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Abstract

The graph convolutional network (GCN) is a go-to solution for machine learning
on graphs, but its training is notoriously difficult to scale both in terms of graph size
and the number of model parameters. Although some work has explored training on
large-scale graphs, we pioneer efficient training of large-scale GCN models with the
proposal of a novel, distributed training framework, called GIST. GIST disjointly
partitions the parameters of a GCN model into several, smaller sub-GCNs that are
trained independently and in parallel. Compatible with all GCN architectures and
existing sampling techniques, GIST i) improves model performance, ii) scales to
training on arbitrarily large graphs, iii) decreases wall-clock training time, and iv)
enables the training of markedly overparameterized GCN models. Remarkably,
with GIST, we train an astonishgly-wide 32,768-dimensional GraphSAGE model,
which exceeds the capacity of a single GPU by a factor of 8×, to SOTA performance
on the Amazon2M dataset.

1 Introduction
Since not all data can be represented in Euclidean space [5], many applications rely on graph-
structured data. For example, social networks can be modeled as graphs by regarding each user
as a node and friendship relations as edges [34, 37]. Alternatively, in chemistry, molecules can be
modeled as graphs, with nodes representing atoms and edges encoding chemical bonds [2, 4].

To better understand graph-structured data, several (deep) learning techniques have been extended to
the graph domain [12, 17, 35]. Currently, the most popular one is the graph convolutional network
(GCN) [28], a multi-layer architecture that implements a generalization of the convolution operation
to graphs. Although the GCN handles node- and graph-level classification, it is notoriously inefficient
and unable to support large graphs [8, 9, 14, 23, 51, 54], making practical, large-scale applications
difficult to handle.

To deal with these issues, node partitioning methodologies have been developed. These schemes
can be roughly categorized into neighborhood sampling [9, 19, 59] and graph partitioning [10, 54]
approaches. The goal is to partition a large graph into multiple smaller graphs that can be used as
mini-batches for training the GCN. In this way, GCNs can handle larger graphs during training,
expanding their potential into the realm of big data. However, the size of the underlying model is
still limited by available memory capacity, thus placing further constraints on the scale of GCN
experimentation.

Although some papers perform large-scale experiments [10, 54], the models (and data) used in GCN
research remain small in the context of deep learning [28, 50], where the current trend is towards
incredibly large models and datasets [7, 11]. Despite the widespread moral questioning of this trend
[20, 41, 44], the deep learning community continues to push the limits of scale. Overparameterized
models yield improvements in tasks like zero/few-shot learning [6, 42], are capable of discovering
generalizable solutions [36], and even have desirable theoretical properties [38].
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Although GCN models suffer from performance deterioration due to oversmoothing at larger depths
[28, 30], one would expect GCNs to similarly benefit from overparameterization, meaning that
the use of larger hidden layers may be beneficial. Furthermore, recent work indicates that the
impact of overparameterization becomes increasingly pronounced on larger datasets [21], making
the exploration of overparameterized models essential as GCNs continue to be applied to practical
problems at scale. Moving in this direction, our work provides an efficient training framework for
wide, overparameterized GCN models—beyond the memory capacity of a single GPU—on large-scale
datasets.
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Figure 1: GIST pipeline: subGCNs divides the
global GCN into sub-GCNs. Every sub-GCN is

trained by subTrain using mini-batches (smaller
sub-graphs) generated by Cluster. Sub-GCN

parameters are intermittently aggregated through
subAgg.

This paper. We propose a novel, distributed
training methodology that can be used for any
GCN architecture and is compatible with exist-
ing node sampling techniques. This method-
ology randomly partitions the hidden feature
space in each layer, decomposing the global
GCN model into multiple, narrow sub-GCNs
of equal depth. Sub-GCNs are trained indepen-
dently for several iterations in parallel prior to
having their updates synchronized; see Figure
1. This process of randomly partitioning, in-
dependently training, and synchronizing sub-
GCNs is repeated until convergence. We call
this method Graph Independent Subnetwork
Training (GIST). GIST can scale to arbitrarily
large graphs, and significantly reduces the wall-
clock time of training large-scale GCNs, allow-
ing larger models and datasets to be explored.
We focus specifically on enabling the training of “ultra-wide” GCNs (i.e., GCN models with very
large hidden layers), as deeper GCNs are prone to oversmoothing [30]. The contributions of this
work are summarized below:

• We develop a novel, distributed training methodology for arbitrary GCN architectures, based on
decomposing the model into independently-trained sub-GCNs. This methodology is compatible
with existing techniques for neighborhood sampling and graph partitioning.

• We show that GIST can be used to train several GCN architectures to state-of-the-art performance
with reduced training time, in comparison to standard methodologies on large-scale datasets.

• We propose a novel Graph Independent Subnetwork Training Kernel (GIST-K) that allows a
convergence rate to be derived for two-layer GCNs trained with GIST in the infinite width regime.
Based on GIST-K, we provide theory that GIST converges linearly –up to an error neighborhood–
using distributed gradient descent with local iterations. We show that the radius of the error
neighborhood is controlled by the overparameterization parameter, as well as the number of
workers in the distributed setting. Such findings reflect practical observations that are made in the
experimental section.

• We use GIST to enable the training of markedly overparameterized GCN models. In particular,
GIST is used to train a two-layer GraphSAGE model with a hidden dimension of 32 768 on the
Amazon2M dataset. Such a model exceeds the capacity of a single GPU by 8×.

2 What is the GIST of this work?

GCN Architecture. The GCN [28] is arguably the most widely-used neural network architecture on
graphs. Consider a graph G comprised of n nodes with d-dimensional features X ∈ Rn×d. The output
Y ∈ Rn×d′ of a GCN can be expressed as Y = ΨG(X; Θ), where ΨG is an L-layered architecture
with trainable parameters Θ. If we define H0 = X, we then have that Y = ΨG(X; Θ) = HL, where
an intermediate `-th layer of the GCN is given by

H`+1 = σ(Ā H` Θ`). (1)

In (1), σ(·) is an elementwise activation function (e.g., ReLU), Ā is the degree-normalized adjacency
matrix of G with added self-loops, and the trainable parameters Θ = {Θ`}L−1

`=0 have dimensions
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Figure 2: GCN partition into m = 2 sub-GCNs. Orange and blue colors depict different feature
partitions. Both hidden dimensions (d1 and d2) are partitioned. The output dimension (d3) is not
partitioned. Partitioning the input dimension (d0) is optional, but we do not partition d0 in GIST.

Θ` ∈ Rd`×d`+1 with d0 = d and dL = d′. In Figure 2 (top), we illustrate nested GCN layers for
L = 3, but our methodology extends to arbitrary L. The activation function of the last layer is
typically the identity or softmax transformation – we omit this in Figure 2 for simplicity.

Algorithm 1 GIST Algorithm

1: Parameters: T synchronization iterations, m sub-GCNs,
2: ζ local iterations, c clusters, G training graph.3:
4: ΨG( · ; Θ)← randomly initialize GCN
5: {G(j)}cj=1 ← Cluster(G, c)
6: for t = 0, . . . , T − 1 do
7:

{
ΨG( · ; Θ(i))

}m
i=1
← subGCNs(ΨG( · ; Θ),m)

8: Distribute each ΨG( · ; Θ(i)) to a different worker
9: for i = 1, . . . ,m do

10: for z = 1, . . . , ζ do
11: ΨG( · ; Θ(i))← subTrain(Θ(i), {G(j)}cj=1)
12: end for
13: end for
14: ΨG( · ; Θ)← subAgg({Θ(i)}mi=1)
15: end for

GIST overview. We overview
GIST in Algorithm 1 and present a
schematic depiction in Figure 1. We
partition our (randomly initialized)
global GCN into m smaller, disjoint
sub-GCNs with the subGCNs func-
tion (m = 2 in Figures 1 and 2) by
sampling the feature space at each
layer of the GCN; see Section 2.1.
Each sub-GCN is assigned to a dif-
ferent worker (i.e., a different GPU)
for ζ rounds of distributed, inde-
pendent training through subTrain.
Then, newly-learned sub-GCN pa-
rameters are aggregated (subAgg)
into the global GCN model. This
process repeats for T iterations. Our
graph domain is partitioned into c

sub-graphs through the Cluster function (c = 2 in Figure 1). This operation is only relevant for
large graphs (n > 50,000), and we omit it (c = 1) for smaller graphs that don’t require partitioning.1

2.1 subGCNs: Constructing Sub-GCNs

GIST partitions a global GCN model into several narrower sub-GCNs of equal depth. Formally,
consider an arbitrary layer ` and a random, disjoint partition of the feature set [d`] = {1, 2, . . . , d`}
into m equally-sized blocks {D(i)

` }mi=1.2 Accordingly, we denote by Θ
(i)
` = [Θ`]D(i)

` ×D
(i)
`+1

the

matrix obtained by selecting from Θ` the rows and columns given by the ith blocks in the partitions
of [d`] and [d`+1], respectively. With this notation in place, we can define m different sub-GCNs
Y(i) = ΨG(X(i); Θ(i)) = H

(i)
L where H

(i)
0 = X

[n]×D(i)
0

and each layer is given by:

H
(i)
`+1 = σ(Ā H

(i)
` Θ

(i)
` ). (2)

Notably, not all parameters within the global GCN model are partitioned to a sub-GCN. However, by
randomly re-constructing new groups of sub-GCNs throughout the training process, all parameters

1Though any clustering method can be used, we advocate the use of METIS [25, 26] due to its proven
efficiency in large-scale graphs.

2For example, if d` = 4 andm = 2, one valid partition would be given byD(1)
` = {1, 4} andD(2)

` = {2, 3}.
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Figure 3: Illustrates the difference between GIST and node sampling techniques within the forward
pass of a single GCN layer (excluding non-linear activation). While graph partitioning and layer

sampling remove nodes from the forward pass (i.e., either completely or on a per-layer basis), GIST
partitions node feature representations (and, in turn, model parameters) instead of the nodes.

have a high likelihood of being updated. In section 4, we provide theoretical guarantees that the
partitioning of model parameters to sub-GCNs does not harm training performance.

Sub-GCN partitioning is illustrated in Figure 2-(a), where m = 2. Partitioning the input features
is optional (i.e., (a) vs. (b) in Figure 2). We do not partition the input features within GIST so that
sub-GCNs have identical input information (i.e., X(i) = X for all i); see Section 5.1. Similarly, we
do not partition the output feature space to ensure that the sub-GCN output dimension coincides with
that of the global model, thus avoiding any need to modify the loss function. This decomposition
procedure (subGCNs function in Algorithm 1) extends to arbitrary L.

