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Abstract

Prefix caching is a key technique for reducing Large Language Model (LLM) infer-
ence costs. However, the prevalent least-recently-used (LRU) eviction algorithm
has a large gap to the optimal algorithm. This paper introduces LPC, the first
learned method to perform LLM prefix cache eviction. LPC leverages conversa-
tional content analysis to provide predictive guidance for eviction, determining
which conversations are likely to continue. These insights, combined with last ac-
cess timestamps, inform more effective cache management. Extensive evaluations
across three real-world datasets demonstrate that LPC achieves 18–47% reductions
in required cache sizes for equivalent hit ratios and has an 11% improvement in
LLM prefilling throughput in an emulated environment.

1 Introduction

Prefix caching has been recently proposed as an optimization for reducing inference latency and
compute cost in Large Language Model (LLM) serving systems [Gim et al., 2024, Gao et al., 2024].
By storing and reusing internal Key-Value (KV) states from previously processed input prefixes,
prefix caches can avoid redundant computation during the expensive prefilling phase of inference,
especially in multi-turn conversations where historical context is repeatedly reused. A cache hit on
a long context can reduce Time-To-First-Token (TTFT) latency by 74% as shown in Section 4.5.
In a production environment serving millions of requests, high hit ratios can significantly increase
server throughput, translating to substantial hardware cost savings and accommodating thousands of
additional users on the same infrastructure.

Figure 1: A substantial gap between
the hit ratios achieved by LRU and
an idealized Oracle policy with per-
fect knowledge of future conversa-
tion continuation (LMSys dataset).

Despite these benefits, the effectiveness of current prefix
caching systems [Kwon et al., 2023, Zheng et al., 2024] is
constrained by their least-recently-used (LRU) eviction strat-
egy, which discards the least recently accessed KV blocks.
Although simple and widely adopted, LRU’s performance is
far from optimal for LLM prefix caching. As illustrated in
Figure 1, there is a large gap between the hit ratios achieved
by LRU and an idealized Oracle policy that possesses perfect
knowledge of future conversation continuations.

The success of learned caching policies in other domains,
such as Content Delivery Networks (CDNs), suggests that
learned cache designs can significantly outperform LRU and
other heuristics on hit ratios [Song et al., 2020, Yang et al.,
2023, Song et al., 2023]. However, the fundamentally different
nature of LLM workloads prevents a direct transplantation of
these techniques. LLM prefix caches manage semantically
interconnected, variable-length segments of conversational context, which are far more complex
than the relatively independent, often fixed-size objects handled by traditional learned caches in
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other domains. This disparity necessitates the development of novel, specialized learned approaches
tailored to the unique characteristics of LLM workloads.

To bridge this gap, we introduce LPC, a lightweight learned prefix caching framework specifically
designed for LLM conversational systems. LPC addresses two primary challenges inherent in this
domain. The first is to achieve substantially higher cache hit ratios over LRU-based approaches,
by accurately predicting the likelihood of conversation continuation. The second is ensuring the
learning component incurs negligible memory and computational overhead—a critical requirement
for practical deployment within resource-constrained LLM serving environments—in order to deliver
an overall lower inference latency and higher inference throughput.

Our contributions are as follows: (1) We propose the first learned prefix cache to leverage the
opportunity to improve LLM inference efficiency by increasing prefix reuse. (2) We design a
method to learn and predict conversation continuation probability with negligible memory and
computational overhead. (3) Our evaluations of an implemented prototype system shows that
LPC consistently outperforms LRU, achieving 18–47% reductions in the required cache size to
achieve the same hit ratio. In an emulated disaggregated serving [Zhong et al., 2024] and reasoning
[Snell et al., 2024] environment, this translates to LPC delivering up to 11% higher prefilling
throughput and reducing the first token latency of up to 7% of requests by 42–75%. Furthermore,
as a system-level cache management policy, LPC is orthogonal to and can be combined with other
optimizations like FlashAttention or speculative decoding. The implementation can be found at
https://github.com/yangdsh/LPC.

2 Background

LLMs employ caching mechanisms to store internal representations of the input sequence, known as
the KV cache and the prefix cache. This section describes the roles of the KV cache and the prefix
cache in LLM inference, and presents the challenges in prefix cache eviction.

Figure 2: An example of the use of the KV cache and the prefix cache in LLM inference.

KV cache for LLM inference. The KV cache stores Key-Value (KV) states to support autoregres-
sive LLM inference. These KV states are computed representations of the contextual information of
each token. The KV cache is heavily used during the two phases of LLM inference. Initially, the
prefilling phase processes the entire input prompt. For each token in this prompt, say tokeni, its
corresponding KV states, kvi, are computed and stored in the KV cache. This phase concludes with
the generation of the first output token. Subsequently, the decoding phase utilizes KV states in the KV
cache for all previous tokens of this sequence, representing the full context seen so far, to generate
the next token. For efficient memory management and to reduce fragmentation, the KV cache often
organizes these states into fixed-size “KV blocks”, where the block size is typically around 16 tokens
[Kwon et al., 2023]. Upon completion of a sequence, the KV states associated with that sequence
are typically cleared from the KV cache. The primary role of this KV cache is thus to eliminate
redundant computations for token contexts within an individual generation sequence.

