
Training-Free Feature Reconstruction with Sparse Optimization
for Vision-Language Models

Yi Zhang
Harbin Institute of Technology,

Southern University of Science and
Technology

Shenzhen, China
zhangyi2021@mail.sustech.edu.cn

Ke Yu
University of California San Diego

San Diego, CA
key022@ucsd.edu

Angelica I Aviles-Rivero
University of Cambridge

Cambridge, United Kingdom
ai323@cam.ac.uk

Jiyuan Jia
Southern University of Science and

Technology
Shenzhen, China

jiajy2018@mail.sustech.edu.cn

Yushun Tang
Southern University of Science and

Technology
Shenzhen, China

tangys2022@mail.sustech.edu.cn

Zhihai He∗
Southern University of Science and

Technology
Shenzhen, China

hezh@sustech.edu.cn

Abstract
In this paper, we address the challenge of adapting vision-language
models (VLMs) to few-shot image recognition in a training-free
manner. We observe that existing methods are not able to effec-
tively characterize the semantic relationship between support and
query samples in a training-free setting. We recognize that, in the
semantic feature space, the feature of the query image is a linear and
sparse combination of support image features since support-query
pairs are from the class and share the same small set of distinctive
visual attributes. Motivated by this interesting observation, we pro-
pose a novel method called Training-free Feature ReConstruction
with Sparse optimization (TaCo), which formulates the few-shot
image recognition task as a feature reconstruction and sparse op-
timization problem. Specifically, we exploit the VLM to encode
the query and support images into features. We utilize sparse opti-
mization to reconstruct the query feature from the corresponding
support features. The feature reconstruction error is then used to
define the reconstruction similarity. Coupled with the text-image
similarity provided by the VLM, our reconstruction similarity anal-
ysis accurately characterizes the relationship between support and
query images. This results in significantly improved performance
in few-shot image recognition. Our extensive experimental results
on few-shot recognition demonstrate that our method outperforms
existing state-of-the-art approaches by substantial margins.
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1 Introduction
Recently, considerable attention has been directed towards large-
scale pre-trained Vision-Language Models (VLMs) for natural lan-
guage processing and computer vision. These models exploit ex-
tensive datasets containing both images and corresponding textual
descriptions to acquire unified representations of visual and textual
data. VLMs, such as CLIP [36], leverage extensive pre-training to
establish connections between text and images, showcasing notable
achievements in few-shot learning through fine-tuning [12, 36]. Ex-
isting fine-tuning methods for few-shot image recognition can be
classified into two categories, (1) input-level prompting approaches,
such as CoOp [61], CoCoOp [60], ProDA [30], and PLOT [2], and
(2) feature-level fine-tuning methods, such as CLIP-Adapter [12]
and Tip-Adapter [56]. For example, the CoOp method [61] intro-
duces learnable prompts aimed at distilling task-specific knowledge.
PLOT [2] learns multiple comprehensive prompts to depict diverse
category characteristics. CLIP-Adapter [12] learns a feature adapter
to enhance conventional fine-tuning outcomes.

Among existing methods, training-free, few-shot image recog-
nition based on VLMs has emerged as an interesting research
task. Tip-Adapter [56], following the footsteps of CLIP-Adapter,
presents a training-free paradigm by establishing a key-value cache
model from few-shot samples. The APE method [63] analyzes the
inter-class disparity in the downstream data and decouple the
domain-specific knowledge from the CLIP-extracted cache model
for training-free few-shot image recognition.

We observe that existing training-free methods, mainly based on
nearest neighbor analysis, are not able to effectively characterize
the sophisticated semantic relationship between support and query
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Figure 1: Feature reconstruction attention map. (a) shows fea-
ture reconstruction with sparse optimization, and (b) for fea-
ture reconstruction without sparse optimization. As shown
in (a) and (b), sparse optimization can direct attention toward
more informative target features and minimize attention to
the profitless features for reconstruction.

samples. In this paper, we recognize that the query and support
images of the same class share a common small set of distinctive
visual attributes. For example, the query and support images from
the "cat" class share the same distinctive visual features of cats, such
as cat eyes, mouth, paws, and tail. Motivated by this observation, we
hypothesize that, in the semantic feature space, the feature of the
query image can be considered as a linear and sparse combination
of support image features since the support-query pairs share the
same small set of visual attributes.

