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Abstract

Neural networks are known to be vulnerable to adversarial
examples, which are obtained by adding intentionally crafted
perturbations to original images. However, these perturba-
tions degrade their perceptual quality and make them more
difficult to perceive by humans. In this paper, we propose
two separate attack agnostic methods to increase the percep-
tual quality, measured in terms of perceptual distance met-
ric LPIPS, while preserving the target fooling rate. The first
method intensifies the perturbations in the high variance ar-
eas in the images. This method could be used in both white-
box and black-box settings for any type of adversarial exam-
ples with only the computational cost of calculating the pixel
based image variance. The second method aims to minimize
the perturbations of already generated adversarial examples
independent of the attack type. In this method, the distance
between benign and adversarial examples are reduced until
adversarial examples reach the decision boundaries of the
true class. We show that these methods could also be used
in conjunction to improve the perceptual quality of adversar-
ial examples and demonstrate the quantitative improvements
on CIFAR-10 and NIPS2017 Adversarial Learning Challenge
datasets.

Introduction
While Deep Neural Networks (DNNs) are being used in a
variety of domains, there are several studies that show their
vulnerabilities. An initial study, L-BFGS method (Szegedy
et al. 2014), revealed that neural networks are not robust
to adversarial attacks specifically produced to fool the net-
works. After the discovery of adversarial attacks, several
different methods have been proposed such as Fast Gradi-
ent Sign Method (FGSM) (Goodfellow, Shlens, and Szegedy
2015), Projected Gradient Descent (PGD) (Madry et al.
2018), DeepFool (Moosavi-Dezfooli, Fawzi, and Frossard
2016), Jacobian Saliency Map Attack (JSMA) (Papernot
et al. 2016), Spatially Transformed Adversarial Examples
(stAdv) (Xiao et al. 2018) and Carlini&Wagner Attack (Car-
lini and Wagner 2017).

As adversarial examples can fool the networks, they can
be used for the purpose of distinguishing humans from al-
gorithms. While humans could still perceive the content of
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Figure 1: FGSM (ε = 12/255) results on NIPS2017 against
ResNet50 with both proposed methods: variance weighting
and minimization (shown separately for minimization with
respect to L2 and LPIPS) and combinations of them.



these images, algorithms would be deceived by the adver-
sarial input. For such a system be effective, the perturba-
tion that will be added to the image should be reasonably
small and, while still misleading the algorithm, human vi-
sion should not be distracted from by the perturbation. Com-
pletely Automated Public Turing test to tell Computers and
Humans Apart - CAPTCHA, is one of the most common
examples where human users are distinguished from com-
puter algorithms (Aksoy and Temizel 2019). The main mo-
tivation of this study is to improve successful adversarial at-
tacks while reducing the perturbations that are distracting to
humans. So, we propose two separate methods to improve
the perceptual quality while keeping the attacks successful.
The first method is based on intensifying the perturbation in
high-variance zones and suppressing in low-variance zones
using the variance map of input images for any type of at-
tack. In effect, disguising the adversarial noise in high-
variance areas and limiting the high-frequency noise added
to low-variance areas where they would be more distracting.
The second method is based on minimization of the pertur-
bation until it reaches the boundary. While variance weight-
ing is applied during the attack, minimization method could
be considered as post processing after acquiring the adver-
sarial example with any type of adversarial attack. As seen
in Figure 1, localized and minimized perturbations improve
the perceptual quality while keeping the fooling rate stable.

Related Work
Adversarial Attacks
L-BFGS is the initial method for generating adversar-
ial examples using box-constrained optimization method
(Szegedy et al. 2014). However, this method is computation-
ally very costly. FGSM (Goodfellow, Shlens, and Szegedy
2015) is an efficient gradient-based attack algorithm, which
computes the gradient only once, and adds perturbation in
the gradient ascending direction of the loss function. Itera-
tive Fast Gradient Sign Method (I-FGSM) (Kurakin, Good-
fellow, and Bengio 2017) extends FGSM by iteratively at-
tacking with a small step size and calculating the gradi-
ent at each step. C&W attack (Carlini and Wagner 2017)
minimizes L2 norm with an improved optimization method.
DeepFool (Moosavi-Dezfooli, Fawzi, and Frossard 2016)
efficiently computes the smallest perturbations according to
closest decision boundary. Jacobian-based Saliency Map
Attack (JSMA) (Papernot et al. 2016) generates sparse per-
turbations via generating saliency map and rank the contri-
bution of each input variable to the adversarial objective. A
perturbation is then selected from the saliency map at each
iteration.