Prefix caching. The standard KV cache typically discards KV states upon request completion. This
prevents reuse across related requests, such as requests continuing a previous conversation, forcing
costly re-prefilling of shared contexts. The prefix cache addresses this by retaining KV states from
completed sequences. When a new request arrives, the system queries the prefix cache for the longest
matching prefix, for example token1, . . . , tokenm, of the input. If its KV states (kv1, . . . , kvm) are
found, they are made available to the KV cache for the current request. Prefilling is then only required
for the remaining, unmatched portion of the input, from tokenm+1 onwards, significantly reducing
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computation. An example is shown in Figure 2 where the prefilling of “What can” is skipped because
it matches in the prefix cache.

Prefix cache eviction. The prefix cache has limited capacity as it uses precious GPU memory.
When the prefix cache becomes full or the KV cache demands more memory, the system must evict
existing KV blocks. The choice of which blocks to evict is crucial: a well-designed eviction policy
directly improves the prefix cache’s hit ratio—the fraction of future requests that find a matching
prefix—thereby reducing redundant computation and improving throughput and latency.

However, existing systems use the LRU policy, which evicts the least-recently used blocks. This
approach, while reasonably effective in traditional caching domains, falls short in LLM serving
environments. Prefix cache workloads exhibit different temporal and spatial locality patterns. In
human-LLM interactions, users naturally pause between turns to read, think, or compose follow-up
queries, meaning useful prefixes may go untouched for extended periods despite being highly relevant.
Furthermore, LRU fails to capture the semantic or task-related context of a conversation—factors
that are often more predictive of future reuse than recency alone. A conversation centered around a
complex, unresolved task is more likely to continue than one involving a brief, close-ended exchange.
These differences motivate us to design new eviction strategies that go beyond recency and account
for the unique behavioral and semantic patterns in LLM workloads.

3 Learned Prefix Caching

This section presents a learned prefix caching approach to significantly advance the state-of-the-art
in cache management for LLM inference. Our goal is to improve prefix cache effectiveness by
intelligently selecting which Key-Value (KV) blocks to evict when space is needed, thereby reducing
prefilling latency and increasing throughput. To achieve this, our method must satisfy three key
requirements:

• High Hit Ratios: The approach should consistently and substantially outperform the LRU
baseline in terms of cache hit rate across diverse workloads.

• Improved Latency and Throughput: The method must be efficient without introducing
bottlenecks, enabling both lower latency and higher throughput.

• Minimal Overhead: The system should impose negligible overhead in terms of GPU
memory usage and computational cost.

3.1 Overview of the LPC Framework

Figure 3: Overview of LPC. The LPC framework contains a predictor and an eviction algorithm.

We propose LPC, a learned prefix caching to meet the requirements above. Figure 3 illustrates the
design of LPC. The main difference between this approach and a common prefix cache is that LPC
uses a predictor to inform the replacement algorithm about which blocks to evict, instead of picking
the least recently used ones.

The LPC predictor takes the conversation history and outputs a probability score indicating the
likelihood of the conversation continuing. Its steps are:

1. Data parsing: extract the user prompts from the conversation history.
2. Text embedding: generate a semantic embedding vector from the parsed user prompts.
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3. MLP-based classification: feed the text embedding and other features into a Multilayer
Perceptron (MLP) classifier to predict the conversation continuation probability p.

The LPC eviction algorithm has two running components:

1. Cache Insertion and Eviction: insert KV blocks into a min-heap based on their updated
probabilities p′; evict the KV block with the smallest p′ when the prefix cache is full.

2. Probability Update: periodically apply a decay function to the predicted continuation
probability p to get an updated probability p′ that factors in the elapsed time.

3.2 LPC Predictor

This section describes the three components of the LPC predictor: data parsing, the text embedding
model, and the MLP classifier.

Data parsing. To provide the model with sufficient context for accurate predictions, text and
numerical features are extracted from the conversation. These include the text of the new user prompt
and the user prompts of the preceding N conversational turns. Our implementation uses N = 4
to keep much of contextual information available while keeping resource usage low. For similar
reasons we do not include model responses because they contain less new information than user
prompts, a finding validated by our ablation study in the appendix. Additionally, the conversation
length, represented as the number of turns already occurred, is included as a scalar feature, which is
especially informative for conversations with more than N turns.

Text embedding model. For transforming raw text into meaningful vector representations, we
utilize the multilingual-e5-small model [Wang et al., 2024] (with MIT license) from the family
of sentence transformer models. We choose this model because it is capable of representing important
patterns but is highly efficient. This model has 118M parameters. Such efficient models often have
constraints on input length; for multilingual-e5-small, this is 512 tokens. A key challenge,
therefore, is to compress the input exceeding the length limit while preserving essential information.
We employ a strategic token allocation as follows: the 512-token budget is distributed evenly across
each of the N+1 user request turns. For each turn’s allocated token budget, half the tokens are sourced
from the beginning of the prompt, and the other half from the end. This strategy is informed by
research indicating that the most important information in textual input often lies in these extremities
[Liu et al., 2023]. The output of the text embedding model is a vector with 384 dimensions.

MLP-based classification Model. The classification model is a 3-layer MLP, each layer with 128
hidden neurons. We select it because it is very efficient while having sufficient capability to learn for
our task. It accepts a concatenated feature vector as input, which consists of the 384-dimensional
text embedding vector and a scalar value representing the number of conversation turns. The model
outputs a single probability value, ranging from 0 to 1, indicating the confidence that the conversation
will continue beyond the current turn.

We have made several design decisions to minimize the overhead of the predictor, First, we use small
text embedding and MLP models that have low GPU memory overhead. Second, the predictor runs
only once for each user request, where the request rate is typically lower than 10 per second per GPU.
Third, the predictor is a stand-alone component running in parallel to LLM inference. Lastly, one
predictor can pair with multiple LLM inference instances to further amortize the memory overhead
and computational overhead through batching.