Based on this hypothesis, we propose a novel method called
Training-free Feature ReConstructionwith Sparse optimization (TaCo),
formulating the few-shot image recognition task as a feature recon-
struction and sparse optimization problem. Specifically, using the
VLM, we encode the query and support images into features. We
attempt to leverage sparse optimization to reconstruct the query
feature from the corresponding support features. As illustrated in
Figure 1, the proposed feature reconstruction between the query

and support images using sparse optimization is able to guide at-
tention toward more informative target regions. This approach
minimizes attention to the features that hold minimal significance
in the reconstruction process. If the query image is from the same
class as the support images, their reconstruction error should be
small. Therefore, we can use the feature reconstruction error to
define the reconstruction similarity for few-shot image recogni-
tion. Coupled with the text-image similarity provided by the VLM,
reconstruction similarity analysis can accurately characterize the re-
lationship between support and query images, thereby resulting in
significantly improved performance in few-shot image recognition.

The contributions of this work can be summarized as follows:
1) We propose a novel training-free method for adapting VLMs to
few-shot image recognition by image feature reconstruction with
spare optimization. 2) We develop a method to solve the sparse
optimization problem for query feature reconstruction based on
alternative direction methods. We fuse the feature prediction simi-
larity obtained from this reconstruction process and the text-image
similarity obtained by the CLIPmodel to form few-shot image recog-
nition. 3) Our extensive experimental results demonstrate that the
proposed method has significantly improved the performance of
training-free few-shot image recognition, and outperforms existing
state-of-the-art approaches by substantial margins.

2 Related Work
2.1 Pre-Trained Vision-Language Models
VLMs establish connections between image content and language.
Numerous studies have delved into VLMs to acquire comprehensive
visual representations guided by natural language supervision [7,
14, 25, 39]. Recently, VLMs based on contrastive learning have
demonstrated remarkable performance by leveraging large-scale,
noisy image-text pairs from the web. For example, CLIP [36] and
ALIGN [20] employ contrastive loss to learn aligned representations
of image and text, pulling close the representations of matching
pairs and pushing apart those of mismatched pairs. Guided by
natural language supervision, these VLMs not only acquire robust
visual representations but also exhibit seamless transferability to
diverse downstream tasks, encompassing image retrieval [10, 29],
visual grounding [26, 52], visual question answering [10, 24, 62], as
well as image manipulation and synthesis [19, 22, 40, 54].

2.2 Adapting VLMs to Few-Shot Classification
Enhancing the adaptability of VLMs to few-shot classification is
achievable through fine-tuning. Current methods fall into two cate-
gories: input-level prompting and feature-level adapters.

Input-level Prompting Methods are influenced by the suc-
cess observed in prefix-tuning within the realm of natural lan-
guage processing [6, 13, 21, 28]. These methods, tailored for fine-
tuning pre-trained VLMs, center their efforts on crafting thoughtful
prompts and introducing adaptable context to distill task-specific
information from the encoded knowledge [43, 60, 61]. Recent ad-
vancements in prompt tuning methods that have demonstrated
substantial enhancements include CoOp [61], a groundbreaking
work that optimizes prompt context using learnable vectors in a
unified or class-specific manner. Additionally, CoCoOp [60] builds
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upon CoOp by incorporating the ability to generate vectors condi-
tioned on each image, addressing the challenge of generalizing to
unseen classes. TPT [32] dynamically learns adaptive prompts with
just a single test sample, while ProDA [30] captures diverse prompt
distributions to accommodate varying visual representations. DeFo
[48] leverages feature-level textual prompts to learn decomposed
visual features. PLOT [2] employs the strategy of learning multiple
comprehensive prompts to describe diverse category characteris-
tics. In addition, CPL [58] exploits the powerful comprehension of
VLMs and utilizes visual concepts to further improve benchmark
performance.

Feature-level Adapter Methods directly adjust the representa-
tions generated by CLIP’s visual and text encoders. Taskres [53] op-
erates directly on the text-based classifier, explicitly separating prior
knowledge from pre-trained models and new knowledge relevant
to a target task. Pioneering this approach, CLIP-Adapter [12] intro-
duces an additional feature adapter to enhance conventional fine-
tuning outcomes. Subsequently, Tip-Adapter [56] achieves further
improvements by constructing a key-value cache model based on
low-shot samples and fine-tuning for a reduced number of epochs.
BDC-Adapter [57], leverages the Brownian Distance Covariance to
better model both linear and nonlinear relations, to achieve better
reasoning ability. Following the adapter-based paradigm, our work
adapts VLMs to few-shot classification by feature reconstruction.

