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Figure 1: We propose BEVFormer, a paradigm for autonomous driving that applies both Transformer
and Temporal structure to generate bird’s-eye-view (BEV) features from multi-camera inputs. BEV-
Former leverages queries to lookup spatial/temporal space and aggregate spatiotemporal information
correspondingly, hence benefiting stronger representations for perception tasks.

Abstract

3D visual perception tasks, including 3D detection and map segmentation based
on multi-camera images, are essential for autonomous driving systems. In this
work, we present a new framework termed BEVFormer, which learns unified BEV
representations with spatiotemporal transformers to support multiple autonomous
driving perception tasks. In a nutshell, BEVFormer exploits both spatial and tempo-
ral information by interacting with spatial and temporal space through predefined
grid-shaped BEV queries. To aggregate spatial information, we design spatial
cross-attention that each BEV query extracts the spatial features from the regions of
interest across camera views. For temporal information, we propose temporal self-
attention to recurrently fuse the history BEV information. Our approach achieves
the new state-of-the-art 56.9% in terms of NDS metric on the nuScenes test set,
which is 9.0 points higher than previous best arts and on par with the performance
of LiDAR-based baselines. We further show that BEVFormer remarkably improves
the accuracy of velocity estimation and recall of objects under low visibility condi-
tions. The code is available at https://github.com/zhiqi-li/BEVFormer.
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1 Introduction

Perception in 3D space is critical for various applications such as autonomous driving, robotics,
etc. Despite the remarkable progress of LiDAR-based methods [43, 20, 54, 50, 8], camera-based
approaches [45, 32, 47, 30] have attracted extensive attention in recent years. Apart from the low
cost for deployment, cameras own the desirable advantages to detect long-range distance objects
and identify vision-based road elements (e.g., traffic lights, stoplines), compared to LiDAR-based
counterparts.

Visual perception of the surrounding scene in autonomous driving is expected to predict the 3D bound-
ing boxes or the semantic maps from 2D cues given by multiple cameras. The most straightforward
solution is based on the monocular frameworks [45, 44, 31, 35, 3] and cross-camera post-processing.
The downside of this framework is that it processes different views separately and cannot capture
information across cameras, leading to low performance and efficiency [32, 47].

As an alternative to the monocular frameworks, a more unified framework is extracting holistic repre-
sentations from multi-camera images. The bird’s-eye-view (BEV) is a commonly used representation
of the surrounding scene since it clearly presents the location and scale of objects and is suitable for
various autonomous driving tasks, such as perception and planning [29]. Although previous map
segmentation methods demonstrate BEV’s effectiveness [32, 18, 29], BEV-based approaches have
not shown significant advantages over other paradigm in 3D object detections [47, 31, 34]. The
underlying reason is that the 3D object detection task requires strong BEV features to support accurate
3D bounding box prediction, but generating BEV from the 2D planes is ill-posed. A popular BEV
framework that generates BEV features is based on depth information [46, 32, 34], but this paradigm
is sensitive to the accuracy of depth values or the depth distributions. The detection performance of
BEV-based methods is thus subject to compounding errors [47], and inaccurate BEV features can
seriously hurt the final performance. Therefore, we are motivated to design a BEV generating method
that does not rely on depth information and can learn BEV features adaptively rather than strictly
rely on 3D prior. Transformer, which uses an attention mechanism to aggregate valuable features
dynamically, meets our demands conceptually.

Another motivation for using BEV features to perform perception tasks is that BEV is a desirable
bridge to connect temporal and spatial space. For the human visual perception system, temporal
information plays a crucial role in inferring the motion state of objects and identifying occluded
objects, and many works in vision fields have demonstrated the effectiveness of using video data [2,
27, 26, 33, 19]. However, the existing state-of-the-art multi-camera 3D detection methods rarely
exploit temporal information. The significant challenges are that autonomous driving is time-critical
and objects in the scene change rapidly, and thus simply stacking BEV features of cross timestamps
brings extra computational cost and interference information, which might not be ideal. Inspired
by recurrent neural networks (RNNs) [17, 10], we utilize the BEV features to deliver temporal
information from past to present recurrently, which has the same spirit as the hidden states of RNN
models.

To this end, we present a transformer-based bird’s-eye-view (BEV) encoder, termed BEVFormer,
which can effectively aggregate spatiotemporal features from multi-view cameras and history BEV
features. The BEV features generated from the BEVFormer can simultaneously support multiple
3D perception tasks such as 3D object detection and map segmentation, which is valuable for the
autonomous driving system. As shown in Fig. 1, our BEVFormer contains three key designs, which
are (1) grid-shaped BEV queries to fuse spatial and temporal features via attention mechanisms
flexibly, (2) spatial cross-attention module to aggregate the spatial features from multi-camera images,
and (3) temporal self-attention module to extract temporal information from history BEV features,
which benefits the velocity estimation of moving objects and the detection of heavily occluded
objects, while bringing negligible computational overhead. With the unified features generated by
BEVFormer, the model can collaborate with different task-specific heads such as Deformable DETR
[56] and mask decoder [22], for end-to-end 3D object detection and map segmentation.

Our main contributions are as follows:

•We propose BEVFormer, a spatiotemporal transformer encoder that projects multi-camera and/or
timestamp input to BEV representations. With the unified BEV features, our model can simultaneously
support multiple autonomous driving perception tasks, including 3D detection and map segmentation.
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• We designed learnable BEV queries along with a spatial cross-attention layer and a temporal
self-attention layer to lookup spatial features from cross cameras and temporal features from history
BEV, respectively, and then aggregate them into unified BEV features.