3.3 Training

This section outlines how LPC is trained, including training data collection, training configurations,
and retraining.

Training data. Training and validation data are collected from a dedicated partition of conversations
from the target dataset (as described in Section 4.2). This partition is strictly isolated and excluded
from any datasets used for online evaluation. The size of the partition is half of the dataset. A separate
model is trained for each dataset.
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Training configurations. The training works as follows. First, during training, only the weights
of the MLP classifier are updated; the pre-trained text embedding model is kept frozen. This partial
fine-tuning method allows the MLP to adapt specifically to the continuation prediction task while
ensuring the framework remains lightweight. Full fine-tuning would be operationally expensive for
frequent retraining, whereas training only the tiny MLP head is extremely fast (typically less than
10 minutes), making daily adaptation feasible. Second, text embeddings for the training dataset are
pre-computed and cached after the first epoch to significantly accelerate training. Subsequent epochs
directly reuse these cached embeddings because the text embedding model is frozen, bypassing
repeated computations and saving 90% of the training time. A binary cross-entropy loss function is
employed. The loss is weighted with more weights for the minority class to handle class imbalance.
The optimizer is Adam with a learning rate of 5× 10−4. The training runs until convergence (within
20 epochs in our evaluation), and the checkpoint with the lowest loss on the validation dataset is
saved for running online inference.

Retraining. The predictor is trained offline on historical data. To adapt to gradual shifts in user
behavior or evolving conversational dynamics and mitigate the risk of performance degradation from
out-of-distribution (OOD) data, periodic offline retraining is the primary strategy. We propose daily
retraining, a standard practice for ML-based cache policies to adapt to evolving query patterns [Song
et al., 2023]. Training takes about 10 minutes, making this schedule affordable. For use cases with
extremely high OOD risk, such as applications driven by rapidly changing current events, the system
could leverage online learning to update itself incrementally. However, for typical conversational
workloads, the general patterns of continuation are relatively stable, making frequent offline retraining
a sufficient and operationally simpler choice.

3.4 Eviction Algorithm

This section introduces the LPC eviction algorithm in more detail. Our design largely follows the
LRU prefix cache eviction algorithm but uses a dynamic conversation continuation probability instead
of the last access time to rank objects.

3.4.1 Data Structure and Operations.

The key data structure is a min-heap. Blocks in the heap are prioritized based on a dynamically
calculated continuation probability of their associated conversation. The primary inputs associated
with each sequence’s KV blocks are its initial predicted continuation probability and its last access
timestamp.

The operations are:

• Insertion: When the decoding of a sequence completes, its KV blocks are removed from the
KV cache and inserted into the prefix cache’s min-heap according to their initial predicted
continuation probability.

• Promotion: If a prefix of an incoming user request matches a sequence of KV blocks in the
prefix cache, these blocks are considered “hit.” They are then promoted to the KV cache
and are consequently removed from the prefix cache’s min-heap.

• Probability update: The algorithm performs a periodic probability decay to be able to evict
the KV blocks with over-estimated continuation probability. At configurable fixed intervals
(defaulting to 10 seconds), LPC iterates through all KV blocks in the prefix cache. For each
block, its associated continuation probability is re-evaluated using a decay function below.
The min-heap is then reorganized to accurately reflect these updated probabilities.

• Eviction: When the prefix cache reaches its capacity, or when memory needs to be reclaimed
(e.g., due to expansion of the KV cache), an eviction process is triggered. The KV block
located at the root of the min-heap is selected and removed from the prefix cache.

3.4.2 Probability Decay Function

To handle KV blocks with over-estimated continuation probability predictions from staying in the
cache forever we periodically update their probabilities. We implement a decay function to adjust
the conversation continuation probability as time elapses since its last interaction. This function’s
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input includes the initially predicted continuation probability (proboriginal), the current system time
(timecur), and the timestamp of the last access to this KV block (timelast). Its output is the current,
time-adjusted probability (probcur), which is calculated as:

probcur =
proboriginal × decay

proboriginal × decay + (1− proboriginal)

The decay factor itself is an exponential function of the elapsed time:

decay = exp(−(timecur − timelast)× scale)

Here, scale is a hyperparameter controlling the decay rate. It was tuned empirically, and a good rule
of thumb is to set it to be the inverse of the average turn interval. Since this interval is approximately
100 seconds across our datasets, we set scale = 10−2 in all experiments. This mechanism ensures that
prefixes from inactive conversations receive progressively lower continuation probabilities, making
them more likely eviction candidates.

3.5 Handling KV Blocks Shared by Multiple Conversations.

A significant challenge in prefix caching arises with KV blocks shared across multiple distinct
conversations, such as those resulting from common system prompts or identical initial user queries.
Naive metadata management that simply overwrites the score of such blocks with the latest score
can lead to suboptimal eviction decisions, because a popular prefix shared by multiple conversations
would be incorrectly evicted by the most recent related conversation if it has a low score. Our
algorithm incorporates specific logic for these shared blocks. The timelast for a shared block is
always updated to its most recent access timestamp. Furthermore, when a shared block is accessed as
part of a new or existing conversation, its effective continuation probability for eviction decisions is
set to the maximum of its probblock

cur calculated now from the previously stored metadata and probnew
cur

calculated from the incoming metadata. This max-pooling operation across all conversations sharing
the block is represented as:

probblock
cur = max(probblock

cur , probnew
cur )

This strategy ensures that a block shared by multiple conversations, where at least one is highly likely
to continue and has been recently active, is not prematurely evicted due to association with a less
likely-to-continue conversation.

