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ABSTRACT

Recent advancements in software engineering (SWE) agents have largely followed
a tool-based paradigm, where agents interact with hand-engineered tool APIs
to perform specific tasks. While effective for specialized tasks, these methods
fundamentally lack generalization, as they require predefined tools for each task
and do not scale across programming languages and domains. We introduce
Programming with Pixels (PwP), an agent environment that unifies soft-
ware development tasks by enabling computer-use agents—agents that operate
directly within an IDE through visual perception, typing, and clicking, rather than
relying on predefined tool APIs. To systematically evaluate these agents, we pro-
pose PwP-Bench, a benchmark which unifies existing SWE benchmarks spanning
tasks across multiple programming languages, modalities, domains under a task-
agnostic state and action space. Our experiments demonstrate that general-purpose
computer-use agents can approach or even surpass specialized tool-based agents
on a variety of SWE tasks without the need for hand-engineered tools. However,
our analysis shows that current models suffer from limited visual grounding and
fail to exploit many IDE tools that could simplify their tasks. When agents can
directly access IDE tools, without visual interaction, they show significant perfor-
mance improvements, highlighting the untapped potential of leveraging built-in
IDE capabilities. Our results establish PwP as a scalable testbed for building and
evaluating future computer-use SWE agents that interact directly with development
environments.

1 INTRODUCTION

Human software developers possess a remarkable ability to work across a wide range of programming
tasks, seamlessly adapting to new languages, tools, and problem domains. Realizing a single, general-
purpose agent with similar versatility is the overarching goal of many recent efforts in code generation
and software engineering automation Jiang et al. (2024); Jin et al. (2024); Wang et al. (2024b).
However, most software engineering agents (SWE agents) still rely on a tool-based paradigm, where
an agent takes actions using hand-engineered functions (e.g., search repository, run Python code)
exposed through a text API Yang et al. (2024a;b); Wang et al. (2024a;b). This fundamentally limits
generalization, since tool-based agents can only perform tasks using the predefined actions. For
example, an agent designed to manage GitHub pull requests lacks debugging abilities unless it is
programmed into the agent’s API. Furthermore, the tool-based paradigm lacks scalability, as hand-
engineering complex tools requires significant human effort and may not be bug-free. As a result,
it remains unclear whether the tool calling paradigm scales to the diversity of software engineering
tasks, which spans multiple languages, modalities, and task types.

Our motivating hypothesis is that achieving general-purpose SWE agents requires a shift to computer-
use agents Anthropic (2024) that interact with computers as humans do: by observing the screen,
typing, and clicking. To this end, we recast agentic software engineering as interacting directly with
an integrated development environment (IDE) by observing its visual state and using basic actions
such as clicking and typing. This allows the agent to perform any task possible in an IDE, and
leverage all of the IDE’s tools—from debuggers to web browsers—without requiring specialized
APIs. However, despite promising results in web navigation Anthropic (2024) and open-ended
computer tasks Xie et al. (2024), we lack a dedicated environment for software engineering, and the
ability of computer-use agents to perform software engineering remains underexplored.
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Figure 1: Comparison between traditional tool-based paradigm (left) and our proposed
Programming with Pixels (PwP) framework (right) for software engineering (SWE) agents.
Instead of relying on specialized hand-engineered tools, PwP enables agents to interact directly
with an IDE through basic computer interactions and screen observation. The framework naturally
integrates with existing IDE capabilities across multiple languages and tools. Further PwP-Bench
is a comprehensive benchmark to evaluate agent performance across different SWE domains.

To close this gap, we introduce Programming with Pixels (PwP), the first software engineering agent
environment aimed at general-purpose computer-use agents. The PwP environment is a VSCode-
based IDE where agents perceive the screen and use primitive actions such as typing, pointing, and
clicking. PwP fulfills two key properties. First, the environment is expressive, allowing agents to
complete any software engineering task achievable in an IDE, without language- or domain- specific
modifications. Second, agents naturally interact with any tools available in the IDE–including
debuggers, linters, and code suggestions while handling diverse data types such as images, videos,
PDFs–through basic actions such as clicking and typing. This notion of tool use fundamentally differs
from hand-engineered tool APIs, offering scalability and reducing hand-engineering effort for AI
agents. Namely, PwP lets agents take advantage of the rich tools already accessible to humans in an
IDE, rather than reinventing the wheel. Finally, computer-use agents reduce complex tool pipelines
(e.g., tool-specific prompts), opening up a simplified approach to general-purpose SWE agents.

To further evaluate agents developed for computer-use we construct PwP-Bench, a unified bench-
mark of 15 tasks spanning a variety of software engineering activities, including code generation,
pull request resolution, UI development, and DevOps workflows. We show for the first time that
general-purpose computer-agents can achieve non-trivial performance on a wide variety of tasks,
often approaching or even exeeding state-of-the-art tool-based agents. However, our analysis reveals
substantial opportunities for future work. First, even state-of-the-art computer-use agents suffer from
visual grounding issues. Second, we show that current agents lack the ability to use many of the tools
available in the IDE, including ones that could make their tasks trivial. This suggests that training
agents to explore and use the tools available in the IDE is a fruitful future direction. Finally, we find
that only one model (Claude (Anthropic, 2024)) performs well, highlighting the need for further
research into training and improving computer-use agents.

In summary, our contributions are five-fold: First, we introduce Programming with Pixels
(PwP), the first software engineering-focused environment for evaluating computer-use agents. Sec-
ond, we propose PwP-Bench, a benchmark spanning 15 diverse SWE domains, allowing for
systematic comparison of software engineering agents. Third, we demonstrate, for the first time, that
computer-use agents can perform a wide variety of software engineering tasks without additional
hand-engineering of their action or observation space. Fourth, we analyze the limitations of current
computer-use agents, identifying the need for models that better leverage IDE tooling and highlight-
ing agent training as a key future direction. Finally, both existing agents and benchmarks can be
easily incorporated into our unified environment, positioning PwP to serve as a common platform for
developing future SWE agents. Overall, PwP challenges the prevailing tool-based paradigm for SWE
agents and provides a platform for developing more general agents that interact directly with IDEs.
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2 RELATED WORK

Task-specific SWE benchmarks Prior work has focused on isolated tasks like code generation
from docstrings Chen et al. (2021), pull request resolution Jimenez et al. (2023), and multimodal
programming Si et al. (2024). While valuable, these benchmarks are confined to specific languages,
modalities, or task types. In contrast, PwP-Bench unifies these diverse evaluations into a single
framework, encompassing multimodal and multilingual challenges that require extensive interaction
with IDE tools.

