
New Frontiers in Graph Autoencoders:
Joint Community Detection and Link Prediction

Guillaume Salha-Galvan∗

Deezer Research
Paris, France

Johannes F. Lutzeyer
LIX, École Polytechnique, IP Paris

Palaiseau, France

George Dasoulas
DBMI, Harvard University

Cambridge, MA, USA

Romain Hennequin
Deezer Research

Paris, France

Michalis Vazirgiannis
LIX, École Polytechnique, IP Paris

Palaiseau, France

Abstract

Graph autoencoders (GAE) and variational graph autoencoders (VGAE) emerged as
powerful methods for link prediction (LP). Their performances are less impressive
on community detection (CD), where they are often outperformed by simpler
alternatives such as the Louvain method. It is still unclear to what extent one can
improve CD with GAE and VGAE, especially in the absence of node features. It is
moreover uncertain whether one could do so while simultaneously preserving good
performances on LP in a multi-task setting. In this workshop paper, summarizing
results from our journal publication [44], we show that jointly addressing these two
tasks with high accuracy is possible. For this purpose, we introduce a community-
preserving message passing scheme, doping our GAE and VGAE encoders by
considering both the initial graph and Louvain-based prior communities when
computing embedding spaces. Inspired by modularity-based clustering, we further
propose novel training and optimization strategies specifically designed for joint
LP and CD. We demonstrate the empirical effectiveness of our approach, referred
to as Modularity-Aware GAE and VGAE, on various real-world graphs.

1 Introduction

Extracting relevant information from nodes of a graph is essential to tackle a wide range of machine
learning problems [9, 13, 14, 57]. This includes link prediction (LP) [26, 29], which consists in
inferring the presence of new or unobserved edges between node pairs, and community detection (CD)
[4, 9], which consists in clustering nodes into similar groups, according to a chosen similarity metric.
To address such problems, significant efforts have recently been devoted to the development of node
embedding methods [13, 14, 23]. These methods aim to learn vectorial representations of nodes in an
embedding space where node positions should reflect and summarize the initial graph structure. They
assess the probability of a new edge between two nodes, or their likelihood of belonging to the same
community, by evaluating the proximity of these nodes in the embedding space [7, 24, 53].

In particular, graph autoencoders (GAE) and variational graph autoencoders (VGAE) [24, 49, 53, 54]
recently emerged as two powerful families of node embedding methods. Both methods rely on an
encoding-decoding strategy that consists in encoding nodes into an embedding space from which
decoding, i.e., reconstructing the original graph, should ideally be possible. Originally mainly
designed for LP (at least in their modern formulation leveraging graph neural networks (GNN) [24]),
the effectiveness of GAE and VGAE models and their extensions on this task has been experimentally

∗Corresponding author at: research@deezer.com.

NeurIPS 2022 New Frontiers in Graph Learning Workshop (NeurIPS GLFrontiers 2022).

confirmed [12, 16, 18, 36, 43, 45, 50]. On the other hand, several studies [7, 8, 40, 41] have pointed
out their limitations on CD. These studies emphasized that GAEs and VGAEs are often outperformed
by simpler CD alternatives, such as the popular Louvain method [4]. The question of how to improve
CD with GAEs and VGAEs remains incompletely addressed, especially in the absence of node
features. Moreover, it is still unclear to which extent one can improve CD with these models without
simultaneously deteriorating LP, and jointly address these two problems. These questions are highly
relevant in practice, as learning node embedding spaces suitable for multi-task settings leads to
consistent inference between tasks and saves costs in real-world applications.

This paper2 presents several contributions pushing the frontiers of GAEs and VGAEs, and showing
that jointly addressing CD and LP with high accuracy is possible with these models. After reviewing
key concepts in Section 2, we explain why GAEs and VGAEs underperform on CD in Section 3. We
simultaneously introduce Modularity-Aware GAE and VGAE, our solution leveraging modularity-
based clustering concepts [4, 5, 46] to improve CD while preserving the ability to identify missing
edges in LP. We report an in-depth evaluation of our method in Section 4, and conclude in Section 5.

2 Preliminaries

We consider an undirected graph G = (V, E) with n nodes and m edges. We denote its n×n adjacency
matrix by A. Each node i ∈ V is equipped with a feature vector xi ∈ Rf . We denote the n × f
matrix having xi vectors as rows by X. For a featureless graph, we set X = In, the identity matrix.

GAE and VGAE. The term GAE refers to a family of unsupervised two-component models
learning node embedding spaces in the absence of node labels [23, 24, 49, 54]. The first component
is the encoder, a parameterized function processing A and X , and mapping each node i ∈ V to an
embedding vector zi ∈ Rd, with d ≪ n. In practice, a GNN [13, 25, 57] often acts as the encoder,
i.e., Z = GNN(A,X), with Z the n× d matrix having zi vectors as rows. The second component
is the decoder, estimating an adjacency matrix Â from embedding vectors: Â = Decoder(Z).
Decoders can be neural networks, or simpler functions, e.g., based on inner products between
zi vectors [24, 28, 37, 54]. When training a GAE, one wishes to learn zi vectors from which
reconstructing G should be possible. Intuitively, this would indicate that the embedding space
preserves some important information about G. For this purpose, model weights are trained via
gradient descent minimization [10] of a reconstruction loss, usually a cross entropy [24], evaluating
the similarity between Â and A.

Introduced as probabilistic extensions of GAEs, VGAE models associate zi vectors with distributions.
Notably, in the seminal VGAE from Kipf and Welling [24], each vector zi ∼ N (µi,Σi). Their model
incorporates two GNN encoders processing both A and X: one of them learns mean vectors µi ∈ Rd,
and the other learns variance matrices Σi ∈ Rd×d, for all i ∈ V . Moreover, instead of a reconstruction
loss, they optimize the variational evidence lower bound (ELBO) of the model’s likelihood [22], using
gradient ascent. Besides constituting promising generative models [20, 30, 47], variants of VGAEs
also turned out to be effective alternatives to GAEs in some LP and CD tasks [8, 16, 24, 40, 42, 43].

Evaluation. Over the past years, LP3 has become the most prominent way to evaluate the quality of
embedding vectors learned from a GAE or VGAE [12, 15, 16, 18, 19, 36, 43, 45, 50]. Previous work
widely confirmed the effectiveness of GAEs and VGAEs on this task. Their performances are less
impressive on CD3, another important graph problem with numerous applications [6, 17, 34, 48, 51].
In the presence of node embedding representations zi, CD boils down to the common problem of
clustering n vectors, e.g., via a k-means [33] in the embedding space. Nonetheless, concurring work
[7, 8, 40, 41] recently pointed out the limitation of this approach for GAEs and VGAEs, and its
lower performance w.r.t. simpler CD alternatives, such as the popular Louvain method learning
communities by iteratively maximizing the density-based modularity value in the graph [4].

While recent studies aimed to address the underwhelming performance of GAEs and VGAEs on CD,
they still suffer from limitations that motivate our work. Firstly, several studies [7, 8, 27] considered

2 This workshop paper summarizes results from our journal article “Modularity-Aware Graph Autoencoders
for Joint Community Detection and Link Prediction” accepted for publication in Elsevier’s Neural Networks
journal in 2022 [44]. The purpose of our submission to GLFrontiers was to present this work to a live audience.

