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ABSTRACT

Pre-training has proven effective for learning transferable features in sign language
understanding (SLU) tasks. Recently, skeleton-based methods have gained increas-
ing attention because they can robustly handle variations in subjects and back-
grounds without being affected by appearance or environmental factors. Current
SLU methods continue to face three key limitations: 1) weak semantic grounding,
as models often capture low-level motion patterns from skeletal data but strug-
gle to relate them to linguistic meaning; 2) imbalance between local details and
global context, with models either focusing too narrowly on fine-grained cues or
overlooking them for broader context; and 3) inefficient cross-modal learning, as
constructing semantically aligned representations across modalities remains diffi-
cult. To address these, we propose Sigma, a unified skeleton-based SLU framework
featuring: 1) a sign-aware early fusion mechanism that facilitates deep interaction
between visual and textual modalities, enriching visual features with linguistic
context; 2) a hierarchical alignment learning strategy that jointly maximises agree-
ments across different levels of paired features from different modalities, effectively
capturing both fine-grained details and high-level semantic relationships; and 3)
a unified pre-training framework that combines contrastive learning, text match-
ing and language modelling to promote semantic consistency and generalisation.
Sigma achieves new state-of-the-art results on isolated sign language recognition,
continuous sign language recognition, and gloss-free sign language translation on
multiple benchmarks spanning different sign and spoken languages, demonstrating
the impact of semantically informative pre-training and the effectiveness of skeletal
data as a stand-alone solution for SLU. We will release the code upon acceptance.

1 INTRODUCTION

Sign languages (SLs) are the primary means of communication for around 70 million people with
hearing or speech impairments, spanning more than 200 SLs worldwide (WHO, [2025; |WFD) 2025)).
SLs remain challenging for the general public to master due to the global diversity and complex
structure, which encompasses rapid and intricate hand gestures, body postures, as well as facial
expressions. The ultimate goal of sign language understanding (SLU) is to comprehend SLs at the
levels of words, phrases, as well as sentences anytime and anywhere for the impaired community,
enabling barrier-free communication for them. Achieving this goal requires the development of
models capable of interpreting these visual signals in alignment with the unique linguistic structure
of SLs. SLU typically comprises three core tasks: isolated sign language recognition (ISLR),
which recognises sign glosses[]_-](Hu et al., [2021a;2023b; |Pu et al., 2024); continuous sign language
recognition (CSLR), which aligns unsegmented sign sequences with sign glosses (Hu et al., 2021a}
Zuo & Mak, 2022 Fu et al., 2025); and sign language translation (SLT), which converts sign
sequences into sentences (Zhou et al.| 2021a; 2023} |[Fu et al., 2025). These tasks demand both
fine-grained visual recognition and strong contextual understanding.

Recently, SLU research has progressively shifted from fully supervised learning toward the develop-
ment of effective pre-training paradigms, commonly referred to as sign language pre-training (SLP)

'A sign gloss is a textual label that represents the meaning of a sign sequence using a word or phrase.
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(Zhou et al.| 2023; [Hu et al.| 2023b; |Zhou et al., [2024; L1 et al., [2025; [Fu et al.| 2025)). These methods
present a promising direction by enabling models to learn transferable representations directly from
SL data, thereby significantly reducing the reliance on manual annotations, such as gloss annotations,
temporal boundaries or clip-level supervision. By capturing structural and temporal regularities
during the pre-training stage, models gain generalizable knowledge that accelerates convergence and
enhances performance on a wide range of downstream SLU tasks. Consequently, SLPTserves as
a foundational step toward building unified and scalable SLU frameworks. Despite their potential,
current SLP-based SLU methods continue to face significant limitations.

First, the lack of semantic grounding in visual representations remains a major challenge in
advancing SLU. While dense geometric features in skeletal data, such as hand trajectories, body
movements, and facial expressions, provide important visual cues, they often carry limited linguistic
meaning. Most existing skeleton-based SLU methods focus on capturing these low-level patterns
from skeletal data, treating SL primarily as a visual signal and paying little attention to the underlying
linguistic structure (Hu et al., 2021a;|2023b; [Zhao et al., |2024bj [Pu et al., [2024). Although such
models may capture low-level motion patterns, they struggle to model the relationship between these
geometric features and their intended semantic roles. This disconnect weakens the ability of models
to produce accurate and meaningful interpretations. Addressing this issue requires enriching visual
features with semantic grounding, allowing the model to understand both the appearance and the
purpose of each gesture. Doing so helps bridge the gap between visual representation and language
understanding, making the model capable of supporting accurate recognition and fluent translation.

Second, the imbalance between local-global feature modelling remains a persistent challenge
in SLU, which inherently spans both recognition and translation tasks. Accurately distinguishing
subtle variations in SL gestures requires capturing fine-grained local motion patterns, while achieving
coherent understanding necessitates preserving high-level global semantics. Balancing these two
levels of representation is inherently difficult but critical (Liu et al.| | 2013). Global semantic modelling
plays a key role in resolving ambiguities between visually similar SL. gestures, particularly in
continuous streams where the boundaries of sign glosses are unclear and context determines meaning.
In such cases, local features alone are inadequate. Conversely, precise local detail extraction is equally
vital, as small variations in hand gestures, body postures, or facial expression can dramatically alter
meaning and grammatical structure. Even minor changes in motion intensity may shift interpretation
and degrade translation quality (Camgoz et al.,[2018). Therefore, robust SLU demands a mechanism
that jointly models both local and global features in a balanced manner.

Third, inefficient cross-modal representation learning remains a critical bottleneck for advancing
SLU. Compared to traditional video understanding, SLU from RGB videos is more challenging
because gestures and facial expressions are more intricate or rapid than general human actions or scene
changes (Hu et al.| [2021a; 2023b). Constructing structured, semantically aligned representations from
raw visual streams is difficult, as models are easily distracted by background details or appearance
variations rather than focusing on the linguistic cues that carry meaning (Hu et al.| [2021a; 2023bj
Pu et al.| [2024)). This inefficiency weakens the alignment between dynamic gestures and textual
semantics while imposing heavy computational and storage costs, ultimately limiting the scalability
of SLU and slowing progress in SL production and generation. Skeletal data offers a promising
alternative to RGB videos (Hu et al., [2021aj2023bj [Pu et al.| |2024)). It intentionally prioritises the
essential spatial-temporal dynamics of SL, which are the core semantic carriers in SLU. Modest
estimation variances in skeletal data can improve generalisation across diverse real-world motion
patterns, and by abstracting away visual noise such as lighting, background clutter, and appearance
biases, skeletal representations provide cleaner, more relevant inputs with stronger privacy guarantees.