•We evaluate the proposed BEVFormer on multiple challenging benchmarks, including nuScenes [4]
and Waymo [40]. Our BEVFormer consistently achieves improved performance compared to the prior
arts. For example, under a comparable parameters and computation overhead, BEVFormer achieves
56.9% NDS on nuScenes test set, outperforming previous best detection method DETR3D [47]
by 9.0 points (56.9% vs. 47.9%). For the map segmentation task, we also achieve the state-of-
the-art performance, more than 5.0 points higher than Lift-Splat [32] on the most challenging lane
segmentation. We hope this straightforward and strong framework can serve as a new baseline for
following 3D perception tasks.

2 Related Work

2.1 Transformer-based 2D perception

Recently, a new trend is to use transformer to reformulate detection and segmentation tasks [7, 56, 22].

DETR [7] uses a set of object queries to generate detection results by the cross-attention decoder
directly. However, the main drawback of DETR is the long training time. Deformable DETR [56]
solves this problem by proposing deformable attention. Different from vanilla global attention in
DETR, the deformable attention interacts with local regions of interest, which only samples K points
near each reference point and calculates attention results, resulting in high efficiency and significantly
shortening the training time. The deformable attention mechanism is calculated by:

DeformAttn(q, p, x) =

Nhead∑
i=1

Wi

Nkey∑
j=1

Aij · W ′ix(p+ ∆pij), (1)

where q, p, x represent the query, reference point and input features, respectively. i indexes the
attention head, andNhead denotes the total number of attention heads. j indexes the sampled keys, and
Nkey is the total sampled key number for each head. Wi∈RC×(C/Hhead) and W ′i ∈R(C/Hhead)×C are
the learnable weights, where C is the feature dimension. Aij ∈ [0, 1] is the predicted attention weight,
and is normalized by

∑Nkey
j=1 Aij = 1. ∆pij ∈R2 are the predicted offsets to the reference point p.

x(p+ ∆pij) represents the feature at location p+ ∆pij , which is extracted by bilinear interpolation
as in Dai et al. [12]. In this work, we extend the deformable attention to 3D perception tasks, to
efficiently aggregate both spatial and temporal information.

2.2 Camera-based 3D Perception

Previous 3D perception methods typically perform 3D object detection or map segmentation tasks
independently. For the 3D object detection task, early methods are similar to 2D detection methods [1,
28, 49, 39, 53], which usually predict the 3D bounding boxes based on 2D bounding boxes. Wang et
al. [45] follows an advanced 2D detector FCOS [41] and directly predicts 3D bounding boxes for each
object. DETR3D [47] projects learnable 3D queries in 2D images, and then samples the corresponding
features for end-to-end 3D bounding box prediction without NMS post-processing. Another solution
is to transform image features into BEV features and predict 3D bounding boxes from the top-down
view. Methods transform image features into BEV features with the depth information from depth
estimation [46] or categorical depth distribution [34]. OFT [36] and ImVoxelNet [37] project the
predefined voxels onto image features to generate the voxel representation of the scene. Recently,
M2BEV [48] futher explored the feasibility of simultaneously performing multiple perception tasks
based on BEV features.

Actually, generating BEV features from multi-camera features is more extensively studied in map
segmentation tasks [32, 30]. A straightforward method is converting perspective view into the BEV
through Inverse Perspective Mapping (IPM) [35, 5]. In addition, Lift-Splat [32] generates the BEV
features based on the depth distribution. Methods [30, 16, 9] utilize multilayer perceptron to learn
the translation from perspective view to the BEV. PYVA [51] proposes a cross-view transformer
that converts the front-view monocular image into the BEV, but this paradigm is not suitable for
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Figure 2: Overall architecture of BEVFormer. (a) The encoder layer of BEVFormer contains
grid-shaped BEV queries, temporal self-attention, and spatial cross-attention. (b) In spatial cross-
attention, each BEV query only interacts with image features in the regions of interest. (c) In temporal
self-attention, each BEV query interacts with two features: the BEV queries at the current timestamp
and the BEV features at the previous timestamp.

fusing multi-camera features due to the computational cost of global attention mechinism [42]. In
addition to the spatial information, previous works [18, 38, 6] also consider the temporal information
by stacking BEV features from several timestamps. Stacking BEV features constraints the available
temporal information within fixed time duration and brings extra computational cost. In this work,
the proposed spatiotemporal transformer generates BEV features of the current time by considering
both spatial and temporal clues, and the temporal information is obtained from the previous BEV
features by the RNN manner, which only brings little computational cost.

3 BEVFormer

Converting multi-camera image features to bird’s-eye-view (BEV) features can provide a unified
surrounding environment representation for various autonomous driving perception tasks. In this
work, we present a new transformer-based framework for BEV generation, which can effectively
aggregate spatiotemporal features from multi-view cameras and history BEV features via attention
mechanisms.

3.1 Overall Architecture

As illustrated in Fig. 2, BEVFormer has 6 encoder layers, each of which follows the conventional
structure of transformers [42], except for three tailored designs, namely BEV queries, spatial cross-
attention, and temporal self-attention. Specifically, BEV queries are grid-shaped learnable parameters,
which is designed to query features in BEV space from multi-camera views via attention mechanisms.
Spatial cross-attention and temporal self-attention are attention layers working with BEV queries,
which are used to lookup and aggregate spatial features from multi-camera images as well as temporal
features from history BEV, according to the BEV query.

