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ABSTRACT

As AI model size grows, neural scaling laws have become a crucial tool to predict
the improvements of large models when increasing capacity and the size of orig-
inal (human or natural) training data. Yet, the widespread use of popular models
means that the ecosystem of online data and text will co-evolve to progressively
contain increased amounts of synthesized data. In this paper we ask: How will
the scaling laws change in the inevitable regime where synthetic data makes its
way into the training corpus? Will future models, still improve, or be doomed
to degenerate up to total (model) collapse? We develop a theoretical framework
of model collapse through the lens of scaling laws. We discover a wide range of
decay phenomena, analyzing loss of scaling, shifted scaling with number of gener-
ations, “un-learning” of skills, and grokking when mixing human and synthesized
data. Our theory is validated by large-scale experiments with a transformer on an
arithmetic task and text generation using the large language model Llama2.

1 INTRODUCTION

Groundbreaking advances in generative AI algorithms for text, images and code are ushering in
the “synthetic data age”: increasingly we consume data generated by large scale models like GPT4
(Achiam et al., 2023), Stable Diffusion (Rombach et al., 2022) and their successors. At the same
time a key driver behind the current success of large models is their consumption of massive amount
of web-scale data for training. The improvements of larger models are governed by scaling laws in
which error falls off as a power in the size of training data; and the emergence of new skills seems
tightly linked to covering increased scales of training data. Our understanding of what the future
holds in a world where models are trained on other models (or their own) synthesized data is only
at its beginning, but some works indicate the possibility of complete collapse of learning, so called
model collapse1.

Scaling Laws. In many domains of machine learning including speech, translation, vision, video,
and mathematical problem solving, empirically observed neural scaling laws (Hestness et al., 2017;
Rosenfeld et al., 2020; Kaplan et al., 2020; Hoffmann et al., 2022; Gordon et al., 2021; Henighan
et al., 2021; Aghajanyan et al., 2023) demonstrate that test error often falls off as a power law with
the amount of training data, model size, and compute. Theoretically, scaling laws have been derived
in a variety of settings (e.g. (Hutter, 2021; Cabannes et al., 2023) for “LLM-like” models).

Scaling laws are intimately related to the emergence of abilities (Wei et al., 2022) in larger models,
that are not present in smaller ones; and to skills that appear with decreasing loss (Gordon et al.,
2021; Arora & Goyal, 2023). This bolsters the now common narrative “scaling is all you need”.

Model Collapse. Current LLMs (Devlin et al., 2018; Liu et al., 2019; Brown et al., 2020; Tou-
vron et al., 2023), including GPT-4 (Achiam et al., 2023), were trained on predominantly human-
generated text; similarly, diffusion models like DALL-E (Ramesh et al., 2021), Stable Diffusion
(Rombach et al., 2022), Midjourney (Midjourney, 2023) are trained on web-scale image datasets.

1Not to be confused with neural collapse which refers to clustering of last-layer features at the end of
training (Papyan et al., 2020)
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These training corpora already potentially exhaust all the available clean data on the internet. A
growing number of synthetic data generated with these increasingly popular models starts to pop-
ulate the web, often indistinguishable from “real” data. We have thus already raced into the future
where our training corpora are irreversibly mixed with synthetic data and this situation stands to get
worse. Recent works call attention to the potential dramatic deterioration in the resulting models,
an effect referred to as ”model collapse” (Shumailov et al., 2023). Facets of this phenomenon have
been demonstrated empirically in various settings (Hataya et al., 2023; Martı́nez et al., 2023a;b;
Bohacek & Farid, 2023; Briesch et al., 2023; Guo et al., 2023). Theoretically, a few works are
emerging to analyze the effect of iterative training on self-generated (or mixed) data (see Related
Work): Shumailov et al. (2023) coin the term ”model collapse” to characterize complete reversion
to the mean, Alemohammad et al. (2023) analyze ”self-consuming loops” and Bertrand et al. (2023)
show that iterative synthetic training leads to a ”clueless generator”.
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Figure 1: (Cartoon). Top-p (nucleus) sam-
pling, temperature scaling of LLM genera-
tion, and finite sample bias lead to truncated
or narrowed ”tails” (left side), causing loss
of scaling laws (top right) and loss of skills
(bottom right). Here we visualize calculat-
ing the greatest common divisor (GCD) with
answer 2 and 3 as two skills.

With these first warning signs in place, we thus ask:

How is the current scaling paradigm affected
by synthetic data in the training corpus?

To this end, we carefully zoom into the scaling be-
havior of LLM-style models. Theoretical derivations
of scaling laws always assume a heavy-tailed distri-
bution (power-law, aka Zipf) on the input features
(”heavy tail in, power scaling law out”). This distri-
bution is of the form

pi ∝ i−β , i = 1, 2, . . . (1)
Such distributions are ubiquitous in natural datasets,
from Zipf’s law (Zipf, 1935) in distribution of word
frequencies, to biological data, earthquake magni-
tudes, financial data etc. - this is the data being
consumed by large models at scale. But what distri-
bution do AI-models generate when trained on such
data? Figure 2 provides an empirical answer for a large scale LLM (Llama2-7B) and a transformer
model trained on an arithmetic task. Regenerating heavy-tailed data affects the distribution in two
possible ways: (1) ”Cutting off” the tail of the distribution and/or (2) ”Narrowing” the tail (see Fig-
ure 1 for a cartoon illustration). The mechanisms leading to this, apart from finite sampling bias
(as already proposed in (Shumailov et al., 2023) - see Section 2 for a derivation in the Zipf-setting),
stem from deliberate choices in the generation algorithms of the models: in LLMs via truncated
next token prediction at inference (e.g. selecting more likely tokens via top-p or top-k truncation,
concentrating the probability distribution by lowering the temperature); in vision models like GANs
via truncation or in diffusion models through guidance.

Summary of Main Contributions. We present a high-level summary of our main theoretical con-
tributions, some of which are highlighted in Figure 3. We empirically verify these theoretical pre-
dictions (see Figure 4): (1) in large-scale experiments on an LLM, fine-tuning Llama2-7B (Touvron
et al., 2023) on an approximately 2M sample dataset from Wikitext-103 and (2) for transformer
models trained to predict the greatest common divisor (Charton, 2023).

Assuming a true distribution as in Equation 1, consider training a model on T AI data-generated
data. The synthesized data amounts to a version of the true data distribution with the tail cut at some
finite rank k or the tail narrowed to a smaller exponent. Our main findings are as follows.

(1) A Double Scaling Law. We establish new scaling laws that explain model collapse in simplified
(non-autoregressive) LM (Hutter, 2021) and toy bigram LLMs (refer to Theorems 2.1 and 4.2)2

Etest ≍ T−c + k−c′ . (2)
or equivalently (refer to Corollary 2.2), for finite-sample induced cut-off k = k(T0) when the gen-
erating model is trained on T0 amount of data, Etest ≍ T−c + T−c′′

0 , where the exponents c, c′, c′′
only depend on the tail behavior of the true distribution. This result is illustrated in Figure 3.

2The notation f(T ) ≲ g(T ) means that f(T ) ≤ Cg(T ) for sufficiently large T and an absolute constant
C, while f(T ) ≍ g(T ) means f(T ) ≲ g(T ) ≲ f(T ).
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Figure 2: Tails of AI-generated data: Left. Perplexity diagram of the Wikitext-103 test set,
measured with Llama2-7B as the anchor model. We query the Wikitext-finetuned Llama2-7B
to generate AI data, which is compared to the original set. Perplexity is calculated solely for the
generated positions in AI and original datasets. AI data is generated for various settings of (p, T ).
Right. Distribution of greatest common divisors (GCD) of pairs of random integers (original data
(blue) scaling as p(GCD = k) ∝ k−2). A transformer is trained on 300M samples and used as a
generator on a test set of randomly sampled integer pairs, giving the truncated GCD distribution.

For AI-”tail-narrowing”, when data remains heavy-tailed, with a smaller exponent β′ ∈ (1, β), the
downstream Hutter LLM will scale as (Corollary 2.3)

Etest ≍ T−(β−1)/β′
. (3)

(2) Model Collapse over Multiple Generations. For n-fold recursion of AI data-generation equa-
tion 9, where each generation of the model consumes data produced by the previous generation, we
establish a universality principle of the form

Etest = Eclean
test + n× new scaling terms, (4)

where Eclean
test is the usual test error of the model trained on clean data (not AI-generated). This

means that in Equations equation 2 for example, the k−c′ is replaced by nk−c′ . One possible
interpretation of this multiplicative degradation is that, over time (i.e as the number of generations
becomes large), the effect of large language models (like ChatGPT) in the wild will be a pollution
of the web to the extend that learning will be impossible. This will likely increase the value and cost
of clean / non-AI-generated data.

(3) Mitigation Strategies. In Theorem 3.2 we show that mixing AI-generated data with even a
small amount of clean data mitigates model collapse by introducing a grokking phenomenon. The
length of the plateau is of order kβ/π, where π is the proportion of training data which is from the
true distribution (i.e clean data). When π = 0 (i.e only AI-generated data available), this plateau
goes on forever (as in Equation 2). When π > 0, however small, the plateau finally halts, and the
error continues to decrease à la T−c. This grokking phenomenon holds in the setting of deterministic
ground truth labels (like in the models of (Hutter, 2021; Cabannes et al., 2023)). For transformer
models, such deterministic settings are found for instance in arithmetic tasks, and we demonstrate
it empirically in our GCD experiments. The grokking effect becomes attenuated in probabilistic
settings, where it can lead to an S-shaped learning curve (see Figure 19). We also identify regimes
where adding AI data is beneficial and discuss ways to curate ”tail” data to mitigate AI-data effects.

Related Work. Theoretically, scaling laws have been derived in various settings: for non-
parametric models (Schmidt-Hieber, 2017; Suzuki, 2019; Bordelon et al., 2020), in the kernel regime
under Gaussian design (Spigler et al., 2020; Cui et al., 2021; 2022; 2023; Maloney et al., 2022), or in
memorization-like settings with discrete data (Hutter, 2021; Debowski, 2023; Michaud et al., 2023).
Taking finite model capacity and optimization into account, Cabannes et al. (2023) recently proved
scaling laws in constraint-capacity associative memories. In Appendix E, we extend our proofs to
this model.