SWE Agents Recent code agents have moved toward interactive approaches but often specialize in
particular tools or languages Jin et al. (2024); Xia et al. (2024). For instance, Agentless relies on
Python-specific tools Xia et al. (2024), while SWE-agent requires task-specific modifications Yang
et al. (2024a) (See Appendix A.1 for comparison with other methods). In contrast, PwP agents are
inherently task and language-agnostic due to our environment’s expressive action space, with tools
available directly within the IDE rather than requiring hand-engineered solutions.

Visual Agents and Computer-Use Agents Visual agents Koh et al. (2024a); Deng et al. (2023)
typically rely on limited action sets and struggle with complex IDE interfaces. While computer-use
agents Anthropic (2024); OpenAI (2025) offer more expressive interactions, they lack SWE-specific
environments for evaluation. PwP bridges this gap by providing a unified IDE platform for testing
and developing such agents on realistic SWE tasks.

Expressive Agent Environments Existing environments like OSWorld Xie et al. (2024) target
general scenarios but lack SWE focus. PwP specifically addresses software engineering challenges
while maintaining compatibility with existing agents through IDE modifications that enable direct
tool access and state information.

For detailed comparisons and extended discussion, we urge readers to check Appendix B.

3 PROGRAMMING WITH PIXELS (PWP)

Modern software engineering (SWE) often requires using multiple programming languages, tools,
and modalities. Furthermore, it relies on a wealth of tools that required tremendous human effort
to create: from linters, to visual code debuggers, to project management tools. Motivated by these
observations, we create Programming with Pixels (PwP), an IDE environment that satisfies two
properties: (i) it is expressive, meaning that an agent can perform any task that is achievable through
a sequence of primitive operations (e.g., typing or clicking) within an IDE; (ii) an agent has access
to any tool implemented within the IDE, since using a tool amounts to performing a sequence of
primitive actions.

3.1 PWP ENVIRONMENT

We represent the PwP environment as a partially observable Markov decision process (POMDP).
We define the PwP POMDP ⟨S,A,O, T,R⟩ as follows. The state space S describes the IDE and
operating system context, including open files, active editor panels, and cursor positions. The action
space A encompasses all possible keyboard and mouse events, with atomic actions provided by
the xdotool library Sissel in a simple syntax. Both A and the observation space O further varies
based on the agent setting (§5). The transition function T handles both deterministic changes (e.g.,
character insertion) and stochastic elements from background processes. Finally, the reward function
R measures task performance, for instance by running test suites on updated files after bug fixes.

Trajectories in PwP can thus resemble real-world development work: an agent can fix a bug in a
repository, use a suggestion tool to help with writing code, or create documentation. The IDE and its
operating system environment track changes, run tests, and return reward signals.

3.2 KEY FEATURES OF PROGRAMMING WITH PIXELS

Expressive observation and action space. A typical approach to building agents is to engineer at
set of high-level actions for operations like “open file” or “list symbols in file”, and then engineer an
environment that supports each action Xia et al. (2024); Yang et al. (2024b); Wang et al. (2024b).
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Table 1: Comparison of PwPwith existing environments across different dimensions. PwP uniquely
combines comprehensive IDE tool support with full multimodal support, general action space, and
execution-based evaluation, while maintaining software engineering specificity.

Multi- General Observation State Tools Execution-Based SWE
Environment modal Action Space Space Checkpointing Reward Specific

GAIA Mialon et al. (2023) ✗ ✗ Text ✗ Limited ✗ ✗
SWE-Bench Jimenez et al. (2023) ✗ ✗ Text ✗ Limited ✓ ✓
SWE-Bench-MM Yang et al. (2024b) ✓ ✗ Text ✗ Limited ✓ ✓
WEBSHOP Yao et al. (2023) ✗ ✗ Text ✗ Browser ✗ ✗
WEBARENA Zhou et al. (2024) ✗ ✗ Text ✗ Browser ✗ ✗
VWEBARENA Koh et al. (2024a) ✓ ✓ Screen ✗ Browser ✗ ✗
OpenHands Wang et al. (2024b) Text, Image ✗ Tool Output ✗ SWE ✓ ✓
TheAgentCompany Xu et al. (2024) Text, Image ✗ Tool Output ✗ SWE ✓ ✓
OSWORLD Xie et al. (2024) Text, Image ✓ Screen ✗ OS ✓ ✗
WindowsAgentArena Bonatti et al. (2024) Text, Image ✓ Screen ✗ OS ✓ ✗

PwP (Ours) Text, Image, Video, Audio ✓ Screen ✓ All IDE Tools ✓ ✓

Furthermore, agents receive textual outputs that are manually reformatted for each action. The key
difficulty is that such engineering does not scale to a large number of actions or to the full range of
software engineering tasks, and the agent may be specialized to the observation and action space.
In contrast, PwP preserves the standard screen-based user interaction. The agent can navigate IDE
menus visually, moves the cursor, and presses keys. This makes the environment expressive: an agent
can achieve any task that can be achieved through a sequence of primitive actions in an IDE.

Full Spectrum of Developer Tools. A modern IDE offers debuggers, linters, version control,
refactoring utilities, integrated terminals, and many extensions. In particular, PwP is developed on
top of VSCode, which has a rich set of built-in functionalities and extensions. Implementing each of
these into an agent or environment would require significant human effort. However, PwP provides
these capabilities out-of-the-box within a single environment. Agents can set breakpoints, execute
code, use language-specific extensions, review error messages, or run tests in a consistent interface.

Multimodality and Language Agnosticism. Because the IDE supports numerous programming
languages through extensions and built-in modules, PwP naturally covers tasks across Python, Java,
JavaScript, Lean and more without requiring separate integrations. For instance, agents can use the
same debugger interface for all languages, or use pre-existing linters provided by IDE extensions.
Beyond screenshots, the environment provides video streams and audio, though we leave exploring
these for future work.

Rich Feedback and State Access. PwP can evaluate performance immediately using testing frame-
works or compilation checks. For instance, if the agent modifies a file, the IDE can automatically
trigger a build, update diagnostics, or run tests, generating real-time feedback. In cases requiring
deeper inspection—such as verifying that a bug is truly fixed—the environment can reveal file-system
changes, process states, or test results.