3 We provide more formal presentations of the LP and CD problems under consideration in Appendix A.

2

s-regular
Sparsi f ication

Louvain

C
om

m
u

n
it

y-
P

re
se

rv
in

g
E

n
co

d
er

G
rap

h
D

ecod
er

Graph (Var iational)
AutoencoderInput Graph

Reconstructed
Graph

Membership
Matr ix

Adjacency
Matr ix

Feature Matr ix

M
od

u
larity

-In
sp

ired
D

ecod
er

Reconstruction
Loss

Modular i ty
Loss

Weights Updates

Text

Figure 1: Overview of our proposed Modularity-Aware GAE/VGAE. Firstly, input graph data
A and X are combined with the s-regular sparsified prior community membership matrix As,
derived through iterative modularity maximization via the Louvain algorithm, as described in the first
paragraph of Section 3. Then, they are processed by our revised community-based encoders, encoding
each node i as an embedding vector zi of dimension d ≪ n. Neural weights of encoders are optimized
through a procedure combining reconstruction and modularity-inspired losses, and described in the
second paragraph of Section 3. Furthermore, other hyperparameters from this model are tuned via
the method described in the third paragraph of Section 3 and designed for joint LP and CD.

clustering-oriented probabilistic priors for VGAEs (such as Gaussian mixtures in VGAECD [7] and
VGAECD-OPT [8]), that cannot be transposed to the deterministic GAE setting. Secondly, a closer
look at these models reveals that their empirical gains mostly stem from the addition of node features.
They offer little advantage when features are absent (see Table 4). Other studies did not consider
featureless graphs at all [18, 19, 36, 37, 45]. This motivates the need to investigate GAE/VGAE-based
CD on featureless graphs. Thirdly, previous studies did not try to preserve good performances on
LP [7, 8, 27, 53]. It is still uncertain whether one can jointly address LP and CD with accuracy in
multi-task settings, which, as argued in the Introduction, is highly relevant in practice. In conclusion,
the question of improving CD with GAEs and VGAEs remains incompletely addressed.

3 Modularity-Aware GAE and VGAE for Joint LP and CD

To address these limitations, we introduce our Modularity-Aware GAE/VGAE, illustrated in Figure 1.

Community-Based Encoders. Firstly, we argue that most GAEs/VGAEs leverage encoders that
do not specifically aim to capture graph communities. This includes graph convolutional networks
(GCN) [25], which remain the most popular encoders in practice [12, 16, 18, 19, 36, 45], and encoders
identifying clusters from features rather than the graph [8, 53]. Modularity-Aware GAE and VGAE
overcome this issue by incorporating a community-based encoder.

Specifically, we first obtain a partition of the node set using the Louvain method [4] and store it in
an n× n membership matrix Ac, defined as (Ac)ij = 1 if nodes i ̸= j are in the same community,
and 0 otherwise. Then, when learning embedding vectors, we leverage this partition as a prior
signal, from which the encoder should benefit, but also have the ability to deviate. Formally, we
replace the Z = GNN(A,X) component4 by: Z = GNN(A+ λAs, X), where λ ∈ R+ and s ∈ N+

are hyperparameters, and where As is a s-regular sparsified5 version of Ac. This change alters the
GNN message passing scheme. Nodes will now aggregate information from their neighbors and
some nodes of their prior community (λ balances the importance of these two information sources).
Therefore, nodes from the same prior community will tend to have more similar embedding vectors
than with a standard GAE or VGAE.

4For clarity of exposition we discuss the deterministic GAE framework. Our modifications equally apply to
the VGAE framework, for which Z has to be replaced by Gaussian parameters (see Section 2).

5In As, nodes are only connected to s fixed and randomly selected neighbors from their community. This
sparsification permits speeding up GNN message passing operations in practice [25].

3

Besides its simplicity and good performance on CD [40], our justification for using Louvain as
a prior is threefold. Firstly, it automatically selects the relevant number of prior communities to
consider. Secondly, it runs in O(n log n) time [4] and, therefore, scales to graphs with millions of
nodes. Thirdly, it optimizes a modularity criterion that complements the encoding-decoding paradigm.
We will show in Section 4 that learning representations from complementary criteria is beneficial.
Nonetheless, our framework remains valid for any alternative method providing prior communities.

Modularity-Inspired Losses. Previous models were also trained in a fashion that, by design,
favors LP over CD. The cross entropy and ELBO losses involve the reconstruction of node pairs from
the embedding space [24]. However, a good reconstruction of local pairwise connections does not
necessarily imply a good reconstruction of the global community structure [31, 55]. Consequently,
in Modularity-Aware GAE (respectively, VGAE), we minimize (resp., maximize), using gradient
descent (resp., gradient ascent), an alternative function that subtracts (resp., adds) the following
global regularizer to the cross entropy (resp., ELBO) term: β

2m

∑n
i,j=1[Aij − didj

2m]e−γ∥zi−zj∥2
2 ,

with di the degree [13] of node i ∈ V and two hyperparameters β ∈ R+ and γ ∈ R+.

A soft and differentiable version of the modularity [35] (independent of any ground truth community),
this regularizer aims to push closer vectors zi of densely connected parts of the graph, and, therefore,
to permit a k-means-based detection of communities with higher density. Several studies out of the
GAE/VGAE scope emphasized the effectiveness of comparable approaches for learning community-
preserving representations [32, 55, 56]. On the other hand, the remaining presence of the local cross
entropy (resp., ELBO) in our optimized loss aims to preserve good performances on LP. β balances
the relative importance of the global regularizer. γ regulates the magnitude of ∥zi − zj∥22 in the
exponential term, which tends to 1 when zi and zj get closer, and to 0 when they move apart.

Hyperparameter Selection. GAEs and VGAEs include several important hyperparameters such as
dropout and learning rates [24] (our models also introduce λ, s, β, and γ). In previous studies, their
selection procedure was sometimes solely based on LP validation sets [40, 41]. However, optimal
values for CD might differ from those for LP, partly explaining the low performance on CD. In this
paper, we consider an alternative hyperparameter selection procedure. As detailed in Appendix A, the
hyperparameters selected for our models are chosen by maximizing the average of: (1) an Area under
the ROC Curve (AUC) score computed on an LP validation set, and (2) the modularity score computed
from the communities extracted from final vectors zi, via a k-means. We expect this dual criterion to
identify hyperparameters that will be jointly relevant for LP and CD in a multi-task setting.

4 Experimental Evaluation

We now report results from an in-depth experimental evaluation of our method. Our code is available
on GitHub: https://github.com/GuillaumeSalhaGalvan/modularity_aware_gae.

Setting. For evaluation, we consider a “pure” CD problem, as well as a multi-task LP/CD problem,
on seven graphs of various origins and sizes (from 1124 to 2.5 million nodes). For both problems and
all graphs, we compare our approach to 12 baselines, including the Louvain method [4], standard
GAE/VGAE models [24] with varying encoders, and existing extensions of GAEs/VGAEs for CD. For
brevity, we report technical details on tasks, datasets, models, and hyperparameters in Appendix A.