Less than a handful of works begin to provide theoretical explanations for the behavior of models
in the ”synthetic data age”. Shumailov et al. (2023) attribute model collapse to two mechanisms: a
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Figure 3: Illustration of Our Main Results for Simplified LLMs. Left plot. Empirical confir-
mation of the double scaling law. The true distribution of the data is Zipf with exponent β = 3/2.
Broken lines correspond to k−(β−1), for varying T and different values of k. Middle plot. Model
collapse over multiple generations. Again β = 3/2, T0 = T across all generations with no addi-
tional tail-cutting, regeneration for 5 times. Right plot. Notice the grokking behavior, as perfectly
predicted by the Theorem 3.2. For any given value π for the proportion of real data, the broken lines
are asymptotes Etest ≍ (πT )−c and each plateau has length of order kβ/π, both predicted by the
theorem. See Figure 10 for similar results with other values of k.

finite sampling bias cutting off low-probability ”tails”, thus leading to more and more peaked dis-
tributions and function approximation errors; they theoretically analyze the (single) Gaussian case
and provide empirical evidence for VAEs, Gaussian mixtures and the OPT language model (125M
parameters). In the context of vision models, Alemohammad et al. (2023) analyze ”self-consuming
loops” by introducing a sampling bias that narrows the variance of the data at each generation, and,
in addition to empirical demonstration on GANs and denoising diffusion probabilistic models, pro-
vide theoretical analysis for the Gaussian model. Finally, let us mention the study of Bertrand et al.
(2023) which sheds light on the critical role of data composition in the stability and effectiveness in
generative models, applicable to VAEs Kingma & Welling (2014), diffusion models and normalizing
flows. They explore scenarios involving a mix of clean data, representative of the true distribution,
and synthesized data from previous iterations of the generator. Their analysis reveals that if the data
mix consists exclusively of synthesized data, the generative process is likely to degenerate over time
(”clueless generator”). Using fixed-point analysis across iterations, they find that when the propor-
tion of clean data in the mix is sufficiently high, the generator, under certain technical conditions,
retains the capability to learn. A recent paper Fan et al. (2023) empirically observe deteriorated
scaling laws when training on synthetic data for text-to-image models. To our knowledge, our work
is the first to theoretically and empirically analyze model collapse in the context of scaling laws and
emergent abilities to provide a rich new landscape of AI-data induced phenomena.

2 A DETERMINISTIC INFINITE MEMORY MODEL

Here, we present the core of our theory for the simplest case of (i) infinite memory and (ii) a de-
terministic ground truth labeling function i 7→ yi, studied by Hutter (2021) (the “Hutter LLM”).
Both restrictions will be lifted in later sections, where we also analyze an probabilistic autoregres-
sive version (Section 4) and limited memory models (Appendix E). Token i is drawn according to
the Zipf law in Equation 1, which e.g. models distribution of various metrics in language. Another
interpretation of the appearance of a power-law is offered by the “Quantization Hypothesis” paper
of Michaud et al. (2023): one may think of each i as some discrete skill, needed to solve a problem
for example; thus, the skills occur at different rates pi. The shape parameter β > 1 controls the
length of the tail of this distribution: bigger values of β correspond to longer tails.

2.1 WHAT CAUSES MODEL COLLAPSE ?

Tail Cutting. As mentioned, deliberate choices in the AI generation algorithm (like top-p or top-k
next token prediction) immediately lead to a chopped tail at k. When viewed as skills, we can say
that only the kth most frequent outcomes (”skills”) are considered. But even when no tails are cut
deliberately, the finite size T0 of the training set (sampling bias) induces an effective tail-cutting.
This can be seen as follows: Sample an iid dataset of size T0, and estimate the histogram pAI; this
new distribution plays the role of an AI data-generator. An integer i appears in the support of pAI a
number of times which is T0pi on average. Roughly speaking3, this means that the support of pAI is
{i | pi ≤ C/T0} = {i | i ≤ k}, where

k = k(T0) ≍ T
1/β
0 . (5)

3This can be made rigorous via standard concentration arguments.
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Figure 4: Experimental Results (Details in Section 5). Left plot. The scaling law for finetuning
Llama2-7B on the Wikitext-103 dataset. ‘0-gen’ utilizes the original data, while subsequent gen-
erations use data generated by the previous model. Middle plot. Scaling law of the transformer
model trained to predict GCD of two integers. Data is synthesized from a 0th generation model
trained on 300K samples. Note the tapered-off scaling of the model trained on synthesized data, as
predicted by our theory. Right plot. “Skills” (bursts of new GCDs) learned by the GCD-transformer
on original (bottom) and AI data (top). We see how the disappearance of scaling leads to the disap-
pearance of abilities, mastered by the model trained on clean data.

Therefore, the transformation p → pAI amounts to chopping off the tail of p at rank k.

Tail Narrowing. Figure 2 (for Llama2) shows that in addition to tail cutting, tail narrowing effects
happen during AI-generation. One mechanism for this is lowered temperature during next-token
prediction. Assume a softmax distribution on the logits zi for the ith token: pi = ezi/

∑
j e

zj .
Define qTi = ezi/T /

∑
j e

zj/T for general temperature T . Then pi ≍ i−β morphs into qTi ≍ i−β/T

(to first order). Temperature scaling directly causes narrowing of tail for T > 1. Other mechanisms
can come to play: for instance, for autoregressive models with perplexity, token-wise tail cutting can
result in tail narrowing for sequence-perplexity (see Figure 35 and discussion in Appendix J).

2.2 A NEW SCALING LAW IN THE HUTTER LLM

For a deterministic ground-truth labelling function i 7→ ji, consider a Hutter “LLM” Hutter (2021)

f̂(i) :=

{
ji, if (i, ji) ∈ DT ,

⊥, otherwise,
(6)

constructed on a sample DT := {(it, jt) | t ∈ [T ]} of size T from unmitigated Zipf distribution p
Equation 1, the test error obeys the following scaling law Hutter (2021)

Etest ≍ T−(1−1/β). (7)
Now, let q be a k-tail-cutting version of p, i.e qi ∝ pi if i ≤ k and qi = 0 otherwise. When
constructed (“trained”) on DT of size T , now from q, the test error (w.r.t to the true data distribution
p) of this model is Etest := Pi∼p(f̂(i) ̸= ji) =

∑
i≥1 piP(f̂(i) ̸= ji). That is, we train on data

from the AI distribution q and test on original distribution p. We prove the following scaling law for
tail cutting (all proofs are relegated to Appendix C):
Theorem 2.1. Consider long-tail real-world data with exponent β > 1, and let the cutoff for AI-
generated data be k. Then, for large k and T samples from the AI, the test error of the downstream
“LLM” scales like so Etest ≍ T−(β−1)/β + k−(β−1) ≍ min(T, kβ)−(β−1)/β .

Thus, as soon as T ≳ kβ , the AI-generated sample size T ceases to be a ”scalable” resource:
collecting more AI-generated samples will not improve the performance of the downstream model,
i.e performance plateaus and we lose scaling. The result is illustrated empirically in Figure 3, left
and Figure 8 (Appendix B). When we assume that the AI-generator was trained on T0 samples, we
get a similar loss of scaling stemming from the tail cutting from finite sampling bias (Equation 5):
Corollary 2.2 (“Finite Initial Sample Size”). With c = 1− 1/β, it holds that

Etest ≍ T−c + T−c
0 . (8)

These theoretical are empirically confirmed in the Figure 9. In the case of tail narrowing, the scaling
behavior changes; instead of a plateau, we obtain a slower decay rate:
Corollary 2.3 (“Tail Narrowing”). In the setting of Theorem 2.1, consider AI-generated data to
also be long-tail data, albeit with smaller exponent β′ ∈ (1, β). Then, the downstream Hutter LLM
trained on AI-generated data will scale as Etest ≍ T−(β−1)/β′

.
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2.3 COLLAPSE OVER MULTIPLE GENERATIONS OF AI DATA

We now examine the cumulative impact of prior loss of scaling across multiple generations. Con-
sider n-fold recursive AI data-generation, i.e

p → pAI(1) → pAI(2) → . . . → pAI(n). (9)

Each arrow corresponds to drawing a sample of size T0. If we iterate n times the argument leading
to Equation 8, we get the following scaling for the test error E(n)

test = E
(n)
test(T ) for learning on T

samples from the nth generation and testing on the true data distribution,

E
(n)
test ≍ T−c + T−c

0 + . . .+ T−c
0︸ ︷︷ ︸

n times

= T−c + CnT
−c
0 = T−c (n(T/T0)

c + 1) , (10)

where c := 1− 1/β. We deduce the following result.
Theorem 2.4 (Informal). Model collapse (as spoken of in the literature) occurs iff n ≫ (T0/T )

c.

For example, if T0 ≫ T (e.g T0 ≥ CT log T ) and n is constant (e.g n = 25), then model collapse
will not occur if we learn on the nth generation of AI data. On the other hand, if T0 ≲ T , then
model collapse will eventually occur.

In particular, taking T0 ≍ T , we get

E
(n)
test ≍ CnT

−c ≍ nT−c. (11)

Note how the loss scales linearly with the number of generations. Figure 3, middle, illustrates how
an increased number of generations moves the loss scaling curve progressively to the right. This
leads to eventual model collapse.

3 MITIGATING MODEL COLLAPSE VIA DATA MIXING

Here we explore the possibility of alleviating model collapse via the acquisition of even a tiny
amount of data from the true data distribution, to complement AI polluted data. We study two
phenomena: (1) In the case of mixing π-fraction of the original data with a (1 − π) fraction of
AI-generated data we exhibit a startling “grokking” phenomenon where test loss plateaus with in-
creasing training data to finally decrease again according to the scaling law of the original model,
and (2) in the scenario where we would like to compensate for missing “tail”, we acquire some data
from the tail of the original distribution to show that this needs to be done with caution: getting
data from “too deep” in the tail is worthless while data closer to the precise “missing” tail can be
beneficial. All proofs can be found in Appendix C.

3.1 ACQUIRING MISSING TAIL

To counter the effect of tail cutting and the resulting plateau in scaling, we might resort to adding
curated data that emphasize the tail. Theorem 3.1 studies this effect; it shows, in particular that if
we “overshoot” and only curate tail that is too deep, our efforts will be worthless. Rather, there is a
fine line around the chopped tail k (within a factor of (1 + o(1)) of k), where we need to place our
data curation efforts to achieve the desired effect, a return of the scaling beyond the plateau.

Suppose we “buy” a chunk of the tail of the real data distribution corresponding to i = N,N+1, . . .;
let the distribution be π (thus, supported on {N,N + 1, . . .}). Now, let k, N , and T tend to infinity
such that N/k → C, with C ∈ [1,∞]. We have the following sharp phase-transition.

Theorem 3.1. (A) If C = 1, e.g if N = k+
√
k, then Etest ≍ T−c. That is, we perfectly anneal the

tail-chopping effect of AI-generated data.

(B) If C > 1, then Etest ≍ T−c + k−α (which recovers the result of Theorem 2.1), and so ”buying”
the N th tail of the real data distribution is worthless.