Future adaptability. As agents continue to evolve, PwP provides a unified environment for incorpo-
rating new benchmarks and training. For example, PwP is amenable to reinforcement learning due to
its use of the standard gymnasium Towers et al. (2024) interface and its checkpointing functionality.
We show an example of how to interact with PwP in Figure 5 Checkpointing also allows for back-
tracking in search-based methods Koh et al. (2024b); Putta et al. (2024). As software-engineering
practices progress and new IDE tools emerge, PwP incorporates them without additional engineering
overhead. Further, as agents become more ubiquitous, it is imperative to evaluate their capabilities
in pair-programming scenarios with human developers. PwP also supports concurrent user-agent
interaction, potentially enabling new kinds of pair-programming or real-time collaboration studies.
Finally, adding new tasks requires only minimal modification to configuration and evaluation files.

3.3 INFRASTRUCTURE AND IMPLEMENTATION

PwP is deployed in a secure sandboxed environment. In particular, we run a modified version of
Visual Studio Code (VSCode) and a minimal operating system inside a Docker container, ensuring a
secure and isolated environment. We chose VSCode for its extensive language support, rich ecosystem
of extensions, widespread adoption in the developer community, and open-source nature that enables
customization and modification of its core functionality. Each container instance maintains its own
file system and processes, preventing interference between experiments, facilitates reproducibility,
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and ensures parallelization of evaluation. We further provide the ability to checkpoint environment
state, especially useful for backtracking while training RL agents.

The environment interfaces with VSCode through multiple channels: 1.) A controller that manages
Docker container lifecycle and configuration, 2.) A port-forwarding system for real-time screen and
video capture, 3.) A modified VSCode codebase that exposes DOM state information, and 4) The
VSCode Extension API for accessing fine-grained IDE state. This multi-channel approach enables
both high-level environment control and detailed state observation.

Screen capture is handled via ImageMagick for static screenshots and ffmpeg for streaming
video output. These tools were selected for their low latency and ability to handle various screen
resolutions and color depths. For actions, a lightweight controller executes xdotool commands
within the container, which in turn simulates keyboard and mouse events on the IDE. Agents can thus
insert code, open new files, or navigate menus using the same actions that a human developer would.

A Python API is provided for interaction, following a style similar to common reinforcement learning
libraries such as gymnasium Towers et al. (2024). The API abstracts away container management
complexity, handling observations and actions, allowing researchers to focus on agent development.
Users can query the environment for the latest screenshot, issue an xdotool command, and receive
updated states or rewards. The environment’s container configuration is flexible, allowing arbitrary
software installations, customizable CPU/memory limits, and display settings. This versatility is
crucial for large-scale evaluation, especially when tasks vary in complexity and resource needs.

4 PWP-BENCH

We introduce PwP-Bench, a benchmark comprising 15 diverse software engineering tasks that span
8 programming languages and multiple modalities. Each task provides agents with access to the
complete suite of tools available in the PwP environment. The purpose of PwP-Bench is to assess
how well agents handle a broad range of software engineering (SWE) activities, thereby testing the
generality of their code-generation and SWE capabilities.

Tasks PwP-Bench contains 5400 instances covering 15 tasks, sourced from 13 existing code-
generation datasets and 2 newly created by us. These tasks are designed to be representative of the
breadth of software engineering—including tasks beyond conventional code generation to capture
real-world complexities—and can be expanded as models excel in newer tasks. We followed three
guiding principles: (1) tasks should require significant interaction with various SWE tools, (2) each
task should necessitate multiple steps to complete, and (3) the overall benchmark should span multiple
programming languages and modalities. Based on these principles, we collected diverse tasks and
grouped them into four categories:

• Code Generation and Editing: Evaluates the ability of agents to generate and edit code. This
category includes datasets such as HumanEval for code completion, SWE-Bench Jimenez et al.
(2023) and SWE-Bench-Java Zan et al. (2024) for resolving pull requests, DSBench Jing et al.
(2024) for data science tasks, and Res-Q LaBash et al. (2024) or CanITEdit Cassano et al. (2024)
for code editing. Each dataset benefits from different tools; for example, SWE-Bench can take
advantage of debuggers and linters, whereas DSBench may leverage an IPython kernel and tools
for analyzing large data files. Code editing tasks further require refactoring utilities and repository
searches, covering varied input-output formats and end goals.

• Multimodal Code Synthesis: Involves creating code based on input images or other visual data.
Examples include Design2Code Si et al. (2024) for UI development, Chart2Mimic Shi et al. (2024)
for generating Python code from chart images, SWE-Bench-MM Yang et al. (2024b) for multimodal
code editing, and DSBench tasks that rely on images or PDF documents during data analysis.

• Domain-Specific Programming: Focuses on specialized fields such as ethical hacking (CTF) Yang
et al. (2023b) and theorem proving (miniCTX) Hu et al. (2024). These tasks demand significant
interactivity with IDE components. For example, theorem proving requires continuous inspection
of goal states via an interactive interface, while CTF tasks often involve analyzing images, running
executables, or installing VSCode extensions (e.g., hexcode readers).

• IDE-Specific and General SWE Tasks: Recognizing that code generation is only one aspect of
software engineering, we introduce two novel task sets to evaluate broader SWE skills. The first,
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IDE Configuration, assesses an agent’s ability to modify IDE settings—such as themes, extension
installations, and preferences—that are critical for effective tool use in a complex environment.
The second, which we term General SWE, targets non-code activities such as profiling, designing
UI mockups, managing Kanban boards, and project refactoring. These tasks capture essential
operational skills typically required by human developers but largely absent from conventional
code generation benchmarks.

Note that a single task may appear in more than one category. Figure 2 shows the distribution of
tasks across all categories. In total, PwP-Bench covers Python, Java, JavaScript, HTML, CSS, Bash,
SQL, and Lean, requiring agents to work with text, images, data files, and other data types. Effective
interaction with IDE tools is essential; an agent that succeeds across these tasks demonstrates strong
potential for automating a wide range of software engineering activities.

Multimodal 

Code Gen

SWE

Tasks

Code Gen

& Editing

Domain
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Figure 2: Distribution of tasks
in PWP-Bench across four main
categories: Code Generation and
Editing, Multimodal Code Synthe-
sis, Domain-Specific Programming,
and General SWE Tasks. The in-
ner ring shows the main categories
while the outer ring shows datasets
and tasks within each category.

