/a}

where we used the probability density of the observation s € RP

2e(®) = [ palsiapa(@)de = [ Gols ~ Halpa(a) do. ®)

The function G, in (8) denotes the Gaussian density function with the standard deviation o > 0.

Ps|x (S; x)pw (ZC)

dz. 7
a(5) x (7

Assumption 1. The prior density py is non-degenerate over R™.

For example, a probability density p,, is degenerate over R™, if it is supported on a space of lower di-
mensions than n. Our goal is to establish an explicit link between the MMSE restoration operator (7)
and the following regularizer

h(x) = —10?logps(Hz), x € R", )

where T is the parameter in Algorithm 1, p, is the density of the observation (8), and o? is the
AWAGN level used for training the restoration network. We adopt Assumption 1 to have a more intu-
itive mathematical exposition, but one can in principle generalize the link between MMSE operators
and regularization beyond non-degenerate priors (Gribonval & Machart, 2013). It is also worth ob-
serving that the function h is infinitely continuously differentiable, since it is obtained by integrating
P With a Gaussian density G (Gribonval, 2011; Gribonval & Machart, 2013).

Assumption 2. The scaled proximal operator sprox,, is well-defined in the sense that there exists
a solution to the problem (5) for any z € R™. The function g is subdifferentiable over R".

This mild assumption is needed for us to be able to run our method. There are multiple ways to
ensure that the scaled proximal operator is well defined. For example, sprox,, is always well-
defined for any g that is proper, closed, and convex (Parikh & Boyd, 2014). This directly makes
DRP applicable with the popular least-squares data-fidelity term g(z) = 3|ly — A[|3. One can
relax the assumption of convexity by considering g that is proper, closed, and coercive, in which
case sprox,,, will have a solution (see for example Chapter 6 of (Beck, 2017)). Note that we do not

require the solution to (5) to be unique; it is sufficient for sprox,, to return one of the solutions.

We are now ready to theoretically characterize the solutions of DRP.

Theorem 1. Let R be the MMSE restoration operator (7) corresponding to the restoration prob-
lem (4) under Assumptions 1-3. Then, any fixed-point x* € R" of DRP satisfies

0 € dg(x*) + Vh(x"),

where h is given in (9).

The proof of the theorem is provided in the supplement and generalizes the well-known Tweedie’s
formula (Robbins, 1956; Miyasawa, 1961; Gribonval, 2011) to restoration operators. The theorem
implies that the solutions of DRP satisfy the first-order conditions for the objective function f = g+
h. If g is a negative log-likelihood p,|., then the fixed-points of DRP can be interpreted as maximum-
a-posteriori probability (MAP) solutions corresponding to the prior density ps. The density ps is
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related to the true prior p,, through eq. (8), which implies that DRP has access to the prior p,, through
the restoration operator R via density ps. As H — I and o — 0, the density ps approaches the prior
distribution py,.

The convergence analysis of DRP will require additional assumptions.
Assumption 3. The data-fidelity term g and the implicit regularizer h are bounded from below.

This assumption implies that there exists f* > —oo such that f(x) > f* for all x € R™.

Assumption 4. The function h has a Lipschitz continutous gradient with constant L > 0. The
degradation operator associated with the restoration network is such that A = H'H > p > 0.

This assumption is related to the implicit prior associated with a restoration model and is needed to
ensure the monotonic reduction of the objective f by the DRP iterates. As stated under eq. (9), the
function h is infinitely continuously differentiable. We additionally adopt the standard optimization
assumption that V h is Lipschitz continuous (Nesterov, 2004). It is also worth noting that the positive
definiteness of HT H in Assumption 4 is a relaxation of the traditional PnP assumption that the prior
is a denoiser, which makes our theoretical analysis a significant extension of the prior work (Bigdeli
et al., 2017; Xu et al., 2020; Kadkhodaie & Simoncelli, 2021; Gan et al., 2023).

We are now ready to state the following results.

Theorem 2. Run DRP for fort > 1 iterations under Assumptions 1-4 using a step-size v = p/(aL)
with o > 1. Then, for each iteration 1 < k < t, there exists w(x*) € 0f (") such that

| =

: e CUF(0) — f7)
; lw(@*) 3 < —————,

where C' > 0 is an iteration independent constant.

The exact expression for the constant C' is given in the proof. Theorem 2 shows that the iterates
generated by DRP satisfy w(x*) — 0 as t — oo. Theorems 1 and 2 do not explicitly require
convexity or smoothness of g, and non-expansiveness of R. They can thus be viewed as a major
generalization of the existing theory from denoisers to more general restoration operators.

5 NUMERICAL RESULTS

We now numerically validate DRP on several distinct inverse problems. Due to space limitations in
the main paper, we have included several additional numerical results in the supplementary material.

We consider two inverse problems of form y = Ax + e: (a) Image Deblurring and (b) Single Image
Super Resolution (SISR). For both problems, we assume that e is the additive white Gaussian noise
(AWGN). We adopt the traditional /5-norm loss as the data-fidelity term in (2) for both problems.
We use the Peak Signal-to-Noise Ratio (PSNR) for quantitative performance evaluation.

In the main manuscript, we compare DRP with several variants of denoiser-based methods, in-
cluding SD-RED (Romano et al., 2017), PnP-ADMM (Chan et al., 2017), IRCNN (Zhang et al.,
2017b), and DPIR (Zhang et al., 2022). SD-RED and PnP-ADMM refer to the steepest-descent
variant of RED and the ADMM variant of PnP, both of which incorporate AWGN denoisers based
on DnCNN (Zhang et al., 2017a). IRCNN and DPIR are based on half-quadratic splitting (HQS)
iterations that use the IRCNN and the DRUNet denoisers, respectively.