During inference, at timestamp t, we feed multi-camera images to the backbone network (e.g.,
ResNet-101 [15]), and obtain the features Ft ={F i

t }
Nview
i=1 of different camera views, where F i

t is the
feature of the i-th view, Nview is the total number of camera views. At the same time, we preserved
the BEV features Bt−1 at the prior timestamp t−1. In each encoder layer, we first use BEV queries
Q to query the temporal information from the prior BEV features Bt−1 via the temporal self-attention.
We then employ BEV queries Q to inquire about the spatial information from the multi-camera
features Ft via the spatial cross-attention. After the feed-forward network [42], the encoder layer
output the refined BEV features, which is the input of the next encoder layer. After 6 stacking encoder
layers, unified BEV features Bt at current timestamp t are generated. Taking the BEV features Bt as
input, the 3D detection head and map segmentation head predict the perception results such as 3D
bounding boxes and semantic map.
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3.2 BEV Queries

We predefine a group of grid-shaped learnable parametersQ∈RH×W×C as the queries of BEVFormer,
where H,W are the spatial shape of the BEV plane. To be specific, the query Qp ∈R1×C located
at p = (x, y) of Q is responsible for the corresponding grid cell region in the BEV plane. Each
grid cell in the BEV plane corresponds to a real-world size of s meters. The center of BEV features
corresponds to the position of the ego car by default. Following common practices [14], we add
learnable positional embedding to BEV queries Q before inputting them to BEVFormer.

3.3 Spatial Cross-Attention

Due to the large input scale of multi-camera 3D perception (containing Nview camera views), the
computational cost of vanilla multi-head attention [42] is extremely high. Therefore, we develop the
spatial cross-attention based on deformable attention [56], which is a resource-efficient attention layer
where each BEV query Qp only interacts with its regions of interest across camera views. However,
deformable attention is originally designed for 2D perception, so some adjustments are required for
3D scenes.

As shown in Fig. 2 (b), we first lift each query on the BEV plane to a pillar-like query [20], sample
Nref 3D reference points from the pillar, and then project these points to 2D views. For one BEV
query, the projected 2D points can only fall on some views, and other views are not hit. Here, we
term the hit views as Vhit. After that, we regard these 2D points as the reference points of the query
Qp and sample the features from the hit views Vhit around these reference points. Finally, we perform
a weighted sum of the sampled features as the output of spatial cross-attention. The process of spatial
cross-attention (SCA) can be formulated as:

SCA(Qp, Ft) =
1

|Vhit|
∑
i∈Vhit

Nref∑
j=1

DeformAttn(Qp,P(p, i, j), F i
t ), (2)

where i indexes the camera view, j indexes the reference points, and Nref is the total reference points
for each BEV query. F i

t is the features of the i-th camera view. For each BEV query Qp, we use a
project function P(p, i, j) to get the j-th reference point on the i-th view image.

Next, we introduce how to obtain the reference points on the view image from the projection function
P . We first calculate the real world location (x′, y′) corresponding to the query Qp located at
p = (x, y) of Q as Eqn. 3.

x′=(x−W
2

)×s; y′=(y−H
2

)×s, (3)

where H , W are the spatial shape of BEV queries, s is the size of resolution of BEV’s grids, and
(x′, y′) are the coordinates where the position of ego car is the origin. In 3D space, the objects
located at (x′, y′) will appear at the height of z′ on the z-axis. So we predefine a set of anchor
heights {z′j}

Nref
j=1 to make sure we can capture clues that appeared at different heights. In this way, for

each query Qp, we obtain a pillar of 3D reference points (x′, y′, z′j)
Nref

j=1
. Finally, we project the 3D

reference points to different image views through the projection matrix of cameras, which can be
written as:

P(p, i, j) = (xij , yij)

where zij · [xij yij 1]
T

= Ti ·
[
x′ y′ z′j 1

]T
.

(4)

Here, P(p, i, j) is the 2D point on i-th view projected from j-th 3D point (x′, y′, z′j), Ti∈R3×4 is the
known projection matrix of the i-th camera.

3.4 Temporal Self-Attention

In addition to spatial information, temporal information is also crucial for the visual system to
understand the surrounding environment [27]. For example, it is challenging to infer the velocity
of moving objects or detect highly occluded objects from static images without temporal clues. To
address this problem, we design temporal self-attention, which can represent the current environment
by incorporating history BEV features.
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Given the BEV queries Q at current timestamp t and history BEV features Bt−1 preserved at
timestamp t−1, we first align Bt−1 to Q according to ego-motion to make the features at the same
grid correspond to the same real-world location. Here, we denote the aligned history BEV features
Bt−1 as B′t−1. However, from times t− 1 to t, movable objects travel in the real world with various
offsets. It is challenging to construct the precise association of the same objects between the BEV
features of different times. Therefore, we model this temporal connection between features through
the temporal self-attention (TSA) layer, which can be written as follows:

TSA(Qp, {Q,B′t−1}) =
∑

V ∈{Q,B′t−1}

DeformAttn(Qp, p, V ), (5)

where Qp denotes the BEV query located at p = (x, y). In addition, different from the vanilla
deformable attention, the offsets ∆p in temporal self-attention are predicted by the concatenation
of Q and B′t−1. Specially, for the first sample of each sequence, the temporal self-attention will
degenerate into a self-attention without temporal information, where we replace the BEV features
{Q,B′t−1} with duplicate BEV queries {Q,Q}.
Compared to simply stacking BEV in [18, 38, 6], our temporal self-attention can more effectively
model long temporal dependency. BEVFormer extracts temporal information from the previous
BEV features rather than multiple stacking BEV features, thus requiring less computational cost and
suffering less disturbing information.

3.5 Applications of BEV Features

Since the BEV features Bt ∈ RH×W×C is a versatile 2D feature map that can be used for various
autonomous driving perception tasks, the 3D object detection and map segmentation task heads can
be developed based on 2D perception methods [56, 22] with minor modifications.