Results on CD. CD results from Table 3 confirm the discussed limitations of standard GAE/VGAE,
which Louvain outperforms on 5 of 7 featureless graphs (e.g., +7.45 Adjusted Mutual Information
(AMI) points for Louvain on Pubmed). On the contrary, our Modularity-Aware GAE/VGAE almost
always surpass the Louvain method, and the use of a standard GAE/VGAE (e.g., with a top 21.64%
AMI on the largest Album graph). Interestingly, combining Louvain and a GAE/VGAE into our
Modularity-Aware models is beneficial even when the GAE/VGAE initially outperforms Louvain
(e.g., for Cora-Large). This confirms that modularity-based clustering à la Louvain complements the
encoding-decoding paradigm, and that leveraging complementary criteria is empirically beneficial.
We also compare favorably to other baselines in most experiments (e.g., +2.11 AMI points w.r.t.
VGAECD-OPT [8] on Cora with features), with or without the addition of node features. Figure 2
provides a visualization of node embedding representations learned by our models.

4

https://github.com/GuillaumeSalhaGalvan/modularity_aware_gae

Results on Multi-Task CD/LP. We now assess whether improving CD implies deteriorating the
effectiveness on LP. The last columns of Table 3 confirm the ability of Modularity-Aware GAE/VGAE
to preserve good performances on LP (we achieve comparable scores w.r.t standard GAE/VGAE on
all graphs). While performances on CD decrease slightly w.r.t. pure CD (an expected result, as some
edges are masked during training for the purpose of LP), we continue to outperform baselines in most
experiments. This demonstrates the effectiveness of our approach at jointly addressing CD and LP.

Discussion on Model Components. For most models, using a linear encoder [42] gives competitive
LP/CD results w.r.t. a 2-layer GCN [24]. Also, VGAE models often outperform their GAE counter-
parts, even though scores are relatively close. Our proposed hyperparameter selection procedure had
a noticeable impact on the choices of λ, β, γ, and s, as well as on the required number of training
iterations, which we illustrate in Figure 3. In such cases, optimal values for joint LP and CD differ
from those for LP only. Lastly, one might wonder whether our performance gains mainly come from
our novel encoder or our regularized loss. Figure 4 reports an ablation study, consisting in training
variant versions of Modularity-Aware VGAEs with one component only (i.e., the novel encoder
but not the regularized loss, or vice versa). We show that incorporating any of these two individual
contributions into the VGAE improves CD, and that their simultaneous use leads to the best results.

5 Conclusion

In this paper, we introduced a well-performing approach for joint CD and LP with GAEs and VGAEs.
We demonstrated its effectiveness through in-depth experimental validation. Our work paves the
way for various future research, including replacing Louvain with other prior methods, using our
regularizer in conjunction with other reconstruction losses (e.g., ELBO variants computed from
Gaussian mixtures [7, 8]), and extending our approach to dynamic graphs. The journal version2 of
this work [44] includes several additional extensions as well as results, omitted here for brevity. This
includes further comparisons to non-GAE/VGAE methods, a spectral analysis of our message passing
operator, and discussions on how this research helps the music streaming service Deezer address
real-world multi-task LP and CD problems for music recommendation purposes.

References
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu

Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. 2016. Tensorflow: A System
for Large-Scale Machine Learning. In 12th USENIX Symposium on Operating Dystems Design
and Implementation. 265–283.

[2] Emmanuel Abbe. 2017. Community Detection and Stochastic Block Models: Recent Develop-
ments. The Journal of Machine Learning Research 18, 1 (2017), 6446–6531.

[3] David Arthur and Sergei Vassilvitskii. 2007. K-Means++: The Advantages of Careful Seeding.
In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms.
1027–1035.

[4] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. 2008. Fast
Unfolding of Communities in Large Networks. Journal of Statistical Mechanics: Theory and
Experiments 2008, 10 (2008), P10008.

[5] Ulrik Brandes, Daniel Delling, Marco Gaertler, Robert Gorke, Martin Hoefer, Zoran Nikoloski,
and Dorothea Wagner. 2007. On Modularity Clustering. IEEE Transactions on Knowledge and
Data Engineering 20, 2 (2007), 172–188.

[6] Sandro Cavallari, Vincent W Zheng, Hongyun Cai, Kevin Chen-Chuan Chang, and Erik Cambria.
2017. Learning Community Embedding with Community Detection and Node Embedding on
Graphs. In 2017 ACM on Conference on Information and Knowledge Management.

[7] Jun Jin Choong, Xin Liu, and Tsuyoshi Murata. 2018. Learning Community Structure with
Variational Autoencoder. In 2018 IEEE International Conference on Data Mining.

[8] Jun Jin Choong, Xin Liu, and Tsuyoshi Murata. 2020. Optimizing Variational Graph Autoen-
coder for Community Detection with Dual Optimization. Entropy 22, 2 (2020), 197.

5

[9] Santo Fortunato. 2010. Community Detection in Graphs. Physics Reports 486, 3-5 (2010),
75–174.

[10] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT Press.

[11] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable Feature Learning for Networks.
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2016).

[12] Aditya Grover, Aaron Zweig, and Stefano Ermon. 2019. Graphite: Iterative Generative Modeling
of Graphs. International Conference on Machine Learning (2019).

[13] William L Hamilton. 2020. Graph Representation Learning. Synthesis Lectures on Artifical
Intelligence and Machine Learning 14, 3 (2020), 1–159.

[14] William L. Hamilton, Rex Ying, and Jure Leskovec. 2017. Representation Learning on Graphs:
Methods and Applications. IEEE Data Engineering Bulletin (2017).

[15] Yu Hao, Xin Cao, Yixiang Fang, Xike Xie, and Sibo Wang. 2020. Inductive Link Prediction
for Nodes Having Only Attribute Information. International Joint Conference on Artificial
Intelligence (2020).

[16] Arman Hasanzadeh, Ehsan Hajiramezanali, Krishna Narayanan, Nick Duffield, Mingyuan Zhou,
and Xiaoning Qian. 2019. Semi-Implicit Graph Variational Auto-Encoders. Advances in Neural
Information Processing Systems (2019).

[17] Dongxiao He, Yue Song, Di Jin, Zhiyong Feng, Binbin Zhang, Zhizhi Yu, and Weixiong
Zhang. 2021. Community-Centric Graph Convolutional Network for Unsupervised Community
Detection. In International Joint Conference on Artificial Intelligence. 3515–3521.

[18] Po-Yao Huang, Robert Frederking, et al. 2019. RWR-GAE: Random Walk Regularization for
Graph Auto Encoders. arXiv preprint arXiv:1908.04003 (2019).

[19] Tianjin Huang, Yulong Pei, Vlado Menkovski, and Mykola Pechenizkiy. 2021. On General-
ization of Graph Autoencoders with Adversarial Training. arXiv preprint arXiv:2107.02658
(2021).

[20] Wengong Jin, Regina Barzilay, and Tommi Jaakkola. 2018. Junction Tree Variational Au-
toencoder for Molecular Graph Generation. International Conference on Machine Learning
(2018).

[21] Diederik P Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Optimization.
International Conference on Learning Representations (2015).