In the supplement, we present several additional comparisons, namely: (a) evaluation of the perfor-
mance of DRP on the task of image denoising; (b) additional comparison of DRP with the recent
provably convergent variant of PnP called gradient-step plug-and-play (GS-PnP) (Hurault et al.,
2022a); (c) comparison of DRP with the diffusion posterior sampling (DPS) (Chung et al., 2023)
method that uses a denoising diffusion model as a prior; (d) illustration of the improvement of DRP
using SwinlR as a prior over the direct application of SwinIR on SR using the Gaussian kernel;
(e) presentation of quantitative results using SSIM and LPIPS metrics; (f) additional comparison
with DPIR using with SwinIR trained as denoiser; (g) additional evaluation of DRP with a non-
MMSE restoration priors and other MMSE restoration priors; and (h) evaluation of robustness of
our numerical results to random seed.
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Figure 1: Illustration of the convergence behaviour of DRP for image deblurring and single image
super resolution on the Set3c dataset. (a)-(b): Deblurring with Gaussian blur kernels of standard
deviations 1.6 and 2.0. (¢)-(d): 2x and 3x super resolution with the Gaussian blur kernel of standard
deviation 2.0. Average distance ||z* — x*~!||3 and PSNR relative to the groundtruth are plotted,

with shaded areas indicating the standard deviation of these metrics across all test images.

Kernel Datasets | SD-RED  PnP-ADMM _ IRCNN+ DPIR DRP
Set3c | 27.14/0.121 29.11/0.099 28.14/0.086 29.53/0.110 30.69/0.056
. Set5 | 29.78/0.160 32.31/0.137 29.46/0.130 32.38/0.152  32.79/0.109
CBSD68 | 25.78/0.344  28.90/0.287 26.86/0.307 28.86/0.307 29.10/0.246
McMaster | 29.69/0.167  32.20/0.136  29.15/0.153 32.42/0.151 32.79/0.107
Set3c | 25.83/0.165 27.05/0.157 26.58/0.156 27.52/0.159 27.89/0.088
- Set5 | 28.13/0.193 30.77/0.181 28.75/0.182 30.94/0.188 31.04/0.143
CBSD68 | 24.43/0.455 27.45/0.360 25.97/0.416 27.52/0.376 27.46/0.296
McMaster | 28.71/0.201  30.50/0.185 28.27/0.222 30.78/0.193  30.79/0.141

Table 1: PSNR1/LPIPS] comparison of DRP and several SOTA methods for solving inverse prob-
lems using denoisers on image deblurring with the Gaussian blur kernels of standard deviation 1.6
and 2.0 on Set3c, Set5, CBSD68 and McMaster datasets. The best and second best results are
highlighted. Note how DRP can outperform SOTA PnP methods that use denoisers as priors.

5.1 SWIN TRANSFORMER BASED SUPER RESOLUTION PRIOR

Super Resolution Network Architecture. We pre-trained a ¢ x super resolution model R, using the
SwinlIR (Liang et al., 2021) architecture based on Swin Transformer. Our training dataset comprised
both the DIV2K (Agustsson & Timofte, 2017) and Flick2K (Lim et al., 2017) dataset, containing
3450 color images in total. During training, we applied ¢x bicubic downsampling to the input
images with AWGN characterized by standard deviation ¢ randomly chosen in [0, 10/255]. We
used three SwinIR SR models, each trained for different down-sampling factors: 2x, 3x and 4.

Prior Refinement Strategy for the Super Resolution prior. Theorem 1 suggests that as H — 1,
the prior in DRP converges to p,. This process can be approximated for SwinIR by controlling the
down-sampling factor g of the SR restoration prior R,(-). We observed through our numerical ex-
periments that gradual reduction of q leads to less reconstruction artifacts and enhanced fine details.
We will denote the approach of gradually reducing q as prior refinement strategy. We initially set
q to a larger down-sampling factor, which acts as a more aggressive prior; we then reduce ¢ to a
smaller value leading to preservation of finer details. This strategy is conceptually analogous to the
gradual reduction of ¢ in the denoiser in the SOTA PnP methods such as DPIR (Zhang et al., 2022).

5.2 IMAGE DEBLURRING

Image deblurring is based on the degradation operator of the form A = K, where K is a convolution
with the blur kernel k. We consider image deblurring using two 25 x 25 Gaussian kernels (with the
standard deviations 1.6 and 2) used in (Zhang et al., 2019), and the AWGN vector e corresponding
to noise level of 2.55/255. For fair comparison, we use the official implementations provided by
each baseline method and use the same random seed to ensure consistency of random noise for all
methods. The restoration model used as a prior in DRP is SwinIR introduced in Section 5.1, so that
the operation H corresponds to the standard bicubic downsampling. The scaled proximal operator
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Blurry Image PnP-ADMM IRCNN+ DRP (Ours) Ground Truth

Figure 2: Visual comparison of DRP with several well-known methods on Gaussian deblurring of
color images. The top row shows results for a blur kernel with a standard deviation (std) of 1.6,
while the bottom row shows results for another blur kernel with std = 2. The squares at the bottom-
left corner of blurry images show the blur kernels. Each image is labeled by its PSNR in dB with
respect to the original image. The visual differences are highlighted in the bottom-right corner. Note
how DRP using restoration prior improves over SOTA methods based on denoiser priors.

PSNR q=3(28.12 dB)

31

q=2(30.28 dB) g =2and3 (30.58 dB) Ground Truth

g=2andg=3
=2 e
g=3 cerenneenan

0 80

Figure 3: Illustration of the impact of different SR factors in the prior used within DRP for image
deblurring. We show three scenarios: (i) using only 3x prior, (ii) using only 2x prior, and (iii) the
use of the prior refinement strategy, which combines both the 2x and 3 x priors. Left: Convergence
of PSNR against the iteration number for all three configurations. Right: Visual illustration of the
final image for each setting. The visual difference is highlighted by the red arrow in the zoom-in
box. Note how the reduction of g can lead to about 0.3 dB improvement in the final performance.

sprox,, in (5) with data-fidelity term g(z) = 1 ||y — K=||5 can be written as

sprox.,(2) = (KTK +yH'H)"'[K Ty + yH"Hz]. (10)

We adopt a standard approach of using a few iterations of the conjugate gradient (CG) method (see
for example (Aggarwal et al., 2019)) to implement the scaled proximal operator (10) by avoiding the
direct inversion of (KT K + YHTH). As bicubic SR model is adopted as prior, the R(Hz) in Step
3 of Algorithm 1 performs a bicubic downsampling of the intermediate image 2*~! and inputs it
into the bicubic SR SwinIR. In each DRP iteration, we run three steps of a CG solver, starting from
a warm initialization from the previous DRP iteration. We fine-turned the hyper-parameter ~, 7 and
SR restoration prior rate g to achieve the highest PSNR value on the Set5 dataset and then apply the
same configuration to the other three datasets.