Benchmarking Design and Task Setup Every task is evalu-
ated within the PwP environment. Unlike traditional bench-
marks that provide structured, well-formatted context (for
example, supplying all relevant schemas in text-to-SQL),
PwP-Bench presents agents with an IDE containing a code-
base rich in information. Specifically, an agent is provided with
an initial environment state Si and an instruction I . The agent’s
goal is to update the codebase to satisfy I and transition to a
final state Sf . Only Sf is evaluated, using execution-based
criteria (e.g., running unit tests). This setup requires agents to
autonomously discover and extract relevant information from
files, directories, and other resources—mirroring the challenges
faced in real-world software development.

Many tasks in PwP-Bench require extensive multi-turn inter-
actions and can be time-consuming. To support large-scale
evaluations, PwP enables parallelized testing in a sandboxed
environment, ensuring both security and reproducibility. Tasks
can also be configured to restrict or partially allow internet
access based on experimental needs. Furthermore, as software
engineering tasks evolve with advancements in model capa-
bilities, our benchmark is designed to grow over time. New
tasks can be incorporated by creating simple setup scripts that
define the IDE’s initial state and evaluation logic, ensuring that
PwP-Bench remains modular and adaptable.

PwP-Lite Because PwP-Bench contains more than 5400
instances in total, running a full evaluation can be computationally expensive. To address this, we also
provide PwP-Bench-Lite—a smaller subset comprising 300 instances, with 20 random samples per
task. This subset preserves the overall difficulty and distribution while ensuring equal representation
for each task, thereby making rapid experimentation more accessible.

5 AGENTS IN PROGRAMMING WITH PIXELS

The primary objective of Programming with Pixels is to enable general-purpose SWE agents. We
evaluate state-of-the-art agents based on vision-language models in our environment. Each agent
operates in a turn-based manner, receiving a screenshot each turn and returning an action (keyboard
or mouse action) to progress toward the goal. This design is same as used in previous works Xie
et al. (2024); Koh et al. (2024a) and we refer them to as computer-use agents. In practice, most
vision-language models struggle with raw image inputs. To mitigate this, we incorporate Set-of-Marks
(SoM) Yang et al. (2023a), in which the agent receives both the raw image and a parse of available
interface element (e.g., buttons, text fields). The agent can then interact with the desired element ID
instead of raw pixel coordinates.
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Table 2: Performance Evaluation of Different Agents on PwP-Bench by Task Categories

Inputs Outputs Model Code Generation Multimodal Domain-Specific General Overall
& Editing Code Generation Code Generation SWE Tasks Avg

Screenshot
+ SoM

Keyboard
+ Mouse

GPT-4o 0.8% 16.4% 1.7% 10.0% 6.4%
GPT-4o-mini 0.8% 8.0% 0.0% 2.5% 2.8%
Gemini-Flash 0.0% 10.6% 0.0% 0.0% 2.8%
Gemini-Pro 2.5% 11.9% 0.0% 7.5% 5.2%
Claude-Sonnet 10.0% 18.5% 5% 20.0% 13.0%

Screenshot
+ SoM
+ Tool
Output

Keyboard
+ Mouse
+ Tool
Call
(File, Bash)

GPT-4o 37.0% 48.1% 28.3% 5.0% 34.0%
GPT-4o-mini 23.6% 25.4% 15.0% 5.0% 19.9%
Gemini-Flash 10.4% 19.9% 8.3% 2.5% 11.1%
Gemini-Pro 30.9% 24.7% 3.3% 5.0% 20.3%
Claude-Sonnet 52.1% 57.7% 43.3% 20.0% 47.2%

Previously Reported State of the Art 53.7% 54.6% 51.2% - -

We evaluate two categories of computer-use agents. The first category only outputs keyboard and
mouse clicks. In summary, O = a screenshot and set-of-marks annotations. A = keyboard and
mouse clicks with set-of-marks.

The second category of computer-use agents has access to file and bash commands supplied by the
environment through an API. These file and bash actions are provided in PwP in similar design
principle as Anthropic computer-use Anthropic (2024) which consists of file operations such as read
file, create file, and string replace. In summary, O = a screenshot and set-of-marks annotations and
text output from actions if performed. A = keyboard, mouse, and file and bash operation actions.

While the above agent design favors generalizability and simplicity, we note that current vision-
language models, and in particular prior works on tool-based agents, are incapable of interacting with
computers using primitive observation and action spaces. To support such agents, in Analysis 6.2, we
create a tool-based agent design compatible with PwP. We provide agents with domain-specific tools,
enabling them to perform high-level actions (such as getting file structure) through API calls instead
of UI interactions. Each high-level action is implemented as a sequence of low-level actions executed
in PwP. This setting lets us test current state-of-the-art SWE agents within the PwP environment.

6 EXPERIMENTS

Experimental setup We evaluate two categories of baseline agents as described in Section 5. In each
configuration, we employ five state-of-the-art vision-language models: Gemini-Flash-1.5, Gemini-
Pro-1.5, GPT-4o, GPT-4o-mini, and Claude-3.5 Sonnet. With the exception of Claude—which is
natively trained for UI interaction—the remaining models are provided with a SoM image.

At each timestep, an agent receives an observation (with the observation space determined by its
category) and returns an action. The complete history of observations and actions is incorporated
into the model’s context. For each task instance, the maximum number of iterations is capped at 20
steps; if the agent either exhausts these steps or issues a stop command, the environment’s final state
is evaluated using task-specific metrics (see Appendix C for full details). Notably, the agent design
remains the same throughout all tasks. Due to computational and budget constraints, we evaluate on
PwP-Bench-Lite, which comprises 300 task instances.

6.1 RESULTS

Table 2 summarizes performance across different agent architectures and base models over the four
categories of PwP-Bench. When only screenshots are provided to the VLMs, they achieve near-zero
accuracy in most categories, with a maximum overall average of 13.0%. We attribute this poor
performance primarily to limited visual grounding and an inability to interact effectively with the
IDE—particularly for file editing and tool usage (see Section 6.2 for further analysis).

In contrast, when agents are granted access to file editing and bash operations through API calls rather
than relying solely on UI interactions, we observe consistent improvements across all categories, with
maximum average accuracy reaching 47.2%. Among the evaluated models, the Claude computer-
use agent performs best, likely because it is specifically trained for UI interactions. As a result,
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The input *eld for `python.linting.pylintArgs` now contains 

"--disable=import-error”.