3.2 A GROKKING PHENOMENON

Here we show how even small amounts of original data can mitigate the above “scaling law collapse”
by introducing a grokking phenomenon where test error plateaus and eventually continues to decline.
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Theorem 3.2 (Grokking with Tail Cutting). Consider a sample of size T of which a proportion
π comes from the true distribution p and the remainder comes from a version p′ of p with its tail
chopped off at rank k. We have the following scaling laws for the Hutter LLM defined in Equation 6.

(A) Early-Stage Dynamics. For T ≪ kβ/π, it holds that Etest ≍ T−(1−1/β) + k−(β−1). Thus,
during this stage, the money spent on acquiring some clean data is not amortized!

(B) Later-Stage Dynamics. As soon as T ≥ Ckβ/π (where C is an absolute constant), it holds that
Etest ≍ (πT )−(1−1/β). Thus, during this stage, we recover the unpolluted sample-size law scaling
T−(1−1/β), up to within a multiplicative constant π−(1−1/β) (which can be seen as an increase in
the price of data). For fixed T and tunable π, this error rate scales like π−(1−1/β), which is yet
another scaling law.

Effectively, the above theorem predicts that for any fixed π ∈ (0, 1) –no matter how small– the test
error grokks w.r.t sample size T . The result is empirically confirmed in Figure 3, right (see Figure 10
for another illustration). We experimentally confirm this new phenomenon for transformer models
trained to calculate the GCD (see Appendix H), which indicates its applicability for a wider class
of LLMs with underlying deterministic ground truth, like for arithmetic tasks. In Appendix C.4 we
state and prove a similar theorem in the case of tail narrowing of synthetic data.

Benefits of Mixing with AI Data. The above machinery allows us to analyze a particular regime
where AI-data can help improve performance. Taking T = Treal + TAI and π = Treal/T , we have
the following important corollary of Theorem 3.2.
Corollary 3.3. For Treal ≪ kβ , it holds that Etest ≍ (Treal + TAI)

−(1−1/β) + k−(β−1).

Figure 5 illustrates how AI data can boost performance, up to a certain point, when its benefits
plateau. This result might contribute to our understanding of why, sometimes, adding AI-generated
data might lead to better models, especially when generated by a stronger model (e.g. He et al.
(2023); Shipard et al. (2023); Bansal & Grover (2023); Lin et al. (2023)). More in Appendix A.

4 A TAILED BIGRAM MODEL
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Figure 5: Mixing Treal real data
with TAI AI data. The dotted lines
depict test errors of real data alone.
k = 1, 000, β = 3/2.

We will now proceed to a more complex model, bringing us
closer to capturing the probabilistic and autoregressive nature
of LLMs (next token prediction). In this Section we will define
the data generating process, define the new model (Hutter++),
and establish that the original scaling law (with clean data) still
holds. We then proceed to show similar loss of scaling for AI-
data.

A first step is to consider probabilistic ground truth labels to
replace the deterministic Hutter prediction i 7→ yi with a prob-
ability distribution p(j|i) on N∗ with power law decay (as in
Equation 1). To account for the fact that the most frequent next
token j depends on the preceding token i we model

p(j | i) ∝ πi(j)
−β , (12)

(instead of j−β), where πi is a permutation associated to every i providing the order of outputs. To
summarize, we think of the data as pairs (i, j), where the distribution of i is governed by some p(i)
as in the deterministic Hutter setting, and p(j|i) is given by Equation 12.

This setting can be made autoregressive by generating sequences step by step, using the preceding
output as the next input. We can think of each successive pair of tokens as of the pairs (i, j) above,
with the only difference that the marginal distribution p(i) changes. We thus make no assumptions
on p(i) in what follows (except for a mild technical condition). Proofs can be found in Appendix D.

A Scaling Law for Hutter++. Consider non-deterministic outputs as in Equation 12, where
π1, π2, . . . are functions from N∗ to N∗.
Theorem 4.1. Suppose β ∈ (1,∞) \ {2} and set c := min(1 − 1/β, 1/2). If

∑
i p

1−c
i < ∞,

then Etest ≲ T−c. Moreover, if β ∈ (1, 2) and the mappings π1, π2, . . . are permutations, then
Etest ≍ T−c.
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Our Hutter++ algorithm induces exactly the same scaling law as the classical setup Hutter (2021) !

We now return to our main problem, understanding model collapse in the probabilistic setting and
consider the Hutter++ presented above. Thus, suppose the learner only has access to at most a
dataset of size T containing the kth head of the conditional distribution p(· | i). That is, sampled
from: i ∼ p, j ∼ p(j | i)1[j ≤ k] (normalized appropriately), where p(· | i) is as in Equation 12.

Theorem 4.2. (A) If β ∈ (1,∞) \ {2} and
∑

i p
1−c
i < ∞ where c := min(1 − 1/β, 1/2) as

before, then Etest ≲ T−c + k−βc. (B) Furthermore, if the mappings π1, π2, . . . are permutations
and

∑
i p

1−c
i < ∞, then Etest ≍ T−c + k−βc.

Autoregressive Bigrams. Similarly these results hold for autoregressive bigram model, where
p(i1, i2, . . . , iL) = p(i1)

∏L−1
ℓ=1 p(iℓ+1 | iℓ), and each p(j | i) is as in Equation 12. The result

is empirically confirmed in Figure 11 in Appendix B.

Multiple Generations. The mechanics of the proof of Theorem 2.4 apply in this setting. See Figure
12 in Appendix B illustrating that Equation 11 keeps holding for probabilistic data.

Grokking for Mixtures. Technically speaking, this grokking phenomenon only holds for models
with deterministic ground truth labels, like the Hutter LLM and the limited capacity associative
memory model. For the probabilistic setting of bigrams (or text LLMs) the theorem cannot hold in
its pure form, because if we train on a mixture of two distributions (clean and synthetic) but test only
on the clean distribution, the distance between these two distributions will always be a lower bound
on the test error. However, we can see that remnants of a “smoothed” grokking-law persist in the
form of an S-shaped scaling (see Figure 19 in Appendix B).

5 EXPERIMENTS

In this section we present our experimental results to demonstrate evidence of various predictions we
have made theoretically. We showcase four scenarios of increasing level of complexity: an empirical
Hutter++ model, autoregressive bigram models with perplexity loss, an arithmetic transformer to
predict the GCD of two integers Charton (2023) and a large-scale LLM, Llama2-7B Touvron et al.
(2023), trained on a large data corpus (Wikidata-103).

In our theoretical analysis, motivated by empirical observations (see Figure 2) or by the effect of
finite data sampling bias on heavy-tailed data, we have assumed that generated data follows patterns
of either a tail cutoff or tail narrowing. In our subsequent experiments, we depart from theoretical
assumptions on tail-cutting/narrowing to allow the widely deployed top-p selection or temperature
scaling mechanisms to give possibly intermingled effects on the generated data distribution.

Empirical Hutter++ Model. In Figure 6, we use an initial model that is trained on T0 = 100, 000
samples from the original distribution. For the Gen 1 line, the data are all generated from this
initial model. From Gen 2 onwards, models are iteratively trained on data produced by the most
performant model of the preceding generation, effectively eliminating the possibility that model
collapse results from inadequate sampling. For Gen 1, a notable degradation in data scalability is
observed, alongside a rapid decline in model performance across generations. These observations
not only validate our theoretical result but also reaffirm our assumptions. A similar pattern is evident
with temperature scaling, as shown in Figure 16.

Autoregressive Bigram Models with Perplexity Loss. We move one step further towards LLMs
to investigate autoregressive bigram models. The dataset now comprises sequentially generated in-
tegers, as in Equation 12, with the model trained on all tokens. We use the averaged perplexity score
of the test set as the test error metric. Our study encompasses a range of effects—such as top-p
inference, temperature scaling, limited real data, and training on progressively larger AI datasets.
Consistent with the findings in Section 4, we observe the same patterns of scaling loss and progres-
sive model collapse across generations. Relevant figures are provided in Appendix G.

Transformers Learning the GCD. Our first illustration of our theory ”in the wild” is for sequence-
to-sequence transformer models for an arithmetic task: predicting the greatest common divisor
(GCD) of two integers, encoded as sequences of digits in some base B following Charton (2023).
This setup is a perfect intermediate step between our toy models and large scale LLMs; it uses the
transformer architecture and training algorithms on sizeable models, while the underlying data has a
deterministic nature. Over the course of training the model progressively learns new GCDs and with
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Figure 6: Hutter++ on Bigram with lim-
ited data and top-p. The initial model is
trained on T0 = 100, 000 samples. It gen-
erates T samples for Gen 1. Starting from
Gen 2 models are trained on data generated
by the most powerful model from the pre-
vious generation. Top-p-0.95 cutting and
β = 3/2.
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Figure 7: Mixing Llama Generated Data with
Original Data Based on Figure 4 left, we fur-
ther mix the generated data with original data,
with ratio 98 to 2. Adding original data signif-
icantly mitigates the model collapse. Look how
the mixing curve validates our predicted curve of
the grokking phenomenon as in Figure 3

them also their products with already learned GCDs. We can thus view each such learned group,
usually learned in ”bursts”, as a new skill. For the purpose of this experiment, we use this model
after 300M samples as the generator of AI-data. In Figure 4 we validate the predicted scaling law
for a single generation and observe ‘un-learning’ of skills when training exclusively with generated
data, as well as a grokking effect when training with mixtures. See Appendix H for a full description
and more details and Figures.

Experiments on LLMs. We finetune Llama2 with LoRA, generating synthetic AI data for the next
finetuning iteration. Inspired by the setup in Shumailov et al. (2023), we use Wikidata-103,
partitioned into approximately 2.2 million sequences of 128 tokens. AI data is generated through
prompt completion, using the first 96 tokens from the original sequences as prompts. The model
is trained only on the last 32 tokens to preclude information leakage, i.e. the model being trained
on the ground truth of the same 32 tokens. The evaluations are conducted exclusively on the same
32 tokens. We use top-p 0.9 and temperature 0.9 across all generation. The results, depicted in
Figure 4 (left), illustrate a scaling law decay over several generations. The first generated dataset
still contain useful but limited information and the utility of the second generation’s data markedly
diminishes. These phenomena corroborate the anticipated loss of scaling law and model collapse,
further indicating that model collapse is even more pronounced here, highlighting the challenges in
training next generation LLMs. More details and results in Appendix I.

Moreover, we conduct experiments to investigate mixing a proportion of real data with AI-generated
data. Figure 7 demonstrates the effect of blending a random 2% of original data with AI data across
all fine-tuning phases. It significantly mitigates model collapse, with the emergence of a grokking
curve as predicted in Theorem 3.2.