4 Evaluation

To evaluate how well LPC meets its design goals, we focus on three evaluation questions:

• How much does LPC improve prefix cache hit ratios compared to LRU? (4.4, 4.3)
• To what extent does the higher hit ratio of LPC translate into improved throughput and

reduced latency? (4.5)
• What are the memory and computational overheads introduced by LPC? (4.6)

4.1 Implementation and Evaluation Environments

We implement a prototype of LPC on top of the vLLM serving framework [Kwon et al., 2023], which
is licensed under Apache-2.0. The conversation continuation predictor runs as an external component,
while the cache eviction policy is integrated directly into the vLLM prefix cache. Unless otherwise
specified, all vLLM arguments use their default values. The implementation is based on the main
branch of vLLM as of March 10, 2025.

We allocate 1 GB of GPU memory for the predictor used in LPC. This allocation breaks down as
follows: approximately 560 MB for PyTorch’s CUDA context and kernel initialization, 240 MB for
loading the multilingual-e5-small model weights in float16 precision, and around 200 MB for
runtime memory to store inputs and attention buffers.

All experiments were conducted on NVIDIA H100 GPUs, equipped with 80 GB of HBM3 memory.
We use the Qwen3-32B-FP8 model [Qwen3 Team, 2025] to run inference. It is a 32-billion parameter
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reasoning model and is licensed with Apache 2.0. We use a single GPU to run the model. Considering
the memory used by the model and pytorch, the memory available for KV cache and Prefix cache is
40 GB in total. The other hardware usage includes 8 CPUs and 64 GB CPU memory. The baseline is
vLLM’s LRU cache eviction algorithm.

Our evaluations use the following metrics:

• Hit Ratio: The average prefix cache hit ratio across all requests.

• Time-to-First-Token (TTFT): The latency observed by the client from sending a request to
receiving the first response token.

• Throughput: The average number of sequences prefilling per second.

To ensure a fair comparison with the LRU-based approach, we deduct 1 GB from LPC’s prefix
cache size in all evaluations, to account for its GPU memory overhead.

4.2 Workload

We run prefix cache hit ratio comparisons on real-world conversational datasets. These include:

• LMSys: a large-scale collection of user-chatbot dialogues [Zheng et al., 2023a].

• ShareGPT: conversations with ChatGPT [ShareGPT Team, 2023].

• Chatbot-Arena: a platform where users compare various LLMs [Chiang et al., 2024].

LMSys has a limited use license. ShareGPT has a Apache-2.0 license. Chatbot-Arena has a CC
license. Table 1 summarizes the statistics of the three datasets. The follow-up ratio is the percentage
of requests that will receive a future request of the same conversation.

Table 1: Dataset Properties.
Dataset Total conversations Avg. input length Avg. output length Follow-up ratio

LMSys 1× 106 63 tokens 179 tokens 35%
ShareGPT 9.5× 104 113 tokens 305 tokens 55%
Chatbot-Arena 3.3× 104 36 tokens 155 tokens 8%

An important limitation of public datasets is the lack of timestamp information, making it difficult
to evaluate LLM systems under realistic conversational workloads. Simple Poisson-based arrival
models are insufficient: they ignore LLM generation times—potentially placing a user request before
the previous response finishes—and do not account for conversation start times.

To overcome this limitation, we introduce a two-phase strategy that separates user think time modeling
from LLM response times and schedules conversation start times to simulate realistic server load.
In the pre-run phase, chat intervals within each conversation are sampled from an exponential
distribution with mean λchat, and conversation start times are spaced to keep the number of concurrent
active conversations below a target threshold Nconv (default 200), emulating a static load balancer.

In the runtime phase, each conversation starts at its assigned time, and subsequent requests occur
after adding the sampled user interval to the actual completion time of the previous LLM response.
Evaluations run for 20 minutes to avoid capturing the cool-down period at the end of the trace.

4.3 Hit Ratios Across Varying Cache Sizes

To understand how LPC performs under different memory budgets, we compare its prefix cache hit
ratio with LRU’s while varying total token capacity. We vary the combined size of the prefix and KV
caches from 60K to 160K tokens (approximately 15.6 GB to 40 GB). They are allocated across the
prefix and KV caches dynamically by vLLM. The chat interval parameter λchat is fixed at 100.

Figure 4 shows that LPC consistently outperforms LRU across all datasets and cache sizes. The
improvement relative to LRU is 13% to 38% on LMSys (Figure 4a), 14% to 98% on ShareGPT
(Figure 4b), and 15% to 30% on Chatbot-Arena (Figure 4c).
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(a) LMSys (b) ShareGPT (c) Chatbot-Arena

Figure 4: Hit ratio vs. cache size. LPC achieves consistently higher hit ratios than LRU, which
translates to 18–47% reductions in the required cache size to achieve the same hit ratio as LRU.

To achieve the same hit ratio as LRU, LPC requires significantly less memory across all three datasets.
For example, on Chatbot-Arena, LPC reaches a 30% hit ratio with only 85 K tokens—just 57% of the
150 K tokens required by LRU. Similar memory savings are observed on LMSys (up to 18% less) and
ShareGPT (up to 30% less). This is a 7.2–18.8 GB GPU memory saving for a 40 GB cache. These
results show LPC substantially improves memory efficiency in prefix caching.