2.3 Reconstruction-Related Few-Shot Learning
Feature reconstruction, a well-established technique in object track-
ing and alignment [9, 42, 47], has recently found application in few-
shot image classification. DeepEMD [55] addresses reconstruction
as an optimal transport problem. CrossTransformer [8] and CrossAt-
tention [18] incorporate attention modules projecting query fea-
tures into the support feature space. They compare class-conditioned
projections to the target, predicting class membership. FRN [50]
frames membership as a feature map reconstruction problem by
regressing directly from support features to query features in closed
form. In this work, we propose a parameter-efficient reconstruction-
based method for adapting VLMs to few-shot learning.

3 Proposed Method
3.1 Method Overview
As shown in Figure 2, given the pre-trained CLIP and a new dataset
with 𝑁 -shot 𝐷-class training samples for few-shot learning, there
are 𝑁 annotated images in each of the 𝐷 categories. For each
class 𝑑 ∈ 𝐷 , using the CLIP image encoder, we encode support
images and pool their features into a feature matrix denoted as
S𝑑 ∈ R𝑁𝐻4𝑊4×𝐶 , referred as the support feature map. Similarly,
we generate the query feature map mq ∈ R𝐻4𝑊4×𝐶 for the query
image 𝑥𝑞 . Then, we attempt to reconstruct the feature map mq
through a weighted combination of the rows within S𝑑 . The recon-
structed query feature map can be calculated by m∗

q = wS𝑑 . Here,
w ∈ R𝐻4𝑊4×𝑁𝐻4𝑊4 is optimized such that the product wS𝑑 closely
approximates mq, which we formulate as a sparse optimization
problem. In other words, we require that the reconstruction matrix
w be sparse so that the query feature can be reconstructed from a
small set of selected features in the support feature map. From the
attention perspective, we wish that the query image can inherit the

distinctive visual attributes of the support set and the reconstruc-
tion process can guide the attention towards this small set of visual
attributes. If the query image is from the same class as the support
images, their reconstruction error should be small. Therefore, we
can use the feature reconstruction error to define the reconstruction
similarity for few-shot image recognition. Also, we analyze the sim-
ilarity between the query image feature and the text feature of each
class. The reconstruction similarity and the text-image similarity
are then fused to form the final class prediction.

Our model is constructed based on CLIP, utilizing 𝐸𝑡 as the text
encoder and 𝐸𝑣 as the image encoder [37]. For instance, considering
the ResNet encoder, which consists of a total of 4 stages, we denote
the feature maps as {x𝑖 }4𝑖=1. In contrast to the original ResNet,
CLIP introduces a slight modification by incorporating an attention-
pooling layer. CLIP initially applies global average pooling to x4 ∈
R𝐻4𝑊4×𝐶 to derive a global feature x̄4 ∈ R1×𝐶 , where 𝐻4, 𝑊4,
and 𝐶 represent the height, width, and number of channels of the
4th stage feature maps in the backbone. The combined features
[x̄4, x4] are subsequently inputted into a multi-head self-attention
layer (MHSA), represented as [m̄,m] = MHSA( [x̄4, x4]). In the
conventional CLIP training process, the global feature m̄ serves
as the image encoder output, while other outputs m are typically
disregarded. However, we have found an intriguing aspect of m: it
retains sufficient spatial information and can function as a feature
map. Furthermore, it should be mentioned that in architectures
such as ViT, obtaining m can be achieved similarly by omitting the
class token from the output.

3.2 Sparsity Guided Feature Reconstruction
In this section, we discuss why sparse optimization is beneficial
for reconstructing features. For a better explanation, we denote
two sets: C containing only cat images and D containing only
dog images. The VLM is represented as Φ, which takes an image
I as input and produces 𝑁 feature vectors for each class. The set
of extracted feature vectors serving as a basis for the cat set C is
denoted as SC = {c1, c2, . . . , c𝑁𝑐

}, where 𝑁𝑐 ≤ 𝑁 is the cardinality
of SC and feature basis are independent to each other and every
feature vector of a pure cat image. Similarly, for the dog set D,
we have SD = {d1, d2, . . . , d𝑁𝑑

}. Let C = [c1, c2, . . . , c𝑁𝑐
] and

D = [d1, d2, . . . , d𝑁𝑑
].