6 CONCLUSION

In the advent of the ”synthetic data age”, our work signals the end of current neural scaling laws
and opens the door to a puzzling array of new phenomena in a world where the training corpora
are enriched with AI generated data. We demonstrate that scaling laws cease to persist; test error
tapers off due to altered, less heavy tailed, data distributions. As noted already in prior work, in a
fully synthetic data world learning will stop and models will degenerate - their scaling will halt and
revert completely. Yet, new opportunities arise from careful mixture and data curation, as we have
shown, with interesting effects at the interplay of clean and synthesized data. We must recognize
new learning plateaus and, for instance, adjust to changed learning curves from blending clean and
synthetic data to avoid unintended early stopping. A notable feature of our work is that our theory is
effective - we observe the predicted phenomena for relevant large models in two different settings.

Taken together, our contributions call for a more responsible, or ”collapse-aware”, proliferation of
synthesized data. Scale is not all you need: more work on effective watermarking for synthetic data
is needed, to make it more distinguishable from the original human data. Thus, clean / real data will
become an even more valuable resource, as we are ushering in the ”beyond scaling” era.
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7 IMPACT STATEMENT

This study contributes to the discourse on AI scaling laws by tackling the emergent challenge pre-
sented by synthetic data within training datasets. It holds particular relevance for fields that depend
heavily on data accuracy, such as natural language processing and generative AI model development.
We investigate the concept of ”model collapse” as a cautionary tale, highlighting the potential risks
to sustainable model performance in the face of an increasing reliance on synthetic data. Through a
combination of theoretical analysis and empirical evidence, we advocate for the strategic integration
of clean data to mitigate these risks and enhance the robustness of AI systems. Our findings carry
significant implications for industries where decision-making is progressively data-driven, suggest-
ing a need for a shift in data management strategies to emphasize the preservation of model integrity
and longevity. Additionally, this research highlights a looming issue: the potential scarcity of clean
data. It underscores the urgency of focusing on the cultivation and preservation of high-quality
datasets for AI training, to safeguard the future of AI development.
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A PRIOR WORK

Model Collapse: The phenomenon appeared in the recent literature in the context of language
and image generation. Several recent works demonstrate facets of this phenomenon empirically in
various settings Hataya et al. (2023); Martı́nez et al. (2023a;b); Bohacek & Farid (2023); Briesch
et al. (2023); Guo et al. (2023); Fan et al. (2023). Only few recent works also provide some accom-
panying theoretical analysis Shumailov et al. (2023); Alemohammad et al. (2023); Bertrand et al.
(2023) which we outline now.

Shumailov et al. (2023) define model collapse and attribute it to two mechanisms: finite sampling
when training a model (leading to cut off of low-probability data) and function approximation errors
(the model is not sufficiently expressive to model the true distribution). They observe (and, for a
single Gaussian, prove) that upon iteratively resampling finite ”training data” the generated distri-
bution becomes more and more peaked. Other models studied empirically are mixtures of (two)
Gaussians and VAEs on MNIST. To study language models, Shumailov et al. (2023) iteratively fine
tune Meta’s OPT-125M model on wikidata2. For generation of new text they use a 5-way beam
search, which, by its nature, (approximatively) generates only low-perplexity data.

Alemohammad et al. (2023) conduct an empirical and analytical analysis on generative image mod-
els of what they term the ”self-consuming” or ”autophaguous” loop. They conclude that without
enough fresh real data at each generation, future models necessarily will have their precision or
recall decrease. They model the influence of each new AI-generation via a generic sampling bias
0 ≤ λ ≤ 1. In the case of image generation this refers to feature parameters at generation that favor
quality over diversity (suitably quantified). More precisely, λ = 1 corresponds to unbiased sampling
and λ = 0 corresponds to sampling from the modes of the generative distribution. λ models biased
sampling methods commonly used in generative modeling practice, such as truncation in BigGAN
and StyleGAN or guidance in diffusion models. In the case of Gaussian distributions, λ is the shrink-
ing factor of the variance of the next generation. Their empirical work studies GANs and denoising
diffusion probabilistic models for image generation on FFHQ and MNIST and single Gaussians for
both theoretical and empirical observations. As in Shumailov et al. (2023) they observe (and prove
for the case of a single Gaussian) that estimation error alone leads to vanishing variance with number
of iterations. Alemohammad et al. (2023) also empirically observe an initial boost in performance
in a regime where modest amounts of synthetic data are mixed with the original data before larger
amounts of synthetic data lead to ultimate degradation. This might mimick larger-scale results that
demonstrate how synthetic data mixed with true data improves performance in some scenarios (see
Benefits of synthesized data below). Indeed, in its simplest form, data augmentation (rotations, crop-
ping etc. ), a widespread highly beneficial practice in ML training, can be viewed as the simplest
form of data generation.

Let us mention the study of Bertrand et al. (2023) in the context of image generation, which sheds
light on the critical role of data composition in the stability and effectiveness in generative models.
They explore scenarios involving a mix of clean data, representative of the true distribution, and
synthesized data from previous iterations of the generator. Their analysis reveals that if the data
mix consists exclusively of synthesized data, the generative process is likely to degenerate over
time, leading to what they describe as a ’clueless generator’. Thus, the generator collapses: it
progressively loses its ability to capture the essence of the data distribution it was intended to model.
Conversely, they found that when the proportion of clean data in the mix is sufficiently high, the
generator, under certain technical conditions, retains the capability to learn and accurately reflect
the true data distribution. This work sheds light on the critical role of data composition in the
stability and effectiveness of generative models.

Several empirical studies confirm the deleterious effect of training on self-generated data: In the
context of image generation, Martı́nez et al. (2023a;b) report degradation of models trained on AI-
generated data. Specifically, they use a Denoising Diffusion Implicit Model and a few (relatively
small) datasets (e.g. Orchids, MNIST) to demonstrate visual degradation when training in successive
generations of AI-generated data. Hataya et al. (2023) ”conclude that generated images negatively
affect downstream performance, while the significance depends on tasks and the amount of gen-
erated images”, Bohacek & Farid (2023) reports that the popular StableDiffusion model collapses
when iteratively retrained on self-generated faces, even with as little as 3% synthetic data mixed
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into the original training set. For text, Briesch et al. (2023) use nanoGPT4 on a curated 10K logical-
expression dataset to demonstrate the iterative collapse of self-consuming loops - the model and
dataset are sufficiently small to allow training from scratch. Guo et al. (2023) observe a decline in
linguistic diversity metrics across iteratively fine-tuned LLMs.

Mitigation: To our knowledge, rigorous theory (or even empirical demonstrations) on mitigation
strategies against model collapse are yet to come, with one notable exception in Bertrand et al.
(2023) (see below). Several works discuss the need for detection of AI-generated images or text (to
avoid retraining on them), for example motivating research into watermarking strategies. Bertrand
et al. (2023) analyze iterative retraining on a mixture of synthesized and original data under sev-
eral technical assumptions and find that there are fixed points governing the stability of iterative
retraining.

Benefits of Synthesized Data There is a range of results showing benefits of AI-synthesized data
in training better models, though mostly these results pertain to image data, specifically in the context
of diffusion models Azizi et al. (2023); He et al. (2023); Shipard et al. (2023); Bansal & Grover
(2023); Lin et al. (2023), though not only (see Dai et al. (2023); Xu et al. (2023); Huang et al.
(2022); Wang et al. (2023) for chat-related examples). One might argue that they either throw
model-collapse caution to the winds or, possibly, settle in the protected corner where mild amounts
of synthetic data (or larger amounts of ”mildly synthetic” data, like in the case of data augmentation)
helps. In particular, often benefits of synthetic data are observed when the synthetic data is generated
by a model trained for a different use case than the downstream task (like images synthesized from
diffusion models helping classification models) or generated by a stronger model He et al. (2023);
Shipard et al. (2023); Bansal & Grover (2023); Lin et al. (2023). However, other works critically
analyze the purported benefit of generated data. Burg et al. (2023) find that while synthesized data
from a diffusion model helps improving downstream tasks, such as classification, using the pre-
training data of the diffusion model alone gives even stronger performance (which we can interpret
as evidence of mild first-generation model collapse). All in all it is fair to say that the impact of data
augmentation using generative models is still not fully understood.

Scaling Laws: Neural scaling laws have been ubiquitously observed in vision, language and
speech. Early large scale empirical studies are performed in Hestness et al. (2017); Rosenfeld et al.
(2020), demonstrating power law scaling across a range of learning scenarios. This is followed by
well-known large-scale studies from OpenAI Kaplan et al. (2020) and DeepMind Hoffmann et al.
(2022), which empirically demonstrate power-law scaling in LLMs across a wide set of scales. Es-
sentially, this empirically establishes that

L(N,D) ∼ NC ·N−αN +DC ·D−αD ,

where L is the per-token cross entropy loss (in nats), N,D are the number of (non-embedding)
parameters and data, respectively, and NC , DC and αN , αD are constants determined by the data
distribution and the model specifications.

This study was extended to demonstrate many more power law relations in various scenarios (vision
transformer, video modeling, multimodal models, and mathematical problem solving) Henighan
et al. (2021). In the machine translation (MT) setting, (Gordon et al., 2021) quantify scaling laws
for standard benchmarks like BLEU and explain them via cross-entropy power-law scaling, thus
positing a first universality of scaling laws across metrics. Hernandez et al. (2021) demonstrate
similar empirical power-law scaling for transfer learning and Aghajanyan et al. (2023) provide a
vast experimental body of evidence for scaling laws in mixed-modal language models.

However, a few results have nuanced the view of scaling as a panacea to improved loss. For instance,
McKenzie et al. (2023) present evidence for ”inverse sclaing” where flaws in the training objective
or the data lead to U-shaped scaling.

Theoretical Models for Scaling Laws: From a theoretical angle, scaling laws have been shown
analytically even before the emergence of large foundation models. For instance, Caponnetto &
de Vito (2007) characterize the power-law generalization error of regularized least-squares kernel

4https://github.com/karpathy/nanoGPT
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algorithms. The role of optimization can also be taken into account in this setting (Nitanda &
Suzuki (2021)). In the nonparametric literature, for example Schmidt-Hieber (2017) and Suzuki
(2019) derived the test error scaling of deep neural network in fitting certain target functions and
Bordelon et al. (2020) analyze spectral dependence.

More recently, scaling laws have been shown for kernel models under the Gaussian design, e.g. in
Spigler et al. (2020); Cui et al. (2021; 2022) for regression and Cui et al. (2023) for classification.
Maloney et al. (2022) study scaling laws for the random feature model in the context of regres-
sion. In the context of memorization for heavy-tailed data scaling laws have been shown in the
infinite-memory setting Hutter (2021), for ”quantized” skills Michaud et al. (2023) and for certain
random data-generation processes Debowski (2023). When taking model capacity and optimization
into account, Cabannes et al. (2023) recently proved scaling laws in constraint-capacity associative
memories.