Collectively, there is a need for an approach that enhances meaningful semantic grounding, promotes
balanced feature modelling, and supports effective cross-modal representation learning for skeleton-
based SLU. Visual illustrations of our motivation are provided in Appendix |A| To overcome these
limitations, this paper proposes the following solutions:

¢ We introduce a sign-aware early fusion mechanism that enables bidirectional interaction
between visual and textual features during the encoding stage. This encourages the model
to learn semantically enriched visual representations, improving modality alignment and
deepening contextual comprehension.

* We propose a hierarchical alignment learning strategy, which learns representations by
maximising agreement across modalities. This enables the model to capture fine-grained
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visual cues and high-level semantic structures, supporting accurate recognition and fluent
translation.

* We design a skeleton-based unified cross-modal pre-training framework that facilitates
efficient and flexible representation learning across multiple tasks. By jointly optimising
contrastive learning, text matching, and language modelling within a shared space, the
framework improves semantic alignment as well as boosts transferability and generalisation
across diverse downstream SLU tasks.

2 RELATED WORK

2.1 SEMANTICALLY INFORMATIVE VISUAL FEATURE

Learning semantically informative visual features from SL sequences is crucial for understanding.
This is particularly important in resolving the representation density problem, where visually similar
SL gestures, differing only slightly in motion or expression, tend to cluster closely in feature space
(Ye et al., [2024). Incorporating linguistic and contextual cues into visual representations helps
mitigate feature overlap and enables the model to learn more separable and discriminative features.
This can lead to improved performance in both recognition and translation tasks, especially in cases
where subtle visual differences correspond to distinct meanings. Prior works such as TSPNet (L1
et al., |2020b)), GLE-Net (Hu et al.| [2021c), HST-GNN (Kan et al., [2022) and SignCL (Ye et al.,
2024) have made progress in temporal modelling, global context extraction, and multi-perspective
graph-based reasoning. However, learning and embedding semantically rich visual features in a way
that generalises across tasks remains an open challenge in advancing SLU.

2.2  SIGN LANGUAGE UNDERSTANDING

SLU has been widely studied through task-specific methods. Prior works for ISLR have applied
spatial-temporal modelling to improve accuracy (Hu et al.,[2021b; |Li et al., [2020c} [ Zuo et al.| [2023)).
Recent models for CSLR address co-articulation and gloss boundary ambiguity using CTC-based or
sequence-to-sequence frameworks (Min et al.| [2021; Hu et al., 2023e; Jiao et al., [2023)). For SLT,
gloss-based approaches rely on intermediate gloss annotations (Camgoz et al., [2020; [Zhou et al.|
2021b)), while emerging gloss-free methods adopt pre-training and large language models to reduce
annotation requirements and improve generalisation (Zhou et al.| [2023;|Wong et al., 2024} |Gong et al.,
2024)). In this study, we focus on the gloss-free SLT paradigm and aim to enhance its effectiveness by
learning semantically rich visual representations aligned with textual outputs. In contrast to prior
task-specific methods, we propose a unified framework capable of performing all aforementioned
SLU tasks. A central design motivation lies in the differing representational needs across tasks of
recognition and translation.

2.3 SIGN LANGUAGE PRE-TRAINING

SLPTmethods employ pretext tasks to learn useful representations from SL data, improving down-
stream performance. Self-supervised models like SignBERT (Hu et al., 2021a;/2023b) use masking
and reconstruction to capture visual patterns from unlabeled videos but often lack sufficient sematic
grounding. To address this, MMTLB (Chen et al.| [2022a)) introduces multi-task training across
sign-to-gloss, gloss-to-text, and sign-to-text objectives, while GFSLT-VLP (Zhou et al.,[2023)) uses
contrastive learning for sign-text alignment. More recent efforts, including MSLU (Zhou et al.,
2024) and C2RL (Zuo & Mak, [2022), incorporate keypoint reconstruction and language modelling
to enhance semantic representation. Despite these advances, most approaches remain task-specific,
limiting scalability. Moreover, they often struggle to balance modality-specific encoding with effec-
tive cross-modal transfer, both of which are essential for developing unified and generalisable SLU
systems.

3 METHOD

Sigma consists of two stages: pre-training and fine-tuning (Figure[I). In pre-training, we introduce
sign-aware early fusion (SignEF) for deep bidirectional cross-modal interaction, hierarchical align-



Under review as a conference paper at ICLR 2026

ment learning (HAL) for multi-level semantic alignment to capture both coarse and fine-grained
semantic correspondences, and a sign-grounded text (SGT) encoder jointly trained with text matching
and language modelling to enhance semantic consistency and linguistic fluency. The sign encoder is
fully transferred, and the SGT encoder is reused in the unified fine-tuning, enabling consistent and
efficient adaptation across SLU tasks, including ISLR, CSLR, and SLT.
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Figure 1: Overview of Sigma. (a) SignEF enhances visual-linguistic alignment by injecting cross-
modal features into sign and text encoders. (b) HAL is used to maximise global and local cluster
agreement. (c) SGT encoder jointly optimises sign-text matching and language modelling. During
fine-tuning, both the sign and SGT encoders are reused across SLU tasks.

3.1 PRELIMINARIES

We use paired skeletal data and their corresponding text(s) for both the pre-training and fine-tuning
stages. The text(s) are tokenised before being fed into the text encoder. The skeletal data are 2D
keypoints estimated from SL videos using RTM-Pose (Jiang et al.,[2023)). Part-specific ST-GCNs (Yan
et al.| 2018)) are used to model both joint interdependencies and motion dynamics. Following these
ST-GCNss, the raw skeletal input S7% € RE*No X is projected into a compact feature S, € RZ*P,
where L is the sequence length, N, is the number of keypoints in a group that p € {lh,rh, b, f} (left
hand, right hand, body, and face), C' is the visual input dimension, and D is the projected dimension.
The sign encoder input S € RE*4P is formed by concatenating features from all groups and serves
as the visual input for the two-stage training of Sigma.

