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ABSTRACT

The comprehensive understanding capabilities of world models for driving scenar-
ios have significantly improved the planning accuracy of end-to-end autonomous
driving frameworks. However, the redundant modeling of static regions and the
lack of deep interaction with trajectories hinder world models from exerting their
full effectiveness. In this paper, we propose a Temporal Residual World Model
(TR-World), which focuses on dynamic object modeling. By calculating the tem-
poral residuals of BEV features, the information of dynamic objects can be ex-
tracted without relying on detection and tracking. TR-World only takes temporal
residuals as the input to make more precise predictions of the dynamic objects’
future spatial distribution. By combining the prediction with the static object in-
formation contained in the current BEV features, accurate future BEV features
can be obtained. Furthermore, we propose Future-Guided Trajectory Refinement
(FGTR) module, which conducts interaction between prior trajectories (predicted
from the current scene representations) and the future BEV features. This enables
effective utilization of future road conditions and also alleviates world model col-
lapsing. Comprehensive experiments conducted on the nuScenes and NAVSIM
datasets demonstrate that our method, namely ResWorld, achieves state-of-the-art
performance on planning accuracy. Code will be made publicly available.

1 INTRODUCTION

End-to-end autonomous driving framework has emerged as an important research direction in recent
years, presenting a cost-effective and highly scalable solution for autonomous driving applications.
The traditional autonomous driving systems generally perform environmental perception at first,
including 3D object detection (Huang et al., 2021; Wang et al., 2023; Zhang et al., 2023; 2025), map
segmentation (Li et al., 2022a; Liao et al., 2022; 2024; Yuan et al., 2024b) and semantic occupancy
prediction (Ma et al., 2024; Yu et al., 2023; Zhang et al., 2024), among others. Subsequently, the
multiple perception results are integrated through rule-based methods (Bouchard et al., 2022; Treiber
et al., 2000) or independent DNN models (Huang et al., 2023; Cheng et al., 2024a;b) to generate
the future trajectory of the ego vehicle. In contrast, end-to-end autonomous driving frameworks (Hu
et al., 2023; Jiang et al., 2023; Sima et al., 2023; Zheng et al., 2024b; Sun et al., 2024; Weng et al.,
2024; Hu et al., 2022a; Guo et al., 2024) integrate the multiple tasks into a single model. Such a
design not only reduces information loss between raw data and the final planning results but also
enables collaborative optimization across various modules, thus exhibiting stronger adaptability to
complex scenarios.

Recently, due to the high annotation cost required for training multiple perception and prediction
modules, several end-to-end autonomous driving approaches (Li & Cui, 2025; Li et al., 2025; Zheng
et al., 2024a; Yang et al., 2025; Zheng et al., 2025) have adopted world models to replace these aux-
iliary task modules. As shown in Fig 1a, by treating future scene prediction as a proxy task, world
model frameworks can effectively enhance the model’s ability to understand and model driving
scenes, thereby improving the planning accuracy. However, most information in the scene repre-
sentations belongs to static objects such as the ground and buildings, which can be directly retained
in future scenarios without the need for redundant modeling. In contrast, dynamic objects such as
vehicles and pedestrians require more precise modeling, yet they are difficult to identify from the en-
vironment without relying on perception tasks. Furthermore, current methods lack deep interaction
between trajectories and the future scene representations predicted by the world model.
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Figure 1: Comparison Between Normal World Model Framework and ResWorld Framework.
Different from the normal world models that model the entire scene and implicitly optimize tra-
jectories, Resworld uses the temporal residual of the BEV feature to represent dynamic objects for
precise modeling. Meanwhile, the prior trajectories are corrected through explicit interaction with
the predicted future BEV feature.

To address these issues, we propose Temporal Residual World Model (TR-World) as shown in
Fig 1b, which can precisely model the dynamic objects and predict accurate future scene representa-
tions. First, we transform BEV features at different timestamps into the current BEV coordinate sys-
tem and use the same spatial attention mask to extract their sparse scene queries. Subsequently, we
subtract the scene queries of adjacent timestamps to obtain the temporal residuals of scene queries.
The temporal residuals represent the changes in the same position across different timestamps, thus
standing for the dynamic objects in the scene. When predicting future BEV features, the current
BEV coordinate system is still adopted. This allows the current BEV features to depict the fu-
ture distribution of static objects, thereby avoiding redundant modeling of static objects. TR-World
only processes the temporal residuals and maps the predicted future spatial distribution of dynamic
objects onto the current BEV features, and thus obtains accurate predictions of future BEV features.