(1) Ensuring Sparsity to Prevent Misconstruction. Consider
the representation v𝑡 = Cw𝑡 +n𝑡 , where w𝑡 is a sparse vector. Addi-
tionally, n𝑡 represents a deviation orthogonal to all feature vectors
in SC . However, some dog feature vectors may be highly correlated
with those of cats. For simplicity, let’s consider the linear correlation
[c1, c2, . . . , c𝑁𝑡

] = [d1, d2, . . . , d𝑁𝑡
]T, where 𝑁𝑡 < min{𝑁𝑐 , 𝑁𝑑 }

and T ∈ R𝑁𝑡×𝑁𝑡 is an invertible matrix.
The reconstruction error using the cat feature basis is ∥n𝑡 ∥22. Yet,

we can find a vector w𝑑 within the dog feature space that yields
a comparable reconstruction error. To explore this, we partition C
intoC = [C𝑙 ,C𝑟 ], withC𝑙 = [c1, c2, . . . , c𝑁𝑡

]. We similarly partition
D into D = [D𝑙 ,D𝑟 ]. Additionally, we decompose w𝑡 = [w⊤

𝑙
,w⊤

𝑟 ]⊤,
wherew𝑙 = [𝑤1,𝑤2, . . . ,𝑤𝑁𝑡

]⊤. By definingw𝑑 = [(Tw𝑙 )⊤, 0⊤]⊤+
u★, we can achieve a reconstruction error of ∥C𝑟w𝑟 + n𝑡 − Du★∥22.
Since n𝑡 is not orthogonal to the dog feature basis, some parts of
it can be canceled. By selecting u★ = argmin

u
∥C𝑟w𝑟 + n𝑡 − Du∥22,
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Figure 2: An overview of our proposed method for 𝐷-way 𝑁 -shot classification. We first utilize CLIP’s visual encoder to generate
feature maps for the support set and query image. Then, we attempt to use the feature maps from the support set of each
class to reconstruct the feature map of the query image and utilize the feature reconstruction error as the reconstruction
similarity. Therefore, we calculate the cosine similarity between the query image and the text feature of each class as CLIP’s
text-image similarity. The two similarity scores are then fused together to form the final class prediction. Meanwhile, during
the reconstruction, sparse optimization is applied to w to optimize the transformation process. Here, 𝐶 represents the number
of channels, and 𝐻4,𝑊4 denote the size of the feature map, respectively.

it is feasible to construct a w𝑑 with a small reconstruction error.
However, constructing w𝑑 in this manner will not result in sparsity
unless T is a permutation matrix and u★ is sparse. This leads us to
leverage the sparsity of w𝑡 .
(2) Sparsity Enhances Reconstruction Emphasis on Principal
Components. Consider a different scenario: suppose I𝑡 is a cat
image with a dog in the background, as illustrated in Figure 3, where
the cat constitutes the majority of the image. Therefore, the image
can be represented as:

v𝑡 = Cw𝑐 + Dw𝑑 + n𝑡 =
[
C D

] [w𝑐

w𝑑

]
+ n𝑡 = Sw + n𝑡 , (1)

where n𝑡 is a deviation orthogonal to the bases of both cat and dog
features, w𝑐 and w𝑑 are both sparse, and w𝑑 has a very small norm.
Here, S = [C,D] and w = [w⊤

𝑐 ,w⊤
𝑑
]⊤.

If w𝑑 has a small norm, then ∥Dw𝑑 + n𝑡 ∥22 ≤ ∥Dw𝑑 ∥22 + ∥n𝑡 ∥22 is
small. Under a tolerable reconstruction error threshold, this quan-
tity is smaller than the threshold, we can sparsify w to the greatest
extent possible, making it possible to neglect the contribution of the
image from w𝑑 . This implies that we can neglect the interference
from the dog and concentrate on the cat’s features.
(3) Formulating Principal Reconstruction as a Sparse Opti-
mization Problem. In line with the aforementioned concepts, we
now cast our reconstruction problem as follows:

P0 : min
w

∥w∥0 s.t. ∥mq − S𝑑w∥22 ≤ 𝜖. (2)

By solvingP0, we aim tominimize the sparsity of the reconstruction
coefficient w under the constraint that the reconstruction error,
measured by ∥mq − S𝑑w∥22, is kept below a specified threshold 𝜖 .