[22] Diederik P. Kingma and Max Welling. 2014. Auto-Encoding Variational Bayes. International
Conference on Learning Representations (2014).

[23] Thomas N Kipf et al. 2020. Deep Learning with Graph-Structured Representations. PhD Thesis,
University of Amsterdam (2020).

[24] Thomas N. Kipf and Max Welling. 2016. Variational Graph Auto-Encoders. NeurIPS Workshop
on Bayesian Deep Learning (2016).

[25] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with Graph Convolu-
tional Networks. International Conference on Learning Representations (2017).

[26] Ajay Kumar, Shashank Sheshar Singh, Kuldeep Singh, and Bhaskar Biswas. 2020. Link
Prediction Techniques, Applications, and Performance: A Survey. Physica A: Statistical
Mechanics and its Applications 553 (2020), 124289.

[27] Jia Li, Jianwei Yu, Jiajin Li, Honglei Zhang, Kangfei Zhao, Yu Rong, Hong Cheng, and Junzhou
Huang. 2020. Dirichlet Graph Variational Autoencoder. Advances in Neural Information
Processing Systems 33 (2020).

[28] Jia Li, Tomas Yu, Da-Cheng Juan, Arjun Gopalan, Hong Cheng, and Andrew Tomkins. 2020.
Graph Autoencoders with Deconvolutional Networks. arXiv preprint arXiv:2012.11898 (2020).

6

[29] David Liben-Nowell and Jon Kleinberg. 2007. The Link-Prediction Problem for Social Net-
works. Journal of the American Society for Inf. Sci. and Technology 58, 7 (2007), 1019–1031.

[30] Qi Liu, Miltiadis Allamanis, Marc Brockschmidt, and Alexander Gaunt. 2018. Constrained
Graph Variational Autoencoders for Molecule Design. Advances in Neural Information Pro-
cessing Systems (2018).

[31] Xin Liu, Chenyi Zhuang, Tsuyoshi Murata, Kyoung-Sook Kim, and Natthawut Kertkeidkachorn.
2019. How Much Topological Structure is Preserved by Graph Embeddings? Computer Science
and Information Systems 16, 2 (2019), 597–614.

[32] Ivan Lobov and Sergey Ivanov. 2019. Unsupervised Community Detection with Modularity-
based Attention Model. arXiv preprint arXiv:1905.10350 (2019).

[33] James MacQueen et al. 1967. Some Methods for Classification and Analysis of Multivariate
Observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and
Probability, Vol. 1. Oakland, CA, USA, 281–297.

[34] Fragkiskos D Malliaros and Michalis Vazirgiannis. 2013. Clustering and Community Detection
in Directed Networks: A Survey. Physics reports 533, 4 (2013), 95–142.

[35] M. E. J. Newman. 2006. Modularity and Community Structure in Networks. Proceedings of
the National Academy of Sciences 103, 23 (2006), 8577–8582.

[36] Shirui Pan, Ruiqi Hu, Guodong Long, Jing Jiang, Lina Yao, and Chengqi Zhang. 2018. Adver-
sarially Regularized Graph Autoencoder for Graph Embedding. International Joint Conference
on Artificial Intelligence (2018).

[37] Jiwoong Park, Minsik Lee, Hyung Jin Chang, Kyuewang Lee, and Jin Young Choi. 2019.
Symmetric Graph Convolutional Autoencoder for Unsupervised Graph Representation Learning.
In Proceedings of the IEEE/CVF International Conference on Computer Vision. 6519–6528.

[38] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion,
Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. 2011.
Scikit-Learn: Machine Learning in Python. Journal of Machine Learning Research 12 (2011),
2825–2830.

[39] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. DeepWalk: Online Learning of Social
Representations. ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (2014).

[40] Guillaume Salha, Romain Hennequin, Jean-Baptiste Remy, Manuel Moussallam, and Michalis
Vazirgiannis. 2021. FastGAE: Scalable Graph Autoencoders with Stochastic Subgraph Decoding.
Neural Networks 142 (2021), 1–19.

[41] Guillaume Salha, Romain Hennequin, Viet Anh Tran, and Michalis Vazirgiannis. 2019. A
Degeneracy Framework for Scalable Graph Autoencoders. International Joint Conference on
Artificial Intelligence (2019).

[42] Guillaume Salha, Romain Hennequin, and Michalis Vazirgiannis. 2020. Simple and Effective
Graph Autoencoders with One-Hop Linear Models. arXiv preprint arXiv:2001.07614 (2020).

[43] Guillaume Salha, Stratis Limnios, Romain Hennequin, Viet Anh Tran, and Michalis Vazirgiannis.
2019. Gravity-Inspired Graph Autoencoders for Directed Link Prediction. ACM International
Conference on Information and Knowledge Management (2019).

[44] Guillaume Salha-Galvan, Johannes F Lutzeyer, George Dasoulas, Romain Hennequin, and
Michalis Vazirgiannis. 2022. Modularity-Aware Graph Autoencoders for Joint Community
Detection and Link Prediction. Neural Networks 153 (2022), 474–495.

[45] Han Shi, Haozheng Fan, and James T Kwok. 2020. Effective Decoding in Graph Auto-Encoder
using Triadic Closure. AAAI Conference on Artificial Intelligence (2020).

[46] Hiroaki Shiokawa, Yasuhiro Fujiwara, and Makoto Onizuka. 2013. Fast Algorithm for
Modularity-Based Graph Clustering. In AAAI Conference on Artificial Intelligence, Vol. 27.

7

[47] Martin Simonovsky and Nikos Komodakis. 2018. GraphVAE: Towards Generation of Small
Graphs using Variational Autoencoders. International Conference on Artificial Neural Networks
(2018).

[48] Fan-Yun Sun, Meng Qu, Jordan Hoffmann, Chin-Wei Huang, and Jian Tang. 2019. vgraph: A
Generative Model for Joint Community Detection and Node Representation Learning. Advances
in Neural Information Processing Systems 32 (2019).

[49] Fei Tian, Bin Gao, Qing Cui, Enhong Chen, and Tie-Yan Liu. 2014. Learning Deep Representa-
tions for Graph Clustering. AAAI Conference on Artificial Intelligence (2014).

[50] Phi Vu Tran. 2018. Multi-Task Graph Autoencoders. arXiv preprint arXiv:1811.02798 (2018).

[51] Cunchao Tu, Xiangkai Zeng, Hao Wang, Zhengyan Zhang, Zhiyuan Liu, Maosong Sun, Bo
Zhang, and Leyu Lin. 2018. A Unified Framework for Community Detection and Network
Representation Learning. IEEE Transactions on Knowledge and Data Engineering 31, 6 (2018),
1051–1065.

[52] Laurens Van der Maaten and Geoffrey Hinton. 2008. Visualizing Data using t-SNE. Journal of
Machine Learning Research 9(11), 11 (2008).

[53] Chun Wang, Shirui Pan, Guodong Long, Xingquan Zhu, and Jing Jiang. 2017. MGAE:
Marginalized Graph Autoencoder for Graph Clustering. ACM International Conference on
Information and Knowledge Management (2017).

[54] Daixin Wang, Peng Cui, and Wenwu Zhu. 2016. Structural Deep Network Embedding. ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (2016).