2.2 subTrain: Independently Training Sub-GCNs
Assume c = 1 so that the Cluster operation in Algorithm 1 is moot and {G(j)}cj=1 = G. Because
Y(i) and Y share the same dimension, sub-GCNs can be trained to minimize the same global loss
function. One application of subTrain in Algorithm 1 corresponds to a single step of stochastic
gradient descent (SGD). Inspired by local SGD [33], multiple, independent applications of subTrain
are performed in parallel (i.e., on separate GPUs) for each sub-GCN prior to aggregating weight
updates. The number of independent training iterations between synchronization rounds, referred to
as local iterations, is denoted by ζ , and the total amount of training is split across sub-GCNs.3 Ideally,
the number sub-GCNs and local iterations should be increased as much as possible to minimize
communication and training costs. In practice, however, such benefits may come at the cost of
statistical inefficiency; see Section 5.1.

If c > 1, subTrain first selects one of the c subgraphs in {G(j)}cj=1 to use as a mini-batch for SGD.
Alternatively, the union of several sub-graphs in {G(j)}cj=1 can be used as a mini-batch for training.
Aside from using mini-batches for each SGD update instead of the full graph, the use of graph
partitioning does not modify the training approach outlined above. Some form of node sampling must
be adopted to make training tractable when the full graph is too large to fit into memory. However,
both graph partitioning and layer sampling are compatible with GIST (see Sections 5.2 and ??). We
adopt graph sampling in the main experiments due to the ease of implementation. The novelty of our
work lies in the feature partitioning strategy of GIST for distributed training, which is an orthogonal
technique to node sampling; see Figure 3 and Section 2.4.

2.3 subAgg: Aggregating Sub-GCN Parameters
After each sub-GCN completes ζ training iterations, their updates are aggregated into the global
model (subAgg function in Algorithm 1). Within subAgg, each worker replaces global parameter
entries within Θ with its own, independently-trained sub-GCN parameters Θ(i), where no collisions
occur due to the disjointness of sub-GCN partitions. Thus, subAgg is a basic copy operation that
transfers sub-GCN parameters into the global model.

Not every parameter in the global GCN model is updated by subAgg because, as previously mentioned,
parameters exist that are not partitioned to any sub-GCN by the subGCNs operation. For example,
focusing on Θ1 in Figure 2-(a), one worker will be assigned Θ

(1)
1 (i.e., overlapping orange blocks),

while the other worker will be assigned Θ
(2)
1 (i.e., overlapping blue blocks). The rest of Θ1 is not

3For example, if a global model is trained on a single GPU for 10 epochs, a comparable experiment for GIST
with two sub-GCNs would train each sub-GCN for only 5 epochs.
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considered within subAgg. Nonetheless, since sub-GCN partitions are randomly drawn in each cycle
t, one expects all of Θ to be updated multiple times if T is sufficiently large.

2.4 What is the value of GIST?
Architecture-Agnostic Distributed Training. GIST is a generic, distributed training methodology
that can be used for any GCN architecture. We implement GIST for vanilla GCN, GraphSAGE, and
GAT architectures, but GIST is not limited to these models; see Section 5.

Compatibility with Sampling Methods. GIST is NOT a replacement for graph or layer sampling.
Rather, it is an efficient, distributed training technique that can be used in tandem with node parti-
tioning. As depicted in Figure 3, GIST partitions node feature representations and model parameters
between sub-GCNs, while graph partitioning and layer sampling sub-sample nodes within the graph.

Interestingly, we find that GIST’s feature and parameter partitioning strategy is compatible with
node partitioning—the two approaches can be combined to yield further efficiency benefits. For
example, GIST is combined with graph partitioning strategies in Section 5.2 and with layer sampling
methodologies in Section ??.

Enabling Ultra-Wide GCN Training. GIST indirectly updates the global GCN through the training
of smaller sub-GCNs, enabling models with hidden dimensions that exceed the capacity of a single
GPU to be trained; in our experiments, we show results where GIST allows training of models beyond
the capacity of a single GPU by a factor of 8×. In this way, GIST allows markedly overparametrized
(“ultra-wide") GCN models to be trained on existing hardware. In Section 5.2, we leverage this
capability to train a two-layer GCN model with a hidden dimension of 32,768 on Amazon2M.

Overparameterization through width could be valuable because deeper GCNs could suffer from
oversmoothing [30]. Additionally, the theoretical results provided within Section 4 reveal that the
performance of GIST is best as the number of neurons within each hidden layer is increased, which
further reveals the benefit of wide, overparameterized layers. We do not explore depth-wise partitions
of different GCN layers to each worker, but rather focus solely upon partitioning the hidden neurons
within each layer—a strategy that is suited to training wider networks. We consider such a direction
as future work.

Improved Model Complexity. Consider a single GCN layer, trained over M machines with input
and output dimension of di−1 and di, respectively. For one synchronization round, the commu-
nication complexity of GIST and standard distributed training is O( 1

M didi−1) and O(Mdidi−1),
respectively. GIST reduces communication by only communicating sub-GCN parameters. Existing
node partitioning techniques cannot similarly reduce communication complexity because model
parameters are never partitioned. Furthermore, the computational complexity of the forward pass for
a GCN model trained with GIST and using standard methodology is O( 1

MN2di + 1
M2Ndidi−1) and

O(N2di+Ndidi−1), respectively, whereN is the number of nodes in the partition being processed.4
Node partitioning can reduce N by a constant factor but is compatible with GIST.

3 Related Work
GCN training. In spite of their widespread success in several graph related tasks, GCNs often
suffer from training inefficiencies [14, 23]. Consequently, the research community has focused on
developing efficient and scalable algorithms for training GCNs [8, 9, 10, 19, 54, 59]. The resulting
approaches can be divided roughly into two areas: neighborhood sampling and graph partitioning.
However, it is important to note that these two broad classes of solutions are not mutually exclusive,
and reasonable combinations of the two approaches may be beneficial.

Neighborhood sampling methodologies aim to sub-select neighboring nodes at each layer of the GCN,
thus limiting the number of node representations in the forward pass and mitigating the exponential
expansion of the GCNs receptive field. VRGCN [8] implements a variance reduction technique to
reduce the sample size in each layer, which achieves good performance with smaller graphs. However,
it requires to store all the intermediate node embeddings during training, leading to a memory
complexity close to full-batch training. GraphSAGE [19] learns a set of aggregator functions to gather
information from a node’s local neighborhood. It then concatenates the outputs of these aggregation
functions with each node’s own representation at each step of the forward pass. FastGCN [9] adopts
a Monte Carlo approach to evaluate the GCN’s forward pass in practice, which computes each node’s

4We omit the complexity of applying the element-wise activation function for simplicity.
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hidden representation using a fixed-size, randomly-sampled set of nodes. LADIES [59] introduces a
layer-conditional approach for node sampling, which encourages node connectivity between layers in
contrast to FastGCN [9].

Graph partitioning schemes aim to select densely-connected sub-graphs within the training graph,
which can be used to form mini-batches during GCN training. Such sub-graph sampling reduces
the memory footprint of GCN training, thus allowing larger models to be trained over graphs with
many nodes. ClusterGCN [10] produces a very large number of clusters from the global graph, then
randomly samples a subset of these clusters and computes their union to form each sub-graph or
mini-batch. Similarly, GraphSAINT [54] randomly samples a sub-graph during each GCN forward
pass. However, GraphSAINT also considers the bias created by unequal node sampling probabilities
during sub-graph construction, and proposes normalization techniques to eliminate this bias.

As explained in Section 2, GIST also relies on graph partitioning techniques (Cluster) to handle
large graphs. However, the feature sampling scheme at each layer (subGCNs) that leads to parallel
and narrower sub-GCNs is a hitherto unexplored framework for efficient GCN training.

Distributed training. Distributed training is a heavily studied topic [45, 56]. Our work focuses
on synchronous and distributed training techniques [31, 52, 55]. Some examples of synchronous,
distributed training approaches include data parallel training, parallel SGD [1, 58], and local SGD [33,
48]. Our methodology holds similarities to model parallel training techniques, which have been
heavily explored [3, 15, 18, 29, 40, 49, 57]. More closely, our approach is inspired by independent
subnetwork training [53], explored for multi-layer perceptrons.

4 Theoretical Results
We draw upon analysis related to neural tangent kernels (NTK) [24] to derive a convergence rate
for two-layer GCNs using gradient descent—as formulated in (1) and further outlined in Appendix
C.1—trained with GIST. Given the scaled Gram matrix of an infinite-dimensional NTK H∞, we
define the Graph Independent Subnetwork Training Kernel (GIST-K) as follows:

G∞ = ĀH∞Ā.

Given the GIST-K, we adopt the following set of assumptions related to the underlying graph; see
Appendix C.2 for more details.

Assumption 1 Assume λmin(Ā) 6= 0 and there exists ε ∈ (0, 1) and p ∈ Z+ such that (1− ε)2p ≤
Dii ≤ (1 + ε)2p for all i ∈ [n] = {1, 2, . . . , n}, where D is the degree matrix. Additionally,
assume that i) input node representations are bounded in norm and not parallel to any other node
representation, ii) output node representations are upper bounded, iii) sub-GCN feature partitions
are generated at each iteration from a categorical distribution with uniform mean 1

m .

Given this set of assumptions, we derive the following result for GCN models trained with GIST.
Given Assumption 1, if the number of hidden neurons within the two-layer GCN satisfies d1 =

Ω
(

n3ζ2T 2

δ2γ(1−γ)2λ4
0

(
n+ d

m2 ‖Ā2‖1,1
))

, then GIST with step-size η = O
(

λ0

n2‖A2‖1,1

)
converges with

probability 1− δ according to

E[Mt−1],Θ0,a

[
‖y − ŷ(t)‖22

]
≤

(
γ + (1− γ)

(
1− ηλ0

2

)ζ)t EΘ0,a

[
‖y − ŷ(0)‖22

]
+O

(
(m−1)2ζ‖Ā2‖1,1nd

γm2d1

)
.

A full proof of this result is deferred to Appendix C, but a sketch of the techniques used is as follows:

1. We define the GIST-K and show that it remains positive definite throughout training given our
assumptions and sufficient overparameterization.

2. We show that local sub-GCN training converges linearly, given a positive definite GIST-K.
3. We analyze the change in training error when sub-GCNs are sampled (subGCNs), locally trained

(subTrain), and aggregated (subAgg).
4. We establish a connection between local and aggregated weight perturbation, showing that network

parameters are bounded by a small region centered around the initialization given sufficient
overparameterization.