3.3 Sparse Optimization with ADM
The problem P0 is widely acknowledged as NP-hard. To tackle
this complexity, a common approach is to relax the 𝑙0 norm to an
𝑙𝑝 norm, where 𝑝 is a non-zero parameter. In this study, we opt
for 𝑝 = 1, a prevalent choice in addressing sparse representation
problems. This leads to a relaxed optimization problem:

P1 : min
w

∥w∥1 s.t. ∥mq − S𝑑w∥22 ≤ 𝜖. (3)

According to the Lagrange multiplier theorem, there exists a suit-
able constant 𝜆 rendering problem P1 equivalent to the following
unconstrained minimization problem, where 𝜆 is associated with a
very small 𝜖 :

P2 : min
w

∥w∥1 + 𝜆∥mq − S𝑑w∥22 . (4)

The introduction of the 𝑙1 norm in the objective function of P2
renders it a nonsmooth optimization problem. Common optimiza-
tion algorithms such as the gradient descent algorithm or Newton’s
method can be employed to solve this problem. However, a chal-
lenge arises in selecting an appropriate step size.When some entries
of the optimal solution are close to zero, the solution may oscillate
around zero, impeding effective convergence if a small step size is
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Figure 3: Sample reconstruction attention images, including
different cat images with dogs in the background. We use
support images to reconstruct the input image. The visual-
ization results show that sparsity enhances reconstruction
emphasis on principal components.

not employed. This sluggish optimization process emphasizes the
need for careful consideration in choosing the step size.

A more realistic approach to handle nonsmoothness is the Al-
ternating Direction Method (ADM). This method introduces an
auxiliary variable, optimizing progressively and mutually alongside
the original variable, without relying on a specific step size [33].
ADM typically achieves effective convergence in approximately 10
iterations, proving to be more efficient than other methods when
dealing with nonsmooth problems like P2. To solve P2 using ADM,
we first introduce an auxiliary variable to formulate an equivalent
problem of P2.

P3 : min
w

∥w∥1 + 𝜆∥z∥22 𝑠 .𝑡 . z = mq − S𝑑w. (5)

The augmented Lagrangian dual optimization problem of P3 can
be expressed as

P4 :
min
w,z,𝝁

𝐿(w, z, 𝝁) =∥w∥1 + 𝜆∥z∥22 + 𝝁⊤ (z − mq + S𝑑w)

+ 𝜈

2
∥z − mq + S𝑑w∥22 .

(6)

Here, 𝝁 ∈ R𝑑×1 is the Lagrange multiplier vector, and 𝜈 is the
penalty factor. The ADM is employed to solve problem P4 through
the following iterative steps:

w𝑘+1 = argmin
w

𝐿(w, z𝑘 , 𝝁𝑘 ), (7)

z𝑘+1 = argmin
z

𝐿(w𝑘+1, z, 𝝁𝑘 ), (8)

𝝁𝑘+1 = 𝝁𝑘 − 𝜈 (z𝑘+1 − mq + S𝑑w𝑘+1) . (9)

Equation (7) can be expressed as

w𝑘+1 = argmin
w

∥w∥1 + 𝜆∥z𝑘 ∥2 − 𝝁⊤
𝑘
(z𝑘 − mq + S𝑑w)

+ 𝜈

2
∥z𝑘 − mq + S𝑑w∥22

= argmin
w

∥w∥1 +
𝜈

2
∥z𝑘 − mq + S𝑑w − 𝝁𝑘

𝜈
∥22 .

Let 𝑓𝑘 (w) = 𝜈
2 ∥z𝑘 − mq + S𝑑w − 𝝁𝑘

𝜈 ∥22. Using the second-order
Taylor expansion, 𝑓𝑘 (w) is approximated as

𝑓𝑘 (w) ≈𝑓𝑘 (w𝑘 ) + (w − w𝑘 )⊤∇𝑓𝑘 (w𝑘 )
+ (w − w𝑘 )⊤H𝑓 (w − w𝑘 )

≈𝑓𝑘 (w𝑘 ) + (w − w𝑘 )⊤∇𝑓𝑘 (w𝑘 )
+𝜓 ∥w − w𝑘 ∥22,

(10)

where the gradient of 𝑓𝑘 (w) at w𝑘 is

∇𝑓𝑘 (w𝑘 ) = 𝜈S⊤
𝑑

(
z𝑘 − mq + S𝑑w − 𝝁𝑘

𝜈

)
, (11)

and the Hessian matrix of 𝑓𝑘 (w) at w𝑘 is H𝑓 = 𝜈S⊤
𝑑

S𝑑 . Here, we

approximate H𝑓 ≈ 𝜓 I, and 𝜓 is determined by 𝜓 =

√︃∑
𝑖 𝜎

2
𝑖
/𝑁 ,

where𝜎𝑖 are the i-th eigenvalues ofH𝑓 . Using these approximations,
we can rewrite (10) as

w𝑘+1 = argmin
w

∥w∥1 +𝜓 ∥w − w𝑘 + 1
2𝜓

∇𝑓𝑘 (w𝑘 )∥22 . (12)