Figure 1 (a)-(b) illustrates the convergence behaviour of DRP on the Set3c dataset for two blur ker-
nels. Table 1 presents the quantitative evaluation of the reconstruction performance on two different
blur kernels, showing that DRP outperforms the baseline methods across four widely-used datasets.
Figure 2 visually illustrates the reconstructed results on the same two blur kernels. Note how DRP
can reconstruct the fine details of the tiger and starfish, as highlighted within the zoom-in boxes,
while all the other baseline methods yield either oversmoothed reconstructions or noticeable arti-
facts. These results show that DRP can leverage SwinlR as an implicit prior, which not only ensures
stable convergence, but also leads to competitive performance when compared to denoisers priors.
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SR Kernel | Datasets SD-RED PnP-ADMM IRCNN+ DPIR DRP
Set3c 27.01/0.147  27.88/0.131  27.48/0.113  28.18/0.137  29.26/0.079

. Set5 28.98/0.207  31.41/0.171  29.47/0.194 31.42/0.175  31.47/0.120
CBSD68 | 26.11/0.426  28.00/0.338  26.66/0.413  27.97/0.356  28.12/0.285

9% McMaster | 28.70/0.257  30.98/0.208  29.11/0.237 31.16/0.179  31.39/0.122
Set3c 25.20/0.191  25.86/0.187  25.92/0.171  26.80/0.171  27.41/0.107

- Set5 28.57/0.246  30.06/0.205  28.91/0.241  30.36/0.241  30.42/0.163
CBSD68 | 25.77/0.529  26.88/0.393  26.06/0.510 26.98/0.401  26.98/0.327

McMaster | 28.15/0.303  29.53/0.219  28.41/0.299  29.87/0.215  30.03/0.167

Set3c 25.50/0.177  25.85/0.173  25.72/0.158  26.64/0.169  27.77/0.090

. Set5 28.75/0.220  30.09/0.195  29.14/0.216  30.39/0.202  30.83/0.149
CBSD68 | 25.69/0.475  26.78/0.378  26.01/0.460  26.80/0.394  27.18/0.299

I McMaster | 28.38/0.269  29.52/0.208  28.53/0.262  29.82/0.210  29.92/0.164

Set3c 24.55/0.220  24.87/0.216  24.87/0.196  25.84/0.195  26.84/0.108
- Set5 28.19/0.280  29.26/0.229  28.37/0.265  29.70/0.225  29.88/0.162

CBSD68 | 25.40/0.556  26.28/0.420  25.56/0.530  26.39/0.422  26.60/0.324
McMaster | 27.79/0.329  28.72/0.246  27.85/0.320 29.11/0.236  29.47/0.167

Table 2: PSNR1/LPIPS| comparison of DRP and several baselines for SISR on Set3c, Set5,
CBSD68 and McMaster datasets. The best and second best results are highlighted. Note the ex-
cellent quantitative performance of DRP, which suggests the potential of using general restoration
models as priors.

Figure 3 illustrates the impact of the prior-refinement strategy described in Section 5.1. We compare
three settings: (i) use of only 3 prior, (ii) use of only 2x prior, and (iii) use of the prior-refinement
strategy to leverage both 3x and 2x priors. The subfigure on the left shows the convergence of
DRP for each configuration, while the ones on the right show the final imaging quality. Note how
the reduction of ¢ leads to better performance, which is analogous to what was observed with the
reduction of o in the SOTA PnP methods (Zhang et al., 2022).

5.3 SINGLE IMAGE SUPER RESOLUTION

We apply DRP using the bicubic SwinlR prior to Single Image Super Resolution (SISR) task. The
measurement operator in SISR can be written as A = SK, where K is convolution with the blur

kernel k and S performs standard d-fold down-sampling with d> = n/m. The scaled proximal

operator sprox, , in (5) with data-fidelity term g(z) = § [ly — SKz||3 can be write as:

sprox.,(z) = (K'TSTSK ++yH™H) ' [K'STy + yYH Hz], (11)

where H is the bicubic downsampling operator. Similarly to deblurring in Section 5.2, we use CG
to efficiently compute (11). We adjust the hyper-parameter v, 7, and the SR restoration prior factor
q for the best PSNR performance on Set5, and then use these parameters on the remaining datasets.

We evaluate super-resolution performance across two 25 x 25 Gaussian blur kernels, each with
distinct standard deviations (1.6 and 2.0), and for two distinct downsampling factors (2x and 3x),
incorporating an AWGN vector e corresponding to noise level of 2.55/255. For fair comparison, we
use the official implementations provided by each baseline method and use the same random seed
to ensure consistency of random noise for all methods.

Figure 1 (c)-(d) illustrates the convergence behaviour of DRP on the Set3c dataset for 2x and 3%
SISR. Figure 4 shows the visual reconstruction results for the same downsampling factors. Table 2
summarizes the PSNR values achieved by DRP relative to other baseline methods when applied to
different blur kernel and downsampling factors on four commonly used datasets.

It is worth highlighting that the SwinIR model used in DRP was pre-trained for the bicubic super-
resolution task. Consequently, the direct application of the pre-trained SwinIR to the setting consid-
ered in this section leads to the suboptimal performance due to mismatch between the kernels used.
See Supplement B.4 to see how DRP improves over the direct application of SwinIR.
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2x LR Image PnP-ADMM Ground Truth

IRCNN+ DPIR DRP (Ours)

Figure 4: Visual comparison of DRP and several well-known methods on single image super resolu-
tion. The top row displays performances for 2x SR, while the bottom row showcases results for 3 x
SR. The lower-left corner of each low-resolution image shows the blur kernels. Each image is la-
beled by its PSNR in dB with respect to the original image. The visual differences are highlighted by
the boxes in the bottom-right corner. Note the excellent performance of the proposed DRP method
using the SwinlR prior both visually and in terms of PSNR.