Perceptual Metrics
All adversarial attack methods essentially aim to fool the
network while minimizing the dissimilarity between benign
and adversarial examples (i.e., minimizing the added per-
turbation). While the similarity metrics vary according to
attack type, the most widely used distance metrics are Lp

norms (p = 0, 1, 2, ∞). In particular, FGSM is an L∞,
JSMA is an L0, and C&W is an L2 norm based attack. Even

though Lp norms are very convenient and commonly used,
several studies state that Lp norms do not reflect the hu-
man perception accurately (Sharif, Bauer, and Reiter 2018;
Jordan et al. 2019). Besides, there are some attack types
such as (Jordan et al. 2019; Laidlaw and Feizi 2019; Laid-
law, Singla, and Feizi 2021; Aydin et al. 2021) for which
Lp norms are not fully suitable to evaluate the attack suc-
cess. Thus these studies employ different and more recent
perceptual metrics such as Learned Perceptual Image Patch
Similarity (LPIPS) metric (Zhang et al. 2018) or Deep Im-
age Structure and Texture Similarity (DISTS) index (Ding
et al. 2020). Both of these methods use an additional neu-
ral network to measure the distance. LPIPS is calibrated
with human perception and measures the Euclidean distance
of deep representations. Likewise, DISTS optimizes human
perception while using the combination of deep image struc-
ture and texture similarity.

Variance Map on Adversarial Attacks
Human perception is affected more by perturbations in the
low variance areas compared to high variance areas and this
information is exploited in various image processing appli-
cations (Legge and Foley 1980; Lin, Dong, and Xue 2005;
Liu et al. 2010). Regarding this fact, variance map has been
used in previous studies (Luo et al. 2018; Croce and Hein
2019) to generate adversarial examples. In this work vari-
ance map is used to produce a variance based componen-
twise box constraints to generate sparse adversarial exam-
ples (Croce and Hein 2019). In another study, variance map
is applied for the selection of high variance pixels (Luo et al.
2018). Using only Lp norms for these variance based sparse
attacks do not accurately reflect the perceptual quality (Luo
et al. 2018), thus variance based sparse adversarial examples
either use mean and median values of pixels or introduce a
new distance metric that is more suited for the evaluation of
their proposed attacks.

Methodology
Normalized Variance Weighting
In our study, we use variance map to intensify the pertur-
bations in the high variance zones, instead of selecting high
variance pixels or variance boundaries in an attack agnostic
manner. We adopt the variance map method in (Croce and
Hein 2019) to produce variance map of input images. In this
method, standard deviation of both axes with 2 neighbour
pixels and main pixel for each color channel are calculated
(σ(x)

ij and σ(y)
ij for x and y axis respectively) and the square

root of the minimum of standard deviation of axes is taken
to obtain variance map σij (Equation 1). The variance map
is then normalized to obtain normalized variance map Vi,j
(Equation 2).
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Figure 2: Visual representation of integration of proposed methods.

Since our method does not involve selecting pixels or
generating variance box constraints, it does not require any
additional threshold or coefficient variable. Normalizing
and weighting procedures remove the need for an additional
variable. As seen in Algorithm 1, the proposed method ini-
tially generates the variance map of input images for only
once (Equation 1), then normalizes the variance map using
L2-norm (Equation 2) and applies variance map by weight-
ing the perturbation with normalized variance map at each it-
eration (if adversarial attack is iterative). This method could
be adapted for both white-box and black-box setting and
does not require any optimization, or additional gradient-
based steps. Therefore it does not bring any additional com-
putational cost except the calculation of variance map for
once.