[55] Xiao Wang, Peng Cui, Jing Wang, Jian Pei, Wenwu Zhu, and Shiqiang Yang. 2017. Community
Preserving Network Embedding. In Thirty-first AAAI conference on artificial intelligence.

[56] Liang Yang, Xiaochun Cao, Dongxiao He, Chuan Wang, Xiao Wang, and Weixiong Zhang.
2016. Modularity Based Community Detection with Deep Learning. In International Joint
Conference on Artificial Intelligence.

[57] Daokun Zhang, Jie Yin, Xingquan Zhu, and Chengqi Zhang. 2018. Network Representation
Learning: A Survey. IEEE Transactions on Big Data (2018).

8

Appendix

This appendix provides details on our experimental setting in Appendix A, and complementary tables
and figures from our experiments in Appendix B.

A Experimental Setting

Datasets. We consider seven graphs of various origins, characteristics, and sizes. Firstly, we study
the Cora (n = 2708, m = 5429), Citeseer (n = 3327, m = 4732) and Pubmed (n = 19717,
m = 44338) citation networks [25], with and without node features that correspond to bag-of-words
vectors of dimensions f = 1433, 3703, and 500, respectively. In these datasets, nodes are clustered
in 6, 7, and 3 topic classes, respectively, acting as the communities to be detected. These graphs are
commonly used to evaluate GAEs and VGAEs. We, therefore, see value in studying them as well,
especially in their featureless version where previous GAE and VGAE extensions fall short on CD.

In addition, we consider a larger version of Cora, referred to as Cora-Large (n = 23166, m =
91500) [42]. Nodes are documents clustered in 70 topic-related communities. Additionally, we
consider the Blogs web graph (n = 1224, m = 19025) [42]. Nodes correspond to webpages of
political blogs connected through hyperlinks, and clustered in two communities corresponding to
politically left-leaning or right-leaning blogs. Thirdly, we examine the SBM graph (n = 100000,
m = 1498844), generated from a stochastic block model, i.e., a generative model for community-
based random graphs [2]. Nodes are clustered in 100 ground truth communities of 1000 nodes each.
Nodes from the same community are connected with probability p = 2× 10−2, while nodes from
different communities are connected with probability q = 2× 10−4 < p. Albeit being synthetic, this
graph includes actual node communities by design, and is, therefore, relevant to evaluate CD methods.

Lastly, we consider Album (n = 2503985, m = 25039155) a private graph provided by the music
streaming service Deezer. Nodes are music albums available on this service, connected through an
undirected edge when they are regularly co-listened to by users. The service is jointly interested in
(1) predicting new connections in the graph, corresponding to new albums pairs that users would enjoy
listening to together; and (2) learning groups of similar albums, with the aim of providing usage-based
recommendations (i.e., if users listen to several albums from a community, other unlistened albums
from this same community could be recommended to them). In such an application, learning album
representations that would jointly enable effective LP and CD would therefore be desirable. For
evaluation, communities will be compared to a ground truth clustering of albums in 20 groups defined
by their main music genre, allowing us to assess the musical homogeneity of node communities.

Tasks. For each of these graphs, we assess the performance of our models on two downstream tasks.

• Task 1: We first examine a “pure” CD task, consisting in the extraction of a partition
of the node set V which ideally agrees with the ground truth communities of each graph.
Communities will be retrieved by running a k-means (with k-means++ initialization [3])
in the final embedding space of each model to cluster the vectors zi, with k matching the
known number of communities; except for some baseline methods that explicitly incorporate
another strategy to partition nodes. We compare the obtained partitions to the ground truth
using the Adjusted Mutual Information (AMI) and Adjusted Rand Index (ARI) scores6.

• Task 2: We also study a joint LP and CD task. In such a multi-task setting, we learn all node
embedding spaces from incomplete versions of the seven graphs, where 15% of edges were
randomly masked. We create a validation and a test set from these masked edges (from 5%
and 10% of edges, respectively) and the same number of randomly picked unconnected node
pairs acting as “non-edge” negative pairs. Then, using decoder predictions Âij computed
from vectors zi and zj , we evaluate each model’s ability to distinguish edges from non-
edges, i.e., LP, from the embedding space, using the Area Under the ROC Curve (AUC) and
Average Precision (AP) scores6. Jointly, we evaluate the CD performance obtained from
such incomplete graphs, using the same methodology and scores as in Task 1.

6 Scores are computed via scikit-learn, using formulas provided in the sklearn.metrics documentation [38].

9

Table 1: Complete list of optimal hyperparameters of Modularity-Aware GAE and VGAE models.

Dataset Learning Number of Dropout Use of FastGAE [40] λ β γ s
rate iterations rate (if yes: subgraphs size)

Blogs 0.01 200 0.0 No 0.5 0.75 2 10
Cora (featureless) 0.01 500 0.0 No 0.25 1.0 0.25 1

Cora (with features) 0.01 300 0.0 No 0.001 0.01 1 1
Citeseer (featureless) 0.01 500 0.0 No 0.75 0.5 0.5 2

Citeseer (with features) 0.01 500 0.0 No 0.75 0.5 0.5 2
Pubmed (featureless) 0.01 500 0.0 No 0.1 0.5 0.1 5

Pubmed (with features) 0.01 700 0.0 No 0.1 0.5 10 2
Cora-Large 0.01 500 0.0 No 0.001 0.1 0.1 10

SBM 0.01 300 0.0 Yes (10 000) 0.5 0.1 2 10
Album 0.005 600 0.0 Yes (10 000) 0.25 0.25 1 5

In the case of Task 2, we expect AMI and ARI scores to decrease w.r.t. Task 1, as models will only
observe incomplete versions of the graphs when learning embedding spaces. With Task 2, we aim to
assess whether improving CD inevitably leads to deteriorating performances on LP.

Models: Details on the Hyperparameter Selection Procedure. For these two tasks and seven
graphs, we compare the performances of our proposed Modularity-Aware GAE and VGAE to standard
GAE and VGAE and to several other baselines. All models described below will verify d = 16 (the
journal version of this work also discusses results obtained with d ∈ {32, 64}, which lead to similar
conclusions as d = 16). We choose other hyperparameters using the selection procedure mentioned
in Section 3, and further described in the next paragraph.

Foremost, as CD is an unsupervised task, we cannot rely on train/validation/test splits as for the
supervised LP classification task7. Consistently with our other contributions, we rather rely on the
modularity [35], an unsupervised density-based criterion computed independently of ground truth
communities. Precisely, we select hyperparameters that maximize the average of:

• the AUC obtained for LP on the validation set of Task 2;

• the modularity: Q = 1
2m

∑n
i,j=1[Aij − didj

2m]δ(i, j), computed from the communities
extracted by running a k-means on the final vectors zi, learned from the train graph of Task 2.
In this equation, δ(i, j) = 1 if nodes i and j belong to the same community and 0 otherwise.

We expect this dual criterion to identify hyperparameters jointly relevant to LP and CD.

Models: Modularity-Aware GAE and VGAE. We trained two versions of our Modularity-Aware
GAE and VGAE: one with the linear encoder proposed by Salha et al. [42], and one with the 2-layer
GCN encoder used by Kipf and Welling [24]. The latter encoder includes a 32-dimensional hidden
layer. As most GAE/VGAE models, we use a simple inner product decoder: Âij = σ(zTi zj).