According to [59], the optimal solution of (12) is

w𝑘+1 = 𝑠𝑜 𝑓 𝑡

(
w𝑘 − 1

2𝜓
∇𝑓𝑘 (w𝑘 ),𝜓

)
, (13)

where 𝑠𝑜 𝑓 𝑡 (𝑥,𝜓 ) = sign(𝑥)max{|𝑥 | −𝜓, 0}. The solution for (8) is
rather obvious, which is

z𝑘+1 =
1

2𝜆 + 𝜈 (𝝁𝑘 + 𝜈 (S𝑑w𝑘+1 − mq)). (14)

Now we can summarize the ADM-based sparse optimization
Algorithm 1. Consider the transition from the optimization problem
P1 to P2. Given fixed vectors m𝑞 and S𝑑 , each 𝜖 corresponds to
a unique 𝜆, ensuring equivalence in the optimal solutions of the
two problems. However, as m𝑞 and S𝑑 dynamically change during
testing, necessitating an adaptive relationship between 𝜖 and 𝜆, it
becomes imperative to employ an algorithm for the selection of a
suitable 𝜆. In this context, the binary search algorithm is employed
to ascertain the optimal 𝜆, as outlined in [27].

Algorithm 1 ADM-Based Sparse Optimization
Initialize: 𝑡 = 0,w0 = 0, z0 = 0, 𝝁0 = 0, 𝜆
while not converged do

Update the value of the w𝑘+1 by equation (13).
Update the value of the z𝑘+1 by equation (14).
Update the value of the 𝝁𝑘+1 by equation (9).
𝜈𝑘+1 = 0.01𝜈𝑘 and 𝑘 = 𝑘 + 1.

end while
return w𝑘+1
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3.4 Few-Shot Image Recognition
In this work, we fuse the reconstruction similarity 𝑃𝑅 with the CLIP-
based text-image similarity 𝑃𝐶𝐿𝐼𝑃 for few-shot image recognition.
Specifically, considering a specific class 𝑑 , the scalar probability
logit is computed as the negative mean squared Euclidean distance
between mq and m∗

q reconstructed from S𝑑 across all feature map
locations. It can be denoted as

m∗
q = wk+1S𝑑 , (15)

⟨mq,m∗
q⟩ =

1
𝐻4𝑊4

| |mq − m∗
q | |2 . (16)

Consequently, For the reconstruction similarity 𝑃𝑅 , the ultimate
predicted probability is expressed as follows:

𝑃𝑅 (𝑦𝑞 = 𝑑 |𝑥𝑞) =
exp (−𝜖 ⟨mq,m∗

q⟩)∑
𝑑 ′∈𝐷 exp (−𝜖 ⟨mq,m∗

q⟩)
. (17)

Here, following [3, 50], we introduce a hyper-parameter 𝜖 , denoted
as a temperature factor. To obtain the CLIP-based text-image sim-
ilarity 𝑃𝐶𝐿𝐼𝑃 , for the label of class 𝑑 ∈ 𝐷 , we place it in a manual
prompt template such as "a photo of {class}", denoted as Π𝑑 . We
can obtain the text feature 𝑓 𝑑𝑡 by 𝐸𝑡 , denoted by 𝑓 𝑑𝑡 = 𝐸𝑡 (Π𝑑 ). First,
we exploit 𝐸𝑣 to extract the global feature m̄q of image 𝑥𝑞 . Since
both m̄q and 𝑓𝑡 are 𝐿2-normalized, for the CLIP-based text-image
similarity 𝑃𝐶𝐿𝐼𝑃 , the probability of 𝑥𝑞 belonging to class 𝑑 is:

𝑃𝐶𝐿𝐼𝑃 (𝑦𝑞 = 𝑑 |𝑥𝑞) =
exp (𝑠𝑖𝑚

(
m̄q, 𝑓

𝑑
𝑡

)
/𝜏)∑

𝑑 ′∈𝐷 exp (𝑠𝑖𝑚
(
m̄q, 𝑓

𝑑 ′
𝑡

)
/𝜏)

, (18)

where 𝜏 is the learned temperature parameter of CLIP. sim(·, ·)
denotes the following cosine similarity: sim

(
m̄q, 𝑓

𝑑
𝑡

)
=

m̄q ·𝑓 𝑑𝑡
∥m̄q ∥ ∥ 𝑓 𝑑𝑡 ∥ .