6 CONCLUSION

The work presented in this paper proposes a new DRP method for solving imaging inverse problems
by using pre-trained restoration operators as priors, presents its theoretical analysis in terms of con-
vergence, and applies the method to two well-known inverse problems. The proposed method and
its theoretical analysis extend the recent work using denoisers as priors by considering more general
restoration operators. The numerical validation of DRP shows the improvements due to the use of
learned SOTA super-resolution models. One conclusion of this work is the potential effectiveness
of going beyond priors specified by traditional denoisers.

LIMITATIONS AND FUTURE WORK

The work presented in this paper comes with several limitations. The proposed DRP method uses
pre-trained restoration models as priors, which means that its performance is inherently limited by
the quality of the pre-trained model. As shown in this paper, pre-trained restoration models provide
a convenient, principled, and flexible mechanism to specify priors; yet, they are inherently self-
supervised and their empirical performance can thus be suboptimal compared to priors trained in a
supervised fashion for a specific inverse problem. Our theory is based on the assumption that the
restoration prior used for inference performs MMSE estimation. While this assumption is reasonable
for deep networks trained using the MSE loss, it is not directly applicable to denoisers trained
using other common loss functions, such as the ¢1-norm or SSIM. Finally, as is common with most
theoretical work, our theoretical conclusions only hold when our assumptions are satisfied, which
might limit their applicability in certain settings.

Our work opens several interesting directions for future research. First, the implicit prior in 9 can
be seen as an analysis prior with a transform H (Elad et al., 2007; Selesnick & Figueiredo, 2009),
which suggests a possibility of considering broader class of linear transforms for priors. Second, the
excellent performance of the restoration priors beyond denoisers lead to an interesting open question:
what is the optimal linear transform H for a given measurement operator A. Third, while in this
paper we considered non-blind inverse problems, the extension of DRP to blind inverse problems
would be an interesting future direction of research (Gan et al., 2023).

REPRODUCIBILITY STATEMENT

We have provided the anonymous source code in the supplementary materials. The included
README.md file contains detailed instructions on how to run the code and reproduce the results
reported in the paper. The pseudo-code of DRP is outlined in Algorithm 1. The complete proofs and
technical details for our theoretical analysis can be found in the supplement.
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This supplement to the main paper presents the details of our mathematical analysis and provides
additional numerical results. The mathematical analysis builds on two distinct lines of work: (a)
relationship between the MMSE denoising and the probability density of the noisy image (Gribon-
val, 2011; Gribonval & Machart, 2013; Bigdeli et al., 2017; Kadkhodaie & Simoncelli, 2021); (b)
analysis of the proximal-gradient method (Beck & Teboulle, 2009; Attouch et al., 2013; Parikh &
Boyd, 2014; Hurault et al., 2022a). Our results can be viewed as an extension of this line of research
to priors specified using more general restoration operators.

The structure of this supplementary document is as follows. In Section A.l, we provide formal
characterization of the fixed-points of DRP. In Section A.2, we prove the convergence of DRP under
additional assumptions on g and R. In Section B, we provide a number of interesting numerical
results that didn’t make it to the main paper due to space. In particular, we evaluate the AWGN
denoising performance of DRP, compare it with another recent PnP method called GS-PnP, and
show how DRP enables adaptation of SwinIR beyond problems it was trained on.

A THEORETICAL ANALYSIS OF DRP

A.1 PROOF OF THEOREM 1

Theorem. Let R be the MMSE restoration operator (7) corresponding to the restoration problem (4)
under Assumptions 1-3. Then, any fixed-point x* € R™ of DRP satisfies

0 € 9g(x™) + Vh(z™),

where h is given in (9).
Proof. First note that any fixed point * € R" of the DRP method can be expressed as

* * * H 1 * *
" = sprow, (" y7G(e")) =argmin { Jlo — (@ = 176l e +0(@) 12
me n

where we used the definition of the scaled proximal operator. From the optimality conditions of the
scaled proximal operator, we then get

0 € dg(z*) + THTHG(x"). (13)
On the other hand, the gradient of ps, defined in (8), can be expressed as
1 1
Vsps(s) = / <(72 (Hx — s)) Go(s — Hzx)pz(x)dz = o (HR(s) — sps(s)), (14)

where we used the gradient of the Gaussian density with respect to s and the definition of the MMSE
restoration operator in eq. (7). By rearranging the terms, we obtain the following relationship

HR(s) — s = 0?Vlogps(s), s€RP. (15)
By using the definitions G(x) = z — R(Hz) and h(x) = —70? log ps(Hz), with € R", in (15),
we obtain the following generalization of the well-known Tweedie’s formula

H'HG(z) = H'H (z — R(Hz)) = —0?Vlog ps(Hzx) = %Vh(zc). (16)

By combining(12) and (16), we directly obtain the desired result
0 € 9g(x™) + Vh(z™).

A.2 PROOF OF THEOREM 2

Theorem. Run DRP for for t > 1 iterations under Assumptions 1-4 using a step-size v = /(L)
with a > 1. Then, for each iteration 1 < k < t, there exists w(a:k) IS af(ack) such that

C(f(=") — f*)

t )

t
1
. kN (12 k\|12
< = w(x <
1§“k|2t”w($ s < P kE 1” (")l <

where C' > 0 is an iteration independent constant.
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Proof. Consider the iteration £ > 1 of DRP
xk = Sprox., (mkfl — 'yTG(wk*l)) with G = z — R(Hx),

where R is the MMSE restoration operator specified in (7). This implies that ¥ minimizes

olz) = 217 (@ — 2" ) TH H(z — 2" 1) + [(H'HG(z* )] (z — ") + g(=)
= %(mfa:kfl)THTH(a:fmkfl)Jth(:ck*l)T(a:f:c D+ g(x),

where in the second inequality we used eq. (16) from the proof in Supplement A.1. By evaluating ¢
at 2 and 2*~!, we obtain the following useful inequality

g(wk) < g(mkfl) o i(mk o $k71)THTH($k o wkfl) o Vh(wkfl)T(xk o wkfl). (17)

2y
On the other hand, from the L-Lipschitz continuity of V/, we have the following bound

h(z®) < h(z"=1) + Vh(x* )T (xF — 28 1) + %Hmk —xF 12 (18)
By combining eqs. (17) and (18), we obtain

f(a:k) < f(wk—l) _ %(wk _ wk—l)T [iHTH _ LI} (a:k — gkl

< @) (- D5 e - 23 (19)

where we used v = p/(aL) with & > 1 and p > 0 defined in Assumption 4.