Minimization Method

The proposed minimization method is applied after gener-
ating the initial adversarial example and aims to reduce the
distance between benign and adversarial examples using an
optimizer. Optimizer minimizes the distance until adversar-
ial examples reach the decision boundaries of true classes
or maximum iteration number (Algorithm 2). We apply our
minimization technique to minimize with regards to two dif-
ferent: L2-norm and LPIPS (It has to be noted that some
attacks are not fully suitable for L2 distance metric (Aydin
et al. 2021)). As LPIPS measures the perceptual distance
using an additional neural network (i.e., VGG16 (Simonyan
and Zisserman 2015)), it has higher processing time and
higher number of parameters compared to L2-norm mini-
mization. In (Aksoy and Temizel 2019), the attack strength
is iteratively adjusted to obtain the minimal perturbation
needed in an attack agnostic manner after the generation of
adversarial example, our proposed method improves this by
directly optimizing the minimization of perturbation.

Algorithm 1: Normalized Variance Weighting
Input: x: original image, Adv: one iteration of adversarial
attack
Parameter: imax: maximum iteration of adversarial attack
Output: y: adversarial example

1: Let i = 0
2: v = V arianceMap(x)
3: v = L2Normalize(v)
4: y = x
5: while i < imax do
6: y = Adv(y)
7: p = (y − x)× v
8: y = x+ p
9: i = i+ 1

10: end while
11: return y

Normalized Variance Weighting + Minimization
Normalized variance weighting method is applied during the
adversarial attack while minimization method is applied af-
ter the generation of adversarial example. So both methods
could be integrated and used in association for generation
of adversarial examples. The complete pipeline integrating
both methods is illustrated in Figure 2. We first generate
adversarial examples, apply the variance weighting method
and after the generation of variance weighted adversarial ex-
ample, we apply minimization method as a post processing
to obtain improved adversarial examples.

Experiments
Datasets. We used CIFAR-10 and NIPS2017 Adversarial
Learning Challenge datasets in the experiments. CIFAR-10
testset contains 10000 images with 32 × 32 resolution. We
conducted our experiments on a subset of CIFAR-10 test-
set with 1000 images (100 random images from each cate-
gory). NIPS2017 dataset is a subset of Imagenet dataset and



Table 1: FGSM results on CIFAR10 dataset against ResNet50 with and without variance weighting (shown as Var.) and
minimization method (shown as Minim.) using LPIPS and L2. Results are reported in both LPIPS (×102) and L2 metrics.

Var. Minim. 30% 40% 50% 60%
LPIPS L2 LPIPS L2 LPIPS L2 LPIPS L2

- - 0.19 0.13 0.93 0.28 3.19 0.58 7.42 1.14
- LPIPS 0.07 0.13 0.59 0.27 2.58 0.57 6.46 1.13
- L2 0.10 0.09 0.75 0.22 2.93 0.52 7.06 1.09
+ - 0.16 0.14 0.54 0.26 2.36 0.54 6.85 1.18
+ LPIPS 0.06 0.13 0.29 0.25 1.82 0.54 5.96 1.17
+ L2 0.09 0.10 0.41 0.22 2.14 0.50 6.54 1.13

Table 2: I-FGSM results on CIFAR10 dataset against ResNet50 with and without variance weighting (shown as Var.) and
minimization method (shown as Minim.) using LPIPS and L2. Results are reported in both LPIPS (×102) and L2 metrics.

Var. Minim. 60% 70% 80% 90%
LPIPS L2 LPIPS L2 LPIPS L2 LPIPS L2

- - 0.62 0.26 0.97 0.33 1.52 0.41 2.71 0.57
- LPIPS 0.28 0.25 0.50 0.32 0.86 0.40 1.74 0.56
- L2 0.43 0.21 0.73 0.28 1.22 0.37 2.32 0.52
+ - 0.57 0.27 0.87 0.34 1.37 0.43 2.51 0.60
+ LPIPS 0.26 0.26 0.43 0.33 0.76 0.42 1.58 0.59
+ L2 0.41 0.23 0.66 0.30 1.11 0.39 2.16 0.56

Algorithm 2: Minimization Method
Input: x: original image, y: adversarial example
Parameter: lr: learning rate, imax: maximum iteration
Output: ybest: improved adversarial exam-
ple

1: Let i = 0
2: ybest = y
3: yopt = y
4: while i < imax do
5: if classyopt

== classx then
6: return ybest
7: else
8: ybest = yopt
9: end if

10: yopt =MinimizeDIST (yopt, x, lr)
11: end while
12: return ybest

contains 1000 images (one images from each category) with
299× 299 resolution.