For 3D object detection, we design an end-to-end 3D detection head based on the 2D detector
Deformable DETR [56]. The modifications include using single-scale BEV features Bt as the input
of the decoder, predicting 3D bounding boxes and velocity rather than 2D bounding boxes, and only
using L1 loss to supervise 3D bounding box regression. With the detection head, our model can
end-to-end predict 3D bounding boxes and velocity without the NMS post-processing.

For map segmentation, we design a map segmentation head based on a 2D segmentation method
Panoptic SegFormer [22]. Since the map segmentation based on the BEV is basically the same as
the common semantic segmentation, we utilize the mask decoder of [22] and class-fixed queries to
target each semantic category, including the car, vehicles, road (drivable area), and lane.

3.6 Implementation Details

Training Phase. For each sample at timestamp t, we randomly sample another 3 samples from the
consecutive sequence of the past 2 seconds, and this random sampling strategy can augment the
diversity of ego-motion [57]. We denote the timestamps of these four samples as t−3, t−2, t−1 and t.
For the samples of the first three timestamps, they are responsible for recurrently generating the BEV
features {Bt−3, Bt−2, Bt−1} and this phase requires no gradients. For the first sample at timestamp
t−3, there is no previous BEV features, and temporal self-attention degenerate into self-attention. At
the time t, the model generates the BEV features Bt based on both multi-camera inputs and the prior
BEV features Bt−1, so that Bt contains the temporal and spatial clues crossing the four samples.
Finally, we feed the BEV features Bt into the detection and segmentation heads and compute the
corresponding loss functions.

Inference Phase. During the inference phase, we evaluate each frame of the video sequence in
chronological order. The BEV features of the previous timestamp are saved and used for the next, and
this online inference strategy is time-efficient and consistent with practical applications. Although we
utilize temporal information, our inference speed is still comparable with other methods [45, 47].
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4 Experiments

4.1 Datasets

We conduct experiments on two challenging public autonomous driving datasets, namely nuScenes
dataset [4] and Waymo open dataset [40].

The nuScenes dataset [4] contains 1000 scenes of roughly 20s duration each, and the key samples
are annotated at 2Hz. Each sample consists of RGB images from 6 cameras and has 360° horizontal
FOV. For the detection task, there are 1.4M annotated 3D bounding boxes from 10 categories. We
follow the settings in [32] to perform BEV segmentation task. This dataset also provides the official
evaluation metrics for the detection task. The mean average precision (mAP) of nuScenes is computed
using the center distance on the ground plane rather than the 3D Intersection over Union (IoU) to
match the predicted results and ground truth. The nuScenes metrics also contain 5 types of true
positive metrics (TP metrics), including ATE, ASE, AOE, AVE, and AAE for measuring translation,
scale, orientation, velocity, and attribute errors, respectively. The nuScenes also defines a nuScenes
detection score (NDS) as NDS= 1

10 [5mAP+
∑

mTP∈TP(1−min(1,mTP))] to capture all aspects
of the nuScenes detection tasks.

Waymo Open Dataset [40] is a large-scale autonomous driving dataset with 798 training sequences
and 202 validation sequences. Note that the five images at each frame provided by Waymo have
only about 252° horizontal FOV, but the provided annotated labels are 360° around the ego car. We
remove these bounding boxes that can not be visible on any images in training and validation sets.
Due to the Waymo Open Dataset being large-scale and high-rate [34], we use a subset of the training
split by sampling every 5th frame from the training sequences and only detect the vehicle category.
We use the thresholds of 0.5 and 0.7 for 3D IoU to compute the mAP on Waymo dataset.

4.2 Experimental Settings

Following previous methods [45, 47, 31], we adopt two types of backbone: ResNet101-DCN [15, 12]
that initialized from FCOS3D [45] checkpoint, and VoVnet-99 [21] that initialized from DD3D [31]
checkpoint. By default, we utilize the output multi-scale features from FPN [23] with sizes of 1/16, 1/32,
1/64 and the dimension of C=256 . For experiments on nuScenes, the default size of BEV queries is
200×200, the perception ranges are [−51.2m, 51.2m] for the X and Y axis and the size of resolution
s of BEV’s grid is 0.512m. We adopt learnable positional embedding for BEV queries. The BEV
encoder contains 6 encoder layers and constantly refines the BEV queries in each layer. The input
BEV features Bt−1 for each encoder layer are the same and require no gradients. For each local
query, during the spatial cross-attention module implemented by deformable attention mechanism, it
corresponds to Nref =4 target points with different heights in 3D space, and the predefined height
anchors are sampled uniformly from −5 meters to 3 meters. For each reference point on 2D view
features, we use four sampling points around this reference point for each head. By default, we train
our models with 24 epochs, a learning rate of 2×10−4.

For experiments on Waymo, we change a few settings. Due to the camera system of Waymo can
not capture the whole scene around the ego car [40], the default spatial shape of BEV queries is
300×220, the perception ranges are [−35.0m, 75.0m] for the X-axis and [−75.0m, 75.0m] for the
Y -axis. The size of resolution s of each gird is 0.5m. The ego car is at (70, 150) of the BEV.

Baselines. To eliminate the effect of task heads and compare other BEV generating methods fairly,
we use VPN [30] and Lift-Splat [32] to replace our BEVFormer and keep task heads and other
settings the same. We also adapt BEVFormer into a static model called BEVFormer-S via adjusting
the temporal self-attention into a vanilla self-attention without using history BEV features.