Furthermore, to make full use of the predicted future BEV features, we propose Future-Guided
Trajectory Refinement (FGTR) module. We first use a series of waypoint queries to represent the
future trajectory of the ego vehicle and each query represents the position of the ego vehicle at a
specific future timestamp. After decoding the prior trajectory from waypoint queries, it serves as a
set of reference points to guide the interaction between waypoint queries and future BEV features.
This operation can effectively verify whether the prior trajectory will collide with other objects
or drive out of the drivable area, thus correcting the prior trajectory and improving the planning
accuracy. Experiments further demonstrate that this approach can alleviate the collapse of the world
model. It is worth noting that supervising future BEV features with ground truth at any future
timestamps will lose the spatial distribution of dynamic objects at other timestamps. Therefore, not
applying supervision can instead allow the model to independently optimize the future BEV features
and retain the most important information.

We integrate the proposed components into a novel end-to-end autonomous driving model, namely
ResWorld. Experiments conducted on nuScenes and NAVSIM benchmarks indicate that ResWorld
achieves state-of-the-art planning accuracy. Our contributions can be summarized as follows:

• We use the current BEV coordinate system to represent the future BEV representations
predicted by the world model, eliminating the need for redundant modeling of static objects.

• We utilize the temporal residuals of scene representations to extract information about dy-
namic objects without relying on auxiliary tasks. Temporal residuals are processed by
Temporal Residual World Model to predict dynamic objects’ future spatial distribution.

• We propose Future-Guided Trajectory Refinement module, which applies interaction be-
tween prior trajectory and future BEV features to improve the planning accuracy and pre-
vent world model collapse.

• ResWorld achieves state-of-the-art results on nuScenes and NAVSIM benchmarks, demon-
strating the effectiveness of our proposed framework.
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Figure 2: Overall Framework of ResWorld. Multi-view images at different timestamps are con-
verted into BEV features, which are used to predict prior trajectories. On the other hand, BEV
features are used to calculate temporal residuals, which are then processed by the Temporal Resid-
ual World Model to predict the future distribution of dynamic objects. Future-Guided Trajectory
Refinement module further utilizes the predicted future BEV features to refine the planning results.

2 RELATED WORKS

2.1 END-TO-END AUTONOMOUS DRIVING

Nowadays, end-to-end autonomous driving approaches are gaining increasing attention for cost-
effectiveness and high scalability. These methods generally adopt an integrated model that predicts
trajectories from the input raw sensor data, achieving state-of-the-art trajectory prediction perfor-
mance. ST-P3 (Hu et al., 2022b) obtains future ego-vehicle movements by progressively utilizing
map perception module, BEV occupancy module, and planning module. UniAD (Hu et al., 2023)
enhances the robustness of the system by further adopting supplementary detection, tracking, and
motion prediction modules. VAD (Jiang et al., 2023) represents object movements and lane lines
using vectors, thereby reducing the total computation of the model. PARA-Drive (Weng et al., 2024)
comprehensively explores the design space of autonomous driving modular perception and predic-
tion task stacks. OccNet (Sima et al., 2023) introduces occupancy prediction to construct detailed 3D
scene representations for planning. VADv2 (Chen et al., 2024) predicts multiple action candidates
and samples one action as the planning result. GenAD (Zheng et al., 2024b) adopts the generative
model for trajectory generation, jointly optimizing motion and planning heads. UAD (Guo et al.,
2024) utilizes the angular object mask as the scene representation to avoid collision. Diffusion-
Drive (Liao et al., 2025) applies diffusion models to boost trajectories’ diversity and robustness in
complex scenarios. However, these methods rely on fine-grained annotations to train auxiliary task
modules, which restricts their ability to utilize large-scale raw data.