Attack Types. We have tested the proposed methods us-
ing 3 different untargeted attack types: a single step gradi-
ent based attack (FGSM) (Goodfellow, Shlens, and Szegedy
2015), an iterative gradient based attack (I-FGSM) (Ku-
rakin, Goodfellow, and Bengio 2017) and an optimization
based attack (C&W) (Carlini and Wagner 2017) on CI-
FAR10 and NIPS2017 datasets. We have used ResNet50
(He et al. 2016) and Inception-V3 (Szegedy et al. 2016) for
NIPS2017 dataset; only ResNet50 (He et al. 2016) for CI-
FAR10 dataset. We have used CleverHans (Papernot et al.
2018) implementation for default attacks and we integrated
the proposed methods into these attacks.

Experimental Settings for Normalized Variance
Weighting

For variance map, we used 2 neighbour pixels and main
pixel for every color channel in the generation of variance
map similar to (Croce and Hein 2019). We observed that us-
ing variance weighting method considerably decreases the
fooling rate when the attack strength is fixed. Thus, to com-
pare on a fair ground, we fixed the fooling rate and let the
ε (for FGSM and I-FGSM attacks) or initial cost (for C&W
attack) vary. This allowed reaching the target fooling rate
within a±0.5% error tolerence. We targeted 4 different fool-
ing rates for FGSM: 30%, 40%, 50%, 60% and I-FGSM:
60%, 70%, 80%, 90% on both datasets. We used a sin-
gle fooling rate for C&W attack on each dataset: 95% on
CIFAR10 and 100% on NIPS2017 (for both ResNet50 and
Inception-V3), since there is L2-normalization after produc-
ing variance map, measuring Lp norms would be misleading
for variance weighting method. Therefore, we mainly used
LPIPS perceptual distance metric, which is calibrated with
human vision, for its evaluation.

Experimental Settings for Minimization Method

For the experimental settings of the proposed minimization
method, we used Adam (Kingma and Ba 2015) as the op-
timizer and set the maximum iteration number as 10. We
set the learning rate as 0.0001 for CIFAR10 dataset for both
minimization methods. We set learning rate as 0.0001 for
L2-Minimization and 0.00001 for LPIPS-minimization on
NIPS2017 (for both ResNet50 and Inception-V3), since they
were not converging with the same learning rate.



Table 3: FGSM results on NIPS2017 dataset against ResNet50 and Inception-V3 with and without variance weighting (shown
as Var.) and minimization method (shown as Minim.) using LPIPS and L2. Results are reported in both LPIPS (×102) and L2

metrics.

Var. Minim. 30% 40% 50% 60%
ResNet50 Inc-V3 ResNet50 Inc-V3 ResNet50 Inc-V3 ResNet50 Inc-V3

LPIPS L2 LPIPS L2 LPIPS L2 LPIPS L2 LPIPS L2 LPIPS L2 LPIPS L2 LPIPS L2

- - 0.07 0.22 0.12 0.30 0.14 0.32 0.26 0.43 0.26 0.42 0.54 0.63 0.44 0.55 1.10 0.94
- LPIPS 0.02 0.20 0.02 0.27 0.03 0.28 0.04 0.39 0.05 0.38 0.10 0.57 0.08 0.50 0.26 0.87
- L2 0.05 0.16 0,07 0,20 0.10 0.21 0,11 0,24 0.13 0.25 0,22 0,37 0.23 0.35 0,30 0,39
+ - 0.04 0.26 0,06 0,35 0.08 0.37 0,13 0,49 0.14 0.49 0,25 0,71 0.22 0.62 0,52 1,04
+ LPIPS 0.01 0.23 0,01 0,32 0.02 0.34 0,02 0,45 0.03 0.46 0,05 0,66 0.05 0.58 0,13 0,99
+ L2 0.02 0.15 0,03 0,17 0.04 0.20 0,05 0,26 0.08 0.29 0,09 0,38 0.12 0.39 0,15 0,56

Table 4: I-FGSM Results on NIPS2017 dataset against ResNet50 and Inception-V3 with and without variance weighting (shown
as Var.) and minimization method (shown as Minim.) using LPIPS and L2. Results are reported in both LPIPS (×102) and L2

metrics.