During training, we used the Adam optimizer [21], without dropout (but we tested mod-
els with dropout values in {0, 0.1, 0.2} in our grid search optimization). For each graph,
we considered learning rates from the grid {0.001, 0.005, 0.01, 0.05, 0.1, 0.2}, number of train-
ing iterations in {100, 200, 300, ..., 800}, with λ ∈ {0, 0.01, 0.05, 0.1, 0.2, 0.3, ..., 1.0}, β ∈
{0, 0.01, 0.05, 0.1, 0.25, 0.5, 1.0, 1.5, 2.0}, γ ∈ {0.1, 0.2, 0.5, 1.0, 2, 5, 10} and s ∈ {1, 2, 5, 10}.
The best hyperparameters for each graph are reported in Table 1. We adopted the same optimal hyper-
parameters for GAE and VGAE variants. Lastly, as the exact loss computation was computationally
infeasible for our two largest graphs, SBM and Album, their corresponding models were trained
by using the FastGAE method [40], approximating losses by reconstructing degree-based sampled
subgraphs of n = 10000 nodes (a different one at each training iteration).

We used Tensorflow [1], training our models (as well as GAE/VGAE baselines described below) on
an NVIDIA GTX 1080 GPU, and running other operations on a double Intel Xeon Gold 6134 CPU8.

7Ground truth communities are unavailable during training. They will only be revealed for model evaluation,
to compare the agreement of the node partition inferred by each model to the ground truth partition.

8On our machines, running times of the Modularity-Aware GAE and VGAE were comparable to running
times of their standard GAE and VGAE counterparts. For example, training each variant of VGAE on the
Pubmed graph for 500 training iterations and with s = 5 takes 25 minutes on a single GPU (without FastGAE).

10

Models: Standard GAE and VGAE. We examine two variants of the standard GAE and VGAE:
one with 2-layer GCN encoders with a 32-dimensional hidden layer (which is equal to the GAE and
VGAE from Kipf and Welling [24]) and one with a linear encoder (which is equal to the linear GAE
and VGAE from Salha et al. [42]). We note that these models are particular cases of our Modularity-
Aware GAE/VGAE with GCN or linear encoder and with λ = 0 and β = 0. As for our Modularity-
Aware models, LP is performed from inner product decoding, and CD via a k-means on vectors zi.
We selected similar learning rates and numbers of iterations to the values reported in Table 1.

Models: Other Baselines. We also report experiments on VGAECD [7], a VGAE for CD model
that replaces Gaussian priors by learnable Gaussian mixtures. Such a change permits recovering
communities from node embedding spaces without relying on an additional k-means step. We also
tested VGAECD-OPT, an improved version of VGAECD by the same authors [8]. Specifically,
VGAECD-OPT replaces GCN encoders with linear models. It also adopts a different optimization
procedure based on neural expectation-maximization, which guarantees that communities do not
collapse during training and experimentally leads to better performances [8]. We set similar hyper-
parameters to the above other GAE/VGAE-based models. In all models, the number of Gaussian
mixtures matches the ground truth number of communities in each graph.

Besides, we also report experiments on the Dirichlet Graph Variational Autoencoder (DGVAE) [27],
another extension of VGAE which uses Dirichlet distributions as priors on latent vectors, acting as
indicators of community membership. We set similar learning rates and layer dimensions to the above
GAE/VGAE-based models. In the case of DGVAE, we use 2-layer GCN encoders for consistency
with other models in our experiments. We nonetheless acknowledge that the authors also proposed
another encoder, denoted Heatts in their paper (but unavailable in their public code at the time of
writing) that could replace GCNs both in DGVAE and in Modularity-Aware GAE and VGAE.

We also examine the Adversartially-Regularized (Variational) Graph Autoencoder (ARGA and
ARVGA) models [36], that incorporate an adversarial regularization scheme to GAE and VGAE,
with similar hyperparameters as previous models. ARGA and ARVGA emerged as some of the most
cited GAE/VGAE extensions and, while they were not specifically introduced for CD, Pan et al. [36]
reported empirical gains on this task w.r.t. standard GAE/VGAE, on graphs with node features.

For completeness, we add three baselines not utilizing the autoencoder paradigm. We report results
obtained from the popular node embedding methods node2vec [11] and DeepWalk [39], training
models from 10 random walks with length 80 per node, a window size of 5 and on a single epoch.
For node2vec, we further set p = q = 1. We use a similar strategy as GAEs/VGAEs (k-means/inner
products) for CD and LP from embedding spaces. Lastly, we also compare to the Louvain method [4]
for CD. We see value in comparing to a direct use of Louvain, as this method is directly leveraged in
our Modularity-Aware GAE/VGAE as a pre-processing step for the computation of Ac and As.

11

B Figures and Tables

We now provide complementary tables and figures from our experiments. Table 2 details complete
results for the Cora dataset and Table 3 reports more summarized results for several more graphs.

Table 2: Results for Task 1 and Task 2 on the featureless Cora graph, using Modularity-Aware
GAE/VGAE with Linear and GCN encoders, their standard GAE/VGAE counterparts, and other
baselines. All node embedding models learn vectors of dimension d = 16. Scores are averaged over
100 runs. LP results are reported from test sets. Bold numbers correspond to the best performance for
each score. Scores in italic are within one standard deviation range from the best score.

Models Task 1: Community Detection Task 2: Joint Link Prediction and Community Detection
(Dimension d = 16) on complete graph on graph with 15% of edges being masked

AMI (in %) ARI (in %) AMI (in %) ARI (in %) AUC (in %) AP (in %)

Modularity-Aware GAE/VGAE Models
Linear Modularity-Aware VGAE 46.65 ± 0.94 39.43 ± 1.15 42.86 ± 1.65 34.53 ± 1.97 85.96 ± 1.24 87.21 ± 1.39

Linear Modularity-Aware GAE 46.58 ± 0.40 39.71 ± 0.41 43.48 ± 1.12 35.51 ± 1.20 87.18 ± 1.05 88.53 ± 1.33
GCN-based Modularity-Aware VGAE 43.25 ± 1.62 35.08 ± 1.88 41.03 ± 1.55 33.43 ± 2.17 84.87 ± 1.14 85.16 ± 1.23

GCN-based Modularity-Aware GAE 44.39 ± 0.85 38.70 ± 0.94 41.13 ± 1.35 35.01 ± 1.58 86.90 ± 1.16 87.55 ± 1.26

Standard GAE/VGAE Models
Linear VGAE 37.12 ± 1.46 26.83 ± 1.68 32.22 ± 1.76 21.82 ± 1.80 85.69 ± 1.17 89.12 ± 0.82

Linear GAE 35.05 ± 2.55 24.32 ± 2.99 28.41 ± 1.68 19.45 ± 1.75 84.46 ± 1.64 88.42 ± 1.07
GCN-based VGAE 34.36 ± 3.66 23.98 ± 5.01 28.62 ± 2.76 19.70 ± 3.71 85.47 ± 1.18 88.90 ± 1.11