    The search results for "python.linting.pylintArgs" are displayed.   

Model Response

Figure 3: Example of Agent Hallucinating
Screen Contents The agent hallucinates an in-
put field containing “disable import error” (red)

Figure 4: Wrong mouse click by Claude-
Computer Use Agent The agent attempted to
click Settings icon but clicked at wrong position.

this agent leverages basic IDE tools—such as HTML live preview, chart visualization, and file
navigation—to boost performance on tasks requiring visual understanding and IDE navigation.
Notably, we demonstrate for the first time that a single computer-use agent can achieve performance
comparable to state-of-the-art methods across a wide variety of SWE tasks—encompassing multiple
languages, modalities, and domains—while operating within a unified environment and interface.

Nonetheless, as detailed in Section 6.2, the models are currently incapable of using the tooling
available in the IDE. If they could use the IDE more effectively, performance would likely improve
further across the board. This is evidenced by the poor performance on the ‘General SWE’ dataset,
where tasks are often as simple as editing IDE settings and often require fewer than four clicks to
complete. As we show in Section 6.2, these tasks become simpler if the models could use the IDE
tooling more effectively. Overall, while the results point toward a promising direction for developing
general computer-use SWE agents, significant improvements are still needed in visual grounding,
tool usage, and planning capabilities. We analyze these in the following sections.

6.2 ANALYSIS

Agents Demonstrate Poor Visual Grounding Capabilities Our qualitative analysis across multiple
VLMs on PwP-Bench reveals significant limitations in visual understanding—even for basic IDE
interactions. We identify two primary failure modes. First, models frequently fail to correctly identify
the UI elements intended for interaction, as demonstrated in Figure 3, 4. In agents using SOM,
this issue manifests as incorrect element selection, while without SoM it leads to inaccurate mouse
positioning. Second, models struggle to comprehend the current UI state. As shown in Figure 8, 9,
they consistently fail to recognize highlighted elements, cannot detect linter errors indicated by
wavy underlines (Figure 6), and often confuse active panels—resulting, for example, in typing into
search bars rather than file editors (Figure 8). While similar issues have been documented in web
and OS domains Koh et al. (2024a); Xie et al. (2024), these limitations were primarily observed in
models without UI-specific training. However, our work, shows even models explicitly trained for UI
interaction Anthropic (2024), including Claude-Computer Use, exhibit these issues in PwP—likely
due to the increased complexity of the IDE interface.

Agents Struggle with File Editing and Error Recovery. Our analysis reveals significant limitations
in agents’ file editing capabilities, even for models specifically trained on UI interactions. These
models commit basic editing errors and struggle with tasks like indentation—likely due to either
overfitting to simpler interfaces or the increased complexity of IDE environments (See Figure 6, 7).
While direct file access is available, this limitation prevents agents from leveraging valuable IDE
features like notebook editing and visual diff comparisons. Furthermore, agents demonstrate poor
error recovery capabilities, often persisting with failed actions or incorrect solution paths. When
we deliberately suppressed actions, agents continued their planned sequences despite clear visual
feedback showing unchanged states, suggesting a concerning reliance on memorized action sequences
rather than dynamic environmental adaptation. We refer readers to Appendix D.1 for more examples.

Agents struggle at using IDE functionality. We find that computer-use agents perform poorly
when utilizing the tools provided within the IDE. For instance, we observed no instances of using
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debuggers or listing symbols in code files. Models that are not specifically trained for UI interaction
struggle with even basic tools such as HTML live preview, previewing images in the codebase, and
generating or visualizing images and graphs. Among the evaluated models, only Claude demonstrates
the ability to use these basic tools, as evidenced by performance improvements observed across
multimodal tasks. However, even Claude is limited to the simplest tool functions; it is unable to
use more advanced tools, such as profilers or debuggers. To evaluate these capabilities in detail, we
constructed ‘General-SWE’ dataset—where the objective is to perform software engineering activities
(e.g., profiling, refactoring, debugging) without editing or writing code. Although these tasks can
typically be completed in 4-5 steps using IDE tools, the agents achieve only trivial performance,
highlighting the potential for improvement in tool usage.

Table 3: Comparison of Different Agent Types Across Selected Tasks

SWE-Bench Design2Code Chartmimic BIRD

Computer Use I 0% 23.5% 2.7% 0%
Computer Use II 15% 48.1% 25.3% 7%
Assisted 19% 79.5% 61.6% 17%

Training models to use IDE
tools better would improve
performance. While a sin-
gle computer-use agent de-
sign can perform well across
a wide variety of tasks, our
results indicate that these
models do not fully exploit
domain-specific tools. As an indication of the potential for performance gains if the agent was
able to effectively use the IDE, we perform an “assisted” experiment.

In this experiment, we manually engineer a set of API calls that are useful for the tasks. For example,
in Design2Code, assisted agents has a API call for a live HTML preview, while for SweBench it
has API calls for retrieving repository structure and symbol outlines. Importantly, each API call
is achievable using basic operations in the IDE, meaning that in principle an agent could learn to
perform it. To ensure that each API call is achievable in the IDE, we implement each API call by
executing a fixed sequence of low-level IDE actions, with the details abstracted away from the agent.

Table 3 compares the performance of these assisted agents with that of standard computer-use agents
across four datasets for which we manually created tools. The assisted agents achieve up to a 13.3%
improvement in average scores relative to the non-assisted agents. This suggests that training agents
to explore and use the built-in IDE functionality would yield performance gains. It also suggests
that in the near term, we can get performance gains by introducing hand-engineered tools into the
computer-use agent and incorporate existing agent designs in our unified PwP environment.

Further, our ‘General-SWE’ tasks specifically evaluate scenarios where IDE tool usage would be
beneficial. In one representative example involving symbol renaming across a project, Claude
achieves 0% accuracy when attempting the task without tools. When explicitly instructed to use
the renaming tool, its accuracy improves to 50% (See Appendix D). However, this improvement is
limited to simple tools—when presented with more complex tools like debuggers, the agent fails to
utilize them entirely. These results further emphasize the potential for improving tool-use through
computer-interaction for improving performance.