4.3 3D Object Detection Results

We train our model on the detection task with the detection head only for fairly comparing with
previous state-of-the-art 3D object detection methods. In Tab. 1 and Tab. 2, we report our main results
on nuScenes test and val splits. Our method outperforms previous best method DETR3D [47]
over 9.2 points on val set (51.7% NDS vs. 42.5% NDS), under fair training strategy and comparable
model scales. On the test set, our model achieves 56.9% NDS without bells and whistles, 9.0 points
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Table 1: 3D detection results on nuScenes test set. ∗ notes that VoVNet-99 (V2-99) [21] was
pre-trained on the depth estimation task with extra data [31]. “BEVFormer-S” does not leverage
temporal information in the BEV encoder. “L” and “C” indicate LiDAR and Camera, respectively.

Method Modality Backbone NDS↑mAP↑mATE↓mASE↓mAOE↓mAVE↓mAAE↓
SSN [55] L - 0.569 0.463 - - - - -
CenterPoint-Voxel [52] L - 0.655 0.580 - - - - -
PointPainting [43] L&C - 0.581 0.464 0.388 0.271 0.496 0.247 0.111

FCOS3D [45] C R101 0.428 0.358 0.690 0.249 0.452 1.434 0.124
PGD [44] C R101 0.448 0.386 0.626 0.245 0.451 1.509 0.127
BEVFormer-S C R101 0.462 0.409 0.650 0.261 0.439 0.925 0.147
BEVFormer C R101 0.535 0.445 0.631 0.257 0.405 0.435 0.143

DD3D [31] C V2-99∗ 0.477 0.418 0.572 0.249 0.368 1.014 0.124
DETR3D [47] C V2-99∗ 0.479 0.412 0.641 0.255 0.394 0.845 0.133
BEVFormer-S C V2-99∗ 0.495 0.435 0.589 0.254 0.402 0.842 0.131
BEVFormer C V2-99∗ 0.569 0.481 0.582 0.256 0.375 0.378 0.126

Table 2: 3D detection results on nuScenes val set. “C” indicates Camera.
Method Modality Backbone NDS↑ mAP↑ mATE↓ mASE↓ mAOE↓ mAVE↓ mAAE↓
FCOS3D [45] C R101 0.415 0.343 0.725 0.263 0.422 1.292 0.153
PGD [44] C R101 0.428 0.369 0.683 0.260 0.439 1.268 0.185
DETR3D [47] C R101 0.425 0.346 0.773 0.268 0.383 0.842 0.216
BEVFormer-S C R101 0.448 0.375 0.725 0.272 0.391 0.802 0.200
BEVFormer C R101 0.517 0.416 0.673 0.274 0.372 0.394 0.198

higher than DETR3D (47.9% NDS). Our method can even achieve comparable performance to some
LiDAR-based baselines such as SSN (56.9% NDS) [55] and PointPainting (58.1% NDS) [43].

Previous camera-based methods [47, 31, 45] were almost unable to estimate the velocity, and our
method demonstrates that temporal information plays a crucial role in velocity estimation for multi-
camera detection. The mean Average Velocity Error (mAVE) of BEVFormer is 0.378 m/s on the test
set, outperforming other camera-based methods by a vast margin and approaching the performance
of LiDAR-based methods [43].

We also conduct experiments on Waymo, as shown in Tab. 3. Following [34], we evaluate the
vehicle category with IoU criterias of 0.7 and 0.5. In addition, We also adopt the nuScenes metrics
to evaluate the results since the IoU-based metrics are too challenging for camera-based methods.
Due to a few camera-based works reported results on Waymo, we also use the official codes of
DETR3D to perform experiments on Waymo for comparison. We can observe that BEVFormer
outperforms DETR3D by Average Precision with Heading information (APH) [40] of 6.0% and 2.5%
on LEVEL_1 and LEVEL_2 difficulties with IoU criteria of 0.5. On nuScenes metrics, BEVFormer
outperforms DETR3D with a margin of 3.2% NDS and 5.2% AP. We also conduct experiments on
the front camera to compare BEVFormer with CaDNN [34], a monocular 3D detection method that
reported their results on the Waymo dataset. BEVFormer outperforms CaDNN with APH of 13.3%
and 11.2% on LEVEL_1 and LEVEL_2 difficulties with IoU criteria of 0.5.

4.4 Multi-tasks Perception Results

We train our model with both detection and segmentation heads to verify the learning ability of
our model for multiple tasks, and the results are shown in Tab. 4. While comparing different BEV
encoders under same settings, BEVFormer achieves higher performances of all tasks except for road
segmentation results is comparable with BEVFormer-S. For example, with joint training, BEVFormer
outperforms Lift-Splat∗ [32] by 11.0 points on detation task (52.0% NDS v.s. 41.0% NDS) and IoU
of 5.6 points on lane segmentation (23.9% v.s. 18.3%). Compared with training tasks individually,
multi-task learning saves computational cost and reduces the inference time by sharing more modules,
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Table 3: 3D detection results on Waymo val set under Waymo evaluation metric and nuScenes
evaluation metric. “L1” and “L2” refer “LEVEL_1” and “LEVEL_2” difficulties of Waymo [40]. *:
Only use the front camera and only consider object labels in the front camera’s field of view (50.4°).
†: We compute the NDS score by setting ATE and AAE to be 1. “L” and “C” indicate LiDAR and
Camera, respectively.

Method Modality
Waymo Metrics Nuscenes Metrics

IoU=0.5 IoU=0.7 NDS†↑ AP↑ ATE↓ ASE↓ AOE↓L1/APH L2/APH L1/APH L2/APH

PointPillars [20] L 0.866 0.801 0.638 0.557 0.685 0.838 0.143 0.132 0.070

DETR3D [47] C 0.220 0.216 0.055 0.051 0.394 0.388 0.741 0.156 0.108
BEVFormer C 0.280 0.241 0.061 0.052 0.426 0.440 0.679 0.157 0.101
CaDNN∗ [34] C 0.175 0.165 0.050 0.045 - - - - -
BEVFormer∗ C 0.308 0.277 0.077 0.069 - - - - -

Table 4: 3D detection and map segmentation results on nuScenes val set. Comparison of training
segmentation and detection tasks jointly or not. *: We use VPN [30] and Lift-Splat [32] to replace
our BEV encoder for comparison, and the task heads are the same. †: Results from their paper.