4.4 Impact of Chat Intervals on Hit Ratio

(a) LMSys (b) ShareGPT (c) Chatbot-Arena

Figure 5: Hit ratio vs. chat intervals. LPC has consistently higher hit ratio than LRU, with 5–18%
relative improvements.

To evaluate the robustness of LPC under varying user interaction patterns, we fix the cache size to
40 GB (the full available GPU memory) and vary the chat interval parameter λchat to simulate different
user think times. Shorter intervals represent more frequent user interactions, which may increase
cache contention, while longer intervals simulate slower-paced conversations. with potentially higher
reuse of cached prefixes.

As shown in Figure 5, LPC consistently outperforms LRU across all datasets and interval settings,
achieving 5% to 18% higher hit ratios. Specifically, improvements range from 5% to 18% on LMSys
(Figure 5a), 11% to 15% on ShareGPT (Figure 5b), and 7% to 16% on Chatbot-Arena (Figure 5c).
These results show that LPC maintains strong performance across diverse conversational workloads,
adapting well to varying user behaviors.

4.5 Throughput and Latency

To evaluate the impact on throughput and latency by the improved hit ratios, we use a microbenchmark
that emulates a prefilling-only server in a disaggregated inference framework. This method is widely
used in industry and is becoming a next-generation standard [Zhong et al., 2024, Patel et al., 2024,
Hu et al., 2024, Qin et al., 2025]. A prefilling request rate under 10 req/s is a reasonable and often
conservative estimate for production models with moderate prompt lengths [Zhong et al., 2024].

We use a synthetic workload with longer context lengths to reflect the recent trend of test-time scaling
related to the wide adoption of reasoning models [Snell et al., 2024, Chen et al., 2025]. Recent
studies show that the generation length significantly increases from around 10 tokens generated by
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non-reasoning models to around 1,000 tokens generated by reasoning models [Han et al., 2024, Sun
et al., 2025]. This increase in the generation lengths means an increase in the lengths of the matched
contexts, because generated text is part of the context of the input of the next conversation round.

Figure 6: Prefilling throughput
(req/s) as a function of hit ratio.

Figure 7: Time To First Token (TTFT) comparison for context
cache miss vs. hit across varying context and prompt lengths.

Figure 6 shows the prefilling throughput gain as the hit ratio improves. In this microbenchmark, every
input has a 1000-tokens context and a 50-token new prompt. The x-axis is the prefix cache hit ratio
of the full contexts, including the new prompts that always miss. A hit ratio boost from 35 percent to
42 percent, which LPC achieves in Figure 5a, leads to an increase in throughput from 10.01 req/s to
11.11 req/s, indicating an 11.10% higher prefilling throughput for LPC over LRU in the emulated
environment.

Figure 7 quantifies the reduction in TTFT achieved by a context cache hit. It shows that a context hit
can keep the TTFT low regardless of the context length, which reduces TTFT by up to 73% compared
to a context miss. It also shows that the TTFT of a hit barely increases when the new prompt length is
smaller than 500, emphasizing the advantage of a context hit. These result indicate that a 7 percent hit
ratio increase can translate to 7% of requests seeing their TTFT reduced by 42–75% in the emulated
environment.

4.6 Memory and Computational Overhead

We reserved 1 GB of GPU memory for LPC’s predictor and deduct 1 GB from LPC’s prefix cache
as described in Section 4.1. In this case, LPC takes about 1.25% of the GPU memory running our
evaluations. A sensitivity study analyzing the impact of using varying memory for LPC is provided
in the appendix.

The GPU computational overhead of LPC is minimal due to the high efficiency of the predictor
model, which can process up to 1,000 predictions per second per GPU. A detailed instrumentation is
also presented in the appendix.

5 Related Work

Prefix Caching and Eviction Policies. Many works have explored optimizing LLM inference
with prefix caching, but none have placed an emphasis on how eviction policies adjust to the LLM
workloads. PromptCache [Gim et al., 2024] reuses common prompt segments with precomputed
attention states. RAGCache [Jin et al., 2024] proposes prefix-aware Greedy Dual-Size Frequency
eviction policy for RAG but not for conversational workload. CacheBlend [Yao et al., 2025] uses
prefix cache and cross SGLang [Zheng et al., 2024] builds RadixAttention to cache KV sequences in
a radix-tree for efficient prefix matching, while vLLM [Kwon et al., 2023] maps logical KV blocks to
a global physical cache. Both adopt a least-recently used (LRU) eviction strategy. Dynamo [NVIDIA
Research Team, 2025] uses first-in-first-out (FIFO) eviction, while CachedAttention [Gao et al.,
2024] presents a scheduler-aware eviction scheme based the queue of incoming requests for offline
batched inference. Marconi [Pan et al., 2025] factors in computational savings for LRU eviction, but
the approach is tailored to state-space models and does not extend to transformer architectures.
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ML-based Caching Algorithms. Existing caching research explores machine learning as an
approximate to optimal eviction decisions. LeCaR [Vietri et al., 2018] and CACHEUS [Rodriguez
et al., 2021] apply online learning and expert-ensemble frameworks to further learn cache eviction
policies. LRB [Song et al., 2020] , MAT [Yang et al., 2023], and HALP [Song et al., 2023] leveraging
machine learning in content delivery networks, demonstrates a 10% to 20% hit ratio improvement
and cost saving over the best heuristic algorithm and LRU. However, these algorithms cannot be
directly applied to LLM prefix caches due to the large difference in their caching paradigms.