Var. Minim. 60% 70% 80% 90%
ResNet50 Inc-V3 ResNet50 Inc-V3 ResNet50 Inc-V3 ResNet50 Inc-V3

LPIPS L2 LPIPS L2 LPIPS L2 LPIPS L2 LPIPS L2 LPIPS L2 LPIPS L2 LPIPS L2

- - 0.11 0.32 0.23 0.43 0.16 0.38 0.37 0.56 0.23 0.46 0.63 0.75 0.40 0.63 1.19 1.08
- LPIPS 0.02 0.28 0.04 0.39 0.03 0.34 0.07 0.51 0.04 0.42 0.12 0.69 0.07 0.58 0.28 1.01
- L2 0.07 0.22 0.14 0.29 0.12 0.28 0.21 0.36 0.18 0.36 0.25 0.44 0.25 0.45 0.32 0.55
+ - 0.09 0.41 0.13 0.52 0.12 0.49 0.21 0.67 0.18 0.61 0.37 0.90 0.31 0.81 0.71 1.29
+ LPIPS 0.02 0.38 0.03 0.47 0.03 0.45 0.04 0.62 0.04 0.56 0.08 0.84 0.06 0.76 0.17 1.23
+ L2 0.06 0.28 0.08 0.35 0.09 0.36 0.13 0.45 0.13 0.47 0.15 0.59 0.18 0.61 0.20 0.78

Table 5: CW2 Results on CIFAR10 dataset against
ResNet50 with and without variance weighting (shown as
Var.) and minimization method (shown as Minim.) using
LPIPS and L2. Results are reported in both LPIPS (×102)
and L2 metrics.

Var. Minim. LPIPS L2

- - 0.25 0.27
- LPIPS 0.15 0.27
- L2 0.25 0.28
+ - 0.19 0.27
+ LPIPS 0.12 0.26
+ L2 0.19 0.28

Results
Normalized Variance Weighting. The effect of variance
weighting method on FGSM attack can be observed in
Table 1 and Table 3 for CIFAR10 (using ResNet50) and
NIPS2017 (using ResNet50 and Inception-V3) datasets re-
spectively. The method reduces the LPIPS distances con-
siderably in all cases, i.e. without minimization and when
used together with minimization with respect to both L2 and
LPIPS. The corresponding results in Table 2 and Table 4 for
I-FGSM and Table 5 and Table 6 for C&W attack confirm
that these findings are pertinent to these attacks as well and
variance weighting is effective in reducing the LPIPS dis-
tance for all attack types in question.

Minimization Methods. LPIPS-Minimization method
applied on FGSM attack decreases the LPIPS distances
considerably when used individually as well as when it is
combined together with variance weighting for both CI-

Table 6: CW2 Results on NIPS2017 dataset against
ResNet50 and Inception-V3 with and without variance
weighting (shown as Var.) and minimization method (shown
as Minim.) using LPIPS andL2. Results are reported in both
LPIPS (×102) and L2 metrics.

Var. Minim. ResNet50 Inc-V3
LPIPS L2 LPIPS L2

- - 0.25 0.27 0.33 0.38
- LPIPS 0.15 0.27 0.17 0.37
- L2 0.25 0.28 0.32 0.38
+ - 0.19 0.27 0.33 0.45
+ LPIPS 0.12 0.26 0.19 0.45
+ L2 0.19 0.28 0.32 0.46

FAR10 (using ResNet50) and NIPS2017 (using ResNet50
and Inception-V3) datasets (Table 1 and Table 3). The cor-
responding results in Table 2 and Table 4 for I-FGSM and
Table 5 and Table 6 for C&W attack confirm that these find-
ings are pertinent to these attacks as well and LPIPS is ef-
fective in reducing the LPIPS distance for all attack types in
question.

In addition to these results, LPIPS-Minimization method
also improves L2 distance considerably. Though, as ex-
pected, L2-Minimization method results in the best L2 dis-
tance improvements for FGSM and I-FGSM on both CI-
FAR10 (using ResNet50) and NIPS2017 (using ResNet50
and Inception-V3) datasets. Considering C&W is already
optimizing L2 distance, the improvement is relatively lim-
ited for C&W attack on both datasets.
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Figure 3: LPIPS results of FGSM and I-FGSM attacks on
NIPS2017 dataset with regular method, normalized vari-
ance weighting method and variance-based box-constrained
method using ResNet50.