Method Task Head 3D Detection BEV Segmentation (IoU)
Det Seg NDS↑ mAP↑ Car Vehicles Road Lane

Lift-Splat† [32] 7 3 - - 32.1 32.1 72.9 20.0
FIERY† [18] 7 3 - - - 38.2 - -

VPN∗ [30] 3 7 0.333 0.253 - - - -
VPN∗ 7 3 - - 31.0 31.8 76.9 19.4
VPN∗ 3 3 0.334 0.257 36.6 37.3 76.0 18.0
Lift-Splat∗ 3 7 0.397 0.348 - - - -
Lift-Splat∗ 7 3 - - 42.1 41.7 77.7 20.0
Lift-Splat∗ 3 3 0.410 0.344 43.0 42.8 73.9 18.3
BEVFormer-S 3 7 0.448 0.375 - - - -
BEVFormer-S 7 3 - - 43.1 43.2 80.7 21.3
BEVFormer-S 3 3 0.453 0.380 44.3 44.4 77.6 19.8
BEVFormer 3 7 0.517 0.416 - - - -
BEVFormer 7 3 - - 44.8 44.8 80.1 25.7
BEVFormer 3 3 0.520 0.412 46.8 46.7 77.5 23.9

including the backbone and the BEV encoder. In this paper, we show that the BEV features generated
by our BEV encoder can be well adapted to different tasks, and the model training with multi-task
heads performs even better on detection tasks and vehicles segmentation. However, the jointly trained
model does not perform as well as individually trained models for road and lane segmentation, which
is a common phenomenon called negative transfer [11, 13] in multi-task learning.

4.5 Ablation Study

To delve into the effect of different modules, we conduct ablation experiments on nuScenes val set
with detection head. More ablation studies are in Appendix.

Effectiveness of Spatial Cross-Attention. To verify the effect of spatial cross-attention, we use
BEVFormer-S to perform ablation experiments to exclude the interference of temporal information,
and the results are shown in Tab. 5. The default spatial cross-attention is based on deformable
attention. For comparison, we also construct two other baselines with different attention mechanisms:
(1) Using the global attention to replace deformable attention; (2) Making each query only interact
with its reference points rather than the surrounding local regions, and it is similar to previous
methods [36, 37]. For a broader comparison, we also replace the BEVFormer with the BEV
generation methods proposed by VPN [30] and Lift-Spalt [32]. We can observe that deformable
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Table 5: The detection results of different methods with various BEV encoders on nuScenes
val set. “Memory” is the consumed GPU memory during training. *: We use VPN [30] and Lift-
Splat [32] to replace BEV encoder of our model for comparison. †: We train BEVFormer-S using
global attention in spatial cross-attention, and the model is trained with fp16 weights. In addition, we
only adopt single-scale features from the backbone and set the spatial shape of BEV queries to be
100×100 to save memory. ‡: We degrade the interaction targets of deformable attention from the
local region to the reference points only by removing the predicted offsets and weights.

Method Attention NDS↑ mAP↑ mATE↓ mAOE↓ #Param. FLOPs Memory

VPN∗ [30] - 0.334 0.252 0.926 0.598 111.2M 924.5G ∼20G
List-Splat∗ [32] - 0.397 0.348 0.784 0.537 74.0M 1087.7G ∼20G

BEVFormer-S† Global 0.404 0.325 0.837 0.442 62.1M 1245.1G ∼36G
BEVFormer-S‡ Points 0.423 0.351 0.753 0.442 68.1M 1264.3G ∼20G
BEVFormer-S Local 0.448 0.375 0.725 0.391 68.7M 1303.5G ∼20G
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Figure 3: The detection results of subsets with different visibilities. We divide the nuScenes val
set into four subsets based on the visibility that {0-40%, 40-60%, 60-80%, 80-100%} of objects can
be visible. (a): Enhanced by the temporal information, BEVFormer has a higher recall on all subsets,
especially on the subset with the lowest visibility (0-40%). (b), (d) and (e): Temporal information
benefits translation, orientation, and velocity accuracy. (c) and (f): The scale and attribute error gaps
among different methods are minimal. Temporal information does not work to benefit an object’s
scale prediction.

attention significantly outperforms other attention mechanisms under a comparable model scale.
Global attention consumes too much GPU memory, and point interaction has a limited receptive field.
Sparse attention achieves better performance because it interacts with a priori determined regions of
interest, balancing receptive field and GPU consumption.

Effectiveness of Temporal Self-Attention. From Tab. 1 and Tab. 4, we can observe that BEVFormer
outperforms BEVFormer-S with remarkable improvements under the same setting, especially on
challenging detection tasks. The effect of temporal information is mainly in the following aspects: (1)
The introduction of temporal information greatly benefits the accuracy of the velocity estimation; (2)
The predicted locations and orientations of the objects are more accurate with temporal information;
(3) We obtain higher recall on heavily occluded objects since the temporal information contains
past objects clues, as showed in Fig. 3. To evaluate the performance of BEVFormer on objects with
different occlusion levels, we divide the validation set of nuScenes into four subsets according to the
official visibility label provided by nuScenes. In each subset, we also compute the average recall of
all categories with a center distance threshold of 2 meters during matching. The maximum number of
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Table 6: Latency and performance of different model configurations on nuScenes val set. The
latency is measured on a V100 GPU, and the backbone is R101-DCN. The input image shape is
900×1600. “MS” notes multi-scale view features.