Discussion. Stated intuitively, the result in Theorem 4 shows that, given sufficient width, two-layer
GCNs trained using GIST converge to approximately zero training error. The convergence rate is
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m d0 d1 d2 Cora Citeseer Pubmed OGBN-Arxiv

Baseline 81.52± 0.005 75.02± 0.018 75.90± 0.003 70.85± 0.089

2 X X X 80.00± 0.010 75.95± 0.007 76.68± 0.011 65.65± 0.700
X X 78.30± 0.011 69.34± 0.018 75.78± 0.015 65.33± 0.347

X X 80.82± 0.010 75.82± 0.008 78.02± 0.007 70.10± 0.224

4 X X X 76.78± 0.017 70.66± 0.011 65.67± 0.044 54.21± 1.360
X X 66.56± 0.061 68.38± 0.018 68.44± 0.014 52.64± 1.988

X X 81.18± 0.007 76.21± 0.017 76.99± 0.006 68.69± 0.579

8 X X X 48.32± 0.087 45.42± 0.092 54.29± 0.029 40.26± 1.960
X X 53.60± 0.020 54.68± 0.030 51.44± 0.002 26.84± 7.226

X X 79.58± 0.006 75.39± 0.016 76.99± 0.006 65.81± 0.378

Table 1: Test accuracy of GCN models trained on small-scale datasets with GIST. We selectively
partition each feature dimension within the GCN model, indicated by a check mark. Partitioning on

all hidden layers except the input layer leads to optimal performance.

linear and on par with training the full, two-layer GCN model (i.e., without the feature partition
utilized in GIST), up to an error neighborhood. Such theory shows that the feature partitioning strategy
of GIST does not cause the model to diverge in training. Additionally, the theory suggests that wider
GCN models and a larger number of sub-GCNs should be used to maximize the convergence rate of
GIST and minimize the impact of the additive term within Theorem 4; though the affect of m on the
radius is less significant compared to d1. Such findings reveal that GIST is particularly-suited towards
training extremely wide models that cannot be trained using a traditional, centralized approach on a
single GPU due to limited memory capacity.

5 Experiments
We use GIST to train different GCN architectures on six public, multi-node classification datasets; see
Appendix A for details. In most cases, we compare the performance of models trained with GIST to
that of models trained with standard methods (i.e., single GPU with node partitioning). Comparisons
to models trained with other distributed methodologies are also provided in Appendix B. Experiments
are divided into small and large scale regimes based upon graph size. The goal of GIST is to i) train
GCN models to state-of-the-art performance, ii) minimize wall-clock training time, and iii) enable
training of very wide GCN models.

5.1 Small-Scale Experiments
In this section, we perform experiments over Cora, Citeseer, Pubmed, and OGBN-Arxiv datasets [43,
22]. For these small-scale datasets, we train a three-layer, 256-dimensional GCN model [28] with
GIST; see Appendix A.3 for further experimental settings. All reported metrics are averaged across
five separate trials. Because these experiments run quickly, we use them to analyze the impact of
different design and hyperparameter choices rather than attempting to improve runtime (i.e., speeding
up such short experiments is futile).

Which layers should be partitioned? We investigate whether models trained with GIST are sensitive
to the partitioning of features within certain layers. Although the output dimension d3 is never
partitioned, we selectively partition dimensions d0, d1, and d2 to observe the impact on model
performance; see Table 1. Partitioning input features (d0) significantly degrades test accuracy
because sub-GCNs observe only a portion of each node’s input features (i.e., this becomes more
noticeable with larger m). However, other feature dimensions cause no performance deterioration
when partitioned between sub-GCNs, leading us to partition all feature dimensions other than
d0 and dL within the final GIST methodology; see Figure 2-(b).

How many Sub-GCNs to use? Using more sub-GCNs during GIST training typically improves
runtime because sub-GCNs i) become smaller, ii) are each trained for fewer epochs, and iii) are
trained in parallel. We find that all models trained with GIST perform similarly for practical
settings of m; see Table 1. One may continue increasing the number sub-GCNs used within GIST
until all GPUs are occupied or model performance begins to decrease.

GIST Performance. Models trained with GIST often exceed the performance of models trained with
standard, single-GPU methodology; see Table 1. Intuitively, we hypothesize that the random feature
partitioning within GIST, which loosely resembles dropout [47], provides regularization benefits
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L m
Reddit Dataset

GraphSAGE GAT

F1 Time Speedup F1 Time Speedup

2 - 96.09 105.78s 1.00× 89.57 1.19hr 1.00×
2 96.40 70.29s 1.50× 90.28 0.58hr 2.05×
4 96.16 68.88s 1.54× 90.02 0.31hr 3.86×
8 95.46 76.68s 1.38× 89.01 0.18hr 6.70×

3 - 96.32 118.37s 1.00× 89.25 2.01hr 1.00×
2 96.36 80.46s 1.47× 89.63 0.95hr 2.11×
4 95.76 78.74s 1.50× 88.82 0.48hr 4.19×
8 94.39 88.54s (1.34×) 70.38 0.26hr (7.67×)

4 - 96.32 120.74s 1.00× 88.36 2.77hr 1.00×
2 96.01 91.75s 1.32× 87.97 1.31hr 2.11×
4 95.21 78.74s (1.53×) 78.42 0.66hr (4.21×)
8 92.75 88.71s (1.36×) 66.30 0.35hr (7.90×)

L m
Amazon2M Dataset

GraphSAGE (di = 400) GraphSAGE (di = 4096)

F1 Time Speedup F1 Time Speedup

2 - 89.90 1.81hr 1.00× 91.25 5.17hr 1.00×
2 88.36 1.25hr (1.45×) 90.70 1.70hr 3.05×
4 86.33 1.11hr (1.63×) 89.49 1.13hr (4.57×)
8 84.73 1.13hr (1.61×) 88.86 1.11hr (4.65×)

3 - 90.36 2.32hr 1.00× 91.51 9.52hr 1.00×
2 88.59 1.56hr (1.49×) 91.12 2.12hr 4.49×
4 86.46 1.37hr (1.70×) 89.21 1.42hr (6.72×)
8 84.76 1.37hr (1.69×) 86.97 1.34hr (7.12×)

4 - 90.40 3.00hr 1.00× 91.61 14.20hr 1.00×
2 88.56 1.79hr (1.68×) 91.02 2.77hr 5.13×
4 87.53 1.58hr (1.90×) 89.07 1.65hr (8.58×)
8 85.32 1.56hr (1.93×) 87.53 1.55hr (9.13×)

Table 2: Performance of models trained with GIST on Reddit and Amazon2M. Parenthesis are placed
around speedups achieved at a cost of >1 deterioration in F1 and m =“-” refers to the baseline.

Models trained with GIST train more quickly and achieve comparable F1 score to those trained with
standard methodology. The benefits of GIST become more pronounced for wider models.

during training, but some insight into the favorable performance of GIST is also provided by the
theoretical guarantees outlined in Section 4.

5.2 Large-Scale Experiments

For large-scale experiments on Reddit and Amazon2M, the baseline model is trained on a single GPU
and compared to models trained with GIST in terms of F1 score and training time. All large-scale
graphs are partitioned into 15,000 sub-graphs during training.5 Graph partitioning is mandatory
because the training graphs are too large to fit into memory. One could instead use layer sampling
to make training tractable (see Section A.6), but we adopt graph partitioning in most experiments
because the implementation is simple and performs well.

Reddit Dataset. We perform tests with 256-dimensional GraphSAGE [19] and GAT [50] models
with two to four layers on Reddit; see Appendix A.4 for more details. As shown in Table 2, utilizing
GIST significantly accelerates GCN training (i.e., a 1.32× to 7.90× speedup). GIST performs best
in terms of F1 score with m = 2 sub-GCNs (i.e., m = 4 yields further speedups but F1 score
decreases). Interestingly, the speedup provided by GIST is more significant for models and datasets
with larger compute requirements. For example, experiments with the GAT architecture, which is
more computationally expensive than GraphSAGE, achieve a near-linear speedup with respect to m.

5Single-GPU training with graph partitioning via METIS is the same approach adopted by ClusterGCN [10],
making our single-GPU baseline a ClusterGCN model. We adopt the same number of sub-graphs as proposed in
this work.
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L m
F1 Score (Time in hours)

di = 400 di = 4096 di = 8192 di = 16384 di = 32768

2 - 89.38 (1.81) 90.58 (5.17) OOM OOM OOM
2 87.48 (1.25) 90.09 (1.70) 90.87 (2.76) 90.94 (9.31) 90.91 (32.31)
4 84.82 (1.11) 88.79 (1.13) 89.76 (1.49) 90.10 (2.24) 90.17 (5.16)
8 82.56 (1.13) 87.16 (1.11) 88.31 (1.20) 88.89 (1.39) 89.46 (1.76)

3 - 89.73 (2.32) 90.99 (9.52) OOM OOM OOM
2 87.79 (1.56) 90.40 (2.12) 90.91 (4.87) 91.05 (17.7) OOM
4 85.30 (1.37) 88.51 (1.42) 89.75 (2.07) 90.15 (3.44) OOM
8 82.84 (1.37) 86.12 (1.34) 88.38 (1.37) 88.67 (1.88) 88.66 (2.56)

4 - 89.77 (3.00) 91.02 (14.20) OOM OOM OOM
2 87.75 (1.79) 90.36 (2.77) 91.08 (6.92) 91.09 (26.44) OOM
4 85.32 (1.58) 88.50 (1.65) 89.76 (2.36) 90.05 (4.93) OOM
8 83.45 (1.56) 86.60 (1.55) 88.13 (1.61) 88.44 (2.30) OOM

Table 3: Performance of GraphSAGE models of different widths trained with GIST on Amazon2M.
m =“-” refers to the baseline and “OOM” marks experiments that cause out-of-memory errors. GIST

enables training of higher-performing, ultra-wide models.

Amazon2M Dataset. Experiments are performed with two, three, and four-layer GraphSAGE models
[19] with hidden dimensions of 400 and 4096 (we refer to these models as “narrow” and “wide”,
respectively). We compare the performance (i.e., F1 score and wall-clock training time) of GCN
models trained with standard, single-GPU methodology to that of models trained with GIST; see
Table 2. Narrow models trained with GIST have a lower F1 score in comparison to the baseline, but
training time is significantly reduced. For wider models, GIST provides a more significant speedup
(i.e., up to 7.12×) and tends to achieve comparable F1 score in comparison to the baseline, revealing
that GIST works best with wider models.

Within Table 2, models trained with GIST tend to achieve a wall-clock speedup at the cost of a lower
F1 score (i.e., observe the speedups marked with parenthesis in Table 2). When training time is
analyzed with respect to a fixed F1 score, we observe that the baseline takes significantly longer than
GIST to achieve a fixed F1 score. For example, when L = 2, a wide GCN trained with GIST (m = 8)
reaches an F1 score of 88.86 in ∼4,000 seconds, while models trained with standard methodology
take ∼10,000 seconds to achieve a comparable F1 score. As such, GIST significantly accelerates
training relative to model performance.

5.3 Training Ultra-Wide GCNs
We use GIST to train GraphSAGE models with widths as high as 32K (i.e., 8× beyond the capacity
of a single GPU); see Table 3 for results and Appendix A.5 for more details. Considering L = 2, the
best-performing, single-GPU GraphSAGE model (di = 4096) achieves an F1 score of 90.58 in 5.2
hours. With GIST (m = 2), we achieve a higher F1 score of 90.87 in 2.8 hours (i.e., a 1.86× speedup)
using di = 8192, which is beyond single GPU capacity. Similar patterns are observed for deeper
models. Furthermore, we find that utilizing larger hidden dimensions yields further performance
improvements, revealing the utility of wide, overparameterized GCN models. GIST, due to its feature
partitioning strategy, is unique in its ability to train models of such scale to SOTA performance.