(B

On the other hand, from the optimality conditions for ¢, we also have
0 c H'H(z" — 2" ! + y7G(z")) + ydg(z")
& %HTH(mk — ") € ag(x®) + Vh(zF ),
where we used eq. (16) from Supplement A.1. This directly implies that the following inclusion
w(zk) = %HTH(a}k — "N £ Vh(xF) — Vh(z" 1) € af(2F)
The norm of the subgradient w(z") can be bounded as follows
lw(2*)]l2 < %IIHTH(W’c =& Yl2 + [ VA(z") - VA" )]

L(a(\/p) +1) [lz* — 2", (20)
where we used the Lipschitz constant of Vh, v = u/(aL),and A > p > 0 defined in Assumption 4.
By combining eqs. (19) and (20), we obtain the following inequality

lw(@*)[3 < Aulla® — 23 < Ax(F("71) - f(ab)), @21

where A; = L?*(a(\/u) +1)2 > 0and Ay = 2A4;/(L(a — 1)) > 0. Hence, by averaging over
t > 1 iterations, we can directly get the desired result

¢
1

3< =~ —_ - 22

12}'%”10 2 < P Z: M3 < p (22)

This implies that w(x*) — 0 as ¢ — oc. O
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B ADDITIONAL NUMERICAL RESULTS

B.1 IMAGE DENOISING

In this subsection, we show the performance of DRP on Gaussian image denoising. The corre-
sponding measurement model is y = x + e, where e is AWGN with the standard deviation ¢
and z is the unknown clean image. We use the same SwinIR SR model, introduced in 5.1, as the
prior for denoising. The degradation model in the SwinlIR prior is the operation H correspond-
ing to bicubic downsampling. The scaled proximal operator sprox, , in (5) with data-fidelity term

g(x) = 1 ||y — || can be written as

sprox,,(z) = (I+ vyH™H) 'y + yH Hz], (23)
which can be efficiently implemented using CG, as in Section 5.2.

We compare DRP with one of SOTA denoising model DRUNet (Zhang et al., 2019) on noise level
(0 = 0.1). Figure 5 and Figure 6 illustrate the visual performance of DRP on the Set5 and CBSD68
datasets, respectively. Figure 7 further explores the impact of using different SR factors ¢ as priors,
elucidating how these choices influence the visual quality of denoising.

=0.1 DRP Ours‘ _ DRUNet Ground Truth
¢ #. 1 P 1 3 -'

Figure 5: Illustration of denoising results of DRP on Set5 dataset with noise level 0 = 0.1. Each
image is labeled by its PSNR (dB) with respect to the original image.
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o=0.1 DRUNet DRP (Ours) Ground Truth

Figure 6: Illustration of denoising results of DRP on CBSD68 dataset with noise level o = 0.1.
Each image is labeled by its PSNR (dB) with respect to the original image.

o =0.1 2 X i} 3 X 4X - Ground Truth _

Figure 7: Illustration of denoising results of DRP on Set5 dataset with three SR level prior (2x, 3x
and 4 x). Each image is labeled by its PSNR (dB) with respect to the original image.
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B.2 COMPARISON WITH GS-PNP

In this subsection, we will compare DRP with the recent gradient-step denoiser PnP method (GS-
PnP) (Hurault et al., 2022a). These comparisons were not included in the main paper due to space,
but are provided here for completeness. GS-PnP provides comparable performance on image de-
blurring and single image super resolution as DPIR (Zhang et al., 2019), but comes with theoretical
convergence guarantees.

Table 3 shows that DRP outperforms both DPIR and GS-PnP on image deblurring in most settings
in terms of PSNR. Similarly, Table 4 shows that DRP can achieve better SISR performance in terms
of PSNR compared to both methods. Figure 8 provides additional visual results on SISR showing
that DRP can recover intricate details and sharpen features.

Kernel Datasets | GS-PnP DPIR DRP
. Set3c 29.53  29.78 30.69
CBSD68 | 28.86  28.70 29.10

. Set3c 27.52  27.32 27.89
CBSD68 2744  27.52 27.46

Table 3: PSNR performance of GS-PnP, DPIR, and DRP for image deblurring on Set3c and CBSD68
datasets on two blur kernels. The best and second best results are highlighted.

SR Kernels | Datasets | GS-PnP DPIR DRP
. Set3c 28.23 28.18 29.26
CBSD68 28.03 27.97 28.12

2% o Se3c | 2619 2680 27.41
CBSD68 | 2679 2698 26.98

o Se3c | 2620 2664 27.77

. CBSD68 | 26.77 26.80 27.18

. Set3c 25.18  25.84 26.84
CBSD68 | 2630  26.39 26.60

Table 4: PSNR performance of GS-PnP, DPIR, and DRP for 2x and 3x SISR on the Set3c and
CBSD68 datasets, using two blur kernels. The best and second best results are highlighted.