Method Scale of BEVFormer Latency (ms) FPS NDS↑ mAP↑MS BEV #Layer Backbone BEVFormer Head

BEVFormer 3 200×200 6 391 130 19 1.7 0.517 0.416
A 7 200×200 6 387 87 19 1.9 0.511 0.406
B 3 100×100 6 391 53 18 2.0 0.504 0.402
C 3 200×200 1 391 25 19 2.1 0.501 0.396
D 7 100×100 1 387 7 18 2.3 0.478 0.374
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Figure 4: Visualization results of BEVFormer on nuScenes val set. We show the 3D bboxes
predictions in multi-camera images and the bird’s-eye-view.

predicted boxes is 300 for all methods to compare recall fairly. On the subset that only 0-40% of
objects can be visible, the average recall of BEVFormer outperforms BEVFormer-S and DETR3D
with a margin of more than 6.0%.

Model Scale and Latency. We compare the performance and latency of different configurations in
Tab. 6. We ablate the scales of BEVFormer in three aspects, including whether to use multi-scale
view features, the shape of BEV queries, and the number of layers, to verify the trade-off between
performance and inference latency. We can observe that configuration C using one encoder layer in
BEVFormer achieves 50.1 % NDS and reduces the latency of BEVFormer from the original 130ms
to 25ms. Configuration D, with single-scale view features, smaller BEV size, and only 1 encoder
layer, consumes only 7ms during inference, although it loses 3.9 points compared to the default
configuration. However, due to the multi-view image inputs, the bottleneck that limits the efficiency
lies in the backbone, and efficient backbones for autonomous driving deserve in-depth study. Overall,
our architecture can adapt to various model scales and be flexible to trade off performance and
efficiency.

4.6 Visualization Results

We show the detection results of a complex scene in Fig. 4. BEVFormer produces impressive results
except for a few mistakes in small and remote objects. More qualitative results are provided in
Appendix.

5 Discussion and Conclusion

In this work, we have proposed BEVFormer to generate the bird’s-eye-view features from multi-
camera inputs. BEVFormer can efficiently aggregate spatial and temporal information and generate
powerful BEV features that simultaneously support 3D detection and map segmentation tasks.

Limitations. At present, the camera-based methods still have a particular gap with the LiDAR-based
methods in effect and efficiency. Accurate inference of 3D location from 2D information remains a
long-stand challenge for camera-based methods.
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Broader impacts. BEVFormer demonstrates that using spatiotemporal information from the multi-
camera input can significantly improve the performance of visual perception models. The advantages
demonstrated by BEVFormer, such as more accurate velocity estimation and higher recall on low-
visible objects, are essential for constructing a better and safer autonomous driving system and
beyond. We believe BEVFormer is just a baseline of the following more powerful visual perception
methods, and vision-based perception systems still have tremendous potential to be explored.
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Appendix

A Implementation Details

In this section, we provide more implementation details of the proposed method and experiments.

A.1 Traning Strategy

Following previous methods [47, 56], we train all models with 24 epochs, a batch size of 1 (containing
6 view images) per GPU, a learning rate of 2×10−4, learning rate multiplier of the backbone is 0.1,
and we decay the learning rate with a cosine annealing [24]. We employ AdamW [25] with a weight
decay of 1×10−2 to optimize our models.

A.2 VPN and Lift-Splat

We use VPN [30] and Lift-Splat [32] as two baselines in this work. The backbone and the task heads
are the same as the BEVFomer for fair comparisons.

VPN. We employ the official codes1 in this work. Limited by the huge amount of parameters of MLP,
it is difficult for VPN to generate high-resolution BEV (e.g., 200× 200). To compare with VPN, in
this work, we transform the single-scale view features into BEV with a low resolution of 50×50 via
two view translation layers.

Lift-Splat. We enhance the camera encoder of Lift-Splat2 with two additional convolutional layers
for a fair comparison with our BEVFormer under a comparable parameter number. Other settings
remain unchanged.

A.3 Task Heads

Map Query BEV Feature 𝐵𝑡

M
a
sk

R
e
su

lt

Multi-Head Attention

Add & Norm

Feed Forward

Refined Query

Add & Norm

Query

Next Layer

Attention Maps

256 × 1400

256 × 2500

Flatten

Reshape

256 × 28 × 50

View Features

256 × 50 × 50

BEV Features

256 × 2500

(a) View Transformer Module (b) Mask DecoderFigure 5: Segmentation head (mask decoder)
of BEVFormer.

Detection Head. We predict 10 parameters for each 3D bound-
ing box, including the 3 parameters (l, w, h) for the scale of
each box, 3 parameters (xo, yo, zo) for the center location, 2
parameters (cos(θ), sin(θ)) for object’s yaw θ, 2 parameters
(vx, vy) for the velocity. Only L1 loss and L1 cost are used dur-
ing training phase. Following [47], we use 900 object queries
and keep 300 predicted boxes with highest confidence scores
during inference.

Sementation Head. As shown in Fig. 5, for each class of
the semantic map, we follow the mask decoder in [22] to use
one learnable query to represent this class, and generate the
final segmentation masks based on the attention maps from the
vanilla multi-head attention.

A.4 Spatial Cross-Attention

Global Attention. Besides deformable attention [56], our spatial cross-attention can also be imple-
mented by global attention (i.e., vanilla multi-head attention) [42]. The most straightforward way to
employ global attention is making each BEV query interact with all multi-camera features, and this
conceptual implementation does not require camera calibration. However, the computational cost of
this straightforward way is unaffordable. Therefore, we still utilize the camera intrinsic and extrinsic
to decide the hit views that one BEV query deserves to interact. This strategy makes that one BEV
query usually interacts with only one or two views rather than all views, making it possible to use
global attention in the spatial cross-attention. Notably, compared to other attention mechanisms that
rely on precise camera intrinsic and extrinsic, global attention is more robust to camera calibration.