7 CONCLUSION

In this work, we introduce PwP, a unified environment that challenges the prevailing tool-based
paradigm by enabling direct interaction with IDEs through basic computer-use actions like typing
and clicking. This approach allows for a wide range of tasks to be modeled without language- or
domain-specific modifications, demonstrated through PwP-Bench, a unification of existing SWE
datasets evaluated consistently in PwP. Our results show that general-purpose computer-agents can
approach or outperform previous state-of-the-art results, without any task-specific improvements.
This suggests that the dominant paradigm of building specialized text-based tools for SWE agents may
be superseded by end-to-end computer-use agents. However, our analysis reveals even state-of-the-art
agents are still incapable of using the extensive set of tools available in PwP, and could perform
better if they could use them. Our work opens up an exciting new direction of development of
computer-use agents for SWE tasks, an important step towards reaching truly general purpose SWE
agents. By providing a common platform that can incorporate both existing agents and benchmarks,
PwP positions itself as a foundation for future research in this direction.
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Table 4: Comparison of Hand-engineered Tools across Methods versus PwP. PwP natively supports
all tools.

Method Hand-engineered Tools Supported in PwP
Agentless Xia et al. (2024) File Edit, Repository Structure, File Structure ✓
CodeAct Wang et al. (2024a) File Edit, IPython, Bash ✓
SWE-agent Yang et al. (2024a) Search File, Search Text, File Edit ✓
EnIGMA Abramovich et al. (2024) SWE-agent Tools + Debugger, Terminal, Connection Tool ✓
swebench-mm Yang et al. (2024b) SWE-agent Tools + View Webpage, Screenshot, Open Image ✓

1 bench = PwPBench(dataset=’swebench’)
2 # Replace with any dataset from PwP-Bench
3 dataset = bench.get_dataset()
4

5 # Set up environment and get initial observation
6 env = bench.get_env(dataset[0])
7 observation: PIL.Image = env.get_observation()[’screenshot’]
8

9 # Generate and execute action
10 action = agent.get_action(observation)
11 print(action)
12 # Output: xdotool mousemove 1000 1200
13 # click 1 && xdotool type ’hello world’
14 observation, info = env.step(action)
15

16 env.render()
17

18 # State Checkpointing
19 env.add_checkpoint(’before_submit’)
20 state = env.step(’xdotool key Return’)
21 env.resume_checkpoint(’before_submit’)
22

23 # Environment control
24 env.pause()
25 env.resume()
26

27 # Get reward and reset
28 is_success = env.get_reward()
29 env.reset()
30

Figure 5: Example demonstrating interaction with PwP environment, including keyboard/mouse
actions, checkpointing, and state management. The code shows basic initialization, action execution,
environment control, and reward handling.

A PROGRAMMING WITH PIXELS (PWP) ENVIRONMENT

A.1 TOOLS

Previous methods have proposed use of various hand-engineered tools. However, as shown in Table 4,
PwP natively supports all these tools.

A.2 EXAMPLE INTERACTION

Figure 5 shows an example of how to interact with PwP environment.
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B RELATED WORK

B.1 TASK-SPECIFIC SWE BENCHMARKS

Early neural code generation approaches were typically evaluated on fixed input-output pairs—for ex-
ample, generating code from docstrings Chen et al. (2021) or from general textual descriptions Austin
et al. (2021). Subsequent benchmarks extended these evaluations to interactive settings, such as
resolving GitHub pull requests or writing unit tests for real-world code repositories Jimenez et al.
(2023); Zan et al. (2024); Mündler et al. (2025). More recently, efforts have broadened the scope of
code generation to include multimodal tasks, where vision models must interpret images to generate
correct code or edits Si et al. (2024); Shi et al. (2024); Jing et al. (2024); Yang et al. (2024b). However,
each of these benchmarks is confined to specific languages, modalities, or task types. In contrast,
our proposed PwP-Bench unifies these diverse evaluations into a single framework, encompassing
multimodal and multilingual challenges that require extensive interaction with a broad suite of IDE
tools. Using this unified approach we not only reproduce the performance of established benchmarks
but also encourage the development of general-purpose agents capable of handling a superset of
software engineering tasks. We show comparison of PwP-Bench with other datasets in Table 5.

B.2 SWE AGENTS

Recent works have explored “code agents” that move beyond single-step neural code generation
toward interactive methods, where intermediate feedback from tools informs subsequent actions.
However, many of these approaches specialize in particular tools or programming languages Jin et al.
(2024); Yang et al. (2024b), limiting their broader applicability. For example, Agentless Xia et al.
(2024) relies on a tool that parses files into Python-specific class and function structures, requiring
additional adaptation and failing to perform well in other languages or settings Yang et al. (2024b).
Similarly, SWE-agent requires modifications to adapt to different tasks Abramovich et al. (2024);
Yang et al. (2024b). In contrast, agents designed for PwP are inherently task and language-agnostic
due to the expressive action and observation spaces mandated by our environment. Moreover, the
diverse tasks in PwP-Bench require agents to generalize across a wide range of SWE challenges
rather than excel in one narrowly defined area.

Many existing agents also depend on hand-engineered tools that demand substantial human effort and
are susceptible to bugs. For instance, Agentless Xia et al. (2024) leverages tools for parsing files into
Python-specific structures; CodeAct relies on an IPython kernel Wang et al. (2024a); SWE-agent uses
dedicated search and file editing tools Yang et al. (2024a); AutoCodeRover requires a linter Zhang et al.
(2024); and SWE-agent EnIGMA develops specialized tools for CTF-style competitions Abramovich
et al. (2024), while swebench-mm Yang et al. (2024b) employs a browser view. In PwP, most of
these tools are inherently available within the IDE (as detailed in the Appendix A.1), and the agent’s
task is to effectively utilize them rather than being explicitly guided on which tool to use for each
specific task.

Finally, current approaches often blur the line between the agent and the environment, as each agent
is designed with its own specified action and observation spaces within a self-created environment.
Programming with Pixels addresses this issue by unifying existing environments into a
single, general-purpose platform on which agents operate. This clear separation of environment
design from agent design standardizes evaluation and also allows any existing agent to be modeled
within our framework, making it an important testbed for both current and future SWE agents.

B.3 VISUAL AGENTS AND COMPUTER-USE AGENTS

Several multimodal agent benchmarks have recently been proposed Koh et al. (2024a); Deng et al.
(2023); Zheng et al. (2024) that require agents to operate user interfaces using a predefined, limited
set of actions (e.g., new tab, go back, click [element id]). These visual agents typically
rely on additional prompting—such as set-of-marks techniques that supply an HTML accessibility
tree containing textual and positional information—to overcome their inherent poor visual grounding
capabilities Yang et al. (2023a). Despite such aids, these agents often fail when faced with the
complex and dense IDE interfaces found in our environment.
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In contrast, computer-use agents Anthropic (2024); OpenAI (2025); Gou et al. (2024) are trained to
operate with an expressive action and observation space using primitive operations like clicks and
keystrokes, without the need for external accessibility elements. However, there has been a lack of
a SWE-specific environment for evaluating and further training these agents. PwP fills this gap by
providing a unified, expressive IDE platform that challenges computer-use agents with realistic and
diverse SWE tasks.