2.2 WORLD MODEL FOR END-TO-END AUTONOMOUS DRIVING

World models have demonstrated excellent spatial understanding and modeling capabilities, which
are leveraged by some end-to-end autonomous driving models to replace auxiliary tasks. Occ-
World (Zheng et al., 2024a) adopts unified occupancy-centric world modeling, enhancing spatiotem-
poral scene understanding for robust planning. Drive-WM (Wang et al., 2024) generates high-quality
driving videos through joint spatial-temporal modeling, thereby improving the model’s planning ac-
curacy. SSR (Li & Cui, 2025) converts the dense BEV feature into sparse scene queries and utilizes
the world model to enhance the scene understanding. LAW (Li et al., 2024a) adopts the latent world
model framework and carries out experiments under perception-free and perception-based settings.
World4Drive (Zheng et al., 2025) generates multi-modal trajectories and utilizes the world model
to select the most appropriate one. However, these world models tend to perform redundant mod-
eling on static objects, while their modeling of dynamic objects remains insufficient. Additionally,
the absence of deep interaction between trajectories and future scene representations hinders world
models from exerting their full effectiveness.
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Figure 3: Structure of Temporal Residual World Model

3 METHOD

3.1 PRIOR TRAJECTORY PREDICTION

To extract the temporal residuals of BEV features, it is necessary for BEV features to have high
geometric quality, which facilitates the spatial alignment of BEV features across different times-
tamps. Therefore, we choose GeoBEV (Zhang et al., 2025) as the base of the model, which can
efficiently generate BEV features with high geometric quality. As shown in Fig 2, the multi-view
images for each timestamp are converted to BEV features, thus obtaining {Bt,Bt−1, . . . ,Bt−k}.
Bt ∈ RC×H×W is the BEV feature of the current timestamp, where C,H ,W are the channel, height
and width dimensions, and k is the number of past timestamps. Following BEVDet4D (Huang &
Huang, 2022), {Bt−1, . . . ,Bt−k} are all transformed into the coordinate system of Bt and fused by

Bfuse = Conv(Concat(Bt,Bt−1, . . . ,Bt−k)) (1)

We use the planning module of SSR (Li & Cui, 2025) to perform perception-free planning. The
dense Bfuse is first processed by a TokenLearner module (Ryoo et al., 2021) to obtain Ns sparse
scene queries Sfuse ∈ RNs×C , which can be formulated by

Sfuse = TokenLearner(Bfuse) = AvgPool(SA(Bfuse)⊙ Bfuse) (2)

where SA denotes the generation of the spatial attention map and AvgPool denotes the global average
pooling operation. Sfuse is operated by self-attention for further information extraction:

Sfuse = SelfAttention(Sfuse) (3)

We use a set of waypoint queries W ∈ RNt×C to represent the ego vehicle’s future status, where
Nt denotes the number of future timestamps to be predicted. After the cross attention operation
between W and Sfuse, the prior trajectories can be decoded by a multi-layer perceptron (MLP) as:

Tprior = MLP(CrossAttention(W,Sfuse,Sfuse)) (4)

where each row in Tprior ∈ RNt×2 represents the ego vehicle’s coordinates at a future timestamp.

3.2 TEMPORAL RESIDUAL EXTRACTION

Since {Bt,Bt−1, . . . ,Bt−k} share the same coordinate system of Bt, they represent the scene rep-
resentation of the same scene at different timestamps. By calculating their residuals, information
about dynamic objects in the scene can be extracted.

Given that Bfuse carries the spatial information across different timestamps, it can be utilized to pre-
dict a spatial attention map that emphasizes the regions with dynamic objects. For each timestamp
i, Bi is weighted by the this spatial attention map to extract the sparse scene queries formulated as

Si = AvgPool(SA(Bfuse)⊙ Bi) (5)

After obtaining {St,St−1, . . . ,St−k}, a set of temporal residuals {Rt,Rt−1, . . . ,Rt−k+1} is calcu-
lated by subtracting scene queries of the previous timestamp as shown in Fig 2.

3.3 TEMPORAL RESIDUAL WORLD MODEL

Previous world models used for end-to-end autonomous driving do not distinguish between dynamic
objects and static objects in the scene and devote the same effort to predicting their future spatial

4
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distribution. However, if the coordinate system of Bt is still adopted when predicting future BEV
features, the spatial distribution of static objects can be regarded as unchanged. As a result, Bfuse

can serve as the appropriate future representation of static objects, eliminating the need for addi-
tional modeling. In addition, the understanding of static objects is already accomplished during the
prediction of prior trajectories, and the world model is also not required to participate.