1https://github.com/pbw-Berwin/View-Parsing-Network
2https://github.com/nv-tlabs/lift-splat-shoot
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Figure 6: NDS of methods on nuScenes val set subjected to different levels of camera extrinsics
noises. For i-th level noises, the rotation noises are sampled from a normal distribution with
mean equals 0 and variance equals i (rotation noise are in degrees, and the noise of each axis is
independent), and the translation noises are sampled from a normal distribution with mean equals
0 and variance equals 5i (translation noises are in centimeters, and the noise of each direction is
independent). “BEVFormer” is our default version. “BEVFormer (noise)” is trained with noisy
extrinsics (noise level=1). “BEVFormer-S” is our static version of BEVFormer with the spatial cross-
attention implemented by deformable attention [56]. “BEVFormer-S (global)” is BEVFormer-S with
the spatial cross-attention implemented by global attention (i.e., vanilla multi-head attention) [42].
“BEVFormer-S (point)” is BEVFormer-S with point spatial cross-attention where we degrade the
interaction targets of deformable attention from the local region to the reference points only by
removing the predicted offsets and weights.

B Robustness on Camera Extrinsics

BEVFormer relies on camera intrinsics and extrinsics to obtain the reference points on 2D views.
During the deployment phase of autonomous driving systems, extrinsics may be biased due to
various reasons such as calibration errors, camera offsets, etc. As shown in Fig. 6, we show the
results of models under different camera extrinsics noise levels. Compared to BEVFormer-S (point),
BEVFormer-S utilizes the spatial cross-attention based on deformable attention [56] and samples
features around the reference points rather than only interacting with the reference points. With
deformable attention, the robustness of BEVFormer-S is stronger than BEVFormer-S (point). For
example, with the noise level being 4, the NDS of BEVFormer-S drops 15.2% (calculated by 1− 0.380

0.448 ),
while the NDS of BEVFormer-S (point) drops 17.3%. Compared to BEVFormer-S, BEVFormer
only drops 14.3% NDS, which shows that temporal information can also improve robustness on
camera extrinsics. Following [32], we show that when training BEVFormer with noisy extrinsics,
BEVFormer (noise) has stronger robustness (only drops 8.9% NDS). With the spatial cross-attention
based on global attention, BEVFormer (global) has a strong anti-interference ability (4.0% NDS
drop) even under level 4 of the camera extrinsics noise. The reason is that we do not utilize camera
extrinsics to select the RoIs for BEV queries.

Notably, under the harshest noises, we see that BEVFormer-S (global) even outperforms BEVFormer-
S (38.8% NDS vs. 38.0% NDS).

C Ablation Studies

Effect of the frame number during training. Tab. 7 shows the effect of the frame number during
training. We see that the NDS on nuScenes val set keeps rising with the growth of the frame number
and begins to level off the frame number ≥ 4. Therefore, we set the frame number during training to
4 by default in experiments.
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Table 7: NDS of models on nuScenes val set
using different frame numbers during train-
ing. “#Frame” denotes the frame number during
training.

#Frame NDS↑ mAP↑ mAVE↓
1 0.448 0.375 0.802
2 0.490 0.388 0.467
3 0.510 0.410 0.423
4 0.517 0.416 0.394
5 0.517 0.412 0.387

Table 8: Ablation Experiments on nuScenes
val set. “A.” indicates aligning history BEV fea-
tures with ego-motion. “R.” indicates randomly
sampling 4 frames from 5 continuous frames.
“B.” indicates using both BEV queries and his-
tory BEV features to predict offsets and weights.

# A. R. B. NDS↑ mAP↑
1 7 3 3 0.510 0.410
2 3 7 3 0.513 0.410
3 3 3 7 0.513 0.404

4 3 3 3 0.517 0.416

Effect of some designs. Tab. 8 shows the results of several ablation studies. Comparing #1 and #4, we
see that aligning history BEV features with ego-motion is important to represent the same geometry
scene as current BEV queries (51.0% NDS vs. 51.7% NDS). Comparing #2 and #4, randomly
sampling 4 frames from 5 frames is a effective data augment strategy to improve performance (51.3%
NDS vs. 51.7% NDS). Compared to only using the BEV query to predict offsets and weights during
the temporal self-attention module (see #3), using both BEV queries and history BEV features (see
#4) contain more clues about the past BEV features and benefits location prediction (51.3% NDS vs.
51.7% NDS).

D Visualization

As shown in Fig. 7, we compare BEVFormer with BEVFormer-S. With temporal information,
BEVFormer successfully detected two buses occluded by boards. We also show both object detection
and map segmentation results in Fig. 8, where we see that the detection results and segmentation
results are highly consistent. We provide more map segmentation results in Fig. 9, where we see that
with the strong BEV features generated by BEVFormer, the semantic maps can be well predicted via
a simple mask decoder.
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Figure 7: Comparision of BEVFormer and BEVFormer-S on nuScenes val set. We can observe
that BEVFormer can detect highly occluded objects, and these objects are missed in the prediction
results of BEVFormer-S (in red circle).
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Figure 8: Visualization results of both object detection and map segmentation tasks. We show
vehicle, road, and lane segmentation in blue, orange, and green, respectively.
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Figure 9: Visualization results of the map segmentation task. We show vehicle, road, ped crossing
and lane segmentation in blue, orange, cyan, and green, respectively.
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