3.2 SIGN LANGUAGE PRE-TRAINING

We initialise Sigma with pre-trained mT5 (Xue et al.,[2021} L1 et al.||2025)) to leverage large-scale
text corpora for stronger visual-linguistic alignment.

3.2.1 SIGN-AWARE EARLY FUSION MECHANISM

A key challenge in skeleton-based SLU is align-
ing geometric gesture features with textual se-
mantics. Inspired by (Vaswani et al., [2017; |L1

wen ——
et al. 2022b)), we propose SignEF, which en-

W(aut, N) _, Ti
wb) o2 riches SL representations by introducing cross-
modal interaction at the encoding stage, foster-
w@ M woutL) Sy ing more expressive and semantically aligned
7“4[: W ¥ features. Specifically, SignEF deploys cross-
attention and injects textual cues into visual
encoding layers, enabling the model to per-
Figure 2:  SignEF promotes progressive form deep and structured representation learning

visual-linguistic interaction with parameters Aacross modalities.

w@L) W@N) . g e {q,v,0ut}, analogous to
query, value, and output projections by (Vaswani
et al.l[2017).

Let S* and T denote the visual and textual fea-
tures from the ¢-th layers of the sign and text
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encoders. Their fusion outputs, S}, (text-to-sign) and T, (sign-to-text), are fed back into the
encoders, with early fusion applied at the last few layers of the encoders. The process is defined as:

tos: Tloy = SignEF(S', T "
X" = Mo-Encoder;i1 (X' + Xpom)
where X denotes either sign (S) or text (") features, with Mo € Sign, Text indicating the target
modality and m € s,t the source. The SignEF module lets one modality attend to the other,
computing cross-modal context features. As shown in Figure [2| attention heads share parameters
across the final SGT layers. This parameter-sharing design prompts fine-grained visual-linguistic
alignment while keeping the model efficient.

3.2.2 HIERARCHICAL ALIGNMENT LEARNING

Balancing local and global feature modelling is essential for SLU, where recognition and translation
require attention to both detailed and holistic semantics. Inspired by contrastive learning (Chen et al.}
2020; Radford et al.} 2021} [Li et al., 2022a; [Hou et al.l 2024), we introduce SignEF as a core strategy
for pre-training. SignEF maximises agreement between sign-text pairs at both the global and local
cluster levels. The similarity is computed as:

gs(scls)Tgt(tcls)a ifex = g (21)

n . 2
D ie1 MATje (1, k) (gs(si)—'—gt(cj)) Jifz =1 (2.2) 2

M, = sim(Sy, Ty: 6) = {

where f denotes features, [ indicates local, and g means global. Globally, we align the class-token
representations s.;s and t.;s from the sign and text encoders. These class tokens are projected into
a shared embedding space using projection heads g5 and g;, enabling the model to capture coarse-
grained semantic relationships across modalities. A cluster aggregator (see Figure [3) compresses text
tokens into k clusters, which serve as compact semantic units to correspond to the n sign tokens. To
focus on cross-modality alignment, we compute the maximum similarity between each sign token
s; and all text clusters ¢;. Locally, SignEF enhances fine-grained interaction by computing local
cluster-wise similarity between sign features and clustered text features.

Algorithm 1 Cluster-wise sign-to-text similarity (see Figure[9]in the Appendix [L.1] for visualisation)

Input: Sign tokens {S, € RV*P}B Textual clusters C'€ REXK*D

Output: Cluster-wise sign-to-text similarity ML,,

Initialise ML, < 058*5

fori=1to Bdo
M <+ S, CT > Compute cosine similarity matrix M &
R < max(M,dim = 3) > Row-wise operation R € RB*e
w < softmax(R)
score < » . o(w ® R) > Local-level scoring score € RP
ML, [b] + score

end for

RBbexK

Y RXIINHELN T

—_

Glosses serve as simplified representations of SL segments in continuous video, and the extra super-
vision they provide has significantly improved SLU performance. However, they come with many
limitations (see Appendix [H). Our aggregator promotes hierarchical alignment by approximating
gloss-like groupings through local feature clustering. It groups subword-level textual tokens into
semantically meaningful units. For instance, “curiosity” is split into “curios” and “ity,” and “& "
into “&” and “f” by tokenizers. Both are expressed as continuous sign sequences, while each
subword could be intended to align with distinct visual segments. Our aggregator dynamically merges
them into more concrete phrase-level units, with the number of clusters adaptively determined by sen-
tence structure and bounded by sentence lengths. This enables our model to preserve compositional
semantics and reduce alignment errors by preventing disjoint mappings of continuous signs.

We express the computation of the local cluster-wise similarity at Algorithm[I] For brevity, Algorithm
only presents the local sign-to-text similarity M., and the local text-to-sign similarity is computed
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analogously, with the positions of sign tokens and textual clusters exchanged. We experiment with
several different row-wise operations and local-level scoring methods in Appendix [I.T]to provide a
better understanding of the design choice.

SignEF is adopted to align different levels of paired features from different modalities. This dual-level
strategy encourages semantically meaningful and discriminative cross-modal representations. The
global and local losses are computed as follows:

1
L2(Sy,Ty) = 3 (szt(sf,Tf) + Ly (T, Sf))
exp (sim(s;;, Ti; ) /T¢) 3)
Z;’.zl exp (sim(S;}, T;; ¢)/T¢>

b
1
Lth(Sfan) = b Zlog
i=1

For each sign-text feature pair (S%, T}) in a batch b, we compute the bidirectional global contrastive
loss £? with temperature-scaled similarity 7¢ controlled by parameters ¢ (as shown Equation .
The goal is to maximise similarity for matched pairs and minimise it for mismatches (S}, TJ{), Jj#i.
We show the sign-to-text loss Lth explicitly; the text-to-sign loss szs is omitted for brevity, as

it is defined in the same manner as Lf2t, with the roles of text and sign features reversed. The
local contrastive loss follows the same structure but omits temperature scaling to emphasise sharper
fine-grained alignment.