6 Conclusions and Future Work
We present GIST, a distributed training approach for GCNs that enables the exploration of larger
models and datasets. GIST is compatible with existing sampling approaches and leverages a feature-
wise partition of model parameters to construct smaller sub-GCNs that are trained independently and
in parallel. We have shown that GIST achieves remarkable speed-ups over large graph datasets and
even enables the training of GCN models of unprecedented size. We hope GIST can empower the
exploration of larger, more powerful GCN architectures within the graph community.

Several interesting avenues of analysis remain that are relevant to GIST. Given that GIST can
be applied to any GCN architecture, using models that exploit edge features within the graph
could yield further performance improvements. For example, the EGNN model [16] injects edge
information into the GCN model via the adjacency matrix at each layer, which—similarly to node
partitioning strategies—operates orthogonally to the feature partitioning strategy of GIST and is
therefore compatible. Furthermore, the analysis of GIST could be extended to alternative tasks (e.g.,
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link prediction) and larger-scale datasets. However, performing experiments over datasets larger than
Amazon2M is difficult due to the lack of moderately-large-scale graphs that are available publicly.
For example, the only graph larger than Amazon2M provided via the Open Graph Benchmark [22] is
Papers100M, which requires 256 Gb of CPU RAM to load.
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A Experimental Details

A.1 Datasets

The details of the datasets utilized within GIST experiments in Section 5 are provided in Table 4.
Cora, Citeseer, PubMed and OGBN-Arxiv are considered “small-scale” datasets and are utilized
within experiments in Section 5.1. Reddit and Amazon2M are considered “large-scale” datasets and
are utilized within experiments in Section 5.2.

Dataset n # Edges # Labels d

Cora 2,708 5,429 7 1,433
CiteSeer 3,312 4,723 6 3,703
Pubmed 19,717 44,338 3 500
OGBN-Arxiv 169,343 1.2M 40 128
Reddit 232,965 11.6 M 41 602
Amazon2M 2.5 M 61.8 M 47 100

Table 4: Details of relevant datasets.

A.2 Implementation Details

We provide an implementation of GIST in PyTorch [39] using the NCCL distributed communication
package for training GCN [28], GraphSAGE [19] and GAT [50] architectures. Our implementation
is centralized, meaning that a single process serves as a central parameter server. From this central
process, the weights of the global model are maintained and partitioned to different worker processes
(including itself) for independent training. Experiments are conducted with 8 NVIDIA Tesla V100-
PCIE-32G GPUs, a 56-core Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz, and 256 GB of RAM.

A.3 Small-Scale Experiments

Small-scale experiments in Section 5.1 are performed using Cora, Citeseer, Pubmed, and OGBN-
Arxiv datasets [43, 22]. GIST experiments are performed with two, four, and eight sub-GCNs in all
cases. We find that the performance of models trained with GIST is relatively robust to the number of
local iterations ζ , but test accuracy decreases slightly as ζ increases; see Figure 5. Based on the results
in Figure 5, we adopt ζ = 20 for Cora, Citeseer, and Pubmed, as well as ζ = 100 for OGBN-Arxiv.
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Figure 4: Test accuracy for different sizes (i.e., varying depth and width) of GCN models trained
with standard, single-GPU methodology on small-scale datasets. We adopt three-layer,

256-dimensional GCN models as our baseline architecture.
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Figure 5: Test accuracy of GCN models trained on small-scale datasets with GIST using different
numbers of local iterations and sub-GCNs. Models trained with GIST are surprisingly robust to the

number of local iterations used during training, no matter the number of sub-GCNs.

Experiments are run for 400 epochs with a step learning rate schedule (i.e., 10× decay at 50% and
75% of total epochs). A vanilla GCN model, as described in [28], is used. The model is trained in
a full-batch manner using the Adam optimizer [27]. No node sampling techniques are employed
because the graph is small enough to fit into memory. All reported results are averaged across five
trials with different random seeds. For all models, d0 and dL are respectively given by the number
of features and output classes in the dataset. The size of all hidden layers is the same, but may vary
across experiments.

We first train baseline GCN models of different depths and hidden dimensions using a single GPU to
determine the best model depth and hidden dimension to be used in small-scale experiments. The
results are shown in Figure 4. Deeper models do not yield performance improvements for small-scale
datasets, but test accuracy improves as the model becomes wider. Based upon the results in Figure 4,
we adopt a three-layer GCN with a hidden dimension of d1 =d2 =256 as the underlying model used
in small-scale experiments. Though two-layer models seem to perform best, we use a three-layer
model within Section 5.1 to enable more flexibility in examining the partitioning strategy of GIST.

A.4 Large-Scale Experiments

Reddit Dataset. For experiments on Reddit, we train 256-dimensional GraphSAGE and GAT models
using both GIST and standard, single-GPU methodology. During training, the graph is partitioned
into 15,000 sub-graphs. Training would be impossible without such partitioning because the graph is
too large to fit into memory. The setting for the number of sub-graphs is the optimal setting proposed
in previous work [10]. Models trained using GIST and standard, single-GPU methodologies are
compared in terms of F1 score and training time.

All tests are run for 80 epochs with no weight decay, using the Adam optimizer [27]. We find that
ζ = 500 achieves consistently high performance for models trained with GIST on Reddit. We adopt
a batch size of 10 sub-graphs throughout the training process, which is the optimal setting proposed
in previous work [10].
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L # Sub-GCNs GIST + LADIES

F1 Score Time Speedup

2 Baseline 89.73 3359.91s 1.00×
2 89.29 1834.59s 1.83×
4 88.42 1158.51s 2.90×

3 Baseline 89.57 4803.88s 1.00×
2 86.52 2635.18s 1.82×
4 86.72 1605.32s 3.00×

Table 5: Performance of GCN models trained with a combination of GIST and LADIES [59] on
Reddit. Here, the baseline represents models trained with LADIES in a standard, single-GPU manner.

Combining GIST with layer sampling leads to further improvements in wall-clock training time
without deteriorating the F1 score.

Amazon2M Dataset. For experiments on Amazon2M, we train two to four layer GraphSAGE models
with hidden dimensions of 400 and 4096 using both GIST and standard, single-GPU methodology.
We follow the experimental settings of [10]. The training graph is partitioned into 15,000 sub-graphs
and a batch size of 10 sub-graphs is used. We find that using ζ = 5000 performs consistently well.
Models are trained for 400 total epochs with the Adam optimizer [27] and no weight decay.

A.5 Training Ultra-Wide GCNs

All settings for ultra-wide GCN experiments in Section 5.3 are adopted from the experimental settings
of Section 5.2; see Appendix A.4 for further details. For di > 4096 evaluation must be performed
on graph partitions (not the full graph) to avoid memory overflow. As such, the graph is partitioned
into 5,000 sub-graphs during testing and F1 score is measured over each partition and averaged. All
experiments are performed using a GraphSAGE model, and the hidden dimension of the underlying
model is changed between different experiments.

A.6 GIST with Layer Sampling

As previously mentioned, some node partitioning approach must be adopted to avoid memory
overflow when the underlying training graph is large. Although graph partitioning is used within most
experiments (see Section 5.2), GIST is also compatible with other node partitioning strategies. To
demonstrate this, we perform training on Reddit using GIST combined with a recent layer sampling
approach [59] (i.e., instead of graph partitioning).

As shown in Table 5, combining GIST with layer sampling enables training on large-scale graphs,
and the observed speedup actually exceeds that of GIST with graph partitioning. For example, GIST
with layer sampling yields a 1.83× speedup when L = 2 and m = 2, in comparison to a 1.50×
speedup when graph partitioning is used within GIST (see Table 2). As the number of sub-GCNs is
increased beyond m = 2, GIST with layer sampling continues to achieve improvements in wall-clock
training time (e.g., speedup increases from 1.83× to 2.90× fromm = 2 tom = 4 for L = 2) without
significant deterioration to model performance. Thus, although node partitioning is needed to enable
training on large-scale graphs, the feature partitioning strategy of GIST is compatible with numerous
sampling strategies (i.e., not just graph sampling).

Experiments adopt the same experimental settings as Section 5.2 for the Reddit dataset; see Appendix
A.4 for further details. Within these experiments, we combine GIST with LADIES [59], a recent layer
sampling approach for efficient GCN training. LADIES is used instead of graph partitioning. Any
node sampling approach can be adopted—some sampling approach is just needed to avoid memory
overflow.

We train 256-dimensional GCN models with either two or three layers. We utilize a vanilla GCN
model within this section (as opposed to GraphSAGE or GAT) to simplify the implementation of
GIST with LADIES, which creates a disparity in F1 score. Experiments compare the performance of
the same models trained either with GIST or using standard, single-GPU methodology. In this case,
the single-GPU model is just a GCN trained with LADIES.
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# Machines Method F1 Score Training Time

2 Local SGD 96.37 137.17s
GIST 96.40 108.67s

4 Local SGD 95.00 127.63s
GIST 96.16 116.56s

8 Local SGD 93.40 129.58s
GIST 95.46 123.83s

Table 6: Performance of GraphSAGE models trained using local SGD and GIST on Reddit. We
adopt settings described in Section 5.2, but use 100 local iterations for both GIST and local SGD.
Models trained with GIST outperform those trained with local SGD in terms of test F1 score and

wall-clock training time in all cases.

B GIST vs. Other Distributed Training Methods

Although GIST has been shown to provide benefits in terms of GCN performance and training
efficiency in comparison to standard, single-GPU training, other choices for the distributed training
of GCNs exist. Within this section, we compare GIST to other natural choices for distributed training,
revealing that GCN models trained with GIST achieve favorable performance in comparison to those
trained with other common distributed training techniques.

B.1 Local SGD

A simple version of local SGD [33] can be implemented for distributed training of GCNs by training
the full model on each separate worker for a certain number of local iterations and intermittently
averaging local updates. In comparison to such a methodology, GIST has better computational and
communication efficiency because i) it communicates only a small fraction of model parameters
to each machine and ii) locally training narrow sub-GCNs is faster than locally training the full
model. We perform a direct comparison between local SGD and GIST on the Reddit dataset using a
two-layer, 256-dimensional GraphSAGE model; see Table 6. As can be seen, GCN models trained
with GIST have lower wall-clock training time and achieve better performance than those trained
with local SGD in all cases.

# Machines Method F1 Score Inference Time

2 Ensemble 96.31 3.59s
GIST 96.40 1.81s

4 Ensemble 96.10 6.38s
GIST 96.16 1.81s

8 Ensemble 95.28 11.95s
GIST 95.46 1.81s

Table 7: Performance of GraphSAGE models trained both with GIST and as ensembles of shallow
sub-GCNs on Reddit. Models trained with GIST perform better and do not suffer from increased

inference time as the number of sub-GCNs is increased.