To avoid redundant modeling of static objects and make the world model focus more on dynamic
objects, we propose the Temporal Residual World Model (TR-World) as shown in Fig 3. TR-World
only takes temporal residuals as input to predict the future spatial distribution of dynamic objects.
Specifically, each temporal residual Ri undergoes information extraction via self-attention opera-
tions, followed by accumulation across timestamps to obtain a future representation of dynamic
objects R̂ ∈ RNs×C . This process can be formulated as

R̂ =

t∑
i=t−k+1

SelfAttention(Ri) (6)

R̂ needs to be presented on BEV features to restore the future spatial distribution of the dynamic
objects accurately. We adopt TokenFuser (Ryoo et al., 2021), the inverse transformation of Token-
Learner, to expand R̂ on the base of Bfuse by

Bfuture = TokenFuser(R̂,Bfuse) + Bfuse = MLP(Bfuse)⊗ R̂ + Bfuse (7)

where MLP maps Bfuse to RNs×H×W and ⊗ denotes the combination of matrix transposition and
multiplication, which outputs the prediction of future BEV features Bfuture ∈ RC×H×W .

3.4 FUTURE-GUIDED TRAJECTORY REFINEMENT

Existing end-to-end autonomous driving methods generally utilize the world model to optimize
planning performance in an indirect manner. Specifically, by treating the prediction of future scene
representations as a proxy task, the model’s overall ability to understand autonomous driving sce-
narios can be enhanced. However, the predicted future scene representations could serve as valuable
references for trajectory planning, yet they have not been effectively utilized to date. On the other
hand, when future scene representations lack supervision from any auxiliary tasks, it is challenging
to prevent the world model from collapsing, which means the model tends to map diverse driving
scenes to identical scene representations.

To address the above issues, we have designed the Future-Guided Trajectory Refinement (FGTR)
module. This module simply applies Deformable Attention Operation between waypoint queries W
and future BEV features Bfuture, while Tprior serves as the reference points on Bfuture as shown
in Fig 2. Subsequently, the final trajectory Tfinal is decoded by MLP, which can be formulated by

W = DeformAttention(W,Bfuture,Tprior) (8)
Tfinal = MLP(W) (9)

Since each query in W represents the ego vehicle’s status at a future timestamp, FGTR module can
collect the future environmental information around the ego vehicle from Bfuture based on Tprior.
This information can be used to check whether the ego vehicle will collide with other objects or drive
out of the drivable area, and thus correct Tprior promptly. This not only makes full use of Bfuture but
also provides supervision for it. Bfuture is encouraged to accurately represent spatial information
such as the positions of dynamic objects, thus preventing the world model from collapsing.

3.5 LOSS

During training, we only adopts the L1 loss for Tprior and Tfinal, which can be expressed as
L = L1(Tprior,TGT ) + L1(Tfinal,TGT ) (10)

where TGT denotes the ground truth trajectory of ego vehicle. Unlike general world models, we
do not utilize real future data to generate the label for supervising Bfuture. This approach enables
Bfuture to preserve the spatial distribution of dynamic objects across multiple future timestamps,
rather than being limited to a specific timestamp. Experiments confirm that not supervising Bfuture

enables higher planning performance.
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Table 1: Comparison of state-of-the-art methods on the nuScenes dataset. ∗ denotes the metrics
evaluated using the official models and code. ♢ denotes using ego status in the planning module
following BEVPlanner++ (Li et al., 2024c). ‡ denotes the AVG metric calculated in the same way
as VAD (Jiang et al., 2023).

Method Auxiliary Task
L2 (m) ↓ Collision Rate (%) ↓

1s 2s 3s Avg 1s 2s 3s Avg

ST-P3 (Hu et al., 2022b) Det&Map 1.72 3.26 4.86 3.28 0.44 1.08 3.01 1.51
UniAD (Hu et al., 2023) Det&Track&Map&Motion&Occ 0.48 0.96 1.65 1.03 0.05 0.17 0.71 0.31
OccNet (Sima et al., 2023) Det&Map&Occ 1.29 2.13 2.99 2.14 0.21 0.59 1.37 0.72
PARA-Drive (Weng et al., 2024) Det&Track&Map&Motion&Occ 0.40 0.77 1.31 0.83 0.07 0.25 0.60 0.30
GenAD (Zheng et al., 2024b) Det&Map&Motion 0.36 0.83 1.55 0.91 0.06 0.23 1.00 0.43
SSR∗ (Li & Cui, 2025) None 0.25 0.64 1.33 0.74 0.08 0.12 0.72 0.31
ResWorld None 0.22 0.56 1.17 0.65 0.02 0.04 0.64 0.23
ResWorld♢ None 0.19 0.50 1.08 0.59 0.02 0.06 0.43 0.17