To our knowledge, however, very few papers deal with the decay of scaling in the case of self-
consuming loops. A notable example is Mobahi et al. (2020) which studies iterated retraining in the
context of self-(knowledge-)distillation in the kernel setting. However, this analysis is very distinct
from our work, not only because it places itself in the kernel setting with Gaussian design, but also
because it assumes the distillation setting, where the ”generation” stage is carefully optimized for
the next stage training. In the case of synthesized data in the wild, this assumption can of course not
be made.

Emergence of “Skills” and Scaling Laws: Scaling laws give us an insight on bang-for-the-buck
style trade-off for model training. However, cross-entropy loss is not a goal in and of itself: we
want to train models that are endowed with a larger and larger skill set as we scale them up. For
instance, Gordon et al. (2021) provide intuition and empirics for the scaling of BLEU score for MT
with cross-entropy loss as

BLEU(L) ≈ Ce−kL,

demonstrating “emergence” of good BLEU performance with scale. This type of “emergence” has
been massively confirmed in Wei et al. (2022), where a working definition of “emerging” is “not
present in smaller models, but appears in larger models”. In this sense, Wei et al. (2022) demon-
strate empirically a large number of “skills” appearing with scale, like Multi-Task NLU, Modular
arithmetic, word unscrambling and transliteration.

A theoretical model, providing an underpinning of the necessity of scaling laws for the emergence of
skill has recently been given by Arora & Goyal (2023). They analyse “emergence” with the scaling
laws as a departure point in a model that links cross-entropy loss in LLMs to basic skills to show
that scaling laws enable the model to learn (and generalize) efficiently.

Strengthening the tie between scaling laws and emergent skill, albeit in the opposite direction,
Michaud et al. (2023) posit that skills that emerge in ”quanta” imply a scaling law of the loss.
Related, Chen et al. (2023) assume a hierarchy of skills to derive data curation mechanisms to pre-
cipitate the emergence of skills, though they do not allude to scaling laws directly.

B COMPLIMENTARY FIGURES FOR SECTIONS 2, 3 AND 4

Hutter LLM. Figures 8, 9 and 10 further illustrate our theory for simple Hutter LLM.

Hutter++. We now provide complementary illustrations of predictions made from the theory we
have developed for the generalized Hutter models as in Equation equation 12 in Section 4, without
departing from our theoretical assumptions. We also show how theory from the infinite memory
model in Section 2 continues to hold in this bigram setting. Figure 11 confirms the scaling law of
Theorem 4.2.

In Figure 3 (middle) we have seen an illustration of the translated scaling curves under n-fold synthe-
sized data in the Hutter LLM. Figure 12 illustrates this phenomenon for the slightly more complex
tailed bigram model.

Both Figures 3 (middle) and 12 illustrate the setting where each model consumes as much training
data as its predecessor (T0 = T ). We now relax the assumption that each successive model has
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Figure 8: Scaling on Hutter LLM for Vary-
ing T . Empirical confirmation of Theorem 2.1.
Here, β = 3/2 and error bars correspond to 10
iid runs of sampling AI-generated data (i.e the
distribution q). Broken lines correspond to the
Hutter rate T−(β−1)/β , for varying k and dif-
ferent values of T . Figure 3, left, illustrates the
same for varying T and several settings of k.
Note the perfect match with the theorem.
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Figure 9: Scaling on Hutter LLM for Vary-
ing k. A sample of size T0 is used to approx-
imate the true distribution p via pAI. Then, a
Hutter-type model is learned on a sample of size
T from pAI, and evaluated on the true data dis-
tribution p. Each horizontal line corresponds to
the asymptote k−βc ≍ T−c

0 , for different values
of T0. The diagonal line corresponds to T−c.
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Figure 10: Empirical Validation of Theorem 3.2. The broken line corresponds to the T−(1−1/β)

scaling law that would hold throughout in the absence of pollution. Notice the grokking behavior
predicted by the theorem. For this experiment, the Zipf exponent of the true data distribution p is
β = 2.
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Figure 11: Model Collapse for Hutter++. Em-
pirical confirmation of Theorem 4.2. Here p(j |
i) is as in equation 12, with β = 7/5. The
horizontal broken lines correspond to k−βc for
different values of k, where c := min(1 −
1/β, 1/2). The diagonal broken line corre-
sponds to T−c (classical error rate without cut-
off).
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Figure 12: Hutter++ Model on Paired Bi-
gram Data. Empirical confirmation of The-
orem 2.4 for probabilistic paired bigram data
with β = 3/2, T0 = T across all generations
with no additional tail-cutting, regeneration for
9 times. The result verifies the model collapse
across generation.
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strictly the same amount of training data as its predecessor. We assume that the generation 0 model
is trained on T0 (here, T0 = 100, 000) amount of original data to generate AI data for generation 1.
All future generations, starting from generation 2, are trained on data generated by the most powerful
model from the previous generation (T = 1, 000, 000 data in this case). Figure 13 (for Hutter LLM)
and 14 (for Hutter++ on paired bigram data) show the resulting scaling behavior. We take this setting
even further by adding a top-p tail cutting mechanism and a temperature scaling mechanism for each
synthetic data generation. Figure 6 cuts at p = 0.95 and Figure 16 at temperature 0.9.
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Figure 13: Empirical Hutter LLM. Bigram
model with deterministic labeling function. Ini-
tial model trained on T0 = 100, 000 samples. It
generates T samples for Gen 1. Starting from
Gen 2 models are trained on data generated by
the most powerful model from the previous gen-
eration. β = 3/2. In this setting, there is mild
model collapse coming from the finite sample
bias.
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Figure 14: Empirical Hutter++ Model. Same
setting as in Figure 6. Initial model trained on
T0 = 100, 000 samples. No top-p inference
or temperature scaling is used. β = 3/2. In
this setting, there is mild model collapse com-
ing from the finite sample bias as well.

Figure 15: Empirical Hutter++ Model. Same
setting as in Figure 14 with top p = 0.90
synthesizing. No temperature scaling is used.
β = 3/2. Top-p selection significantly deterio-
rate the model collapse.
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Figure 16: Empirical Hutter++ Model. Same
setting as in Figure 14 with temperature 0.9 syn-
thesizing. No top-p selection is used. β = 3/2.
Compared with Figure 14, temperature also cre-
ate strong model collapse across multiple gen-
eration.

We now study mixing of clean and synthesized data in the bigram setting. Figures 17 and 18 add
top-p tail-cutting when synthesizing, and start with T0 = 10, 000 original data samples, which are
successively blended with synthesized data from the largest model. Note that in this setting we
observe a reversion of scaling laws with increased AI data. This needs to be compared with the
orange curve in Figure 20 in the deterministic Hutter setting. The probabilistic nature of the bigram
models leads to a new effect here.
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Figure 17: Empirical Hutter++ Model with
Mixing. The initial ”clean” dataset comprises
T0 = 10, 000 samples. For future generations,
the largest model is used to synthesize data. For
T ≤ 20, 000, training data is an equal mix of
clean and generated data, for T > 20, 000 all
clean data is used; the remaining training data is
synthetic (so the ratio of clean data diminishes).
Top-p 0.9, no temperature scaling, β = 3/2.
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Figure 18: Empirical Hutter++ Model with
Mixing. Same setting as in Figure 17 with top p
90, no temperature scaling, and β = 3/2.

Figure 19: S-shape “Smoothed Grokking”. Bigram data with Hutter++ model, mixing clean data
with AI generated data with ratio 50 to 50. The grokking line is smoothed in the probabilistic
setting. Line 1, 2, 3 are generated by using 10,000, 1,000, and 100 data to train the generating
model. Compared to Figure 17, we do not limit the number of accessible real data now. β = 3/2.

C PROOFS FOR THE INFINITE MEMORY (HUTTER) MODEL (SECTIONS 2 AND
3)

C.1 PROOF OF THEOREM 2.1

Observe that the model f̂ makes an error on i if and only if the ith ”skill” never occurred in the
training dataset DT , i.e either (1) i ≥ k + 1, or (2) 1 ≤ i ≤ k and it ̸= i for all t ∈ [T ]. We deduce
that

Etest = Pi∼p(f̂(i) ̸= yi) =
∑

i≥k+1

pi +
∑

1≤i≤k

pi(1− pi)
T

≍ k−(β−1) +
∑

1≤i≤k

pie
−piT ,

where c := 1 − 1/β ∈ (0, 1), and we have used the elementary fact that
∑

i≥k+1 i
−β ≍ k−(β−1)

for large k. For the second sum, we will need the following lemma.

Lemma C.1. The following identity holds

T c
k∑

i=1

pie
−Tpi ≍ Γ(c, Tk−β)− Γ(c, T ) = O(1), (13)
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where Γ(s, x) :=
∫∞
x

us−1e−udu defines the incomplete gamma function. In particular, for k = ∞
and large T , it holds that

∑∞
i=1 pie

−Tpi ≍ T−c.

Proof. Consider the function h(z) := ze−Tz for z ∈ (0, 1). Its derivative is h′(z) = e−Tz(1−Tz).
Thus, h is increasing on (0, 1/T ) and decreasing on (1/T,∞). Furthermore, note that pi ≤ 1/T iff
i ≥ T 1/β . We deduce that

k∑
i=1

pie
−Tpi ≍

∫ k

1

x−βe−Tx−β

dx.

Under the change of variable u = u(x) := Tx−β , we have x = x(u) = (u/T )−1/β and so
dx = −(T 1/βu−1−1/β/β)du. Also u(1) = T and u(k) = Tk−β . We deduce that

k∑
i=1

pie
−Tpi ≍

∫ k

1

x−βe−Tx−β

dx =

∫ T

Tk−β

(u/T )e−u(T 1/βu−1−1/β/β)du

≍ T−(1−1/β)

∫ T

Tk−β

u−1/βe−udu

≍ T−(1−1/β)
(
Γ(1− 1/β, Tk−β)− Γ(1− 1/β, T )

)
= T−c

(
Γ(c, Tk−β)− Γ(c, T )

)
,

and we are done for the first part.

For the second part, note that Γ(c, T ) = o(1) for large T so that

(Γ(c, Tk−β)− Γ(c, T ))|k=∞ = Γ(c, 0)− Γ(c, T ) = Θ(1)− o(1) = Θ(1),

from which the result follows.

We now consider two separate cases for the relative scaling of k and T .

– Case 1: T ≳ kβ . Here, we have thanks to Lemma C.1

Etest ≍ k−(β−1) +O(T−c) ≍ k−(β−1), (14)

since k−(β−1) ≳ T−(β−1)/β = T−c.

– Case 2: 1 ≪ T ≲ kβ . Here, thanks to Lemma C.1 we have Γ(c, T ) = o(1) and Γ(c, Tk−β) =
Θ(1). We deduce that

Etest ≍ k−(β−1) + T−c
(
Γ(c, Tk−β)− Γ(c, T )

)
≍ k−(β−1) + T−c ≍ T−c, (15)

since k−(β−1) ≲ T−(β−1)/β = T−c. Putting things together then gives the claimed result.