GCN-based GAE 35.64 ± 3.67 25.33 ± 4.06 31.30 ± 2.07 19.89 ± 3.07 85.31 ± 1.35 88.67 ± 1.24

Other Baselines
Louvain 42.70 ± 0.65 24.01 ± 1.70 39.09 ± 0.73 20.19 ± 1.73 – –

VGAECD 36.11 ± 1.07 27.15 ± 2.05 33.54 ± 1.46 24.32 ± 2.25 83.12 ± 1.11 84.68 ± 0.98
VGAECD-OPT 38.93 ± 1.21 27.61 ± 1.82 34.41 ± 1.62 24.66 ± 1.98 82.89 ± 1.20 83.70 ± 1.16

ARGVA 34.97 ± 3.01 23.29 ± 3.21 28.96 ± 2.64 19.74 ± 3.02 85.85 ± 0.87 88.94 ± 0.72
ARGA 35.91 ± 3.11 25.88 ± 2.89 31.61 ± 2.05 20.18 ± 2.92 85.95 ± 0.85 89.07 ± 0.70

DVGAE 35.02 ± 2.73 25.03 ± 4.32 30.46 ± 4.12 21.06 ± 5.06 85.58 ± 1.31 88.77 ± 1.29
DeepWalk 36.58 ± 1.69 27.92 ± 2.93 30.26 ± 2.32 20.24 ± 3.91 80.67 ± 1.50 80.48 ± 1.28
node2vec 41.64 ± 1.25 34.30 ± 1.92 36.25 ± 1.38 29.43 ± 2.21 82.43 ± 1.23 81.60 ± 0.91

60 40 20 0 20 40 60
t-SNE Axis 1

80

60

40

20

0

20

40

60

t-S
N

E
 A

xi
s

2

(a) Linear Standard VGAE

60 40 20 0 20 40 60
t-SNE Axis 1

60

40

20

0

20

40

60

80

t-S
N

E
 A

xi
s

2

(b) Linear Modularity-Aware VGAE

Figure 2: Visualization of node embedding representations for the featureless Cora graph, learned
by (a) Standard VGAE, and (b) Modularity-Aware VGAE, with linear encoders. The plots were
obtained using the t-SNE method for high-dimensional data visualization [52]. Colors denote ground
truth communities, that were not available during training. Although CD is not perfect (both methods
return AMI scores < 50% in Table 2), node embedding representations from (b) provide a more
visible separation of these communities. Specifically, in Table 2, using Linear Modularity-Aware
VGAE for CD leads to an increase of 9 AMI points (Task 1) to 10 AMI points (Task 2) for CD w.r.t.
Linear Standard VGAE, while preserving comparable performances in LP (Task 2).

12

Table 3: Summarized results for Task 1 and Task 2 on all graphs. For each graph, for brevity, we
only report the best Modularity-Inspired model (best on Task 2, among GCN or Linear encoder, and
GAE or VGAE), its standard counterpart, and a comparison to the Louvain baseline as well as the
best other baseline (among VGAECD, VGAECD-OPT, ARGA, ARGVA, DVGAE, DeepWalk, and
node2vec). All node embedding models learn vectors of dimension d = 16. Scores are averaged over
100 runs except for SBM and Album (10 runs). Bold numbers correspond to the best performance for
each score. Scores in italic are within one standard deviation range from the best score.

Datasets Models Task 1: Community Detection Task 2: Joint Link Prediction and Community Detection
(Dimension d = 16) on complete graph on graph with 15% of edges being masked

AMI (in %) ARI (in %) AMI (in %) ARI (in %) AUC (in %) AP (in %)

GCN-based Modularity-Aware VGAE 73.74 ± 1.32 82.78 ± 1.27 70.42 ± 1.28 79.80 ± 1.12 91.67 ± 0.39 92.37 ± 0.41
GCN-based Standard VGAE 73.42 ± 0.95 82.58 ± 0.93 66.90 ± 3.32 77.23 ± 3.89 91.64 ± 0.42 92.52 ± 0.51

Blogs Louvain 63.43 ± 0.86 76.66 ± 0.70 57.25 ± 1.67 73.00 ± 1.56 – –
Best other baseline:

node2vec 72.88 ± 0.87 82.08 ± 0.73 67.64 ± 1.23 77.03 ± 1.85 83.63 ± 0.34 79.60 ± 0.61

Linear Modularity-Aware GAE 46.58 ± 0.40 39.71 ± 0.41 43.48 ± 1.12 35.51 ± 1.20 87.18 ± 1.05 88.53 ± 1.33
Linear Standard GAE 35.05 ± 2.55 24.32 ± 2.99 28.41 ± 1.68 19.45 ± 1.75 84.46 ± 1.64 88.42 ± 1.07

Cora Louvain 42.70 ± 0.65 24.01 ± 1.70 39.09 ± 0.73 20.19 ± 1.73 – –
Best other baseline:

node2vec 41.64 ± 1.25 34.30 ± 1.92 36.25 ± 1.38 29.43 ± 2.21 82.43 ± 1.23 81.60 ± 0.91

Linear Modularity-Aware VGAE 52.43 ± 1.87 44.82 ± 3.12 49.48 ± 2.15 43.05 ± 3.51 93.10 ± 0.88 94.06 ± 0.75
Cora Linear Standard VGAE 49.98 ± 2.40 43.15 ± 4.35 46.90 ± 1.43 38.24 ± 3.56 93.04 ± 0.80 94.04 ± 0.75
with Louvain 42.70 ± 0.65 24.01 ± 1.70 39.09 ± 0.73 20.19 ± 1.73 – –

features Best other baseline:
VGAECD-OPT 50.32 ± 1.95 43.54 ± 3.23 47.83 ± 1.64 39.45 ± 3.53 92.25 ± 1.07 92.60 ± 0.91

Linear Modularity-Aware VGAE 21.28 ± 1.03 15.39 ± 1.06 19.05 ± 1.47 12.19 ± 1.38 80.84 ± 1.64 84.21 ± 1.21
Linear Standard VGAE 13.83 ± 1.00 8.31 ± 0.89 11.11 ± 1.10 5.87 ± 0.87 78.26 ± 1.55 82.93 ± 1.39

Citeseer Louvain 24.72 ± 0.27 9.21 ± 0.75 22.71 ± 0.47 7.70 ± 0.67 – –
Best other baseline:

node2vec 18.68 ± 1.13 14.93 ± 1.15 14.40 ± 1.18 12.13 ± 1.53 76.05 ± 2.12 79.46 ± 1.65

Linear Modularity-Aware VGAE 25.11 ± 0.94 15.55 ± 0.60 22.21 ± 1.24 12.59 ± 1.25 86.54 ± 1.20 88.07 ± 1.22
Citeseer Linear Standard VGAE 17.80 ± 1.61 6.01 ± 1.46 17.38 ± 1.43 6.10 ± 1.51 89.08 ± 1.19 91.19 ± 0.98

with Louvain 24.72 ± 0.27 9.21 ± 0.75 22.71 ± 0.47 7.70 ± 0.67 – –
features Best other baseline:

DVGAE 20.09 ± 2.84 12.16 ± 2.74 16.02 ± 3.32 10.03 ± 4.48 86.85 ± 1.48 88.43 ± 1.23

Linear Modularity-Aware GAE 28.54 ± 0.24 26.36 ± 0.34 26.38 ± 0.43 21.30 ± 0.59 84.39 ± 0.32 87.92 ± 0.40
Linear Standard GAE 12.61 ± 4.61 6.37 ± 3.86 12.60 ± 4.67 6.21 ± 1.75 82.03 ± 0.32 87.71 ± 0.24

Pubmed Louvain 20.06 ± 0.27 10.34 ± 0.99 16.71 ± 0.46 8.32 ± 0.79 – –
Best other baseline:

node2vec 28.52 ± 1.12 30.63 ± 1.14 23.88 ± 0.54 25.90 ± 0.65 81.03 ± 0.30 82.33 ± 0.41

Linear Modularity-Aware VGAE 30.09 ± 0.63 29.11 ± 0.65 29.60 ± 0.70 28.54 ± 0.74 97.10 ± 0.21 97.21 ± 0.18
Pubmed Linear Standard VGAE 29.98 ± 0.41 29.05 ± 0.20 29.51 ± 0.52 28.50 ± 0.36 97.12 ± 0.20 97.20 ± 0.17

with Louvain 20.06 ± 0.27 10.34 ± 0.99 16.71 ± 0.46 8.32 ± 0.79 – –
features Best other baseline:

VGAECD-OPT 32.47 ± 0.45 29.09 ± 0.42 29.46 ± 0.52 28.43 ± 0.61 94.27 ± 0.33 94.53 ± 0.36

Linear Modularity-Aware VGAE 48.55 ± 0.18 22.21 ± 0.39 46.10 ± 0.29 20.24 ± 0.41 95.76 ± 0.17 96.31 ± 0.12
Linear Standard VGAE 46.07 ± 0.54 20.01 ± 0.90 43.38 ± 0.37 18.02 ± 0.66 95.55 ± 0.22 96.30 ± 0.18

Cora-Large Louvain 44.72 ± 0.50 19.46 ± 0.66 43.41 ± 0.52 19.29 ± 0.68 – –
Best other baseline:

DVGAE 46.63 ± 0.56 20.72 ± 0.96 43.48 ± 0.61 18.45 ± 0.67 94.97 ± 0.23 95.98 ± 0.21

Linear Modularity-Aware VGAE 36.02 ± 0.13 8.12 ± 0.06 35.85 ± 0.20 8.06 ± 0.11 82.34 ± 0.38 86.76 ± 0.41
Linear Standard VGAE 35.01 ± 0.21 7.88 ± 0.15 30.79 ± 0.21 6.50 ± 0.13 80.11 ± 0.35 83.40 ± 0.36

SBM Louvain 36.00 ± 0.15 8.10 ± 0.15 35.84 ± 0.18 8.03 ± 0.09 – –
Best other baseline:

DVGAE 35.90 ± 0.18 8.07 ± 0.15 35.53 ± 0.23 7.95 ± 0.19 82.59 ± 0.36 87.08 ± 0.40

GCN-Based Modularity-Aware VGAE 21.64 ± 0.18 13.19 ± 0.09 19.10 ± 0.21 12.00 ± 0.17 85.40 ± 0.14 86.38 ± 0.15
GCN-Based Standard VGAE 15.79 ± 0.32 9.75 ± 0.21 13.98 ± 0.35 8.81 ± 0.32 85.37 ± 0.12 86.41 ± 0.11

Album Louvain 19.81 ± 0.19 12.21 ± 0.09 17.68 ± 0.20 11.02 ± 0.13 – –
Best other baseline:

node2vec 20.03 ± 0.24 12.20 ± 0.19 18.34 ± 0.29 11.27 ± 0.28 83.51 ± 0.17 84.12 ± 0.15

13

0 100 200 300 400 500 600
Number of training iterations

0

20

40

60

80

S
co

re
s

(in
 %

)

AUC on validation set
Modularity value Q
AMI w.r.t. ground-truth

(a) Cora

0 100 200 300 400 500 600
Number of training iterations

0

20

40

60

80

S
co

re
s

(in
 %

)

AUC on validation set
Modularity value Q
AMI w.r.t. ground-truth

(b) Pubmed

Figure 3: Identification of the required number of training iterations, for Modularity-Aware VGAE
with linear encoders trained on the featureless (a) Cora, and (b) Pubmed graphs. The plots report
the evolution of the modularity Q (dark blue) and AUC LP scores on validation sets (red) w.r.t. the
number of training iterations in gradient ascent. By looking at the red curves only, one might choose
to stop training models after 200 iterations as in [24], as AUC scores have almost stabilized. However,
the dark blue curves emphasize that Q still increases up to 400-500 training iterations for both graphs.
By also using Q for hyperparameter selection (as we proposed), one will therefore continue training
VGAE models up to 400-500 iterations. The light blue curves confirm that such a strategy eventually
leads to better AMI final scores w.r.t. ground truth communities. Note, that the light blue curves
could not be directly used for tuning, as ground truth communities are unavailable at training time.

20 25 30 35 40 45 50
Scores (in %)

AMI Task 1

AMI Task 2

ARI Task 1

ARI Task 2

 Complete
 Modularity-Aware
 Linear VGAE
 Modularity-Aware
 Linear VGAE
 with new loss only
 Modularity-Aware
 Linear VGAE
 with new encoder only
 Standard
 Linear VGAE

(a) Cora

5 10 15 20 25
Scores (in %)

AMI Task 1

AMI Task 2

ARI Task 1

ARI Task 2

 Complete
 Modularity-Aware
 GCN-based VGAE
 Modularity-Aware
 GCN-based VGAE
 with new encoder only
 Modularity-Aware
 GCN-based VGAE
 with new loss only
 Standard
 GCN-based VGAE

(b) Album

Figure 4: Comparison of two “complete” Modularity-Aware VGAE, trained on (a) featureless Cora
and (b) Album with variants of these models only leveraging our new encoder or regularized loss from
Section 3. We observe that incorporating any of these two components improves CD on these graphs
w.r.t. Standard VGAE. Moreover, using both components simultaneously leads to the best results.

14

Table 4: Normalized mutual information scores (in %) for CD on Cora and Pubmed, with and
without node features. Results are directly taken from the evaluation of Choong et al. [8]. This table
emphasizes that, in the absence of node features, VGAECD and VGAECD-OPT bring little (to no)
advantage w.r.t. standard VGAE, and remain below the Deepwalk and/or Louvain baselines. Scores
of VGAECD and VGAECD-OPT significantly increase when adding features to the graph. Recall: in
this table, Deepwalk and Louvain both ignore node features.

Dataset VGAE VGAECD VGAECD-OPT DeepWalk Louvain

Cora without node features 23.84 28.22 37.35 37.96 43.36
Pubmed without node features 20.41 16.42 25.05 29.46 19.83

Cora with node features 31.73 50.72 54.37 37.96 43.36
Pubmed with node features 19.81 32.53 35.52 29.46 19.83

15

	Introduction
	Preliminaries
	Modularity-Aware GAE and VGAE for Joint LP and CD
	Experimental Evaluation
	Conclusion
	Experimental Setting
	Figures and Tables