Finally, we fuse the inference from the visual representation recon-
struction model and the original CLIP to obtain better predictions.
The ultimate predicted probability of the input image 𝑥𝑞 is:

𝑃𝑡𝑜𝑡𝑎𝑙 (𝑦𝑞 = 𝑑 |𝑥𝑞)=𝑃𝐶𝐿𝐼𝑃 (𝑦𝑞 =𝑑 |𝑥𝑞) + 𝜂𝑃𝑅 (𝑦𝑞 =𝑑 |𝑥𝑞), (19)

where 𝜂 is used to control the scaling of the residual connection.

4 Experiments
4.1 Experimental Settings
For few-shot recognition, in adherence to established methods,
our approach undergoes a few-shot evaluation across 11 widely
employed image classification datasets. These datasets span a range
of categories, encompassing generic object classification (such as
ImageNet [38] and Caltech101 [11]), fine-grained object classifi-
cation (including OxfordPets [35], StanfordCars [23], Flowers102
[34], Food-101 [1], FGVC Aircraft [31]), texture classification (repre-
sented by DTD [4]), remote sensing recognition (examined through
EuroSAT [17]), scene recognition (explored in SUN397 [51]), and
action recognition (evaluated on UCF101 [41]). Following CoOp
[61], we test the generalization performance of our models from
ImageNet to its variants: ImageNet-V2 [38], ImageNet-Sketch [49].

4.2 Implementation Details
Our method is built upon CLIP model, using ResNet-50 [16] as its
image encoder and a transformer as its text encoder. Notably, both

the visual and text encoders of CLIP remain frozen. We leverage
prompt ensembling as defined in [36] and adhere to the data pre-
processing protocol outlined in CLIP for all datasets. In Equation
(19), we set the hyperparameter 𝜂 to 1.5 for ImageNet and 1.2 for
the other 10 datasets. Our experimental design aligns with widely-
used few-shot protocols, where random selections of 1, 2, 4, 8, and
16 examples per class are utilized for training, and subsequent
evaluations are performed on the entire test set. For the domain
generalization task, we directly utilize the model trained on 16-
shot ImageNet to test its two variants individually. The penalty
parameter 𝜈 is initially set to 1.5, and decays gradually by 0.01 to
bring the solution closer to the optimal solution during iterations.

4.3 Performance Comparison
(1) Training-Free Few-Shot Recognition. We compare our method

with the SOTA training-free methods: Tip-Adapter [56], Tip-X [46]
and APE [63]. According to Figure 4, our Proposed TaCo outper-
forms all the baselines consistently and significantly from 1 to
16 shots, achieving leading performance among the methods for
train-free few-shot recognition. Remarkably, we observe that TaCo
achieves significant performance gain i.e., +4.40% on FGVC Aircraft.
Besides, our proposed TaCo maintains a distinctive performance on
generic object classification with an accuracy gain of +1.88% on Im-
ageNet, which demonstrates the efficacy of feature reconstruction
with sparse optimization for few-shot recognition.

(2) Incorporating TaCo with Existing Methods. Since the optimiza-
tion is performed on the feature map, Our method can be incorpo-
rated with existing methods such as CoOp[61], TaskRes[60], and
PLOT[2]. In this paper, we conduct experiments on PLOT[2] com-
bined with our Taco. Figure 5 presents the performance of TaCo
when combined with other methods. Incorporated with prompt-
based methods, our method consistently and significantly surpasses
input-level prompting methods. Remarkably, on ImageNet, PLOT
+ TaCo with 1-shot outperforms bare PLOT with 16-shot. In com-
parison to feature-level adapter methods, our method still yields
superior performance, outperforming them by a large margin. For
example, with TaskRes involved, our method outperforms APE-T
by up to 2.62% on 16-shot Food101 and 2.05% on 16-shot Standford-
Cars. Overall, These results demonstrate the effectiveness of our
Taco, and show the robust compatibility of our method, providing
an immediate plug-and-play benefit to existing methods.

(3) Domain Generalization. The domain generalization setting
assesses the model’s ability to generalize to a target domain dis-
tinct from the source domain [44, 45]. We include seven previous
methods encompassing zero-shot methods [15, 36], training-free
methods [56, 63], and training-required methods [53, 56] for com-
parison. Our method consistently outperforms all the compared
models across two out-of-distribution datasets by a large margin.
In comparison to the second-best method, APE [63], TaCo outper-
forms it by up to 1.39% on ImageNet-V2. When combined with
other style methods, our method exhibits distinctive generalization
capability, exceeding APE-T [63] by 1.51% on ImageNet-V2. These
results demonstrate the notable robustness of our method to shifts
in distribution.
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Figure 4: Classification Performance Comparison on Training-free Few-shot Learning, i.e., 1-/2-/4-/8-/16-shot, on 11 benchmark
datasets. The top-left is the averaged accuracy over the 11 datasets.