2x LR Image DPIR GS-PnP Ground Truth

DRP (Ours)

Figure 8: Illustration of SISR results of DRP compared with two SOTA denoiser based PnP method
DPIR (Zhang et al., 2019) and GS-PnP (Hurault et al., 2022a). The top row displays the performance
for 2x SISR task, while the bottom row showcases results for 3x SISR task. Each image is labeled
by its PSNR (dB) with respect to the original image, and the visual difference is highlighted by the
boxes in the left bottom corner.
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B.3 COMPARISON WITH DIFFUSION POSTERIOR SAMPLING

There is a growing interest in using denoisers within diffusion models for solving inverse prob-
lems (Zhu et al., 2023; Wang et al., 2022; Chung et al., 2023). One of the most wiedely-adopted
diffusion model in this context is the diffusion posterior sampling (DPS) method from (Chung et al.,
2023), which integrates pre-trained denoisers and measurement models for posterior sampling. One
may argue that DPS is related to PnP due to the use of image denoisers as priors. In this section, we
present results comparing DRP with DPS for deblurring human faces. We used the public imple-
mentation of DPS on the GitHub page that uses the prior specifically trained on human face image
dataset (Chung et al., 2023). DRP uses the same SwinIR model trained on general image datasets
(see Section 5.1). DPS and DRP are related but very different classes of methods. While DPS seeks
to use denoisers to generate perceptually realistic solutions to inverse problems, DRP enables the
adaptation of pre-trained restoration models as priors for solving other inverse problems.

Table 5 presents PSNR results obtained by DPS and DRP for human face deblurring. While we
omitted the visual results from the paper for the privacy reasons, we will be happy to provide them
if requested by the reviewers. Overall, DPS achieves more perceptually realistic images, while DRP
achieves higher PSNR and more closely matches the ground truth images. This is not surprising
when considering the generative nature of DPS. A similar observation is available in the original
DPS publication, which reported better PSNR and SSIM performance of PnP-ADMM relative to
DPS on SISR and deblurring (see Supplement E in (Chung et al., 2023)).

Kernel | DPS  DRP

B v e
B 2850 3305

Table 5: PSNR performance of DPS and DRP for image deblurring on three sample images from
FFHQ validation set (provided in the DPS GitHub project) with two blur kernels. The best results
are highlighted.
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B.4 PERFORMANCE OF SWINIR TRAINED FOR BICUBIC SR ON A MISMATCHED SISR TASK

In this section, we make a noteworthy point: the SwinIR SR network we used as a prior in our
DRP method is specifically trained for the bicubic SR task. Its direct application to the SISR task
(which is SR under Gaussian blur kernels and additive white Gaussian noise) leads to sub-optimal
performance. This implies that our DRP method has the capacity to use a mismatched restoration
model as an implicit prior, effectively adapting it for other image restoration tasks.

Figure 9 present qualitative and quantitative PSNR results on the Set3c dataset. Note how the direct
use of SwinlR trained for bicubic SR does poorly on the SISR task, while using it within our DRP
method as a prior leads to the SOTA performance.

2x LR Image

Figure 9: Ilustration of 2x SISR using DRP compared with the directly use of SwinIR trained for
bicubic SR. Each image is labeled by its PSNR (dB) with respect to the ground truth.
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B.5 ADDITIONAL EVALUATION USING SSIM AND LPIPS QUALITY METRICS

In this section, we present results using two popular quality metrics—SSIM and LPIPS—for eval-
uating image restoration. We compare the proposed DRP method using SwinIR trained for bicubic
SR as a prior against PnP-ADMM and DPIR. The results below complement those using PSRN in
Table 1 and Table 2 in the main paper. As can be seen in Table 6 and Table 7, DRP always achieves
better LPIPS and in most cases achieves better SSIM in all the debluring and SISR settings.

Kernel  Datasets PnP-ADMM DPIR DRP
Set3c 29.11/0.925/0.099 29.53/0.930/0.110  30.69/0.940/0.056

- Set5 32.31/0.900/0.137 32.38/0.901/0.152  32.79/0.902/0.109
CBSD68 | 28.90/0.832/0.287 28.86/0.836/0.307 29.10/0.837/0.246
McMaster | 32.20/0.895/0.136  32.42/0.900/0.151  32.79/0.901/0.107
Set3c 27.05/0.888/0.157 27.52/0.901/0.159 27.89/0.908/0.088

- Set5 30.77/0.873/0.181  30.94/0.880/0.188  31.04/0.875/0.143
CBSD68 | 27.45/0.783/0.360 27.52/0.787/0.376  27.46/0.773/0.296
McMaster | 30.50/0.863/0.185 30.78/0.871/0.193  30.79/0.865/0.141

Table 6: PSNR1/SSIM1/LPIPS, of DRP and several SOTA PnP methods on image deblurring with
the Gaussian blur kernels of standard deviations 1.6 and 2.0 on Set3c, Set5, CBSD68, and McMaster
datasets. The best and second best results are highlighted. Note how DRP using image SR prior can

outperform SOTA PnP methods that use denoisers as priors.

SR Kernel

Datasets

PnP-ADMM

DPIR

DRP

2%

Set3c
Set5
CBSD68
McMaster

27.88/0.903/0.131
31.41/0.879/0.171
28.00/0.796/0.338
30.98/0.869/0.208

28.18/0.908/0.137
31.42/0.883/0.175
27.97/0.801/0.356
31.16/0.875/0.179

29.26/0.915/0.079
31.47/0.876/0.120
28.12/0.799/0.285
31.39/0.873/0.122

Set3c
Set5
CBSD68
McMaster

25.86/0.861/0.187
30.06/0.854/0.205
26.88/0.749/0.393
29.53/0.836/0.219

26.80/0.884/0.171
30.36/0.862/0.241
26.98/0.757/0.401
29.87/0.847/0.215

27.41/0.891/0.107
30.42/0.859/0.163
26.98/0.745/0.327
30.03/0.845/0.167

Set3c
Set5
CBSD68
McMaster

25.85/0.865/0.173
30.09/0.857/0.195
26.78/0.751/0.378
29.52/0.839/0.208

26.64/0.883/0.169
30.39/0.863/0.202
26.80/0.755/0.394
29.82/0.848/0.210

27.77/0.898/0.090
30.83/0.868/0.149
27.18/0.763/0.299
29.92/0.841/0.164

3X

Set3c
Set5
CBSD68
McMaster

24.87/0.834/0.216
29.26/0.836/0.229
26.28/0.722/0.420
28.72/0.814/0.246

25.84/0.863/0.195
29.70/0.847/0.225
26.39/0.730/0.422
29.11/0.827/0.236

26.84/0.879/0.108
29.88/0.847/0.162
26.60/0.735/0.324
29.47/0.832/0.167

Table 7: PSNR1/SSIM1/LPIPS| comparison of DRP and several baselines for SISR on Set3c, SetS5,
CBSD68, and McMaster datasets. The best and second best results are highlighted. Note the ex-
cellent quantitative performance of DRP, which suggests the potential of using general restoration
models as priors.
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B.6 COMPARISON ON SISR TASK WITH ADDITIONAL BASELINES