Variance + Minimization Methods. The best results (i.e.
lowest LPIPS distances) are obtained when we combine
variance weighting method with LPIPS-Minimization and
the results show that there is considerable improvement for
FGSM, I-FGSM and C&W attack types on both CIFAR10
(using ResNet50) and NIPS2017 (using both ResNet50 and
Inception-V3).

Discussion
From the experiments, it is seen that both variance weighting
and minimization methods individually improve the percep-
tual quality and the best LPIPS results are obtained when
they are integrated. However, this improvement is rela-
tively limited for attacks that are inherently able to pro-
duce adversarial examples with quantitatively lower percep-
tual distances, such as C&W. Results in Tables 1 to 6 show
that NIPS2017 dataset results have smaller perceptual dis-

Umbrella Vanilla Adv. Umbrella Variance Adv.

Flag Vanilla Adv. Flag Variance Adv.

Figure 4: Ineffective NIPS2017 samples against normalized
variance weighting Method.

tances yet improvement percentages are higher compared to
CIFAR10 dataset (i.e., LPIPS distance is reduced by 10%
and 25% for CIFAR10 (40% fooling rate) and NIPS2017
(70% fooling rate) datasets respectively for I-FGSM against
ResNet50).

We have also investigated variance-based box-constrained
method (Croce and Hein 2019) for our attack type agnos-
tic white-box setting as an alternative to variance weighting.
While variance-based box-constrained adversarial examples
are improved in terms of perceptual quality as well, it is
seen in Figure 3 that variance weighting method has lower
LPIPS perceptual distances compared to variance-based
box-constrained method at all fooling rates compared to
FGSM and I-FGSM attacks on NIPS2017. Variance-based
box-constrained method also requires an additional coef-
ficient parameter for each adversarial attack type, dataset
and network. In Figure 3, epsilon value is used as
the additional coefficient parameter of variance-based box-
constrained method to select adaptive coefficient. Even
when parameters for threshold levels are optimized, in most
instances, we have observed that variance weighted pertur-
bations have better perceptual quality, which makes variance
weighting a better choice.

We have conducted our experiments based on L2 and
LPIPS distance metrics. Since traditional Lp norm based
measures are based on pixel based differences, they are not
effective indicators for perceptual quality, hence, we con-
sider use LPIPS perceptual distance as the primary metric in
our evaluation. With regards to the proposed minimization
methods, LPIPS-Minimization can be used in conjunction
with any type of attack, while L2-Minimization is less ef-
fective in some attack types such as the ones based on shift-



ing of pixels (e.g., (Aydin et al. 2021)). Nevertheless, we
have measured the distances of L2 and LPIPS minimiza-
tion methods with both L2 and LPIPS metrics. It is seen
that both distance metrics usually decrease with any of mini-
mization method. Though, as expected, the measured metric
benefits more when it is the same metric as the one used in
minimization (e.g., LPIPS-minimization method minimizes
LPIPS distance proportionally more compared to L2 dis-
tance).

Our empirical observations show that the variance weight-
ing method significantly improves perceptual quality of im-
ages which have low variance backgrounds (e.g., sky, wall
or sea) as it could be seen in Figure 1. However it is less
effective for images with dominantly high variance zones
(e.g., umbrella image in Figure 4) and for images having
dominantly low variance zones (e.g., flag image in Figure
4). In the flag image, the variance of the background is
highly low and high variance region is very narrow, hence
variance weighting method could not improve the flag im-
age adequately.

Conclusion
We have proposed two separate attack agnostic techniques
to improve perceptual quality of adversarial examples while
preserving the fooling rate. We have shown that apply-
ing our variance weighting improves the perceptual qual-
ity of different types of adversarial attacks without any sig-
nificant computational cost in white-box setting. We have
also shown that perturbations produced by different types
of adversarial attacks could be minimized while preserv-
ing the fooling rate. Integration of the variance weighting
and minimization generates adversarial examples with the
best perceptual quality measured by LPIPS. Other attack ag-
nostic improvements (e.g., generating adversarial attacks on
YUV color space (Aksoy and Temizel 2019) could be com-
bined with these two proposed methods to enhance percep-
tual quality further in the future.
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