B.4 EXPRESSIVE AGENT ENVIRONMENTS

Prior work on expressive agent environments has predominantly targeted the web domain Koh
et al. (2024a); Deng et al. (2023), entire operating systems Xie et al. (2024); Bonatti et al. (2024);
Rawles et al. (2023), or other general scenarios Xu et al. (2024). Some of these environments,
such as OSWorld, feature general action and observation spaces similar to ours. However, although
these benchmarks are capable of expressing a wide range of tasks, they do not focus on the unique
challenges inherent to software engineering within an IDE. For example, while OSWorld Xie et al.
(2024) offers a broad set of tasks, it is not specifically designed for SWE, resulting in increased
computational overhead. Software engineering is a diverse and important domain that merits its own
dedicated environment.

In contrast, we design PwP so that existing agents can be readily incorporated into our framework.
Specifically, we modify the sourcecode of IDE to facilitate developement of tools previously used
by agents directly through an API call instead of user interaction. These specific modifications to
the IDE enable agents to interact effectively with the environment and gain direct access to IDE
state information—facilitating both tool utilization and robust evaluation. Furthermore, PwP-Bench
is tailored specifically for multimodal SWE tasks within an IDE, encompassing activities such as
pull-request handling, debugging, and image-based code generation across multiple programming
languages. We also observe that existing agents built for generic UI control often struggle in the PwP
environment, as they must interact with a richer set of tools and achieve precise visual grounding
within a complex interface containing a large number of interactive elements. We compare PwP with
other environments in Table 1.

C PWP-BENCH

Metrics We use individual metrics mentioned in original datasets. When reporting results on
PwP-Bench, we report marco average of all these metrics. In particular 11/15 using Accuracy as
their metric. However, due to complexity of dataset, these often goes beyond simple accuracy metric
and in some cases, the dataset is evaluated on multiple orthogonal metrics, instead of one. We detail,
these metrics for each of the datasets.

• SWT-Bench evaluates generated tests by the agent, and reports 6 different metrics: Applica-
bility, Success Rate, F- X, F- P, P- P and Coverage. We report average of all 6 metrics.

• ChartMimic evaluates generated code on various metrics such as accuracy of text, colors
used, legend etc. We average all metrics similar to original dataset.

• Design2Code evaluates generated code on various metrics such as accuracy of text, position,
clip score, etc. We average all metrics similar to original dataset.

• DSBench has two categories, one containing MCQ questions, while other containing
generating code for Kaggle Competitions. We use 10/10 instances from each category in
PwP-Bench-Lite. While MCQ questions are evaluated using Accuracy, the code generation
part is evaluated using linear normalization between baseline score (of the competition) and
the score of the winner of competition.

D RESULTS

Table 6 shows results for all agent designs on each of 15 datasets in PwP-Bench. Along with
the results of our two categories of agents, we also include previously state-of-the-art results for
comparison. We make our best effort to include latest publicly available results, however, there may
be minor discrepancies.
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Table 5: Comparison of existing software engineering benchmarks. PwP-Bench provides the
largest dataset (5400 instances) and uniquely covers all aspects: multiple languages and modalities,
real IDE interaction, interactive coding, and both code generation and general software engineering
tasks.

#Instances Multiple Multiple Real IDE Interactive Non-Code Code-Generation
Benchmark Languages Modalities Env Coding SWE Tasks SWE Tasks

SWE-Bench Jimenez et al. (2023) 2K ✗ ✗ ✗ ✓ ✗ ✓
SWE-Bench-MM Yang et al. (2024b) ≤ 1K ✗ ✓ ✗ ✓ ✗ ✓
LiveCodeBench Jain et al. (2024) ≤ 1K ✗ ✗ ✗ ✓ ✗ ✓
Aider Polyglot Aider (2024) ≤ 1K ✓ ✗ ✗ ✓ ✗ ✓

TheAgentCompany Xu et al. (2024) ≤ 1K ✗ ✓ ✓ ✓ ✓ ✗
VisualWebArena Koh et al. (2024a) ≤ 1K ✗ ✓ ✗ ✗ ✗ ✗
OSWORLD Xie et al. (2024) ≤ 1K ✗ ✓ ✓ ✗ ✓ ✗
WindowsAgentArena Bonatti et al. (2024) ≤ 1K ✗ ✓ ✓ ✗ ✓ ✗

PwP-Bench (Ours) 5400 ✓ ✓ ✓ ✓ ✓ ✓

Table 6: Performance Evaluation of Different Models Across Task Categories. Leged: HE: Hu-
manEval, SB: SWEBench, SJ: Swebench-Java, RQ: ResQ, CI: CaniteEdit, ST: SWTBench, DC:
Design2Code, CM: ChartMimic, DS: DSBench, SM: Swebench-MM, IC: Intercode-CTF, BD: Bird
SQL, MC: Minictx, VS: VSCode, GS: No-Code SWE Tasks. *Much more costly method

Code Generation & Editing Multimodal Domain-Specific No-Code
Code Generation Code Generation SWE Tasks Overall