ST-P3‡ (Hu et al., 2022b) Det&Map 1.33 2.11 2.90 2.11 0.23 0.62 1.27 0.71
UniAD‡ (Hu et al., 2023) Det&Track&Map&Motion&Occ 0.44 0.67 0.96 0.69 0.04 0.08 0.23 0.12
VAD‡ (Jiang et al., 2023) Det&Map&Motion 0.41 0.70 1.05 0.72 0.07 0.17 0.41 0.22
BEV-Planner++♢‡ (Li et al., 2024c) None 0.16 0.32 0.57 0.35 0.00 0.29 0.73 0.34
PARA-Drive‡ (Weng et al., 2024) Det&Track&Map&Motion&Occ 0.25 0.46 0.74 0.48 0.14 0.23 0.39 0.25
LAW‡ (Li et al., 2025) None 0.26 0.57 1.01 0.61 0.14 0.21 0.54 0.30
LAW‡ (Li et al., 2025) Det&Map&Motion 0.24 0.46 0.76 0.49 0.08 0.10 0.39 0.19
GenAD‡ (Zheng et al., 2024b) Det&Map&Motion 0.28 0.49 0.78 0.52 0.08 0.14 0.34 0.19
SparseDrive‡ (Sun et al., 2024) Det&Track&Map&Motion 0.29 0.58 0.96 0.61 0.01 0.05 0.18 0.08
Drive-OccWorld‡ (Li & Cui, 2025) Occ 0.25 0.44 0.72 0.47 0.03 0.08 0.22 0.11
SSR∗‡ (Li & Cui, 2025) None 0.19 0.36 0.62 0.39 0.10 0.10 0.24 0.15
MomAD‡ (Song et al., 2025) Det&Track&Map&Motion 0.31 0.57 0.91 0.60 0.01 0.05 0.22 0.09
DiffusionDrive‡ (Liao et al., 2025) Det&Track&Map&Motion 0.27 0.54 0.90 0.57 0.03 0.05 0.16 0.08
ResWorld‡ None 0.17 0.32 0.55 0.35 0.01 0.02 0.16 0.07
ResWorld♢‡ None 0.14 0.27 0.49 0.30 0.01 0.03 0.14 0.06

Table 2: Comparison of state-of-the-art methods on the NAVSIM navtest split.

Method Auxiliary Task NC ↑ DAC ↑ TTC ↑ Comf. ↑ EP ↑ PDMS ↑
UniAD (Hu et al., 2023) Det&Map 97.8 91.9 92.9 100 78.8 83.4
PARA-Drive (Weng et al., 2024) Det&Map 97.9 92.4 93.0 99.8 79.3 84.0
Transfuser (Chitta et al., 2022) Det&Map 97.7 92.8 92.8 100 79.2 84.0
DRAMA (Yuan et al., 2024a) Det&Map 98.0 93.1 94.8 100 80.1 85.5
VADv2 (Chen et al., 2024) Det&Map 97.2 89.1 91.6 100 76.0 80.9
Hydra-MDP-W-EP (Li et al., 2024b) Det&Map 98.3 96.0 94.6 100 78.7 86.5
LAW (Li et al., 2025) None 96.4 95.4 88.7 99.9 81.7 84.6
DiffusinDrive (Liao et al., 2025) Det&Map 98.2 96.2 94.7 100 82.2 88.1
World4Drive (Zheng et al., 2025) None 97.4 94.3 92.8 100 79.9 85.1
ResWorld None 98.1 95.6 94.3 100 81.8 87.3
ResWorld Det&Map 98.2 96.4 94.8 100 82.5 88.3

4 EXPERIMENT RESULS

4.1 DATASET AND METRIC

nuScenes We conduct open-loop evaluation of ResWorld on nuScenes (Caesar et al., 2020), the
commonly used autonomous driving dataset. Consistent with previous works (Li & Cui, 2025; Li
et al., 2025), we use displacement error and collision rate (CR) as metrics to evaluate the accuracy
of trajectory prediction. The displacement error is represented by the L2 error between the pre-
dicted trajectory and the ground truth trajectory, which indicates the degree of deviation between
the planning model and the experts. The collision rate quantifies the percentage of cases involv-
ing collisions with other objects when executing the predicted trajectory, reflecting the safety of the

6
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Table 3: Ablation study of each proposed component. “TR-World” and FGTR denote Temporal
Residual World Model and the Future-Guided Trajectory Refinement, respectively.