In this section, We will compare our proposed DRP method with some other baseline methods on 2 x
SISR task. Specificity, we will compare it with DIP prior-based methods BSRDM (Yue et al., 2022)
and pure learning-based method BSRNet (Zhang et al., 2021) on the same setting as we shown in
Section 5.3. As observable in Table 8, DRP achieves better performance compared to both of them.

SISR Kernel | Datasets BSRDM BSRGAN DRP
Set3c | 23.51/0.825/0.139 22.69/0.818/0.102 29.26/0.915/0.079
. Set5 27.80/0.827/0.179  27.07/0.806/0.124  31.47/0.876/0.120
CBSD68 | 25.66/0.718/0.378 25.51/0.723/0.225 28.12/0.799/0.285
9% McMaster | 27.43/0.804/0.226  26.78/0.785/0.132  31.39/0.873/0.122
Set3c | 22.34/0.768/0.228 22.62/0.801/0.123 27.41/0.891/0.107
- Set5 26.68/0.791/0.246 26.88/0.789/0.153 30.42/0.859/0.163
CBSD68 | 24.86/0.670/0.451 25.24/0.695/0.265 26.98/0.745/0.327
McMaster | 26.47/0.768/0.294  26.69/0.770/0.157  30.03/0.845/0.167

Table 8: PSNR1/SSIM1/LPIPS| comparison of DRP and several baselines for SISR on Set3c, Set5,
CBSD68 and McMaster datasets. The best and second best results are highlighted. Note the ex-
cellent quantitative performance of DRP, which suggests the potential of using general restoration

models as priors.
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B.7 CoMPARISON WITH DPIR (SWINIR): DPIR EQUIPPED WITH SWINIR DENOISER

In this section,we will conduct an ablation study to shown the enhanced performance of DRP over
denoiser-prior methods that do not originate from the SwinIR structure. To support this claim,
we substitute the DRUNet denoiser utilized in DPIR with the SwinIR denoiser (Liang et al., 2021),
called DPIR(SwinlR), aligning it with the same network structure employed in our SwinIR SR prior.
As shown in table 9 and table 10, DRP can achieve better performance than both DPIR(SwinIR) and
DPIR(DRUNet) in most of the debluring and SISR settings.

Kernel Datasets DPIR (SwinlR) DPIR (DRUNet) DRP
Set3c | 30.66/0.932/0.094 29.53/0.930/0.110 30.69/0.940/0.056

. Set5 32.35/0.888/0.161 32.38/0.901/0.152  32.79/0.902/0.109
CBSD68 | 27.81/0.769/0.360 28.86/0.836/0.307  29.10/0.837/0.246
McMaster | 31.10/0.859/0.154  32.42/0.900/0.151  32.79/0.901/0.107
Set3c 27.77/0.896/0.143  27.52/0.901/0.159  27.89/0.908/0.088

Set5 30.85/0.866/0.185  30.94/0.880/0.188  31.04/0.875/0.143
CBSD68 | 27.29/0.764/0.378  27.52/0.787/0.376  27.46/0.773/0.296
McMaster | 30.69/0.859/0.189  30.78/0.871/0.193  30.79/0.865/0.141

Table 9: PSNR (dB) of DRP and several SOTA methods for solving inverse problems using denoisers
on image deblurring with the Gaussian blur kernels of standard deviation 1.6 and 2.0 on Set3c, SetS5,
CBSD68 and McMaster datasets. The best and second best results are highlighted. Note how DRP

can outperform SOTA PnP methods that use denoisers as priors.

SISR Kernel

Datasets

DPIR(SwinIR)

DPIR(DRUNet)

DRP (SR)

2%

Set3c
Set5
CBSD68
McMaster

28.90/0.911/0.099
31.38/0.872/0.122
27.92/0.783/0.349
31.34/0.870/0.127

28.18/0.908/0.137
31.42/0.883/0.175
27.97/0.801/0.356
31.16/0.875/0.179

29.26/0.915/0.079
31.47/0.876/0.120
28.12/0.799/0.285
31.39/0.873/0.122

Set3c
Set5
CBSD68
McMaster

26.75/0.877/0.147
30.23/0.852/0.240
26.83/0.739/0.413
29.96/0.842/0.207

26.80/0.884/0.171
30.36/0.862/0.241
26.98/0.757/0.401
29.87/0.844/0.215

27.41/0.891/0.107
30.42/0.859/0.163
26.98/0.745/0.327
30.03/0.845/0.167

3X

Set3c
Set5
CBSD68
McMaster

26.81/0.883/0.136
30.35/0.855/0.159
26.79/0.742/0.352
29.94/0.845/0.193

26.64/0.883/0.169
30.39/0.863/0.202
26.80/0.755/0.394
29.82/0.848/0.210

27.77/0.898/0.090
30.83/0.868/0.149
27.18/0.763/0.299
29.92/0.841/0.164

Set3c
Set5
CBSD68
McMaster

25.66/0.853/0.174
29.55/0.837/0.168
26.29/0.715/0.431
29.20/0.825/0.220

25.84/0.863/0.195
29.70/0.847/0.225
26.39/0.730/0.422
29.11/0.827/0.236

26.84/0.879/0.108
29.88/0.847/0.162
26.60/0.735/0.324
29.47/0.832/0.167

Table 10: PSNR1/SSIM1/LPIPS] comparison of DRP and several baselines for SISR on Set3c,
Set5, CBSD68 and McMaster datasets. The best and second best results are highlighted. Note the
excellent quantitative performance of DRP, which suggests the potential of using general restoration
models as priors.
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B.8 EVALUATION OF DRP USING IMAGE DEBLURRING NETWORK AS A PRIOR

In this section, we show that DRP can be used with restoration priors and network architectures
(beyond the SwinIR-based bicubic SR prior). To that end, we evaluate DRP under the deep unfolding
network for image deblurring as a prior for solving Single Image Super Resolution (SISR) task.