C.2 PROOF OF COROLLARY 2.3

Indeed, let pi ∝ i−β and (pAI)i = qi ∝ i−β′
. Then,

Etest ≍
∑
i

pi(1− qi)
T ≍

∑
i

pie
−qiT ≍

∫ ∞

1

x−βe−x−β′
Tdx. (16)

Setting u = x−β′
T gives x = T 1/β′

u−1/β′
, and so dx = −(T 1/β′

/β′)u−(1+1/β′)du. We deduce
that

Etest ≍ T−(β−1)/β′
∫ T

1

uβ/β′
u−(1+1/β′)e−udu = T−(β−1)/β′

∫ T

1

u(β−1)/β′−1e−udu

≍ T−cΓ(c, T ) = T−c(1 + o(1)), with c := (β − 1)/β′.

That is, Etest ≍ T−c as claimed.
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C.3 PROOF OF THEOREM 3.2 AND COROLLARY 3.3

Suppose that of T samples available for training our model, πT are samples from the true distribution
p = Zipf(β) and (1 − π)T are from AI data distribution p′ which is a version of p with its tail
chopped off at rank k, i.e such that p′i ∝ pi1[i ≤ k]. Thus the dataset is drawn from the distribution
given by qi = πpi + (1− π)p′i. Test error of a Hutter LLM then writes

Etest =
∑
i≥1

pi(1− qi)
T =

∑
1≤i≤k

pi(1− pi)
T +

∑
i≥k+1

pi(1− πpi)
T

≍
∑

1≤i≤k

pie
−piT +

∑
i≥k+1

pie
−πpiT .

(17)

Now, thanks to Lemma C.1, it is clear that for any integers 1 ≤ r < R ≤ ∞ and large z, one has∑
r≤i≤R

pie
−piz ≍ z−c

(
Γ(c, zR−β)− Γ(c, zr−β)

)
, (18)

where c = 1−1/β ∈ (0, 1) and Γ is the (upper) incomplete gamma function. Applying equation 18
with (r, k, z) = (1, k, T ) gives

T c
∑

1≤i≤k

pie
−piT ≍ Γ(c, Tk−β)− Γ(c, T ) =

{
Θ(1)− o(1) = Θ(1), if 1 ≪ T ≲ kβ ,

o(1)− o(1) = o(1), if T ≳ kβ ≫ 1.
(19)

On the other hand, applying equation 18 with (r, k, z) = (k + 1,∞, πT ) and assuming π = Θ(1)
gives∑
i≥k+1

pie
−πpiT ≍ (πT )−cγ(c, πT (k + 1)−β) ≍

{
(πT )−c, if πT ≳ kβ ≫ 1,

(k + 1)−βc ≍ k−βc, if kβ ≫ πT.
(20)

Putting things together gives the result.

Recall that Bertrand et al. (2023) also formally study such mixtures for iterative retraining. In their
setting, they show the existence of fixed points in the mixture proportion that delineates the region
of model collapse. These results are complimentary and not contradictory to ours: they combine
mixing, large number of iteration, and data-decay, thus studying a combination of effects (under
different theoretical conditions, not focusing on scaling laws) that our preceding theorems address
separately.

C.4 GROKKING FOR TAIL NARROWING

Theorem C.2 (Grokking with Tail Narrowing). Consider a sample of size T of which a proportion π
comes from the true distribution p = Zip(β) and the remainder comes from a version p′ = Zip(β′).
We have the following scaling law for the Hutter LLM,

Etest ≍ (πT )−c + ((1− π)T−c′), (21)
where c := (β − 1)/β and c′ := (β − 1)/β′.

Define T := (π/(1− π))−a, where a := s/(1− s), and s := β/β′. Then,

(A) Early-Stage Dynamics. For T ≲ T , it holds that Etest ≍ ((1 − π)T )−c′ . Thus, if β′ > β, the
money spent on acquiring some clean data is not amortized!

(B) Later-Stage Dynamics. As soon as T ≳ T , it holds that Etest ≍ (πT )−c. Similarly, we recover
the unpolluted sample-size law scaling T−c. For fixed T and tunable π, this error rate scales like
π−c.

Proof. Let q be the mixture of p and p′. We prove the result for β′ ≥ β; the case β′ ≤ β is
analogous. So, one may write

Etest =
∑
i≥1

pi(1− qi)
T ≍

∑
i≥1

pie
−πi−β+(1−π)i−β′

≍
∑

1≤i≤T
1/β

pie
−πi−β

+
∑

i≥T
1/β

pie
−(1−π)i−β′

, (22)

where we have used the fact that (1 − π)i−β′ ≥ πi−β iff i ≤ (π/(1 − π))−1/(β′−β) = T
1/β

. The
result then follows from equation 18.
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Remark C.3. Let us conclude by saying that clean data always helps, since Etest is decreasing
function of π. Indeed, from equation 17, the derivative w.r.t π is E′

test(π) = −T
∑

i≥k+1 p
2
i (1 −

πpi)
T−1 ≤ 0.

C.5 AN INTERESTING DETOUR: GROKKING FOR FIXED-SIZE AI DATASET.

Now consider the scenario where the AI synthesized dataset has fixed size TAI (e.g a frozen chunk
of the web), while the clean dataset size is a scalable parameter Treal. Taking T = Treal + TAI and
π = Treal/T , we have the following corollary of Theorem 3.2, which includes Corrolary 3.3.

Corollary C.4. We have the following.

(A) Early-Stage Dynamics. For Treal ≪ kβ , it holds that

Etest ≍ (Treal + TAI)
−(1−1/β) + k−(β−1) (23)

(B) Later-Stage Dynamics. As soon as Treal ≥ Ckβ (where C is an absolute constant), it holds
that

Etest ≍ T
−(1−1/β)
real . (24)

As mentioned in Section 3, AI synthesized data is helpful in the regime where real data is scarce.
Once more of real data becomes available the model grokks for a while and then forgets the AI
synthesized data to recover the normal scaling law w.r.t Treal. Figure 20 gives an illustration of this
phenomenon in various settings.
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Figure 20: Hutter LLM. true distribution of the data is Zipf with exponent β = 2. Here, the
scalable resource is either clean data or AI data-generated data, corresponding to a version of real
data with its tail cut at rank k (here we use k = 10). We either mix with a fixed amount (here
T ′ = 104 samples) of the other resource, or we don’t mix at all. Then we scale up the scalable
resource by cranking up T . As predicted by Corollary 3.3, the orange curve always grokks: AI
synthesized data is helpful in the regime where real data is scarce; once more of real data becomes
available the model grokks for a while and then forgets the AI synthesized data. Note that the green
curve (only AI data) and red curve (AI + real data) don’t grokk because the optional resource (real
data) is not being scaled; if it is also scaled, then green and red will provably grokk (as in Figure
3). The diagonal broken line corresponds to the standard Hutter scaling law Etest ≍ T−c, where
c := 1− 1/β. The horizontal broken lines correspond to Etest ≍ k−(β−1) and Etest ≍ T ′−c, both
predicted by Theorem 2.1.

C.6 PROOF OF THEOREM 3.1

Note that explicitly,

πi ≍
{
Nαpi, if i ≥ N,

0, else,
(25)
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where α := β − 1. This is because the normalization constant is
∑

i≥N pi =
∑

i≥N i−β ≍ N−α.
Now, mix this distribution with q with equal weights 1/2, to obtain a new distribution

q′i = qi/2 + πi/2 =


qi/2, if i ≤ k,

πi/2, if k ≥ N,

0, otherwise

≍


pi, if i ≤ k,

Nαpi, if k ≥ N,

0, otherwise,

(26)

For simplicity, assume N ≥ k + 1 (otherwise, we have all of p). Build a ”Hutter” LLM from an iid
sample of size T from this distribution (this is equivalent to mixing T samples from q and T samples
from π. Then, it is easy to see that the test error is given by

Etest =
∑
i≥1

pi(1− q′i)
T ≍

∑
1≤i≤k

pi(1− pi)
T + (27)

∑
k+1≤i≤N−1

pi +
∑
i≥N

pi(1−Nαpi)
T .

Thanks to previous computations, we know that for large k, N , and T

• The first sum is of order T−c
(
Γ(c, Tk−β)− Γ(c, T )

)
= O(T−c).

• The third sum is of order T−c
(
Γ(c, 0)− Γ(c, TNαN−β)

)
=

T−c (Γ(c, 0)− Γ(c, TN)) ≍ T−c.

• The second sum is of order k−α −N−α = ((Nk )
α − 1)N−α, where α := β − 1.

We deduce that

Etest ≍ T−c +

((
N

k

)α

− 1

)
N−α, for large k,N, T, (28)

and the result follows.

D PROOFS FOR THE TAILED BIGRAM MODEL (SECTION 4)

D.1 THE HUTTER++ ALGORITHM

We now present an extension of the Hutter model equation 6 which is adapted to bigrams. Let
nT (i) =

∑T
t=1 1[it = i] be the number times the context it appears in the dataset DT and nT (i, j) =∑T

t=1 1[(it, jt) = (i, j)] be the number of times the pair (i, j) appears in the dataset. Note that
nT (i) ∼ Bin(T, pi). As soon as nT (i) ≥ 1, define

qT (j | i) := nT (i, j)/nT (i).

This is an empirical version of p(· | i) based on an iid sample of size nT (i). For a theoretical
analysis, we shall consider the following test error metric based on total-variation (TV) Etest :=∑

i pi E [TV (qT (· | i), p(· | i))], where TV (a, b) :=
∑

j |aj − bj | is the total-variation distance and
the expectation is over the randomness in qT . An asset here is that Berend & Kontorovich (2012)
can be used to control the quantities E [TV (qT (· | i), p(· | i))]. Note that TV is upper-bounded
by the square-root of KL-divergence, thanks to Pinker’s inequality. This gives indication that our
results could also apply in the setting of autoregressive models with perplexity loss, like LLMs.

D.2 WARM-UP: REVISITING THE CLASSICAL HUTTER SETUP

As a sanity check, with the Total Variation Loss, let us momentarily consider the non-autoregressive
setup where p(· | i) = δyi for all i, as in classical Hutter. Then, an easy computation shows that

TV (qT (· | i), p(· | i)) = 1− qT (yi | i) +
∑
j ̸=yi

qT (j | i) = 2(1− qT (yi | i)).
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Now, by construction, qT (yi | i) = 1[i ∈ DT ]. Thus,

E [1− qT (yi | i)] = P(i ̸∈ DT ) = (1− pi)
T .

We deduce that
E [TV (qT (· | i), p(· | i))] = 2(1− pi)

T .