Ego Status
in Planner TR-World FGTR

L2 (m) ↓ Collision Rate (%) ↓
1s 2s 3s Avg 1s 2s 3s Avg

✗ 0.25 0.62 1.27 0.71 0.02 0.25 0.64 0.31
✗ ✓ ✓ 0.22 0.56 1.17 0.65 0.02 0.04 0.64 0.23

✓ 0.21 0.55 1.18 0.65 0.02 0.12 0.70 0.28
✓ ✓ 0.19 0.51 1.12 0.61 0.02 0.10 0.64 0.25
✓ ✓ 0.20 0.52 1.12 0.61 0.02 0.10 0.55 0.22
✓ ✓ ✓ 0.19 0.50 1.08 0.59 0.02 0.06 0.43 0.17

planning model. We adopt the evaluation methods of both UniAD (Hu et al., 2023) and VAD (Jiang
et al., 2023) to compare with as many methods as possible, where VAD’s metrics are the temporal
averages of UniAD’s metrics.

NAVSIM We further conduct closed-loop evaluation of ResWorld on the NAVSIM bench-
mark (Dauner et al., 2024). The data of NAVSIM benchmark are resampled from OpenScene (Con-
tributors, 2023), which contains 120 hours of driving logs selected from the nuPlan dataset (Caesar
et al., 2021). By removing simple scenarios from OpenScene, such as straight-driving scenarios,
the evaluative capability of NAVSIM benchmark for planning models is enhanced. NAVSIM bench-
mark employs the Predictive Driver Model Score (PDMS) to comprehensively evaluate the planning
model, which is calculated using five key factors including No At-Fault Collision (NC), Drivable
Area Compliance (DAC), Time-to-Collision (TTC), Comfort (Comf.), and Ego Progress (EP).

4.2 IMPLEMENTATION DETAILS

nuScenes When conducting experiments on the nuScenes benchmark, we adopt a model structure
similar to SSR (Li & Cui, 2025). To extract the temporal residuals of BEV features, we replaced the
BEVFormer (Li et al., 2022b) used in SSR with GeoBEV (Zhang et al., 2025), aiming to generate
high geometric quality BEV features at different timestamps separately. We adopt ResNet-50 (He
et al., 2016) as the image backbone to process the multi-view images downsampled to 256×704. We
set k = 2, which means data from the current frame and 2 previous frames are used. It is optional
to use ego status in the planning module, which corresponds to the “in Planner” configuration in
BEVPlanner (Li et al., 2024c). Metrics for both configurations are reported. The model is trained
for 12 epochs on 8 NVIDIA RTX 3090 GPUs with a total batch size of 8. The AdamW (Loshchilov
& Hutter, 2019) optimizer with a learning rate of 1× 10−4 is utilized. We further conduct ablation
studies on the nuScenes benchmark to evaluate the effectiveness of the proposed components.

NAVSIM For experiments conducted on NAVSIM benchmark, we adopt a model structure similar
to TransFuser (Chitta et al., 2022), which utilized two ResNet-34 backbones to process concatenated
images and LiDAR BEV maps. Since previous methods did not utilize historical frames, we used
the agent queries employed in object detection to replace temporal residuals as the input of the world
model. We also implemented a version without auxiliary tasks, which is used for comparison with
perception-free models. The model is trained for 100 epochs on 8 NVIDIA RTX 3090 GPUs with a
total batch size of 512 and the learning rate is set to 6× 10−4.

4.3 MAIN RESULTS

nuScenes We conducted comprehensive comparisons between ResWorld and existing end-to-end
autonomous driving methods on the nuScenes (Caesar et al., 2020) benchmark as shown in Tab 1. It
can be found that ResWorld achieved a new state-of-the-art accuracy. When ego status is not used
in the planning module, our method outperforms methods such as GenAD (Zheng et al., 2024b) and
DiffusionDrive (Liao et al., 2025), which rely on auxiliary perception/prediction tasks for driving
scene understanding. ResWorld also demonstrates advantages over methods like SSR (Li & Cui,
2025) and LAW (Li et al., 2025), which employ none of the auxiliary tasks and fully rely on world
models for scene understanding. When adopting ego status to help predict more accurate prior
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Table 4: Ablation study of Temporal Residual World Model. “Future Supervision” denotes the
utilization of real future data to supervise the future BEV features predicted by the world model.