B.2 Sub-GCN Ensembles

As previously mentioned, increasing the number of local iterations (i.e., ζ in Algorithm 1) decreases
communication requirements given a fixed amount of training. When taken to the extreme (i.e.,
ζ →∞), one could minimize communication requirements by never aggregating sub-GCN param-
eters, thus forming an ensemble of independently-trained sub-GCNs. We compare GIST to such
a methodology6 in Table 7 using a two-layer, 256-dimensional GraphSAGE model on the Reddit
dataset. Though training ensembles of sub-GCNs minimizes communication, Table 7 reveals that i)

6For each sub-GCN, we measure validation accuracy throughout training and add the highest-performing
model into the ensemble.
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models trained with GIST achieve better performance and ii) inference time for sub-GCN ensembles
becomes burdensome as the number of sub-GCNs is increased.

C Theoretical Results

C.1 Formulation of GIST for One-Hidden-Layer GCNs

In our analysis, we consider a GCN with one hidden-layer and a ReLU activation. We assume that
the GCN outputs a scalar value ỹi for each node in the graph. Denoting ỹ = [ỹ1, . . . , ỹn], we can
write the output of the GCN as

ỹ =
1√
d1

Āσ(ĀXΘ)a

where Θ = [θ1, . . . ,θd1 ] ∈ Rn×d1 is the weights within the GCN’s first layer and a =
[a1, . . . , ad1 ] ∈ Rd1 is the weights within the GCN’s second layer. To simplify the analysis, we
denote X̂ = ĀX = [x̂1, . . . x̂n]. Then, we have x̂i =

∑n
i′=1 Āii′xi′ and the output of each node

within the graph can be written as

ỹi =
1√
d1

n∑
i′=1

d1∑
r=1

Āii′arσ(〈x̂i′ ,θr〉)

As in previous convergence analysis for training neural networks, we assume that second-layer
weights a are fixed and only the first layer weights Θ are trainable. Following the GIST feature
partitioning strategy, we only partition the hidden layer. Specifically, in global iteration t, sub-GCNs
are constructed by sampling a set of masksMt ∈ Rm×d1 . We denote the jth column ofMt as
M(j)

t ∈ Rm, the rth row ofMt asMt,r ∈ Rd1 , and the entry in the rth row and jth column as
M(j)

t,r . EachM(j)
t,r is a binary values:M(j)

t,r = 1 if neuron r is active in sub-GCN j, andM(j)
t,r = 0

otherwise. Using this mask notation, the output for node i within sub-GCN j can be written as

ŷ
(j)
i (t, k) = fM(j)

t
(Θ

(j)
t,k,X)i =

1√
d1

n∑
i′=1

d1∑
r=1

Āii′M(j)
t,rarσ

(〈
x̂i′ ,θ

(j)
t,k,r

〉)
t and k denote the current global and local iterations, respectively. We assume that eachMt,r is
sampled from a one-hot categorical distribution. We formally define the random variablesM(j)

t,r

as follows: Let each m̂t,r be a uniform random variable on the index set [m] = {1, . . . ,m}, i.e.,
P(m̂t,r = j) = 1

m for j ∈ [m]. Then, we define each mask entry asM(j)
t,r = I{m̂k,r = j}. Masks

sampled in such a fashion have the following properties

• P(M(j)
t,r = 1) = 1

m

• P(M(j)
t,r = 0) = 1− 1

m

•
∑m
j=1M

(j)
t,r = 1

• M(j)
t,rM

(j′)
t,r = 0 if j′ 6= j.

Here, the first and second properties guarantee that the expected number of neurons active in each
sub-GCN is equal. The third and fourth properties guarantee that each neuron is active in one and
only one sub-GCN. Within this setup, we consider the GIST training procedure, described as

θ
(j)
t,0,r = θt,r

θ
(j)
t,k+1,r = θ

(j)
t,k,r − η

∂L(Θ
(j)
t,k)

∂θr

θt+1,r = θt,r +

m∑
j=1

(
θ

(j)
t,ζ,r − θ

(j)
t,0,r

) (3)
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Within this formulation, ζ represents the total number of local iterations performed for each sub-GCN,
while L(Θ

(j)
t,k) is the loss on the jth sub-GCN during the t-th global and kth local iteration. We can

express L(Θ
(j)
t,k) as

L
(
Θ

(j)
t,k

)
=
∥∥∥y − ŷ(j)(t, k)

∥∥∥2

2
=
∥∥∥y − fM(j)

t
(Θ

(j)
t,k,X)

∥∥∥2

2

and the gradient has the form

∂L(Θ
(j)
t,k)

∂θr
=

1√
d1

n∑
i=1

n∑
i′=1

(
ŷ

(j)
i (t, k)− yi

)
Āii′M(j)

t,rarx̂i′I
{〈

θ
(j)
t,k,r, x̂i′

〉
≥ 0
}

C.2 Properties of the Transformed Input

The GCN [28] uses a first-degree Chebyshev polynomial to approximate a spectral convolution on
the graph, which results in an aggregation matrix of the form

Ā = I + D−
1
2 AD−

1
2 (4)

where A is the adjacency matrix and D is the degree matrix with Dii =
∑n
j=1 Aij . In practice,

the re-normalization trick is applied to control the magnitude of the largest eigenvalue of Ā. Here,
however, we keep the original formulation of (4) to facilitate our analysis, and our assumption on the
depth of the GCN does not lead to numerical instability even if λmax(Ā) > 1. It is a well-known
result that 2 = λmax(Ā) ≥ λmin(Ā) ≥ 0. In particular, the lower bound on the minimum eigenvalue
is obtained by considering

v>Āv =

n∑
i=1

v2
i +

∑
(i,j)∈E

vivj√
DiiDjj

=
∑

(i,j)∈E

(
vi√
Dii

+
vj√
Djj

)2

In our analysis, we require the aggregation matrix Ā to be positive definite. Thus, the following
assumption can be made about λmin(Ā).

Assumption 2 λmin(Ā) 6= 0.

Going further, we must make a few more assumptions about the aggregation matrix and the graph
itself to satisfy certain properties relevant to the analysis. First, the following property must hold

For all i ∈ [n], we have ‖x̂i‖2 ≤ 1.

which can be guaranteed by the following assumption.

Assumption 3 There exists ε ∈ (0, 1) and p ∈ Z+ such that

(1− ε)2p ≤ Dii ≤ (1 + ε)2p

for all i ∈ [n].

Additionally, we make the following assumption regarding the graph itself

Assumption 4 For all i ∈ [n], we have ‖xi‖2 ≤ 1−ε
2 , and |yi| ≤ C for some constant C. Moreover,

for all j ∈ [n] and j 6= i, we have xi 6‖ xj .

which, in turn, yields the following property

For all i, j ∈ [n] such that i 6= j, we have x̂i 6‖ x̂j .
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C.3 Full Statement Theorem 4

We now state the full version of Theorem 4 from Section 4, which characterizes the convergence
properties of one-hidden-layer GCN models trained with GIST. The full proof of this Theorem is
provided within Appendix C.5. Suppose assumptions 2-4, and property C.2 hold. Moreover, suppose
in each global iteration the masks are generated from a categorical distribution with uniform mean
1/m. Fix the number of global iterations to T and local iterations to ζ. If the number of hidden
neurons satisfies d1 = Ω

(
n3ζ2T 2

δ2γ(1−γ)2λ4
0

(
n+ d

m2 ‖Ā2‖1,1
))

, then procedure (3) with constant step

size η = O
(

λ0

n2‖A2‖1,1

)
converges according to

E[Mt−1],Θ0,a

[
‖y − ŷ(t)‖22

]
≤

(
γ + (1− γ)

(
1− ηλ0

2

)ζ)t
EΘ0,a

[
‖y − ŷ(0)‖22

]
+O

(
(m− 1)2ζ‖Ā2‖1,1nd

γm2d1

)
with probability at least 1− δ.

C.4 GIST and Local Training Progress

For a one-hidden-layer MLP, the analysis often depends on the (scaled) Gram Matrix of the infinite-
dimensional NTK

H∞ij =
1

d1m
〈x̂i, x̂j〉Eθ∼N (0,I) [I{〈x̂i,θ〉 ≥ 0, 〈x̂j ,θ〉 ≥ 0}]

We can extend this definition of the Gram Matrix to an infinite-width, one-hidden-layer GCN as
follows

G∞ = ĀH∞Ā

With property C.2, prior work [13] shows that λmin(H) > 0. Denoting λ0 = λmin(G∞), since Ā
is also positive definite, we have that λ0 ≥ λmin(H)λmin(Ā) > 0. In our analysis, we define the
Graph Independent Subnetwork Tangent Kernel (GIST-K)

G(j)(t, t′, k) = ĀH(t, t′, k)Ā

where H(t, t′, k) is defined as

H(t, t′, k) =
1

d1
〈x̂i, x̂j〉

d1∑
r=1

M(j)
t,r I

{〈
x̂i,θ

(j)
t′,k,r

〉
≥ 0,

〈
x̂j ,θ

(j)
t′,k,r

〉
≥ 0
}

for masksMt and weights Θ
(j)
t′,k. Following previous work [32] on subnetwork theory, the following

Lemma can be obtained. Suppose the number of hidden nodes satisfies d1 = Ω
(
λ−1

0 n2 log Tmn/δ
)
.

If for all t, k it holds that ‖θt,k,r − θ0,r‖2 ≤ R := λ0

48n , then with probability at least 1− δ, for all
t, t′ ∈ [T ] we have:

λmin(G(j)(t, t′, k)) ≥ λ0

2 .

After showing that every GIST-K is positive definite, we can then show that the local training of
each sub-GCN enjoys a linear convergence rate. Suppose the number of hidden nodes satisfies
d1 = Ω

(
λ−1

0 n2 log Tmn/δ
)
. If for all r ∈ [d1] it holds that

‖θt,r − θ0,r‖2 +
4Tηζ

δα

√
n

d1
E[Mt−1],W0,a

[
‖y − ŷ(t)‖22

] 1
2 + (T − t)B ≤ R (5)

with

B =

√
8(m− 1)ηζn

md1

√8(m− 1)‖Ā2‖1,1d
γm

+

√
ηζnT

δ

 ; R ≤ λ0

96n
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then we have ∥∥∥y − ŷ(j)(t, k + 1)
∥∥∥2

2
≤
(

1− ηλ0

2

)∥∥∥y − ŷ(j)(t, k)
∥∥∥2

2

and for all r ∈ [d1], j ∈ [m] it holds that

∥∥∥θ(j)
t,ζ,r − θ

(j)
0,r

∥∥∥
2
≤ 2Tηζ

δ

√
n

d1
E[Mt−1],W0,a

[
‖y − ŷ(t)‖22

] 1
2 + ηζn

√
8(m− 1)T

md1δ

with probability at least 1− δ
T

C.5 Convergence of GIST

We now prove the convergence result for GIST outlined in Appendix C.3. In showing the convergence
of GIST, we care about the regression loss ‖y − ŷ(t)‖22 with

ŷ(t) = f(Θt,X) =
1

m
√
d1

Āσ(ĀXΘt)a

As in previous work [32], we add the scaling factor 1
m to make sure that EMt [ŷ

(j)(t, 0)] = ŷ(t).
Moreover, by properties of the masksM(j)

t , we have

f(Θ,X) =

m∑
j=1

f
(j)
M (Θ,X)