To balance both alignment levels, we introduce a parameter « € [0, 1], and define the SignEF loss as:

— ¢ é
£HAL - (1 - a)‘cglobal(Sf7Tf) +a£local(sf7Tf) (4)
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Text
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Offset calculator T
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t
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Figure 3: The overview of the cluster aggregator Figure 4: The architecture of the SGT encoder,
module. It converts sub-word token embeddings which consists of two paths: theSTM path
into cluster-level representations by grouping to- injects sign features via cross-attention for se-
kens, mapping them with offset indices, and aggre- mantic alignment, and the LM path preserves
gating hidden features for semantic alignment with  linguistic fluency through standard transformer
visual inputs (See Appendix @] for details). layers (See Appendix [E]for details).

3.2.3 SIGN-GROUNDED TEXT MATCHING AND LANGUAGE MODELLING

To improve training efficiency and foster deeper cross-modal understanding, we propose an SGT
encoder, inspired by (Chen et al.l 2020; Radford et al., 2021} [Li et al.} 20215 2022a). It unifies
sign-text matching (STM) and language modelling (LM), supporting dynamic alignment of visual
and linguistic features within a single framework. A task-specific token guides the model to produce
multimodal embeddings. A lightweight STM head, trained with binary cross-entropy, judges sign-text
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alignment. In parallel, the encoder autoregressively generates text with masked self-attention, with a
cross-entropy LM loss enhancing language structure and semantics. To balance the synergy between
matching and generation, we define a composite SGT loss:

Lsar = (1= B)LsTrm(Sy,T) + BLLr(Sy, T), (5)

where 8 € [0, 1] controls task emphasis. Matching enhances visual grounding, while generation
regularises semantic coherence.

The pre-training objective integrates L4y, and Lggr, defined as Lyretrain = Lrar + Lsar-

3.3 SIGN LANGUAGE FINE-TUNING

A unified architecture is designed for all the downstream SLU tasks, casting ISLR, CSLR, and SLT as
conditional language modelling. The fine-tuning objective is defined as Liqsx = L0 (Touts Trask)
where Toy is the prediction, T, is the ground truth, and task € {ISLR, CSLR, SLT}, with T,k
as a gloss (ISLR), a gloss sequence (CSLR), or a sentence (SLT).

4 EXPERIMENT

Datasets. We evaluate Sigma on a diverse set of bench-
marks spanning different sign and spoken languages.

) : Table 1: Training settings across tasks.
WLASL2000 (L1 et al., [2020a)) is used for ISLR evalu-

ation, CSL-Daily (Zhou et al.,[2021a)) serves as the bench-

Settings | ISLR CSLR SLT
mark both for CSLR and SLT. How2Sign (Duarte et al., = i AdamW
2021) and OpenASL (Shi et al, 2022) datasets are used ~ Weight decay 1.00E-03
for SLT evaluation (check Table[14]for their statistics and ~ PPUmser momenu Br. 2 = 0.9,0.999
. X earning rate schedule Cosine decay
information). —

o Pre-training
Evaluation metrics. Following prior works, we report ~ praiting epochs 10 5

. atch size 16
per-class (P-C) and per-instance (P-I) Top-1 accuracy for  Learning rate 1.00E-06
ISLR, word error rate (WER) for CSLR, and BLEU & Fine-tuning
ROUGE-L scores for SLT. For brevity, we denote BLEU- Erair;ling epochs 10 g 15 15
. atch size

1, BLEU-4, and ROUGE-L as B@1, B@4, and R@L in Learning rate LOOE-07  1.00E-06

the tables of the following sections.

Training details. The training settings are empirically configured and listed in TableI]

4.1 IMPACT OF SIGN-AWARE EARLY FUSION

To evaluate the impact of our SignEF, we vary the number of fusion layers that integrate visual and
textual features within the encoders. As shown in Table[2] SignEF consistently improves performance,
though the gains are not strictly linear. In CSLR and SLT, we observe a fluctuating trend, with
alternating improvements and dips. Notably, applying two fusion layers yields the best results on
CSL-Daily (highlighted in bold in Table ), indicating that early fusion helps the model form stronger
semantic dependencies, enhancing sequence alignment and translation quality. In contrast, ISLR
benefits from deeper fusion, with performance peaking at five layers (highlighted in bold in Table
[2), reflecting the need for precise modelling of fine-grained spatial and motion cues. These findings
suggest that light fusion is beneficial for context-sensitive tasks like CSLR and SLT, while deeper
fusion better supports visually intensive tasks such as ISLR. Overall, SignEF proves effective in
adapting the depth of fusion to the needs of each SLU task.

4.2 IMPACT OF LOCAL-GLOBAL FEATURE BALANCING

We introduce the trade-off parameter « in Equation [4]to balance the contributions of local-global
feature learning. As shown in Table[3] setting ov = 0.5 consistently delivers the best results across
ISLR, CSLR, and SLT tasks. This suggests that giving equal attention to fine-grained features such
as motion and handshape, along with high-level semantics like context and meaning, leads to better
sign-to-text mappings. Compared to SignEF, the performance fluctuation caused by different o values
is relatively small for ISLR, more pronounced for CSLR, and moderate for SLT. When « shifts too far
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in favor of either local features (values above 0.5) or global features (values below 0.5), we observe
a decline in model performance, especially in CSLR and SLT, which rely heavily on contextual
understanding. These findings highlight the importance of jointly modelling both detailed visual
information and broader semantic structures to capture the complexity of SL.