Learned Optimizations for LLM Inference. Recent LLM inference systems use learned ap-
proaches to improve performance. [Zheng et al., 2023b] adds instructions for predicting prompt
length in order to group requests with similar latencies, leading to a throughput increase compared to
regular batched inference. Fu et al. [2024] and Qiu et al. [2024a,b] train smaller separate models to
predict output length, finding that shortest-job-first batching reduces per-token latency significantly
compared to first-come-first-serve. Finally, Jain et al. [2025] explores a heuristic-guided reinforce-
ment learning-based router for workload-aware scheduling. Our work on LPC complement this work
by focusing its learned optimizations on a different component of LLM inference: prefix caching.

6 Conclusion and Future Work

This paper presents the first learned prefix cache LPC to improve LLM inference efficiency. It uses
ML on history data to predict conversation continuation probability to improve the cache hit ratio
over LRU based approach.

Our evaluations show that LPC consistently outperforms the baseline in all three workloads, achieving
up to 43% lower cache size utilization. The improved high-ratios translate to substantially lower
latency and an 11% prefilling throughput increase. This is a step towards intelligent and adaptive
memory management in LLM serving systems.

While our approach demonstrates significant improvements over LRU, this study has several limita-
tions that we plan to address in future work. First, our evaluation relies on workloads augmented with
synthetic timestamps, which may not fully capture real-world user behavior. Second, our comparison
is primarily against LRU; evaluating against a broader range of heuristic eviction strategies would
offer a more comprehensive view. Third, while the principles of LPC are model-agnostic, our experi-
ments focused on a single model family; demonstrating its effectiveness across different architectures
(e.g., Llama, Mistral) would further strengthen our claims of generality.

This work also opens several promising directions for future research. A finer-grained analysis of
hit ratios on specific domains (e.g., coding, agentic tasks) could provide deeper insights into which
conversational patterns are most amenable to caching. Another exciting avenue is extending LPC to
handle multi-modal inputs. This could be achieved by replacing the separate text encoder with the
main LLM’s own internal hidden states as a rich, holistic embedding for the predictor, making the
framework highly adaptable to the future of multi-modal generative AI. These directions represent
promising next steps for advancing learned prefix caching in LLM serving systems.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction accurately state LPC’s contributions (e.g., first
learned LLM prefix eviction using conversational analysis) and key performance results
(e.g., 18–47% cache size reduction, 11% prefilling throughput improvement), which are
detailed and supported in Sections 3 and 4.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Section 6 explicitly discusses limitations, including reliance on synthetic
timestamps for evaluation, comparison primarily against LRU, and the use of a single
lightweight prediction model architecture.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper proposes an empirical method and evaluates it experimentally. It
does not introduce new theoretical results that require formal proofs.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Key details for reproducibility are provided, including implementation envi-
ronment and hardware (Section 4.1), models used (Section 3.2, 4.1), datasets (Section 4.2),
synthetic timestamp generation (Section 4.2), predictor architecture and training parameters
(Section 3.2, 3.3).

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The datasets used are publicly available (LMSys, ShareGPT, Chatbot Arena),
as cited in Section 4.2. The code and instructions to reproduce the main experimental results
is included in the supplementary material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Key training details (data splits, predictor hyperparameters in Section 3.3;
embedding model specifics in Section 3.2) and test settings (evaluation setup including λchat,
Nconv in Section 4.1, 4.2; decay scale tuning in Section 3.4.2) are provided.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The plot with error bar is included in the Appendix.
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Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Section 4.1 specifies the use of NVIDIA H100 GPUs with 80GB HBM3
memory, a single GPU for the model, 8 CPUs, and 64GB CPU memory. Section 3.3
mentions predictor training takes about 10 minutes. Section 4.2 mentions evaluations run
for 20 minutes. Section 4.1 details GPU memory allocation for the predictor (1GB total).
This provides a good overview of resources for reported runs.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We conduct research conforming to the Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts
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Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The research focuses on improving the computational efficiency of LLM
inference systems using publicly available conversational datasets. It does not have potential
negative societal impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not release models or datasets that would pose a high risk for
misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
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Justification: The paper properly cites the original papers for the datasets (LMSys, ShareGPT,
Chatbot Arena in Section 4.2) and models/frameworks used (vLLM in 4.1, multilingual-e5-
small in 3.2, Qwen3 in 4.1). The specific licenses (e.g., Apache-2.0, MIT, CC) and terms of
use for these existing assets are explicitly stated in the paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release a new asset.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper uses existing publicly available datasets (LMSys, ShareGPT, Chatbot
Arena) which consist of prior human-chatbot interactions. The research described does not
involve conducting new crowdsourcing experiments or new direct research with human
subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.
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15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The research uses existing datasets and does not involve new interactions with
human subjects. Therefore, IRB approval for the work presented in this paper itself is not
applicable. Ethical considerations related to the original dataset collection would have been
the responsibility of the original dataset creators.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs were not used in developing or implementing the core methods. The
algorithm itself uses a text embedding model to embed the input but it is not an LLM.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Additional Experiments

A.1 LPC Computational Overhead

In this section, we extend Section 4.6 to address the computational overhead of our proposed method
LPC.