Thus, we can invoke lemmas 13 and 14 from [32]. We state the two key lemmas here in accordance
with our own notation. The t-th global step produces squared error satisfying

‖y − ŷ(t+ 1)‖22 =
1

m

m∑
j=1

‖y − ŷ(j)(t, ζ)‖22 −
1

m2

m∑
j=1

j−1∑
j′=1

‖ŷ(j)(t, ζ)− ŷ(j′)(t, ζ)‖22

In the t-th global iteration, the sampled subnetwork’s deviation from the whole network is given by

m∑
j=1

‖ŷ(t)− ŷ(j)(t, 0)‖22 =
1

m

m∑
j=1

j−1∑
j′=1

‖ŷ(j)(t, 0)− ŷ(j′)(t, 0)‖22

Moreover, lemmas 22 and 23 from [32] show that with probability at least 1− 2n exp(−m
32 ), for all

R ≤ 1
2 , it holds that

‖Θ0‖F ≤
√

2d1d−
√
d1R

m∑
r=1

〈θ0,r, x̂i〉 ≤ d1n(2−R2)

For convenience, we assume that such an initialization property holds. Then, we can use lemma 24
from [32]: as long as ‖θt,r − θ0,r‖2 ≤ R for all t, r, then we have

EMt

[
‖ŷ(t)− ŷ(j)(t, 0)‖22

]
≤ 4n(m− 1)

m2

Then, applying Markov’s inequality gives the following with probability at least 1− δ
2mT

‖ŷ(t)− ŷ(j)(t, 0)‖22 ≤
8n(m− 1)T

mδ
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We point out that, within the proof, we use R = λ0

96n , which satisfies the condition above. Using
lemma C.5 to expand the loss at the (t+ 1)th iteration and invoking lemma C.4 gives

‖y − ŷ(t+ 1)‖22 =
1

m

m∑
j=1

∥∥∥y − ŷ(j)(t, ζ)
∥∥∥2

2
− 1

m2

m∑
j=1

j−1∑
j′=1

∥∥∥ŷ(j)(t, ζ)− ŷ(j′)(t, ζ)
∥∥∥2

2

≤ 1

m

m∑
j=1

(
1− ηλ0

2

)ζ ∥∥∥y − ŷ(j)(t, 0)
∥∥∥2

2

− 1

m2

m∑
j=1

j−1∑
j′=1

∥∥∥ŷ(j)(t, ζ)− ŷ(j′)(t, ζ)
∥∥∥2

2

=
1

m

m∑
j=1

∥∥∥y − ŷ(j)(t, 0)
∥∥∥2

2
− ηλ0

2m

ζ−1∑
k=0

m∑
j=1

(
1− ηλ0

2

)k ∥∥∥y − ŷ(j)(t, 0)
∥∥∥2

2

− 1

m2

m∑
j=1

j−1∑
j′=1

∥∥∥ŷ(j)(t, ζ)− ŷ(j′)(t, ζ)
∥∥∥2

2

Using the fact that EMt
[ŷ(j)(t, 0)] = ŷ(t) we have

EMt

[∥∥∥y − ŷ(j)(t, 0)
∥∥∥2

2

]
= ‖y − ŷ(t)‖22 + EMt

[∥∥∥ŷ(t)− ŷ(j)(t, 0)
∥∥∥2

2

]

Then, using lemma C.5 to rewrite the last term in the equation above and plugging in gives

EMt

[
‖y − ŷ(t+ 1)‖22

]
≤ ‖y − ŷ(t)‖22 −

ηλ0

2m

ζ−1∑
k=0

m∑
j=1

(
1− ηλ0

2

)k
EMt

[∥∥∥y − ŷ(j)(t, 0)
∥∥∥2

2

]

+
1

m2

m∑
j=1

j−1∑
j′=1

EMt

[
‖ŷ(j)(t, 0)− ŷ(j′)(t, 0)‖22 −

∥∥∥ŷ(j)(t, ζ)− ŷ(j′)(t, ζ)
∥∥∥2

2

]

We denote the last term within the equation above as ιt

ιt =
1

m2

m∑
j=1

j−1∑
j′=1

EMt

[
‖ŷ(j)(t, 0)− ŷ(j′)(t, 0)‖22 −

∥∥∥ŷ(j)(t, ζ)− ŷ(j′)(t, ζ)
∥∥∥2

2

]

The following lemma shows the bound on ιt As long as
∥∥∥θ(j)

t,k,r − θ0,r

∥∥∥
2
≤ R for all t, k, j, and the

initialization satisfies ‖Θ0‖F ≤
√

2d1d−
√
d1R, then we have

ιt ≤
ηγλ0

2m

n∑
j=1

ζ−1∑
k=0

EMt

[
‖y − ŷ(j)(t, k)‖22

]
+

64η(m− 1)2ζ‖Ā2‖1,1nd
γm2d1

+ ι′t
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with EΘ0,ar [ι′t] = 0, for all γ ∈ (0, 1). Therefore, we can derive the following using lemma C.5

EMt

[
‖y − ŷ(t+ 1)‖22

]
≤ ‖y − ŷ(t)‖22 −

ηλ0

2m

ζ−1∑
k=0

m∑
j=1

(
1− ηλ0

2

)k
EMt

[∥∥∥y − ŷ(j)(t, 0)
∥∥∥2

2

]

+
ηγλ0

2m

n∑
j=1

ζ−1∑
k=0

EMt

[
‖y − ŷ(j)(t, k)‖22

]
+

64η(m− 1)2ζ‖Ā2‖1,1nd
γm2d1

+ ι′t

≤ ‖y − ŷ(t)‖22 −
(1− γ)ηλ0

2m

ζ−1∑
k=0

m∑
j=1

(
1− ηλ0

2

)k
EMt

[∥∥∥y − ŷ(j)(t, 0)
∥∥∥2

2

]

+
64η(m− 1)2ζ‖Ā2‖1,1nd

γm2d1
+ ι′t

≤ ‖y − ŷ(t)‖22 −
(1− γ)ηλ0

2

ζ−1∑
k=0

(
1− ηλ0

2

)k
‖y − ŷ(t)‖22

+
64η(m− 1)2ζ‖Ā2‖1,1nd

γm2d1
+ ι′t

=

(
γ + (1− γ)

(
1− ηλ0

2

)ζ)
‖y − ŷ(t)‖22

+
64η(m− 1)2ζ‖Ā2‖1,1nd

γm2d1
+ ι′t

Starting from here, we use α to denote the global convergence rate

α = (1− γ)

(
1−

(
1− ηλ0

2

)ζ)
Since ζ ≥ 1, we have that α ≥ ηλ0

2 (1− γ). Then, the convergence rate above yields the following

E[Mt−1],Θ0,a

[
‖y − ŷ(t)‖22

]
≤ EΘ0,a

[
‖y − ŷ(0)‖22

]
+O

(
(m− 1)2ζ‖Ā2‖1,1nd

γm2d1

)
Lastly, we provide a bound on weight perturbation using overparameterization. In particular, we can
show that hypothesis 5 holds for iteration t+ 1

‖θt+1,r − θ0,r‖2 +
4Tηζ

δα

√
n

d1
E[Mt],Θ0,a

[
‖y − ŷ(t+ 1)‖22

] 1
2 + (T − t− 1)B ≤ R

under the assumption that it holds in iteration t

‖θt,r − θ0,r‖2 +
4Tηζ

δα

√
n

d1
E[Mt−1],Θ0,a

[
‖y − ŷ(t)‖22

] 1
2 + (T − t)B ≤ R

and given the global convergence result

EMt

[
‖y − ŷ(t+ 1)‖22

]
≤ (1− α) ‖y − ŷ(t)‖22 +

64η(m− 1)2ζ‖Ā2‖1,1nd
γm2d1

+ ι′t

Thus, it suffices to show that
‖θt+1,r − θ0,r‖2 − ‖θt,r − θ0,r‖2

≤
(
E[Mt−1],Θ0,a

[
‖y − ŷ(t)‖22

] 1
2 − E[Mt],Θ0,a

[
‖y − ŷ(t+ 1)‖22

] 1
2

)
· 4Tηζ

δα

√
n

d1
+B

22



Using Jensen’s inequality, we derive the following

E[Mt],Θ0,a

[
‖y − ŷ(t+ 1)‖22

] 1
2

≤
(

(1− α)E[Mt−1],Θ0,a

[
‖y − ŷ(t)‖22

]
+

64η(m− 1)2ζ‖Ā2‖1,1nd
γm2d1

) 1
2

≤
(

1− α

2

)
E[Mt−1],Θ0,a

[
‖y − ŷ(t)‖22

] 1
2 +

8(m− 1)

m

√
ηζ‖Ā2‖1,1nd

γd1

It then suffices to show that

‖θt+1,r − θ0,r‖2 − ‖θt,r − θ0,r‖2 ≤
2Tηζ

δ

√
n

d1
E[Mt],Θ0,a

[
‖y − ŷ(t+ 1)‖22

] 1
2

+B − 8(m− 1)

m

√
ηζ‖Ā2‖1,1nd

γd1

=
2Tηζ

δ

√
n

d1
E[Mt],Θ0,a

[
‖y − ŷ(t+ 1)‖22

] 1
2

+ ηζn

√
8(m− 1)T

md1δ

Fix r ∈ [d1] and let ĵ be the index of the sub-GCN in which r is active. Indeed, we have

‖θt+1,r − θ0,r‖2 ≤ ‖θt,r − θ0,r‖2 + ‖θt+1,r − θ0,r‖2

= ‖θt,r − θ0,r‖2 + ‖θ(ĵ)
t,ζ,r − θt,r‖2

≤ ‖θt,r − θ0,r‖2 +
2Tηζ

δ

√
n

d1
E[Mt−1],Θ0,a

[
‖y − ŷ(t)‖22

] 1
2

+ ηζn

√
8(m− 1)T

md1δ

What remains is to prove hypothesis 5 for t = 0. In that case, we need

4Tηζ

δα

√
n

d1
EΘ0,a

[
‖y − ŷ(0)‖22

] 1
2 +B ≤ R = O

(
λ0

n

)
Finally, we have the following lemma bounding EΘ0,a

[
‖y − ŷ(0)‖22

]
It holds that

E
[
‖y − ŷ(0)‖22

]
≤ C2n+

d

m2
‖Ā2‖1,1

Thus, the bound above boils down to

Tηζn

δα
√
d1

= O

(
λ0

n

)
Tηζ

δαm

√
nd

d1
‖Ā2‖

1
2
1,1 = O

(
λ0

n

)
8(m− 1)T

m

√
ηζ‖Ā2‖1,1nd

γd1
= O

(
λ0

n

)

ηζn

√
8(m− 1)T 3

md1δ
= O

(
λ0

n

)
Plugging in the value of B and using α ≥ ηλ0

2 (1− γ) to solve for d1 gives

d1 = Ω

(
n3ζ2T 2

δ2γ(1− γ)2λ4
0

(
n+

d

m2
‖Ā2‖1,1

))
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C.6 Proof of Lemmas

We now provide all proofs for the major properties and lemmas utilized in deriving the convergence
results for GIST. [Proof of Property C.2] Under assumption 3, we have that for all i, i′ ∈ [n](

1− ε
1 + ε

)2

≤ Dii

Di′i′
≤
(

1 + ε

1− ε

)2

Therefore, we can write

‖x̂i‖2 =

∥∥∥∥∥
n∑

i′=1

Āii′xi

∥∥∥∥∥
2

=

∥∥∥∥∥
n∑

i′=1

(
I + D−

1
2 AD−

1
2

)
ii′

xi

∥∥∥∥∥
2

=

∥∥∥∥∥∥xi + D
− 1

2
ii

∑
i′ 6=i

Aii′D
− 1

2

i′i′ xi

∥∥∥∥∥∥
2

≤ 1− ε
2

+ D
− 1

2
ii

∑
i′ 6=i

Aii′D
− 1

2

i′i′

(
1− ε

2

)

≤ 1− ε
2

+ D
− 1

2
ii

∑
i′ 6=i

Aii′D
− 1

2
ii

(
1 + ε

1− ε

)(
1− ε

2

)
= 1

where the first inequality follows from assumption 4.