Table 2: Impact of SignEF. Table 3: Local-global feature balancing.
| WLASL2000 | CSL-Daily | WLASL2000 | CSL-Daily
Layers ISLR CSLR SLT Alpha ISLR CSLR SLT
PIt P-Ct | WER| B@I? B@4} R@LT Pt P-Ct | WERl B@IT B@4t R@L{
1 63.17 60.77 | 2658 56.79 27.50  56.64 0.2 64.14 62.14 | 2652 56.11 2799 57.89
2 | 6379 6140 | 26.12 5683 2824 58.04 04 | 6430 6224 | 2655 5665 28.12 57.82
3| 6422 6209 | 2653 5672 2793 5736 0.5 | 6440 6232 | 2612 5683 2824 58.04
4 6397 6170 | 2640 5680 27.98 57.86 0.6 | 6414 6209 | 27.05 5682 2799 58.10
5 | 6440 6232 | 2669 5679 28.09 57.56 0.8 | 6414 6208 | 2665 5621 27.66 57.65

4.3 TRADE-OFF ANALYSIS BETWEEN TEXT-MATCHING AND LANGUAGE MODELLING

The beta value /3 in Equation [5]controls the relative contributions of matching and language modelling.
Table [] shows performance across SLU tasks under different 3 values. Compared to the trade-
off evaluated in Section [4.2] ISLR is more sensitive to the trade-off between text-matching &
language modelling than CSLR and SLT. This indicates that different tasks respond differently to the
balance between discriminative and generative learning. We observe that the best CSLR and SLT
results occur at 5 = 0.5, suggesting equal emphasis on semantic matching and language modelling
leads to balanced representations. For ISLR, optimal performance is achieved at 5 = 0.6, with a
slight advantage from generative learning to capture discriminative features necessary for isolated
recognition. Interestingly, the second-best ISLR performance is achieved at 3 = 0.4, where the
model places greater weight on sign-text matching. It yields the same per-instance accuracy and
slightly lower per-class accuracy, showing both objectives contribute meaningfully. These findings
underscore the complementary nature of SGT matching and language modelling. Achieving an
appropriate balance between the two is essential for optimising performance across a range of SLU
tasks.

Table 4: Trade-off analysis between text matching Table 5: ISLR  results on

and language modelling. WLASL2000 dataset.
| WLASL2000 | CSL-Daily Methods | PIt | PCT
Beta ST-GCN (Yan et aL]p018} 3440 | 32.53
ISLR CSLR SLT HMA (Hu et al.|2021b} 3791 | 35.90
P-It  P-Ct | WER| B@It B@41 ReL? SignBERT (Zhou et al.|2021c} | 39.40 | 36.74
02 | 6430 6221 | 2662 5631 27.82 57.88 BEST fZba0 Sl | o3| 3%
ignBERT+ (Hu et al.[[2023a) | 48.85 | 46.37
04 | 6440 62.15 | 2643 5638 2788 5776 MELU {Zhow st oot 5695 | 5329
0.5 | 6427 62.03 | 2612 56.83 2824 58.04 NLA-SLR (Zuo et al.]2023} 61.05 | 58.05
0.6 | 6440 6232 | 2633 5600 2779 5743 Uni-Sign (Li et al.|[2025) 63.52 | 61.32
08 | 64.12 6222 | 2627 5558 2772 5736 Sigma 640 | 6232

Additional ablation studies can be find in Appendix

4.4 CONTRIBUTION OF THE CORE COMPONENTS

Table [6] presents an ablation study evaluating the contribution of core components that inherited
from pre-training. When both the sign encoder and SGT decoder are trained from scratch, the
model performs poorly across all tasks, highlighting the inherent difficulty of SLU without structural
guidance. Introducing individual components shows consistent improvement. Adding only the
sign encoder largely reduces the CSLR WER from 523.85 to 180.85 and increases ISLR accuracy,
indicating the ability of the sign encoder to model temporal visual patterns. Enabling both further
boosts SLT performance, improving BLEU4 from 2.56 to 25.47 and ROUGE-L from 15.77 to 54.88,
demonstrating the benefits of transferable visual representations learned in pre-training. Finally,
inheriting parameters from all components yields the best performance across ISLR, CSLR, and
SLT tasks, proving that the full architecture, integrating pre-training, a dedicated sign encoder, and a
task-aware decoder, forms an effective pipeline for unified SLU.
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Table 6: Impact of pre-training. A green check means the Table 7: CSLR results on CSL-
presence of pre-training or that parameters are inherited for fine- Daily dataset.
tuning; a red cross indicates no pre-training or that parameters

are not inherited from pre-training. Method DEV | TEST
ethods WER| | WER]

SignBT (Zhou et al.|[2021a) 33.20 | 33.20

Prewain  SiEn  SGT | WLASL2000 | CSL-Daily AdaBrowse (Hu et al.][2023¢} | 3120 | 30.70
encoder decoder ISLR CSLR SLT SEN (Hu et al.|[2023d) 31.10 30.70
Pt P-Ct | WER| B@lf B@4f R@Lt CorrNet (Hu et al.][2023¢c) 30.60 | 30.10
X X X 002 001 |52385 7.4 012 1195 MSLU {Zhou et al.12024) 28.60 | 27.90
CoSign (Jiao et al.|[2023) 28.10 | 27.20
v X v 1.04 1.03 | 18085 1555 256  15.77 Ui St fereraTipoos] 2670 | 2600
v v X 2256 2041 | 27.83 5279 2547 54.88 '
v v v 64.40 6232 | 2612 5683 2824 58.04 Sigma | 26.12 | 25.92

5 COMPARISON WITH STATE-OF-THE-ART METHODS

We evaluate Sigma across the three aforementioned core SLU tasks. For ISLR on the WLASL2000
dataset, our model sets a new performance benchmark (see Table[5). These results demonstrate strong
gesture recognition and effective feature discrimination. For CSLR on the CSL-Daily dataset, as
shown in Table [/ Our method achieves new state-of-the-art (SOTA) performance, surpassing the
strong pose-RGB-based Uni-Sign model, highlighting improved temporal modelling and more precise
alignment between sign sequences and sign glosses relying solely on skeletal data. For SLT (see
Table 0] and Table[8), Sigma shows strong performance across How2Sign, OpenASL, and CSL-Daily.
On How2Sign, it delivers improvements across all evaluation metrics. Sigma achieves new SOTA
results on OpenASL across all evaluation metrics used for this study. On CSL-Daily, it surpasses
all gloss-free methods and rivals the long-standing gloss-based SOTA model CV-SLT. These results
confirm the generalisability of Sigma across varied datasets and SLU tasks. The complete results are
in Appendix

Table 8: SLT Results on How2Sign and Table 9: SLT results on CSL-Daily dataset.
OpenASL.