Model HE SB SJ RQ CI ST DC CM DS SM IC BD MC VS GS Avg
Computer-Use Agents (Screenshot + SoM)
GPT-4o 5% 0.0% 0.0% 0.0% 0.0% 0.0% 48.7% 0.7% 16.1% 0.0% 5.0% 0.0% 0.0% 20.0% 0.0% 6.4%
GPT-4o-mini 0.0% 0.0% 0.0% 0.0% 5.0% 0.0% 14.8% 0.0% 17.2% 0.0% 0.0% 0.0% 0.0% 5.0% 0.0% 2.8%
Gemini-Flash 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 15.2% 2.0% 25.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 2.8%
Gemini-Pro 10.0% 0.0% 0.0% 0.0% 5.0% 0.0% 14.5% 8.1% 25.0% 0.0% 0.0% 0.0% 0.0% 15.0% 0.0% 5.2%
Claude-Sonnet 20.0% 0.0% 0.0% 15.0% 25.0% 4.2% 18.1% 0.0% 50.0% 10.0% 15.0% 0.0% 0.0% 35.0% 5.0% 13.2%
Computer-Use Agents (Screenshot + SoM + File/Bash Operations)
GPT-4o 85% 25% 15% 30% 50% 17.0% 70.2% 65.5% 36.6% 20% 70% 10% 5% 10% 0.0% 34.0%
GPT-4o-mini 60% 10% 5% 20% 30% 16.7% 41.3% 5.5% 39.6% 15% 40% 5% 0% 10.0% 0.0% 19.9%
Gemini-Flash 0 5% 5% 15% 15% 17.1% 19.9% 13.5% 36.0% 10% 25% 0% 0% 5% 0.0% 11.1%
Gemini-Pro 85% 10% 15% 15% 40.0% 20.2% 25.6% 24.7% 33.6% 15% 5% 5% 0% 10% 0.0% 20.3%
Claude-Sonnet 95% 25% 35% 55% 65% 37.4% 83.4% 71.2% 66.3% 10% 100% 15% 15% 35% 5.0% 47.2%
Previous State of the Art Reported*

98.8% 55%* 9.9% 58% 63.3% ≈ 37% 90.2% 71.4% 44.6% 12.2% 72% 30.2% - - - 42.8%*

D.1 ANALYSIS

Agents Fail to Edit Files. The deficiencies in visual grounding significantly impact the file editing
capabilities of VLMs. Even when provided with cursor location information in textual form, these
models struggle to interpret such data amid complex UI elements. Models fine-tuned for UI interac-
tions still commit basic editing errors—such as incorrect indentation and text misplacement—and
are unable to recover from these errors (see Appendix for examples). We speculate these limitations
could stem from two factors: (i) model overfitting to user interafaces in their training domains, or (ii)
the increased complexity of the PwP IDE interface, which contains substantially more interactable
elements than typical web or OS environments. Addressing these limitations represents an important
direction for future work. Although direct file access via tool operations is available, UI-based
editing confers unique advantages for tasks such as editing Jupyter notebooks, comparing changes,
or modifying specific sections of large files. These results underscore two limitations: (i) current
VLMs are challenged by complex UI interactions beyond simple web/OS interfaces Xie et al. (2024);
Koh et al. (2024a), and (ii) the inability to effectively perform UI-based editing prevents agents from
leveraging valuable IDE features that could have improved their performance.

Agents Are Incapable of Recovering from Errors. Our analysis indicates that agents—especially
those based on smaller models—demonstrate limited error recovery capabilities. When an action
fails to execute correctly, models tend to persistently repeat the same failed action without exploring
alternatives. Similarly, if an agent selects an incorrect action, it continues along an erroneous solution
path without recognizing or correcting the mistake. In an experiment designed to further probe
this behavior, we deliberately suppressed one of the model’s actions. Despite the environment’s
screenshot clearly showing an unchanged state, the models proceeded with their planned action
sequence as though the suppressed action had succeeded. This behavior suggests a heavy reliance
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Figure 6: Example of Agent Missing Visual
Error Indicators The agent fails to recognize
linter error indicators (wavy underlines).

Figure 7: Example of Agent’s Inability to Per-
form File Editing The agent incorrectly positions
new content in the file editor.

Figure 8: Example of Agent Misidentifying UI
Elements The agent fails to identify the correct
input field, typing ’50’ into the settings search bar
instead of the word wrap column setting field.

Figure 9: Example of Agent Misidentifying Ac-
tive Panel The agent fails to recognize the active
editor panel, incorrectly typing into the search bar
(red arrow) instead of the file editor.

on memorized action sequences rather than dynamic responses to visual feedback, resulting in
exponentially increasing error propagation and ultimately poor performance. This inablity of current
agent’s not being able to recover from errors, results in exponentially increasing error propogation,
resulting in poor performance.

E DISCUSSION

Why use IDE over simple Bash Agent? A natural question, that arises is given that PwP requires
more complex visual grounding capabilities, why not use simple bash scripts for all task. The shorter
answer, is because modern IDEs, have been developed over multiple years of effort, and provide
several advantages that are not possible with bash interface. While, theoretically it may still be
possible to create equivalent tools, it would take similar tremendous effort, to develop them again for
agents, with less reliability.

To give few examples of myriads advantages of IDEs:

• Interactive Debugging Capabilities

– IDEs provide rich, stateful debugging interfaces that allow AI agents to set breakpoints,
inspect variables, and evaluate expressions dynamically

– Unlike CLI debuggers (GDB, LLDB, pdb), IDE debuggers maintain visual context
and state, making it easier for AI agents to track program flow and debug complex
scenarios

– The visual representation of stack traces and variable states is more structured and
machine-parseable compared to text-based CLI output

• Intelligent Code Refactoring
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– IDEs maintain a complete Abstract Syntax Tree (AST) of the project, enabling accurate
symbol renaming and code restructuring across multiple files

– AI agents can leverage IDE’s semantic understanding to perform complex refactoring
operations with higher confidence

– Unlike text-based search-and-replace in Bash, IDE refactoring tools understand code
context and prevent accidental modifications to unrelated symbols

• Test Management and Coverage Analysis
– IDEs provide structured APIs for test discovery, execution, and result analysis
– AI agents can efficiently track test coverage through visual indicators and programmatic

interfaces
– Real-time test feedback and coverage data is more readily accessible compared to

parsing CLI test runner output
• Performance Profiling and Analysis

– IDE profilers offer structured data about CPU usage, memory allocation, and runtime
behavior

– Visual representations of performance metrics (flame graphs, memory usage) are easier
for AI agents to analyze systematically

– Profiling data is available through APIs rather than requiring parsing of complex
text-based output

• Code Indexing and Semantic Search
– IDEs maintain comprehensive code indexes that enable fast, context-aware code search

and navigation
– AI agents can leverage these indexes for more accurate code understanding and modifi-

cation
– Unlike grep or find, IDE search capabilities understand code structure and can filter

based on semantic properties
• Extension Integration and Automation

– IDE extensions can be programmatically controlled through APIs, allowing AI agents
to leverage additional tools seamlessly

– Extensions can provide structured data and interfaces that are more reliable for automa-
tion compared to parsing CLI tool output

– Configuration and coordination of multiple tools can be managed through unified IDE
interfaces rather than managing separate CLI tools
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