[Proof of Lemma C.4] Fix some R > 0. Following Theorem 2 by [32], we have that with probability
at least 1− 2n2e−2d1t

2

it holds that

‖H(j)(t, 0, 0)−H∞‖2 ≤ nt

and with probability at least 1− n2e−
d1R
10m it holds that

‖H(j)(t, t′, k)−H(j)(k, 0, 0)‖2 ≤
3nR

m

Choosing t = λ0

16n and R = λ0

48n gives

‖G(j)(t, t′, k)−G∞‖2 ≤ ‖Ā‖2‖H(j)(t, t′, k)−H∞‖2 = ‖Ā‖2 · λ0

8
≤ λ0

2

with probability at least 1 − n2
(

2 exp
(
− d1λ

2
0

128n2

)
+ exp

(
− d1λ0

480mn

))
. Taking a union bound over

all values of t′ and j, then plugging in the requirement d1 = Ω
(
λ−1

0 n2 log Tmn/δ
)

gives the desired
result.

[Proof of Lemma C.4] We first bound the norm of the gradient as∥∥∥∥∥∂L(Θ
(j)
t,k)

∂θr

∥∥∥∥∥
2

≤ 1√
d1

n∑
i=1

n∑
i′=1

Āii′ | ŷ(j)
i (t, k)− yi |

=
1√
d1

‖Ā∆‖1

≤
√

n

d1
‖Ā‖‖y − ŷ(j)(t, k)‖2
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where here ∆ =
[
| ŷ(j)

1 (t, k)− y1 |, . . . , | ŷ(j)
n (t, k)− yn |

]
, and for the last inequality we use

‖∆‖2 = ‖y − ŷ(j)(t, k)‖2. Then, following [46], we first fix R = λ0

‖Ā‖2 , and denote

Si = {r ∈ [m] : ¬Air}
Air = {∃θ : ‖θ − θ0,r‖2 ≤ R, I{〈θ, x̂i〉 ≥ 0} 6= I{〈θ0,r, x̂i〉 ≥ 0}}
S⊥i = [m] \ Si
ŝ = max

i∈[n]
| S⊥i |

Lemma 16 from [32] shows that

P
(
| S⊥i |≤ 4d1R

)
≥ exp(−d1R)

Throughout the proof, we let ŝ = 4d1R. Moreover, we define

H⊥(t, t′, k) =
1

d
〈x̂i, x̂i′〉

∑
r∈S⊥i

M(j)
t,r I{

〈
θ

(j)
t′,k,r, x̂i

〉
≥ 0;

〈
θ

(j)
t′,k,r, x̂i′

〉
≥ 0}

and let G⊥(t, t′, k) = ĀH⊥(t, t′, k)Ā. Then, we have∥∥H⊥(t, t′, k)
∥∥2

2
≤
∥∥H⊥(t, t′, k)

∥∥2

F

≤ 1

d2
1

n∑
i=1

n∑
i′=1

∑
r∈S⊥i

∑
r′∈S⊥i

I
{〈

θ
(j)
t′,k,r, x̂i

〉
≥ 0;

〈
θ

(j)
t′,k,r, x̂i′

〉
≥ 0
}
·

I
{〈

θ
(j)
t′,k,r′ , x̂i

〉
≥ 0;

〈
θ

(j)
t′,k,r′ , x̂i′

〉
≥ 0
}

≤ n2ŝ2

d2
1

= 16n2R2

which yields the following∥∥∥G(j)⊥(t, t′, k)
∥∥∥ ≤ ‖Ā‖2‖H(j)⊥(t, t′, k)‖ = 16nR

We then expand the loss at iteration (t, k + 1) as∥∥∥y − ŷ(j)(t, k + 1)
∥∥∥2

2
=
∥∥∥y − ŷ(j)(t, k)

∥∥∥2

2

− 2
〈
y − ŷ(j)(t, k), ŷ(j)(t, k + 1)− ŷ(j)(t, k)

〉
+
∥∥∥ŷ(j)(t, k + 1)− ŷ(j)(t, k)

∥∥∥2

2

Starting to analyze the second term, we note that

ŷ
(j)
i (t, k + 1)− ŷ(j)

i (t, k)

=
1√
d1

n∑
i′=1

d1∑
r=1

Āii′M(j)
t,rar

(
σ
(〈

θ
(j)
t,k+1,r, x̂i′

〉)
− σ

(〈
θ

(j)
t,k,r, x̂i′

〉))
We decompose ŷ(j)

i (t, k + 1)− ŷ(j)
i (t, k) = I

(j)
t,k,1 + I

(j)
t,k,2 with

I
(j)
i,1 (t, k) =

1√
d1

n∑
i′=1

∑
r∈Si′

Āii′M(j)
t,rar

(
σ
(〈

θ
(j)
t,k+1,r, x̂i′

〉)
− σ

(〈
θ

(j)
t,k,r, x̂i′

〉))
I

(j)
i,2 (t, k) =

1√
d1

n∑
i′=1

∑
r∈S⊥

i′

Āii′M(j)
t,rar

(
σ
(〈

θ
(j)
t,k+1,r, x̂i′

〉)
− σ

(〈
θ

(j)
t,k,r, x̂i′

〉))
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where I(j)
i,1 (t, k) can be further written as

I
(j)
i,1 (t, k) =

1√
d1

n∑
i′=1

∑
r∈Si′

Āii′M(j)
t,rar

〈
θ

(j)
t,k+1,r − θ

(j)
t,k,r, x̂i′

〉
I
{〈

θ
(j)
t,k,r, x̂i′

〉
≥ 0
}

= − η√
d1

n∑
i′=1

∑
r∈Si′

Āii′M(j)
t,rar

〈
∂L
(
Θ

(j)
t,k

)
∂θr

, x̂i′

〉
I
{〈

θ
(j)
t,k,r, x̂i′

〉
≥ 0
}

=
η

d1

n∑
i′=1

n∑
i1=1

n∑
i′1=1

∑
r∈Si

Āii′Āi1i′1
M(j)

t,r

(
yi1 − ŷ

(j)
i1

(t, k)
) 〈

x̂i′1 , x̂i′
〉
·

I
{〈

θ
(j)
t,k,r, x̂i′

〉
≥ 0;

〈
θ

(j)
t,k,r, x̂i′1

〉
≥ 0
}

= η

n∑
i′=1

n∑
i1=1

n∑
i′1=1

Āii′Āi1i′1

(
yi1 − ŷ

(j)
i1

(t, k)
)(

H(j)(t, t, k)i′i′1 −H(j)⊥(t, t, k)i′i′1

)
Thus for I

(j)
i,1 (t, k) = [I

(j)
1,1(t, k), . . . , I

(j)
n,1(t, k)] we have

I
(j)
i,1 (t, k) = ηĀ

(
H(j)(t, t, k)−H(j)⊥(t, t, k)

)
Ā
(
y − ŷ(j)(t, k)

)
= η

(
G(j)(t, t, k)−G(j)⊥(t, t, k)

)(
y − ŷ(j)(t, k)

)
≥ η

(
λ0

2
− ‖G(j)⊥(t, t, k)‖2

)∥∥∥y − ŷ(j)(t, k)
∥∥∥2

2

For I(j)
i,2 (t, k) we have

| I(j)
i,2 (t, k) | ≤ 1√

d1

n∑
i′=1

∑
r∈S⊥

i′

Āii′ | σ
(〈

θ
(j)
t,k+1,r, x̂i′

〉)
− σ

(〈
θ

(j)
t,k,r, x̂i′

〉)
|

≤ η√
d1

n∑
i′=1

∑
r∈S⊥

i′

Āii′

∥∥∥∥∥∂L(Θ
(j)
t,k)

∂θr

∥∥∥∥∥
2

≤ ηŝ

d1
‖Ā‖‖y − ŷ(j)(t, k)‖2

n∑
i′=1

Āii′

which yields the following

|
〈
y − ŷ(j)(t, k), I

(j)
i,2 (t, k)

〉
| ≤

n∑
i=1

| yi − y(j)
i (t, k) | · | I(j)

i,2 (t, k) |

≤ ηŝ

d1
‖Ā‖‖y − ŷ(j)(t, k)‖2

n∑
i,i′=1

Āii′ | yi − y(j)
i (t, k) |

≤ ηŝ

d1

∥∥Ā∥∥2
∥∥∥y − ŷ(j)(t, k)

∥∥∥2

2

≤ 4ηŝ

d1

∥∥∥y − ŷ(j)(t, k)
∥∥∥2

2

Lastly, we have(
yi − ŷ(j)

i (t, k)
)2

=
1

d1

n∑
i′=1

n∑
i′′=1

d1∑
r=1

d1∑
r′=1

Āii′Āii′′

∥∥∥∥∥∂L(Θ
(j)
t,k)

∂θr

∥∥∥∥∥
2

·

∥∥∥∥∥∂L(Θ
(j)
t,k)

∂θr′

∥∥∥∥∥
2

≤ η2‖Ā‖2‖y − ŷ(j)(t, k)‖22
n∑

i′=1

n∑
i′′=1

Āii′Āii′′
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Therefore ∥∥∥y − ŷ(j)(t, k)
∥∥∥2

2
=

n∑
i=1

(
yi − ŷ(j)

i (t, k)
)2

= η2‖Ā‖2‖y − ŷ(j)(t, k)‖22
n∑
i=1

n∑
i′=1

n∑
i′′=1

Āii′Āii′′

= 4η2‖Ā2‖1,1‖y − ŷ(j)(t, k)‖22
Putting things together gives∥∥∥y − ŷ(j)(t, k + 1)

∥∥∥2

2
≤ η

(
2‖G(j)⊥(t, t, k)‖2 +

8ηŝ

d1
+ 4ηn2‖Ā2‖1,1 − λ0

)
· ‖y − ŷ(j)(t, k)‖22 +

∥∥∥y − ŷ(j)(t, k)
∥∥∥2

2

≤
(

1− ηλ0

2

)∥∥∥y − ŷ(j)(t, k)
∥∥∥2

2

where the last step follows by plugging in the values of ‖G(j)⊥(t, t, k)‖ and ŝ, then setting R = λ0