Methods DEV TEST
B@lT B@4' R@LT |B@lT B@4} R@LT
Methods TEST Gloss-based
Belt B@4r ReLf SLRT (Camgoz et al.]2020} 3747 1188 3796 | 3738 1179 36.74
How2Sign ConSLT (Fu et al.}2023} - 1480 4146 - 14.53 40.98
GIoFE-VN (Lin et al.|[2023) 14.90 2.20 12.60 SignBT (Zhou et al.[[2021a)} 5146 20.80 4949 | 5142 2134 4931
YouTube-ASL (Uthus et al|2023) | 37.80  12.40 N MMTLB {Chen ctal J20%2a] | 5381 2442 5338 | 5331 2392 5325
MSLU (Zhou cL oL JET] 010 240 1720 IGVEERERINIT | 5521 237 5300 | 3544 2579 5572
SLT-IV (Tarrés et al.[2023) 3400  8.00 - - e CLA { > oy : pay
CPRL e 1PO7RT 2010 940 27.00 CV-SLT (Zhao et al.|[2024a} 5636 2824 5636 | 5829 2894 57.06
FLa-LLM (Chen et al.||2024) 29.80  9.70 27.80 Gloss-free
5 SLRT (Camgoz et al.|[2020} 2103 404 2051 | 2000 303  19.67
Sigma | 40.06 1561 3671 GASLI(Yin et al.][2023) . - : 1990 407 2035
OpenASL 3328 1027 333 | 3397 1142 33580
- NSLT (Camgoz et al.J2018] 3422 796 3428 | 3416 756 3454
GIoFE-VN (Lin et al.|[2023 2156 7.06 2175 g )
Ry e | Tere 4% 1610 GFSLT-VLP (Zhou etalj2023] | 3920 1107 3670 | 3937 1100 36.44
ame . - - : FLa-LLM (Chen et al.|2024] . : - | 3713 1420 3725
I3D-transformer (Shi et al.|2022) 18.31 5.66 18.64 C2RI {Chen et al 12023) R R R 1932 2161 4821
OpenASL g3hi et al 12027} 2092 859 21.02 Uni-Sig (Lt ot al.|[2095] 5530 2625 5603 | 5508 2636 5651
Uni-Sign {L1elal]00] 4935 23.14 4322 SignLLM (Gong et alJ0024) | 4245 1223  39.18 | 39.55 1575 39.91
C?RL (Chen et al.[[2025) 3146 1321 3136 Sign2GPT (Wong et al.|| 2024] - - - 4175 1540 4236
Sigma | 4955 2319 4447 Sigma | 5683 2824 5804 | 5597 27.30 57.58

6 CONCLUSION

SLU requires the ability to recognise fine-grained visual patterns while simultaneously modelling
complex linguistic semantics. We identify three key challenges in current SLU: 1) weak semantic
grounding in visual features, 2) imbalanced local-global modelling, and 3) inadequate cross-modal
alignment. To address these, we propose Sigma, a skeleton-based unified framework for semantically
informative and transferable representation learning for SLU. Sigma introduces: 1) the SignEF
mechanism for bidirectional visual-textual interaction during encoding, 2) the SignEF strategy for
optimising local and global alignment via contrastive objectives, and 3) a unified pre-training scheme
combining contrastive learning, text matching, and language modelling. We validate the effectiveness
of Sigma on multiple SLU benchmarks, including WLASL, CSL-Daily, How2Sign, and OpenASL.
Sigma consistently exhibits strong performance across the aforementioned SLU tasks. These results
underscore the importance of semantically informed pre-training for building scalable and robust
skeleton-based SLU model.
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A  MOTIVATION

Someone t

Figure 5: Visualization derived from the WLASL2000 dataset. The right hand, along with its primary
motion trajectory, is highlighted to illustrate the gesture dynamics. The figure shows two sign
sequences, “Always” and “Someone.” Although both gestures exhibit similar hand shapes and motion
trajectories, they differ in spatial and temporal extent. Disambiguating them requires not only local
visual detail but also global temporal understanding and accurate alignment with linguistic meaning,
highlighting the need for effective multimodal representation learning.

y )
B

% (Lost) ’|9%(Fast) ‘ % (Go) Eﬁ (Bank) 40 (Increase) 73 (Apply) t

R (You) 777 (Bankbook)

Figure 6: Visualization derived from the CSL-Daily dataset. The right hand, along with its primary
motion trajectory, is highlighted to illustrate the gesture dynamics. The example corresponds to the
sentence: “fFHTE T HIIEE D _EEXBWITH#M ) - (If your bankbook is lost, you should go to the
bank immediately to have it reissued.) This figure illustrates visually similar signs such as “bankbook”
and “bank”, as well as “you” and “go”. Despite sharing highly similar motion patterns, each gesture
serves a distinct syntactic and semantic function within the sentence. This example demonstrates the
limitations of purely visual recognition and emphasizes the importance of strong visual-linguistic
alignment for effective SLU.

We identified three key challenges faced by current SLP-based SLU methods in Section [T} weak se-
mantic grounding, imbalanced local-global feature modelling, and ineffective cross-modal alignment.
These issues frequently manifest in practical scenarios where visually similar gestures convey entirely
different meanings depending on their context, temporal structure, or semantic function. Figures |§]
and [6] provide visual examples drawn from the WLASL2000 and CSL-Daily datasets, respectively,
illustrating how these challenges affect SLU. Note that the figures show selected frames for clarity,
rather than the full sequence.

A.1 WEAK SEMANTIC GROUNDING.

In the CSL-Daily example shown in Figure[6] the sign sequence includes terms such as “bankbook”
and “bank”, as well as “you” and “go”, which share similar hand shapes and spatial trajectories.
Although these gestures appear visually alike, each one conveys a distinct meaning and serves a
different syntactic function within the sentence. If a model focuses only on superficial motion or shape
patterns without understanding the linguistic intent behind each gesture, it may generate inaccurate
or overly generic translations. This example emphasizes the importance of semantic grounding,
where models should recognize what is being signed and understand its meaning within the broader
linguistic and contextual framework.
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A.2 LOCAL-GLOBAL IMBALANCE.

l

The WLASL2000 examples shown in Figure [5|present two sign sequences, “Always” and “Someone,
which share highly similar hand shapes and motion trajectories across several frames. The primary
distinction lies in the broader spatial and temporal extent of “Always” compared to the more confined
gesture of “Someone.” Relying solely on local visual cues such as hand configuration or position is
insufficient for accurate interpretation. At the same time, global cues alone cannot resolve subtle
variations in form that are crucial for meaning. Accurate understanding requires the integration of
fine-grained local details with the overarching motion pattern and semantic context. This example
underscores the essential role of modelling both local and global features together. Only by combining
detailed gesture recognition with a coherent understanding of the full temporal sequence can models
distinguish between signs that are visually similar but semantically different.