Table 1: Performance comparisons on Domain Generaliza-
tion.

Methods Training Type
Source Target

ImageNet [5] -V2 [5] -Sketch [38]

CLIP [36] Zero-shot 60.33 53.27 35.44
CALIP [15] 60.57 53.70 35.61

Tip-Adapter [56]
Training-free

62.03 54.60 35.90
APE [63] 63.42 55.94 36.61
TaCo (Ours) 65.25 57.33 38.07

Tip-Adapter-F [56]

Training-required

65.51 57.11 36.00
TaskRes [53] 65.73 57.00 34.43
APE-T [63] 66.07 57.59 36.36
PLOT [2] + TaCo 67.13 58.62 37.03

4.4 Ablation Studies
In this section, we provide an empirical analysis of our design
choices and the effects of different components of our method.

(1) Contributions of Major Algorithm Components. Our method
is built upon CLIP, and we compare the different components inte-
grated with CLIP across various shot settings. As shown in Table 2,
our results indicate that both feature map reconstruction and sparse

Table 2: Effectiveness of different algorithm components in
TaCo. In this table, FMR represents Feature Map Reconstruc-
tion, and SO represents Sparse Optimization.

Method Number of Shots

1 2 4 8 16

Zero-shot CLIP [36] 60.33 60.33 60.33 60.33 60.33
CLIP + FMR(w/o SO) 61.12 61.98 62.21 62.62 63.24
CLIP + FMR + SO (Ours) 62.53 62.97 63.58 64.16 65.25

optimization contribute significantly to performance improvement.
Notably, in the 16-shot setting, our method using sparse optimiza-
tion achieves a 2.01% performance gain. These results demonstrate
the efficacy of sparse optimization in guiding feature reconstruc-
tion towards the most informative features, consequently yielding
improved performance.

(2) Evaluation on Various Visual Backbones. Table 3 summarizes
the results of 16-shot ImageNet [5] on various visual backbones.
It can be observed that our method demonstrates substantial per-
formance gains, particularly when compared to zero-shot CLIP on
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Figure 5: Classification Performance Comparison on Training-required Few-shot Learning on 11 benchmark datasets.

Table 3: Evaluation across various visual backbones

Method Visual Backbone

ResNet-50 ResNet-101 ViT-B/32 ViT-B/16 ViT-L/14

Zero-shot CLIP [36] 60.33 62.53 63.80 67.83 75.43
Tip-Adapter [56] 62.03 64.78 65.61 70.75 76.19
Ours 65.25 66.34 68.12 72.85 79.57

more advanced visual backbones. Our method shows consistent
superiority against Tip-Adapter across all visual backbones.

(3) Residual Ratio 𝜂. The hyper-parameter 𝜂 controls how much
to combine the predictions from feature reconstruction with pre-
trained CLIP’s prediction. This parameter can also be interpreted
as weighing the reconstruction similarity in Equation (19). As for-
mulated above, larger 𝜂 denotes depending more on reconstruction
similarity and less otherwise. From Table 4, it is evident that the
classification accuracy shows improvement as 𝜂 increases from 0.0
to 1.5, reaching its peak 65.25% at 𝜂 = 1.5. This observation suggests
that reconstruction similarity contributes more than CLIP’s text-
image similarity regarding the final prediction. In the Supplemental
Materials, we provide additional details of the proposed method
and experimental results.

Table 4: Sensitivity of hyper-parameters. All the results are
reported on a 16-shot setting on ImageNet [5].

Sensitivity of Hyper-parameters

𝜂 0.0 0.5 1.0 1.5 2.0 2.5

Acc. 60.33 62.71 64.36 65.25 64.87 64.13

5 Conclusion
In this paper, we have studied the problem of adapting vision-
language models (VLMs) to training-free few-shot image recogni-
tion. We formulated the few-shot image recognition task as a latent
feature reconstruction and sparse optimization problem. Based on
sparse optimization, we reconstruct the query feature from the
corresponding support features and use the feature reconstruction
error to formulate the reconstruction similarity. Coupled with the
text-image similarity provided by the VLM, this reconstruction sim-
ilarity analysis is able to accurately characterize the relationship
between support and query images, thereby resulting in signifi-
cantly improved performance in few-shot image recognition. Our
comprehensive experimental results on few-shot recognition have
demonstrated that the proposed method outperforms existing state-
of-the-art approaches by large margins.
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