96n

and η ≤ λ0

n2‖Ā2‖1,1
. Next, we bound the weight perturbation. First, using Markov’s inequality, we

have that with probability at least 1− δ
2T

‖y − ŷ(t)‖22 ≤
2T

δ
E[Mt−1]

[
‖y − ŷ(t)‖22

]
Thus, we have∥∥∥θ(j)

t,k,r − θ
(j)
t,0,r

∥∥∥
2
≤

k−1∑
k′=0

‖θt,k+1,r − θt,k,r‖2

≤ η
k−1∑
k′=0

∥∥∥∥∥∥
∂L
(
Θ

(j)
t,k

)
∂θr

∥∥∥∥∥∥
2

≤ η
√

n

d1

k−1∑
k′=0

‖y − ŷ(j)(t, k)‖2

≤ ηζ
√

n

d1

(
‖y − ŷ(t)‖2 + ‖ŷ(t)− ŷ(j)(t, 0)‖2

)
≤ 2Tηζ

δ

√
n

d1
E[Mt−1]

[
‖y − ŷ(t)‖22

] 1
2 + ηζn

√
8(m− 1)T

md1δ

Since α < 1 < 2, we have that

2Tηζ

δ

√
n

d1
≤ 4Tηζ

δα

√
n

d1

Also we have

ηζn

√
8(m− 1)T

md1δ
≤ B

Therefore, by hypothesis 5, we have that∥∥∥θ(j)
t,k,r − θ

(j)
0,r

∥∥∥
2
≤
∥∥∥θ(j)

t,r − θ
(j)
0,r

∥∥∥
2

+
∥∥∥θ(j)

t,k,r − θ
(j)
t,0,r

∥∥∥
2
≤ R

[Proof of Lemma (C.5)] For convenience, we denote

σ
(j)
i (t, r) = σ (〈θt,r, x̂i〉) ; σ

(j)
i (t+ 1, r) = σ

(〈
θ

(j)
t,ζ,r, x̂i

〉)
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Using 1-Lipschitzness of ReLU, we have

| σ(j)
i (t, r)− σ(j)

i (t+ 1, r) | ≤
∥∥∥θt,r − θ

(j)
t,ζ,r

∥∥∥
2

≤ η
ζ−1∑
k=0

∥∥∥∥∥∂L(Θ
(j)
t,k)

∂θr

∥∥∥∥∥
2

≤ 2

√
n

d1

ζ−1∑
k=0

‖y − ŷ(j)(t, k)‖2

Also, we have

| σ(j)
i (t, r) + σ

(j)
i (t+ 1, r) | ≤

∥∥∥θt,r + θ
(j)
t,ζ,r

∥∥∥
2

≤ 2‖θ0,r‖2 + ‖θt,r − θ0,r‖2 +
∥∥∥θ(j)

t,ζ,r − θ0,r

∥∥∥
2

≤ 2‖θ0,r‖2 + 2R

Expanding the difference of squares gives(
ŷ

(j)
i (t, 0)− ŷ(j′)

i (t, 0)
)2

−
(
ŷ

(j)
i (t, ζ)− ŷ(j′)

i (t, ζ)
)2

= βi,1βi,2

with

β
(j,j′)
i,1 = ŷ

(j)
i (t, 0)− ŷ(j′)

i (t, 0) + ŷ
(j)
i (t, ζ)− ŷ(j′)

i (t, ζ)

β
(j,j′)
i,2 = ŷ

(j)
i (t, 0)− ŷ(j′)

i (t, 0)− ŷ(j)
i (t, ζ) + ŷ

(j′)
i (t, ζ)

Written in terms of the simplified notation, we have

β
(j,j′)
i,1 =

1√
d1

n∑
i′=1

d1∑
r=1

Āii′ar

(
M(j)

t,r

(
σ

(j)
i′ (t, r) + σ

(j)
i′ (t+ 1, r)

)
−M(j′)

t,r

(
σ

(j′)
i′ (t, r) + σ

(j′)
i′ (t+ 1, r)

))

β
(j,j′)
i,2 =

1√
d1

n∑
i′=1

d1∑
r=1

Āii′ar

(
M(j)

t,r

(
σ

(j)
i′ (t, r)− σ(j)

i′ (t+ 1, r)
)

−M(j′)
t,r

(
σ

(j′)
i′ (t, r)− σ(j′)

i′ (t+ 1, r)
))

Letting

τ1(i′, r) =M(j)
t,r

(
σ

(j)
i′ (t, r) + σ

(j)
i′ (t+ 1, r)

)
−M(j′)

t,r

(
σ

(j′)
i′ (t, r) + σ

(j′)
i′ (t+ 1, r)

)
τ2(i′, r) =M(j)

t,r

(
σ

(j)
i′ (t, r)− σ(j)

i′ (t+ 1, r)
)
−M(j′)

t,r

(
σ

(j′)
i′ (t, r)− σ(j′)

i′ (t+ 1, r)
)

Then we have

β
(j,j′)
i,1 β

(j,j′)
i,2 =

1

d1

n∑
i1=1

n∑
i2=1

d1∑
r=1

d1∑
r′=1

Āii1Āii2arar′τ1(i1, r)τ2(i2, r
′)

=
1

d1

n∑
i1=1

n∑
i2=1

d1∑
r=1

Āii1Āii2τ1(i1, r)τ2(i2, r) + ∆
(j,j′)
i,t

with

∆
(j,j′)
i,t =

1

d1

n∑
i1=1

n∑
i2=1

d1∑
r=1

∑
r′ 6=r

Āii1Āii2arar′τ1(i1, r)τ2(i2, r
′)
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Note that due to the independence of ar and ar′ , we have that Ea

[
∆

(j,j′)
i,t

]
= 0. Moreover, for

j 6= j′, we have thatM(j)
t,rM)

(j′)
t,r = 0. Thus, we have

| τ(i1, r)τ2(i2, r
′) |

=M(j)
t,r | σ

(j)
i1

(t, r) + σ
(j)
i1

(t+ 1, r) | · | σ(j)
i2

(t, r)− σ(j)
i2

(t+ 1, r) |

+M(j′)
t,r | σ

(j′)
i1

(t, r) + σ
(j′)
i1

(t+ 1, r) | · | σ(j′)
i2

(t, r)− σ(j′)
i2

(t+ 1, r) |

≤ 4η

√
n

d1
(‖θ0,r‖2 + 2R)

(
ζ−1∑
k=0

‖y − ŷ(j)(t, k)‖2 +

ζ−1∑
k=0

‖y − ŷ(j′)(t, k)‖2

)
Thus

β
(j,j′)
i,1 β

(j,j′)
i,2

=
4η
√
n

d
3
2
1

(
n∑

i1=1

n∑
i2=1

Āii1Āii2

)(
d1∑
r=1

(‖θ0,r‖2 + 2R)

)
·

(
ζ−1∑
k=0

‖y − ŷ(j)(t, k)‖2 +

ζ−1∑
k=0

‖y − ŷ(j′)(t, k)‖2

)
+ ∆

(j,j′)
i,t

≤ 4η

√
2nd

d1

(
n∑

i1=1

n∑
i2=1

Āii1Āii2

)(
ζ−1∑
k=0

‖y − ŷ(j)(t, k)‖2 +

ζ−1∑
k=0

‖y − ŷ(j′)(t, k)‖2

)
+ ∆

(j,j′)
i,t

Thus

ιt =
1

m2

m∑
j=1

j−1∑
j′=1

EMt

[
n∑
i=1

β
(j,j′)
i,1 β

(j,j′)
i,2

]

=
4η(m− 1)

m2

√
2nd

d1
‖Ā2‖1,1

m∑
j=1

ζ−1∑
k=0

EMt

[
‖y − ŷ(j)(t, k)‖2

]

+
1

m2

m∑
j=1

j−1∑
j′=1

n∑
i=1

EM(j)
t

[
∆

(j,j′)
i,t

]

=

n∑
j=1

ζ−1∑
k=0

EMt

[
α

(j)
t,k

]
+

1

m2

m∑
j=1

j−1∑
j′=1

n∑
i=1

EM(j)
t

[
∆

(j,j′)
i,t

]
with

α
(j)
t,k =

4η(m− 1)

m2

√
2nd

d1
‖Ā2‖1,1‖y − ŷ(j)(t, k)‖2

By Cauchy-Schwartz inequality,

α
(j)
t,k =

η

m
·

(√
γλ0

2
‖y − ŷ(j)(t, k)‖2

)
·

(
8(m− 1)

m
√
γ
‖Ā‖1,1

√
nd

d1

)

≤ η

m

(
γλ0

2
‖y − ŷ(j)(t, k)‖22 +

64(m− 1)2‖Ā‖21,1nd
γm2d1

)

=
ηγλ0

2m
‖y − ŷ(j)(t, k)‖22 +

64η(m− 1)2‖Ā‖21,1nd
γm3d1

Thus

ιt ≤
ηγλ0

2m

m∑
j=1

ζ−1∑
k=0

EMt

[
‖y − ŷ(j)(t, k)‖22

]
+

64η(m− 1)2ζ‖Ā‖21,1nd
γm2d1

+ ι′t
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with

EΘ0,a [ι′t] = 0

[Proof of Lemma C.5] Note that

EΘ0,a

[
‖y − ŷ(0)‖22

]
=

n∑
i=1

EΘ0,a

[
(yi − ŷi(0))2

]
= y2

i − 2yiEΘ0,a [ŷi(0)] + EΘ0,a

[
ŷi(0)2

]
≤ C2 + EΘ0,a

[
ŷi(0)2

]
where the last inequality follows from the bound on |yi| and the fact that EΘ0,a

[
ŷi(0)2

]
= 0.

Moreover, we have

EΘ0,a

[
ŷi(0)2

]
=

1

m2d1

n∑
i1=1

n∑
i2=1

d1∑
r1=1

d1∑
r2=1

Āii1Āii2Ea[ar1ar2 ]EΘ0
[σ (〈θ0,r1 , x̂i1〉)σ (〈θ0,r2 , x̂i2〉)]

=
1

m2d1

n∑
i1=1

n∑
i2=1

d1∑
r=1

Āii1Āii2EΘ0
[σ (〈θ0,r, x̂i1〉)σ (〈θ0,r, x̂i2〉)]

≤ 1

m2d1

n∑
i1=1

n∑
i2=1

d1∑
r=1

Āii1Āii2EΘ0

[
‖θ0,r‖22

]
=

d

m2

n∑
i1=1

n∑
i2=1

Āii1Āii2

Thus

EΘ0,a

[
‖y − ŷ(0)‖22

]
≤

n∑
i=1

EΘ0,a

[
ŷi(0)2

]
≤ C2n+

d

m2
‖Ā2‖1,1

Supplementary information All code for this project is publicly-available via github at the following
link: https://github.com/wolfecameron/GIST
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