B.8.1 RESTORATION PRIOR BASED ON DEBLURRING DEEP UNFOLDING NETWORK

Deep Unfolding Network Architecture. We pre-trained a deblurring model using the USR-
Net (Zhang et al., 2020) architecture based on deep unfolding network. Our training dataset consists
of both the DIV2K (Agustsson & Timofte, 2017) and Flick2K (Lim et al., 2017) datasets, contain-
ing 3,450 color images in total. During training, we applied synthesized blur kernels to the input
images, introducing Additive White Gaussian Noise (AWGN) characterized by ¢ randomly chosen
in [0, 5/255]. This process uses the same synthesized blur kernels as detailed in (Zhang et al., 2020).

The restoration network is trained only for the deblurring task, which limits its performance on the
SISR task. The direct application of the deblur prior on SISR is presented under the name ~Deblur”
in Table 11. Note how the direc use of the deblurring network on SISR without DRP does not work.

B.8.2 SINGLE IMAGE SUPER RESOLUTION USING DEBLURRING PRIOR

The measurement operator in SISR can be written as A = SK, where K is convolution with the
blur kernel k and S performs standard d-fold down-sampling with d?> = n/m. The scaled proximal

operator sprox, , in (5) with data-fidelity term g(z) = 3 [ly — SK:cHg can be write as:

sprox.,,(2) = (K'STSK +vH'H) ' [KTSTy + yH Hz], (24)

Y9

where H is the convolution operator with blur kernel k. Similarly to deblurring in Section 5.3,
we use CG to efficiently compute (11). We adjust the hyper-parameter v, 7 and then use these
parameters on the remaining datasets.

We refer to DRP using the Deblurring Prior as DRP (Deblur) and DRP using the Super-Resolution
Prior as DRP (SR). Table 11 provides a comprehensive quantitative evaluation of the reconstruction
performance for the 2x Super-Resolution (SISR) task, using two distinct blur kernels. The results
show that DRP (Deblur) outperforms DPIR and achieves a comparable performance as DRP (SR)
across four datasets.

Kernel | Datasets Deblur DPIR DRP (SR) DRP (Deblur)
Set3c 13.63/0.300/0.640 28.18/0.908/0.137 29.26/0.915/0.079 29.13/0.921/0.082
. Set5 14.10/0.172/0.814 31.42/0.883/0.175 31.47/0.876/0.120 31.81/0.883/0.127
CBSD68 | 13.69/0.152/0.849 27.97/0.801/0.356 28.12/0.799/0.285 28.27/0.704/0.283
9% McMaster | 14.31/0.158/0.844 31.16/0.875/0.179 31.39/0.873/0.122 31.52/0.881/0.129
Set3c 7.85/0.090/0.956  26.80/0.884/0.171 27.41/0.891/0.107 27.52/0.893/0.101
- Set5 8.77/0.052/1.00  30.36/0.862/0.241 30.42/0.859/0.163 30.73/0.864/0.175
CBSD68 8.58/0.040/1.00  26.98/0.757/0.401 26.98/0.745/0.327 27.19/0.755/0.338
McMaster | 9.26/0.048/1.00  29.87/0.844/0.215 30.03/0.845/0.167 30.16/0.849/0.179

Table 11: PSNR1/SSIM1/LPIPS] comparison of two DRP variants and several baselines for 2x
SISR on Set3c, Set5, CBSD68, and McMaster datasets. The best and second best results are high-
lighted. Note how the deblurring model doesn’t generalize well on SISR without DRP; while its
integration as a prior into DRP yields SOTA performance.
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B.9 EVALUATION OF DIFFERENT RANDOM SEEDS

In this section, we present results illustrating the influence of different random seeds on the perfor-
mance. We use three different random seeds for the image deblurring task on the Set3c dataset. For
each seed, DRP is compared with the best baseline method DPIR on the image deblurring task.

Seed ID  Kernel DPIR DRP
ID=0 29.53/0.930/0.110  30.69/0.940/0.056
ID=10 29.50/0.930/0.113  30.65/0.940/0.056
ID =100 29.53/0.930/0.112  30.67/0.941/0.058
ID=0 27.52/0.901/0.159  27.89/0.908/0.088
ID=10 . 27.51/0.901/0.156  27.85/0.907/0.085
ID =100 27.52/0.900/0.158  27.88/0.909/0.086

Table 12: PSNR1/SSIM1/LPIPS/ performance of DPIR and DRP for image deblurring on the Set3c
dataset with two blur kernels and three different random seeds. The best results are highlighted.

B.10 NUMERICAL EVALUATION USING NON-MMSE PRIORS

In this section, we show that although our theory relies on the assumption that the restoration prior
used for inference performs MMSE estimation, in practice, DRP work even for priors trained with
other loss functions, such as the ¢;-norm or SSIM.

We retrained the SwinIR model for bicubic SR using the same setting as in Section 5.1, but with the
f1-norm loss instead of ¢5. Table 13 shows that there is not much difference between the two. This
suggests that DRP can be stable in practice even without the MMSE assumption.

Kernel DPIR

Table 13: PSNR?1/SSIM1/LPIPS| performance of DRP(SR;), DRP(SR3) and DPIR for image
deblurring on the Set3c dataset using two blur kernels. The best and second best results are high-
lighted.

DRP (SRy,) DRP (SRy,)

29.53/0.930/0.110  30.67/0.941/0.052  30.69/0.940/0.056

27.52/0.901/0.159  27.85/0.909/0.086  27.89/0.908/0.088
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