Input Future
Supervision

L2 (m) ↓ Collision Rate (%) ↓
1s 2s 3s Avg 1s 2s 3s Avg

Scene Query ✓ 0.20 0.52 1.11 0.61 0.02 0.12 0.57 0.23
Scene Query ✗ 0.20 0.53 1.11 0.61 0.02 0.12 0.49 0.21

Temporal Residual ✓ 0.19 0.51 1.12 0.61 0.02 0.08 0.53 0.21
Temporal Residual ✗ 0.19 0.50 1.08 0.59 0.02 0.06 0.43 0.17

w
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Figure 4: Effect of Future-Guided Trajectory Refinement Module on alleviating world model
collapse. The first row presents the future BEV features supervised using real future data, while
those in the second row are predicted by the world model equipped with FGTR module. The BEV
features in the second row show more diversity in spatial distribution.

trajectories, the final planning accuracy of ResWorld is largely improved and outperforms BEV-
Planner++ (Li et al., 2024c). This indicates that our framework has a strong scene understanding
capability, which prevents overfitting due to over-reliance on ego status.

NAVSIM We also evaluated the closed-loop planning accuracy of ResWorld on NAVSIM (Dauner
et al., 2024) benchmark, and the experimental results are presented in Tab 2. Since historical
frame data is not used to compute temporal residuals, TR-World in ResWorld is replaced with
a normal world model. Nevertheless, ResWorld still achieves the state-of-the-art planning accu-
racy of 88.3%PDMS, surpassing the performance of Hydra-MDP (Li et al., 2024b) and Diffusion-
Drive (Liao et al., 2025). When not using auxiliary tasks such as detection and BEV map segmenta-
tion, our proposed method also outperforms world model-based methods like LAW (Li et al., 2025)
and World4Drive (Zheng et al., 2025).

4.4 ABLATION STUDY

Efficiency of Components We conducted experiments to evaluate the effectiveness of Temporal
Residual World Model (TR-World) and Future-Guided Trajectory Refinement (FGTR) module, and
the experimental results are shown in Tab 3. When only using TR-World and implicitly optimizing
trajectories in the manner of SSR, it can significantly improve the model’s scene understanding
capability and enhance planning accuracy. When only using the FGTR module and refining prior
trajectories with the current BEV features, it can also effectively improve the quality of trajectories.
The combination of TR-World and FGTR can further improve the planning performance. When not
using ego status in the planning module, the two modules together reduce 8.4% of the baseline’s
average L2 error and 25.8% of the baseline’s average collision rate. When adopting ego status in the
planning module, the two modules also reduce 9.2% of the baseline’s average L2 error and 39.3%
of the baseline’s average collision rate.

Temporal Residual World Model In Tab 4, we compare the performance of TR-World and the
normal world model. The impact of using real future data to supervise the prediction of the world

8
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Figure 5: Visualization of Planning Results. The object bounding boxes and lane lines on the BEV
plane are rendered using the annotations. The green box denotes the ego vehicle. The areas enclosed
by dashed circles indicate where collisions will occur.

model is also evaluated. It can be found that TR-World, which takes temporal residuals as input
and focuses on dynamic object modeling, can predict more accurate future BEV features than the
normal world model, thereby achieving higher planning accuracy. Furthermore, removing the future
supervision on TR-World can preserve more spatial distribution information of dynamic objects
across multiple timestamps, supporting more accurate planning. However, future supervision has
a limited impact on the normal world model, which may be due to the insufficient modeling of
dynamic objects.

Future-Guided Trajectory Refinement To verify the impact of FGTR module in alleviating world
model collapse, we visualize the future BEV features predicted by the world model and present them
in Fig 4. It can be observed that for the world model without FGTR module, the predicted future
BEV features of different driving scenes show little difference and fail to exhibit complete spatial
information. In contrast, through the interaction between prior trajectories and the predicted future
BEV features at specific spatial points, FGTR module can urge the world model to predict accurate
spatial information, thereby effectively preventing the world model from collapsing.

4.5 VISUALIZATION

We compare the qualitative results of ResWorld with SSR (Li & Cui, 2025) on planning trajectories
in Fig 5. It can be observed that the trajectories predicted by our method can effectively avoid
collisions with other vehicles or curbs, demonstrating a stronger spatial understanding ability.