Metrics. We evaluate GPU computational activity using three fine-grained metrics collected by
NVIDIA Data Center GPU Manager: SM Active, SM Occupancy, and Tensor Pipe Active. SM Active
indicates the proportion of cycles during which at least one warp was assigned to any Streaming
Multiprocessor (SM), reflecting overall SM computational engagement. SM Occupancy measures
the ratio of active resident warps to the theoretical maximum warps per SM, averaged across SMs.
Tensor Pipe Active represents the ratio of cycles where any tensor pipe was active.

Setup. We run three configurations: our proposed LPC method, the baseline LRU method, and the
LRU w/ predictor configuration. The LRU w/ predictor configuration integrates the LPC predictor
with the standard LRU policy; this setup is specifically designed to measure the predictor’s intrinsic
computational overhead while maintaining a cache hit ratio comparable to the baseline LRU. The
experiments are conducted on the LMSys dataset with a 40 GB cache size. The chat interval parameter
λchat is 100.

Table 2: GPU computational activity on LMSys with 40 GB cache size.
Metric LPC LRU LRU w/ predictor

SM Active (%) 39.70 41.74 42.04
SM Occupancy (%) 7.63 8.05 8.12
Tensor Pipe Active (%) 11.42 12.05 12.07
Hit Ratio (%) 46.50 40.90 40.90

Results. The results in Table 2 show that LPC reduces the overall GPU computations by about
5%. Specifically, LPC achieves a 4.89% decrease in SM Active, a 5.22% decrease in SM Occupancy,
and a 5.23% decrease in Tensor Pipe Active, underscoring its effectiveness in reducing the overall
computational load due to its higher prefix cache hit ratio. Second, to assess the computational
overhead introduced by the LPC predictor, we compared the LRU baseline with and without running
an LPC predictor. The results indicate that the predictor’s overhead is minimal: SM Active increased
by only 0.72%, SM Occupancy by 0.87%, and Tensor Pipe Active by a mere 0.17% when the predictor
was added to LRU. This confirms that the LPC predictor can be integrated to LPC with a marginal
computational overhead.

A.2 LPC Memory Overhead Sensitivity Analysis

We analyze the sensitivity of LPC’s performance to its 1 GB GPU memory overhead by scaling the
reserved memory for the predictor by 0×, 1×, 2×, and 4×. Figure 8 shows the impact on hit ratio
using the same setup as Section 4.3.

The results show that the GPU memory allocated to LPC’s predictor has a 0.6% to 8.1% impact
on its hit ratio. This is observed by comparing LPC (0×) with LPC (1×). The hit ratio sees a
reduction ranging from 0.6% to 2.4%, at a cache size of 16 × 104 tokens (40 GB for H100 after
loading Qwen3-32B-FP8). The hit ratio impact is more pronounced at smaller cache capacities, as
the reduction in hit ratio when moving from LPC (0×) to LPC (1×) ranges from 2.3% to 8.1%,
at a cache size of 6.4× 104 tokens (16 GB). These findings indicate that though LPC’s prediction
mechanism is fundamentally superior to LRU, minimizing its direct GPU memory overhead is crucial
for maximizing its cache hit ratio benefits, especially when GPU memory resources are limited.

Despite the internal overhead variations, LPC consistently outperforms LRU. When varying LPC’s
predictor overhead from 0× to 4×, LPC achieves 4.3% to 16.7% higher hit ratios than LRU at the
cache size of 16× 104 tokens (40 GB). At the smaller cache size of 6.4× 104 tokens (16 GB), LPC
achieves 5.8% to 119.0% higher hit ratios than LRU. These findings indicate that LPC’s prediction
mechanism is fundamentally superior to LRU.
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(a) LMSys (b) ShareGPT (c) Chatbot-Arena

Figure 8: Sensitivity of LPC’s cache hit ratio to its internal GPU memory overhead, compared with
LRU. LPC (N×) denotes LPC configured with N times of its actual GPU memory requirement.

A.3 LPC Predictor Accuracy and Ablation Study

We evaluate the effectiveness of the LPC predictor using the Matthews Correlation Coefficient
(MCC) and macro-averaged F1 score (F1 macro). MCC is a robust metric for binary classification
with imbalanced classes. The F1 macro computes the F1 score independently for each class and
then averages them. LPCturns is an ablation study using only the number of turns as input, where
predictions are based on the majority label of training data binned by turn count.

Table 3: Prediction correctness of LPC predictor and an ablation study using only the number of
turns as the input (LPCturns). Higher values are better for all metrics.

Dataset Method MCC F1 macro

LMSys LPCturns 0.3510 0.6755
LPC 0.3863 0.6923

ShareGPT LPCturns -0.0012 0.4165
LPC 0.2815 0.6407

Chatbot-Arena LPCturns 0.0775 0.4741
LPC 0.3689 0.6837

The results in Table 3 indicate that the full LPC predictor achieves 0.28 to 0.36 MCC and is
always superior to the LPCturns ablation. This suggests that leveraging the semantic content of the
conversation provides valuable signals for predicting continuation likelihood. For instance, on the
Chatbot-Arena dataset, LPC shows a substantial improvement in MCC (0.3689 vs. 0.0775) and F1
macro (0.6837 vs. 0.4741) over LPCturns. The negative MCC for LPCturns on ShareGPT indicates that
using only turn count as a predictor is no better than random guessing for that specific dataset. The
LMSys dataset shows comparable MCC and F1 macro between LPC and LPCturns and indicates that a
light-weight predictor such as LPCturns may be strong enough in some scenarios. Overall, the results
show the effectiveness of our content-aware features in predicting the conversation continuation.