Therefore,

Etest =
∑
i

piE [TV (qT (· | i), p(· | i))] (29)

= 2
∑
i

pi(1− pi)
T ≍ T−(1−1/β),

and we recover the classical Hutter result! Thus, our test metric is pointing in the right direction,
conceptually.

D.3 PROOF OF THEOREM 4.1

The proof will be based on the results of Berend & Kontorovich (2012).

Upper-Bound. Observe that for any choice of mappings π1, π2, . . ., we have

aT (i) :=
∑

j | p(j|i)≤1/nT (i)

p(j | i) ≍
∑

j |πi(j)≥nT (i)1/β

πi(j)
−β ≤

∑
k | k≥nT (i)1/β

k−β ≍ nT (i)
−(1−1/β)

bT (i) := nT (i)
−1/2

∑
j | p(j|i)≥1/nT (i)

√
p(j | i) ≍ nT (i)

−1/2
∑

j |πi(j)≤nT (i)1/β

πi(j)
−β/2

≲ nT (i)
−1/2

∑
k | k≤nT (i)1/β

k−β/2 ≍ nT (i)
−c.

We deduce that cT (i) := aT (i) + bT (i) ≲ nT (i)
−c for any i. Importantly, the hidden constants

don’t depend on i. Therefore, thanks to [Lemma 9] Berend & Kontorovich (2012), we have

Etest ≤
∑
i

piE [cT (i)] ≲
∑
i

piE [nT (i)
−c]

(∗)
≤

∑
i

pi(E [nT (i)])
−c =

∑
i

pi(Tpi)
−c = T−c

∑
i

p1−c
i

≲ T−c,

(30)

where we have used Jensen’s inequality in (*), since the function x 7→ x−c is concave.

Lower-Bound. WLOG5 consider the following specific choice of permutations defined by
πi(j) = j (i.e doesn’t depend on i). Then,

aT (i) =
∑

j≥nT (i)1/β

j−β ≍ nT (i)
−(1−1/β),

bT (i) = nT (i)
−1/2

∑
j≤nT (i)1/β

j−β ≍ nT (i)
−c.

Thanks to the definition of Etest and [Proposition 5] Berend & Kontorovich (2012), we deduce that
if β ∈ (1, 2), then

Etest ≥
∑
i

piE [(aT (i) + bT (i)− nT (i)
−1/2)] ≍

∑
i

piE [nT (i)
−c − nT (i)

−1/2)] ≍
∑
i

piE [nT (i)
−c], (31)

i.e Etest ≳
∑

i piE [nT (i)
−c]. Now, since nT (i) ∼ Bin(T, pi), standard Binomial concentration

arguments tell us that nT (i) ≤ 1.5Tpi w.p 1−e−CpiT , where C is an absolute constant. We deduce
that
Etest ≳

∑
i

pi(1.5Tpi)
−c(1− e−CpiT ) ≍ T−c

∑
i

p1−c
i − T−c

∑
i

p1−c
i e−CpiT

︸ ︷︷ ︸
o(1)

≍ T−c,

which completes the proof.
5A summable series of nonnegative numbers (like in aT (i) and bT (i)) can be reordered without changing

the value.
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D.4 PROOF OF THEOREM 4.2

It suffices to replace nT (i) in equation 30 and equation 31 of the proof of Theorem 4.1 with nT (i)∧
kβ , and use the elementary fact that (nT (i) ∧ kβ)−c = nT (i)

−c ∨ k−βc ≍ nT (i)
−c + k−βc. The

rest of the proof proceeds as that of Theorem 4.1.

D.5 EXTENSIONS

Note that the above setup can be extended to the following

p(j | i) = ρ(πi(j)),

where ρ is a distribution on N∗. In particular, taking ρ(z) ∝ z−β , recovers the setup considered
above. It is clear that mechanics of the proof of Theorem 4.1 should be applicable here, leading to
scaling laws which depend explicitly on ρ.
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E CAPACITY-LIMITED MEMORY MODELS: A TRIPLET SCALING LAW

We now consider study model collapse phenomenon in the context of the following simple associa-
tive memory model studied in Cabannes et al. (2023)

fT (i) := argmax
y

HT (i, y), where

HT (i, y) := e⊤i MTuy,

MT :=
∑
i

qT (i)eiu
⊤
f⋆(i)

∈ Rd×d.

(32)

This is a transformer-like finite-memory extension of the infinite-memory model in Hutter (2021).
The integer d ≥ 1 then plays the role of the ”capacity” of the resulting model. Here, f⋆ : [N ] → [m]
is an unknown function, for example, reduction modulo m, i.e f⋆(i) := ((i − 1) mod m) + 1;
qT = q(DT ) is probability distribution on [N ] which encodes an arbitrary learner, estimated using
and iid sample Dt = {(it, yt) | t ∈ [T ]} of size T collected from a probability distribution on
[N ]× [m], of the form

i ∼ p = Zipf(β), y = f⋆(i). (33)

The embedding vectors e1, e2, . . . eN and u1, u2, . . . , um are a system of unit-vectors in Rd, con-
structed so that the matrix Rd×d remembers the input/output pairs (i, j) it has seen, i.e e⊤i Muf⋆(i) ≈
qT (i) if (i, f⋆(i)) ∈ DT . The weights qT (i) ensure that different memories are memorized faster
than others.

Cabannes et al. (2023) proposed that iid random embeddings from the uniform distribution on the
unit-sphere in Rd be used. In this setting, for different choices of q, the following general scaling
law was established

Etest ≍ T−(1−1/β) + d−cq , (34)

where the exponent cq ∈ (0,∞) depends on β and the algorithm q. For example, when q encodes the
counting measure qT (i) := nT (i)/T (reminiscent of SGD), it was shown that cq = (1− 1/β)/2 ∈
(0, 1/2). Another algorithm qT (i) := 1[nT (i) ≥ 1]/

∑
ℓ 1[nT (ℓ) ≥ 1] (remniscent of ADAM) was

proposed which attains a optimal error rate (over all algorithms based on random embeddings) with
cq = β − 1.

In the context of model collapse which is the main focus of this manuscript, we have the following.
Theorem E.1 (Triplet Scaling Law). For all the algorithms q considered in Cabannes et al. (2023),
one has the following triplet scaling law w.r.t sample size T , embedding dimension d, and frequency
cutoff k,

Etest ≍ T−(1−1/β) + d−cq + k−(β−1). (35)

This result is empirically confirmed in Figure 21 and proved in Appendix F.

F PROOF AND ILLUSTRATION OF TRIPLET SCALING LAW (THEOREM E.1)

For any i, on average it takes 1/pi iid samples from p to see the context i at least once. The
effect of tail-cutting at rank k is effectively to replace the sample size T by min(T, Tk), where
Tk = max{1/pi | i ∈ [k]}. In the case where p = Zipf(β), we have Tk = 1/pk ≍ kβ . On other
hand the model equation 32 proposed in Cabannes et al. (2023) on Zipf data, the test error writes

Etest ≍ T−c + d−cq , (36)

where c := 1− 1/β ∈ (0, 1) and the exponent cq ∈ (0,∞) depends on β and the algorithm q used
to update the embeddings in the memory matrix MT in equation 32. We deduce that tail-cutting at
rank k changes the test error to

Etest ≍ min(T, Tk)
−c + d−cq ≍ T−c + k−βc + d−cq ,

as claimed.

Figure 21 confirms the Triplet Scaling Law.
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Figure 21: Capacity-Limited Memory Models. Empirical confirmation of the Triplet Scaling Law
established in Theorem E.1
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G DETAILS AND RESULTS FROM THE AUTOREGRESSIVE BIGRAM MODEL
WITH PERPLEXITY

We showcase experiments in the autoregressive bigram model with perplexity loss. We generate
sequences of length 100. Figures 22, Figure 23 and 24 aim to reproduce the ”paired bigram” Figure
12 in this setting, adding a top p mechanism and a temperature mechanism. Figure 26, Figure 26
and Figure 27 regenerates the setting of Figure 6 with the same top p and temperature.
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Figure 22: Autoregressive Bigram Model with
Perplexity Loss. Empirical confirmation of
Theorem 2.4 for autoregressive data with top-
p 1, Temperature 1. Each sequence data have
length 100. Same setting as Figure 12. β = 3/2.
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Figure 23: Autoregressive Bigram Model with
Perplexity Loss. Empirical confirmation of
Theorem 2.4 for autoregressive data with top-
p 0.9, Temperature 1. Each sequence data have
length 100. β = 3/2.
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Figure 24: Autoregressive Bigram Model with
Perplexity Loss. Empirical confirmation of
Theorem 2.4 for autoregressive data with top-
p 1, Temperature 0.9. Each sequence data have
length 100. Same setting as Figure 12. β = 3/2.
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Figure 25: Autoregressive Bigram Model with
Perplexity Loss. Each sequence data have
length 100. Initial model trained on T0 =
10, 000 samples. It generates T samples for Gen
1. Starting from Gen 2 models are trained on
data generated by the most powerful model from
the previous generation. Top-p 1, temperature 1,
β = 3/2.
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Figure 26: Autoregressive Bigram Model with
Perplexity Loss. Each sequence data have
length 100. Same setting as Figure 25. Top-p
0.9, temperature 1, β = 3/2.
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Figure 27: Autoregressive Bigram Model with
Perplexity Loss. Each sequence data have
length 100. Same setting as Figure 25. Top-p
1, temperature 0.9, β = 3/2.
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H DETAILS AND RESULTS ON TRANSFORMER ARITHMETIC EXPERIMENTS

Charton (2023) trains sequence-to-sequence transformers to predict the greatest common divisor
(GCD) of two positive integers, encoded as sequences of digits in some base B. He observes that
model predictions are deterministic: for any pair (a, b) with GCD k, the model predicts a single
value f(k). Predictions are correct (i.e. f(k) = k) when the GCD is a product of divisors of the
base, or of small primes. In all other case, the model prediction is the largest correct prediction
(i.e. l such that f(l) = l) that divides k. The list of correct predictions L varies with the encoding
base B. For instance, for B = 10, after 300 million examples, the model correctly predicts L =
{1, 2, 4, 5, 8, 10, 16, 20, 25, 40, 50, 80, 100...}, the GCD of 20 and 30 will be correctly predicted as
10, but the GCD of 210 and 140 will be incorrectly predicted as 10 (instead of 70).

We use these models to generate “dirty” training data D(B): uniformly sampled pairs of integers
(a, b) and their (sometimes incorrect) pseudo-GCD, as generated by a trained transformer using base
B. Note: this dataset can be as large as we want. We also create a correct training dataset C(B), by
sampling pairs (a, b) and their correct GCD.

In these experiments, we train models on D(B) and C(B), for different values of B. Our goal is to
determine whether extensive training on “dirty” data impacts model accuracy.