A.3 INEFFECTIVE CROSS-MODAL ALIGNMENT.

Although Figures [5]and [6| highlight different challenges, both reveal a deeper problem rooted in weak
alignment between visual and textual modalities. In Figure[5] distinguishing between “Always” and
“Someone” involves more than recognizing visual patterns. It requires establishing a clear connection
between the motion sequence and its corresponding linguistic meaning. Similarly, in Figure [6] the
model should determine whether a gesture refers to “bank” or “bankbook,” even when the visual cues
appear highly similar. Accurate interpretation depends on correctly linking each visual segment to its
intended word or phrase within a broader sentence. Without a strong mechanism for aligning gestures
with language, the model fails to generate consistent and meaningful outputs. These examples show
that SLU is not just a visual recognition problem; it is a multimodal challenge that requires precise
mapping from gestures to language at both lexical and semantic levels.

These visualizations serve as motivating evidence for the limitations (as discussed in Section[I)) of
existing SLU approaches and the need for semantically informed modelling. Our proposed framework
mitigates the impact of these problems by enriching visual features with linguistic context, balancing
local and global feature interactions, and learning aligned cross-modal representations.

B ADVANCES IN SKELETON-BASED SLU

A growing line of work explores skeleton as a compact and semantically informative modality for
SLU. Early work such as GCN-BERT (Tunga et al., [2021)) integrates graph convolutional networks
over human joint graphs with transformer encoders, modelling spatial-temporal cues from skeletal
sequences. Although effective for isolated SLR, it remains fully supervised and task-specific. To
the best of our acknowledged, SignBERT Hu et al.| (20214a) is the first work applies self-supervised
pre-training for hand-centric skeletal representations. By masking and reconstructing hand trajectories
and leveraging an explicit hand-shape model for regularisation, it learns richer visual embeddings
and improves both isolated and continuous recognition. Building on stronger structural modelling,
BEST (Zhao et al} [2023)) advances skeleton-based pre-training by grouping body and hands into
skeletal triplets and adopting a BERT-style masked unit modelling approach. A discrete VAE is used
to tokenise continuous skeletal units into pseudo-tokens, enabling cross-entropy reconstruction and
encouraging contextual reasoning over articulated hand-body interactions. BEST (Zhao et al.| [2023)
demonstrates strong generalisation across isolated SLR benchmarks. SignBERT+ |Hu et al.| (2023b)
further extends this family of work by incorporating linguistic signals, and refining the pre-training
tasks to support SLR and SLT. Compared with its predecessor, it provides more structured multi-task
learning and better alignment between skeletal sequences and semantics. These methods reveal the
strong potential of skeleton-only pre-training. However, they focus on capturing visual cues, lack
joint modeling on the textual information, and remain visually grounded and largely task-specific. In
contrast, Sigma builds on this foundation while moving toward a unified SLU paradigm and learns
cross-modal alignment suitable for ISLR, CSLR, and SLT within a single framework.
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C QUALITATIVE ANALYSIS

To further validate the semantic advantages of our proposed method, we present qualitative results
derived for all benchmark datasets used in this study. Each table contrasts ground-truth references
with results outputted by our method (Sigma).

Reference: Someone Sigma: Someone t

Figure 7: Qualitative examples derived from the WLASL2000 dataset for ISLR.

For ISLR, Figure[7]presents qualitative examples from the WLASL2000 dataset. Sigma demonstrates
consistent recognition across signers with varying visual appearances and signing styles. This stability
reflects the improved semantic grounding and more effective cross-modal alignment, which together
help mitigate influence caused by subtle differences in gesture execution. By capturing both fine-
grained motion details and broader temporal structure, Sigma supports more reliable recognition,
aligning with our objective of balancing local precision with global contextual understanding.

In the examples of each table, our method achieves complete correctness, replicating references.
Although these illustrate baseline competence, the deeper value of our framework emerges in the
challenging examples, those where slight variations occur between the predictions of the model and
the ground-truth. Instead of treating these discrepancies as outright errors, we analyze them through
the lens of semantic grounding and linguistic alignment.

Table 10: Qualitative examples derived from the CSL-Daily dataset for CSLR.

Reference: | fai fibfl] 48 414 BffE] & 3%
Sigma: 7 Ml ] A8 4 BE 2 SR

Reference: | #B) F X KAk B 4K
Sigma: HE & X KR BEAR

Reference: | AJ LA 3X i 1 i MUE & £/ 2|
Sigma: AFLLSX O AN G RS B 0 #
Reference: | 115 455 Fofi1 W70 2 R

Sigma: TR G558 Ful] 20

Reference: | 74T & & 847 #hn 7
Sigma: T & B £ BRI 8

Reference: | #HAIEIR 7715 ok € R Hlas
Sigma: IZREFEAR 77 1% OF € BT Hlgs

For CSLR, as shown in the bottom rows of Table[I0] Sigma exhibits semantic preservation despite
minor lexical variations. For example, phrases like “/&5€ [ and “[E € Hf1H” differ in wording
but convey similar meanings. While such variations reduce scores like WER, they are easily under-
stood by human readers, as language naturally allows multiple ways to express the same idea. These
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Table 11: Qualitative examples derived from the How2Sign dataset for SLT.

Reference: | My name is Dr. Art Bowler.
Sigma: My name is Dr. Art Bowler.

Reference: | What do you see?
Sigma: What do you see?

Reference: | My name is Allen Diwan.
Sigma: Hi, I'm Allen Diwan.

Reference: | You’re having a good time along the way.
Sigma: It’s a really enjoyable process.

Reference: | Stay safe, and we’ll see ya’ next time.
Sigma: See you next time.

Reference: | Ihope you’re having fun.
Sigma: I hope you had fun with it.

cases highlight the enhanced semantic grounding: even when the predicted glosses deviate from the
reference, the intended meaning remains intact. This is especially crucial in CSLR, where explicit
gloss segmentation is absent and contextual understanding plays a key role.