B Additional Ablation Studies

B.1 Ablation on Input Features: User Prompts vs. Model Responses

Our initial design choice to use only user prompts as input was motivated by keeping the predictor
lightweight. As shown in Table 4, including the model response provides no significant, consistent
improvement and can even slightly degrade performance. We hypothesize this is because the compact
embedding model, chosen for efficiency, may lack the capacity to distill useful signals from the often
longer and more varied model responses, potentially introducing noise. The user’s prompt appears to
be a more direct and potent signal for their immediate intent.
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Table 4: Ablation study on predictor input features: prompts only vs. prompts plus model responses.
Performance is measured by Matthews Correlation Coefficient (MCC) and F1 macro score.

Dataset Features MCC F1 macro

Chatbot Arena Prompts + Model Response 0.3370 0.6685
Chatbot Arena Prompts Only 0.3485 0.6738
LMSys Prompts + Model Response 0.3843 0.6849
LMSys Prompts Only 0.3797 0.6897
ShareGPT Prompts + Model Response 0.2779 0.6286
ShareGPT Prompts Only 0.2777 0.6348

B.2 Ablation on Prompt Window Length

We chose a default history window of 5 prompts (the current prompt + 4 previous). This was based on
our analysis that most conversations in the datasets are short (e.g., 94-99% have five turns or fewer).
To validate this choice, we experimented by increasing the prompt window length to 10. Table 5
shows that this did not yield an improvement and often resulted in slightly lower performance. This
reinforces that the most recent conversational history is the most predictive for these workloads. This
hyperparameter can be tuned for workloads with substantially longer conversations.

Table 5: Ablation study on the prompt window length for the predictor.
Dataset Prompt window length MCC F1 Macro

Chatbot Arena 5 0.3485 0.6738
Chatbot Arena 10 0.3416 0.6707

LMSYS 5 0.3797 0.6897
LMSYS 10 0.3727 0.6862

ShareGPT 5 0.2777 0.6348
ShareGPT 10 0.2496 0.6167

B.3 Generalizability: Unified vs. Specialized Predictor

A crucial question for practical deployment is whether a single, general-purpose predictor can perform
as well as predictors specialized for different data distributions. We tested this by training a "Unified"
predictor on a combined dataset and comparing its performance against our default "Specialized"
models on each test set. The results in Table 6 show that the unified model is competitive on the
Chatbot Arena and LMSys datasets. However, its performance is notably lower on ShareGPT,
suggesting that while core conversational patterns are generalizable, certain datasets like ShareGPT
may contain unique characteristics that benefit from domain-specific training. A larger model might
improve generalizability, but at the cost of higher overhead.

Table 6: Performance comparison of a Unified predictor vs. Specialized predictors.
Test Dataset Model Type MCC F1 macro

Chatbot Arena Unified 0.3357 0.6678
Chatbot Arena Specialized 0.3485 0.6738
LMSys Unified 0.3802 0.6871
LMSys Specialized 0.3797 0.6897
ShareGPT Unified 0.1271 0.5281
ShareGPT Specialized 0.2777 0.6348
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B.4 Hit Ratio Comparisons with Oracle

To assess the upper bound for further potential improvements, we compare the hit ratio of LPC against
an Oracle policy, which possesses perfect future knowledge of whether a conversation will continue.
Figure 9 presents this comparison alongside LRU across the three datasets for various cache sizes.
The evaluation setup is the same as in Section 4.3.

The results indicate that LPC consistently reduces the hit ratio gap between LRU and Oracle. On the
LMSys dataset (Figure 9a), the reduction in the gap is from 22% to 30%. On the ShareGPT dataset
(Figure 9b), the reduction is from 28% to 64%. The remaining gap to Oracle is only about 0.5 times
the current LPC-over-LRU gain at the smallest cache size. We hypothesize that it is because LPC has
higher accuracy in high-confidence predictions, and the small cache size is only enough to hold those
high-confidence prefixes. For the Chatbot-Arena dataset (Figure 9c), the reduction of the hit ratio gap
from LRU to Oracle achieved by LPC ranges from 25% to 28%.

These observations highlight the substantial advancements LPC delivers in prefix caching. While
a performance ceiling defined by the Oracle benchmark remains, we contend that LPC effectively
captures the vast majority of predictive information available within the conversation text itself.
Therefore, we believe that future efforts to substantially close the remaining gap and approach
Oracle-level performance will likely need to incorporate new data dimensions, such as user access
patterns, moving beyond sole reliance on textual content for prediction.

(a) LMSys (b) ShareGPT (c) Chatbot-Arena

Figure 9: Hit ratio vs. cache size. LPC reduces the gap from LRU to Oracle by 22% to 66%.

B.5 Experiment Statistical Significance

To assess the statistical significance and stability of our results, we repeated the experimental runs for
at least 5 times for each data point. Figure 10 presents the hit ratios with error bars indicating the
observed minimum and maximum values across these runs. The analysis of this data reveals that the
variations are consistently small. Specifically, the maximum absolute difference between the highest
and lowest observed hit ratio for any given configuration (algorithm, dataset, and cache size) is less
than 0.013. The relative variation (max-min difference divided by the mean hit ratio) is also small,
always below 4.6% and in most cases lower than 1%. This low variance across repeated experiments
indicates that the performance differences observed between our proposed method and the baseline
are robust and not attributable to random fluctuations, underscoring the statistical significance of our
findings.

(a) LMSys (b) ShareGPT (c) Chatbot-Arena

Figure 10: Hit ratio vs. cache size with error bars. The variation in the hit ratio is smaller than 0.013.
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