We focus on 6 bases: B = 10, 420, 1000, 2017, 2023 and 4913, after training transformers (on
correct GCD) over about 300 millions pairs of integers between one and one million, we achieve the
performances listed in Table 1. There, accuracy stands for the proportion of random uniform pairs
(a, b) that the model can predict correctly, correct GCD is the number of GCD under 100 that the
model correctly predicts (i.e. k such that f(k) = k), and correct model predictions are the products
of numbers in the associated sets. These models are used to generate D(B).

In these experiments, all models have four layers, 512 dimensions and 8 attention heads. We con-
sider two architectures: an encoder-only model (17.2M parameters), and an encoder-decoder model
(38.7M parameters). The encoder-only model has 2.25 times less parameters, trains twice as fast,
and incurs no performance penalty.

Table 1: Initial performances. 4-layer transformers trained to predict GCD, on 300 million examples. Our
test set only contains GCD up to 100, and accuracy is computed on a reweighted test with equal occurance of
each GCD. Thus, the Correct GCD lists all those that can be formed from the correct predictions by forming
products across the sets (within the first 100 GCD). We freeze the 0th generation model at this stage and use
its prediction to generate synthetic data. For each GCD outside the set of its correct predictions, the model will
predict the largest GCD it has learned that divides the ground truth.

Base Accuracy Correct GCD Correct predictions

10 85 13 {1,2,4,8,16} {1,5,25}
420 97 38 {1,2,4,8,16}{1,3,9}{1,5,25}{1,7}
1000 94 22 {1,2,4,8,16} {1,5,25}{1,3}
2017 85 4 {1,2}{1,3}
2023 91 16 {1,2,4}{1,3}{1,7}{1,17}
4913 93 17 {1,2,4}{1,3}{1,5}{1,17}

We then train new models (with the same architecture) to predict GCD, from AI data (generated by
the above model), and compare to training with correct data – from correct computation of the GCD.
When trained on small number of examples (less than 100 million), models learning from AI data
achieve better accuracy (Table 2). We believe this is due to the fact that AI data smoothes away all
the hard case, therefore presenting the model with a cleaner signal in the initial stages.

This pattern changes after extensive training. Table 3 compares performance of models trained on
300M and 1 billion examples. For all bases B, models trained on C(B) learn new GCD as training
proceeds, whereas models learned on D(B) never learn beyond their original performance.

Figures 28 and 29 show that we get the picture predicted by theory: the dirty model learns (until
about 300M examples) and then stops learning (while the clean model continues) - its scaling law
tapers off as predicted in Theorem 2.1. All the skills the clean model learns after this point are skills
the model trained on synthesized data cannot learn (see Figure 30 showing when new learned groups
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Table 2: Correctly predicted GCD after 30, 60 and 90 million examples. Dirty and correct datasets.
30M examples 60M examples 90M examples

Base AI Correct AI Correct AI Correct

10 13 13 13 13 13 13
420 34 34 38 34 38 35
1000 17 13 22 13 22 14
2017 4 2 4 2 4 4
2023 6 6 11 6 11 6
4913 6 4 7 7 7 7

Table 3: Correctly Predicted GCD after 300M and 1 Billion Examples. AI and correct datasets.
300M examples 1B examples

Base AI Correct AI Correct

10 13 14 13 31
420 38 38 38 40
1000 22 25 22 33
2017 4 6 4 9
2023 16 16 16 32
4913 17 16 17 31

of GCD emerge, and Figure 31 for the learning curve of two models, one trained on the original data,
the other on AI data).

Mixing and Grokking We now proceed to train our model on randomly mixed clean and syn-
thesized data for various mixture rates. We train with mixtures of clean and dirty data for mixture
fractions of 9%, 27%, 50% and 73% of AI-generated data, for bases 1000, 2023 and 4913, to see the
grokking effect. Figure 32 illustrates the results. We can see that even for the average curves over
the 10 seeds one can discern a grokking-like delayed learning for the mixtures with relatively small
amounts of AI data. This effect can be studied

The models used to generate the data were trained on about 300M examples, and correctly predict
22, 16 and 17 GCD below 100 for bases 1000, 2023 and 4913 respectively. We know (Table 3)
that more training on AI-data data only will not improve those performances. On the other hand,
we know that models trained on clean data will achieve larger performance. Specifically, out of 10
models trained on clean data, for base 1000, all 10 predict 23 GCD or more after 1.4B examples.
The median number of examples needed for the models to predict 23 GCD or more is 465M. For
base 2023, 7 models out of 10 predict 17 GCD or more after 2.1B examples. The median number of
training samples after which the model bests a model trained on dirty data only is 530M. Finally, for
base 4913, 9 clean models out of 10 predict more than 18 GCD after 1.7B examples. The median
number of samples is 1.1B.
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Figure 28: Test loss for GCD learning. Test loss of 10 models trained on clean and generated data.
From left to right: base 4913, 2023, 1000. Models trained on clean data (red) continune to learn
(decreasing test loss) while models trained on AI generated data (blue) stops learning.
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Figure 29: Average test loss for GCD learning. Averaged over 10 models trained on clean and
generated data. From left to right: base 4913, 2023, 1000.
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Figure 30: Emergence of skills (groups of GCDs learned together). Original (bottom) and AI-
synthesized data (top). Base 4913. 1 model for clean/AI data, respectively.
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Figure 31: Learning the GCD. Learning curve, base 4319. Orange: training on correct GCD. Blue:
training on AI generated data.
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Figure 32: Grokking in GCD Learning on mixed data. Error losses of models trained on mixtures
of clean and AI generated GCD data. 10 models. From left to right: base 4913, 2023 and 1000.

When zooming in to when the mixture models learn to predict GCD that are ”unlearnable” with an
AI-trained model, the grokking effect becomes more apparent.

Table 4 summarizes by listing the time (# of samples) when the mixture models finally learn a GCD
that a purely AI-trained model cannot learn, and the delay (in millions samples) since the previous
GCD was learned (see also Figure 30 to illustrate the comparison between the clean and the AI-
trained model):

Table 4: Samples until Mixture Models Learn a GCD that AI-trained Models Cannot Learn. * small
number of experiments

Base 1000 Base 2023 Base 4913
mixture rate successes samples (M) delay successes sample (M) delay successes samples (M) delay

0% (clean) 10/10 465 243 7/10 530 567 10/10 1180 520
9% 8/10 560 320 8/10 715 530 9/10 910 340
27% 5/10 790 560 7/10 790 1220 10/10 1390 680
50% 2/10∗ 1310∗ 190∗ 7/10 1140 1220 8/10 1280 1180
73% 0 - - 0 - - 0 - -

The delay period increases with increasing fraction of AI data in the mix. Thus, Table 4 clearly
demonstrates the grokking effect of increasing plateau length with fraction of AI data, as predicted
by our theory6.

I DETAILS OF EXPERIMENTS WITH LLAMA2

In the realm of large language models (LLMs), the prevailing approach involves a pretraining and
finetuning paradigm. For instance, GPT-3 undergoes pretraining on approximately 45TB of text
data from diverse sources. This extensive pretraining endows it with a robust capability for a variety
of downstream tasks, employing methods such as zero-shot learning, few-shot learning, or finetun-
ing. Our study evaluates the phenomenon of model collapse in scenarios close to the contemporary
‘synthetic data age.’

Utilizing one of the most advanced open-source models, Llama-2 7B, our research investigates
the effects on LLMs when they undergo finetuning7 with data generated by other LLMs. To ensure

6We were constrained to stop the experiments at after about 3B samples for most, due to heavy use of
compute resources. This probably explains why for the larger AI-mixtures only a few experiments could
successfully find new GCDs - the other experiments where still in the pre-grokking phase when they were
stopped.

7Quoting Shumailov et al. (2023), we state that one can, in principle, replicate an experiment described here
with training an LLM from scratch to demonstrate scaling law decay. Given that training a single moderately
large model produces twice the American lifetime worth of CO2 Strubell et al. (2019), we opted to not run such
an experiment and instead focus on a more feasible finetuning setting. Note that just the language experiments
described in the paper took weeks to run.
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the generation of high-quality data and to provide a relevant but not trivial downstream task, we
employ the Wikitext-103 dataset. We segment this dataset into chunks of 128 tokens, between each
with a stride of 64 tokens, resulting in approximately 2.2 million chunks. Denote this dataset as D0.
The task for generation involves producing the final 32 tokens given the initial 96 tokens from each
chunk in the original dataset. In the initial generation (0-th generation), we use the Llama-2 7B
FT model, which has been finetuned on D0, applying a generation loss that focuses solely on the
cross-entropy loss of the final 32 tokens. We denote this initial model as M0, which demonstrates
enhanced capacity for the generation task compared to the standard Llama-2 7B model. By querying
M0 with the original 96 tokens from D0, we generate the dataset D1 and subsequently finetune
Llama-2 7B on this dataset to obtain M1. This process is sequentially repeated to generate
Di from Mi−1 and obtain Mi through finetuning. By comparing the performance of various M
models on the test set derived from Wikitext-103, also segmented into 128-token chunks, we aim to
investigate the model collapse in LLMs.

To prevent information leakage across chunks, we restrict the training to only include the loss on
the final 32 tokens for all generations. Consequently, the models are never trained on the first 96
tokens coming from the original corpus. The size of the 2.2 million chunks can provide sufficient
data for finetuning while avoiding overfitting, given the capacity of Llama-2 7B. Throughout
the finetuning process, we maintain consistent settings using learning rate 5e−5 for LoRA, using
Adam optimizer, dropout rate 0.1, trainable parameter fraction 0.062%. To eliminate the possibility
of model collapse due to insufficient sampling and to gain insights into scenarios where more AI-
generated data is produced than the model has been trained (or finetuned) on, we consistently utilize
a model trained on half the dataset for generating subsequent datasets.

For completeness, we include Figure 33 with loss on the full chunks and Figure 34 that mix the
generated data with original data. The mixing curve also aligns well with the grokking phenomenon
predicted by theory.
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Figure 33: Llama Generated Data. Llama2
finetuning when the loss for training and eval-
uation is the cross-entropy for all tokens in the
chunks, including the prompt.
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Figure 34: Mixing Llama Generated Data
with Original Data. Similar setting as Figure
4 left. Starting from gen 1, we mix the gener-
ated data with the original one with a ratio of 90
to 10. Top p 0.9 and temperature 0.9.

J MORE STUDIES ON TAIL CUTTING AND TAIL NARROWING EFFECTS

Here, we illustrate how tail cutting in the next-token distribution can lead to tail-narrowing for
metrics that take the entire sequence into account, like perplexity. Figure 35 illustrates this for the
autoregressive bigram model. This effect is likely due to the combinatorial factors we obtain when
considering an additive (or multiplicative) measure like perplexity.
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Figure 35: Sequential bigram data: top p = 0.95 leads to similar effect as tail narrowing. 1000 data
with sequence length 100.
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