5 CONCLUSION

Our proposed ResWorld adopts an novel Temporal Residual World Model framework. It captures
information of dynamic objects in the scene by calculating the temporal residuals of BEV features.
Meanwhile, it unifies the spatial coordinate system of different timestamps and eliminates redundant
modeling of static objects, enabling the world model driven by temporal residuals to focus on pre-
dicting the future spatial distribution of dynamic objects. Furthermore, through the Future-Guided
Trajectory Refinement module, the predicted future BEV features are utilized to correct prior trajec-
tories, thereby reducing the probability of driving accidents. The spatial interaction between prior
trajectories and future BEV features can also alleviate the collapse of the latent world model and
enhance its ability to model and understand the driving scenes. ResWorld achieves state-of-the-art
planning performance on both nuScenes and NAVSIM benchmarks.
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A USE OF LLM

We confirm that no large language models (LLMs) were utilized in any process of this study.

B APPENDIX

B.1 INTERACTION IN FGTR

We also implement the interaction between prior trajectories Tprior and future BEV features Bfuture

using the cross-attention operation. To achieve the localization of waypoint queries W in the
Bfuture, we add a learnable positional embedding PBEV to the BEV. By sampling PBEV with
the coordinate of Tprior, the position embedding of W is be obtained, which can be formulated by

Pway = Sampling(PBEV ,Tprior) (11)

After concatenating Bfuture and W with their positional embedding respectively, B̂future and Ŵ
are obtained. The interaction implemented by cross-attention and be represented by

Ŵ = CrossAttention(Ŵ, B̂future, B̂future) (12)

The results of the two interaction methods are presented in the Tab 5. It can be found that the
deformable attention operation has a stronger locating capability and achieves better trajectory cor-
rection results than the cross attention operation, which relies on positional embedding matching.

Table 5: Comparison between the interaction approach in FGTR.

Interaction
L2 (m) ↓ Collision Rate (%) ↓

1s 2s 3s Avg 1s 2s 3s Avg

Cross Attention 0.20 0.53 1.13 0.62 0.02 0.08 0.47 0.19
Deformable Attention 0.19 0.50 1.08 0.59 0.02 0.06 0.43 0.17

B.2 PERFORMANCE OF PRIOR TRAJECTORY

We also evaluate the metric of the prior trajectory and show the results in Tab 6. It can be observed
that although the model structure used for generating prior trajectories is the same as the baseline,
the prior trajectories have achieved a significant accuracy improvement compared with the base-
line. This is because BEV features of the scene are effectively optimized by TR-World and FGTR
modules, thereby enhancing the planning capability of the base model. This also proposes a new
approach of utilizing larger-scale TR-World and FGTR modules during training to obtain the best
BEV features, while taking prior trajectories as output for higher efficiency during inference.

Table 6: Performance of Prior Performance.

Trajectory
L2 (m) ↓ Collision Rate (%) ↓

1s 2s 3s Avg 1s 2s 3s Avg

Baseline 0.21 0.55 1.18 0.65 0.02 0.12 0.70 0.28
Prior Trajectory 0.20 0.53 1.12 0.61 0.02 0.10 0.41 0.18
Final Trajectory 0.19 0.50 1.08 0.59 0.02 0.06 0.43 0.17

B.3 LIMITATION

Temporal residuals of the BEV features can accurately represent dynamic objects that are currently
moving. However, for dynamic objects that are about to move have not yet started moving, such
as the parked cars and standing pedestrians, their information may not be timely represented by
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temporal residuals and modeled by TR-World. Although the information of these objects can be
processed together with other static objects by the model’s planning module, it is still insufficient to
handle extreme scenarios. Our future work will focus on how to use coarse perception to extract the
information of these objects from the scene and perform preventive modeling for them. This will
further enhance the safety of the planning results predicted by our framework.

B.4 MORE VISUALIZATION

In Fig 6, we provide more visualization results of ResWorld. Under complex road conditions,
ResWorld can effectively avoid collisions with other objects or driving out of the drivable area,
exhibiting accurate planning performance.
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Figure 6: More Visualization of Planning Results. The object bounding boxes and lane lines on
the BEV plane are rendered using the annotations. The green box denotes the ego vehicle. The areas
enclosed by dashed circles indicate where collisions will occur.
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