Table 12: Qualitative examples derived from the OpenASL dataset for SLT.

Reference: | America!
Sigma: America!

Reference: | I’m from Austin, Texas!
Sigma: I’'m from Austin, Texas!

Reference: | See you at the conference this July!
Sigma: See you at the conference this July!

Reference: | That’s not right!
Sigma: That’s not fair.

Reference: | Also, be sure you talk to your legislators.
Sigma: You will also talk with your legislators.

Reference: | Progress is being made.
Sigma: The work is moving forward.

For SLT, qualitative examples from English-based datasets (Table{I2|and demonstrate the ability
of the model to produce fluent and contextually appropriate sentences and the generalization of the
model across speaker identities as well as conversational styles. For instance in Table [T} it converts
“I hope you’re having fun.” into “I hope you had fun with it.” showing an understanding of tense
and implied context. These changes demonstrate that the model captures deeper semantic meaning
rather than relying only on surface-level similarity. In Table[T2] the model outputs “You will also talk
with your legislators” instead of the reference “Also, be sure you talk to your legislators.” Though
not a verbatim match, the generated sentence is syntactically sound and preserves the core message,
demonstrating sentence-level comprehension. This reflects the impact of our SignEF strategy in
bridging local-global semantics across modalities. In Table[I3] the Chinese examples show similar
results. In the fourth row, “fhfERI %I H CAEEREHE and “ilER)E, &I H CAEERD
use different syntax but express the same idea. In the fifth example, “FFZ:[EZKXE” and “[EZK
FLZE” describe the same action with a slight variation in sentence structure. In the final row, the
model adds a rhetorical question “{R%EPE 12?7, which enhances the sentence without changing its
meaning. These variations may affect token-based metrics, but they reflect natural language use and
communicative clarity.
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Table 13: Qualitative examples derived from the CSL-Daily dataset for SLT.

Reference: | ¥ & K 7~ & & IR -

Sigma: RSN EEIR -

Reference: | Z R B B IR & ik -

Sigma: EREREROS WL -
Reference: | & 5§ & Rk X A9 14 2

Sigma: SR 2R SE g 2

Reference: | il BE R Bf X L B O & E Bt & -
Sigma: i EE R, AU B CEER-
Reference: | AU M B il W T FEZRB KX E .
Sigma: KPR ES T , AREZE.
Reference: | &= [ & 1R £ Wk, IR M8 T 4 ?
Sigma: EFLEHEREZWE,REE T 42

D CLUSTER AGGREGATOR

To address the challenges of weak semantic grounding and limited cross-modal alignment, we design
a cluster aggregator module inspired by (Hou et al.| [2024) to produce cluster-level textual embeddings
that better correspond to visual sign units. Given a text input such as “curiosity,” the tokenizer splits
it into subword tokens, which are then processed by the text encoder to generate token-level features.
The aggregator groups these features into semantically coherent clusters. An offset calculator maps
each original token to its cluster index, and the aggregation helper combines features within each
cluster to form a compact representation. This process yields text embeddings that preserve semantic
structure while reducing redundancy. Sigma supports both fine-grained gesture recognition and
high-level translation. This mechanism contributes to more effective cross-modal learning and helps
bridge the gap between dynamic visual input and structured language representations.

E SIGN-GROUNDED TEXT ENCODER

To mitigate the impact of weak semantic grounding and ineffective cross-modal alignment, we
enhance text representations by integrating visual cues from sign features through a dual-path
architecture. This SGT encoder consists of two parallel branches: a sign-text matching (STM)
path and a language modelling (LM) path. The STM path, repeated M times, cooperates with
cross-attention layers where textual tokens attend to sign features, allowing the model to align
linguistic units with visual semantics and enrich textual embeddings with SL gesture context. The
LM path, repeated N times, uses standard transformer blocks with self-attention and feed-forward
layers to preserve language fluency and syntactic structure. This dual-path setup enables the SGT
encoder to learn representations that are both semantically grounded in visual input and linguistically
coherent. During fine-tuning, all parameters except for the self-attention layers within theSTM path
are transferred, ensuring effective knowledge reuse while allowing flexible adaptation to downstream
SLU tasks. This design supports stronger cross-modal alignment and helps mitigate the semantic
disconnect between dynamic sign inputs and static textual outputs.

F SKELETAL DATA

The sign sequences are skeletal data extracted using RTMPose (Jiang et al.} 2023 from MMPose
(Sengupta et al.l 2020). Figure [§]illustrates the visualization of 69 keypoints per frame, including 21
for each hand, 9 for the body, and 18 for the face.

The table [[4] summarises four benchmark sign language datasets in terms of language, language
level, number of samples, and storage size for both RGB and skeletal data. WLASL, How2Sign,
and OpenASL are American sign language, and CSL Daily is Chinese sign language. Together they
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Figure 8: The visualisation of the full-body keypoints.

span both gloss and sentence level, with sample counts ranging from 20,654 to 98,419. While the
RGB videos are large in storage size, the skeletal data is far more compact, with sizes reduced by an
order of magnitude. This compactness translates into faster loading times and lower computational
overhead, making skeletal data more scalable and efficient for model training or deployment with user
preference in gestures. Beyond efficiency, skeletal representations also abstract away background
noise and highlight body motion dynamics, thereby preserving linguistic cues that are critical for SLU.
Thus, the table not only illustrates dataset diversity in scale and annotation level but also underscores
the practical advantages of skeletal data for efficient and robust SLU.

Table 14: Statistics of benchmark datasets

Dataset | Language | Level | # Samples | Size (RGB, GB) | Size (Skeleton, GB)

WLASL | American Gloss 21,083 78.84 3.68
How2Sign | American | Sentence 35,263 329.00 15.58
OpenASL | American | Sentence 98,419 638.03 29.78
CSL-Daily | Chinese | Sentence 20,654 92.80 4.27

This table[T5]compares RGB and skeletal modalities in terms of average file size per sample, and
time required to load a single sample of both modalities. Skeletal data significantly reduces storage
and loading time, making it more suitable for efficient training and real-world deployment.

Table 15: Comparison of RGB and skeletal data.

Modality \ Avg. size per sample \ Loading time per sample

RGB 4714.84 KB 455.35 ms
Skeletal 437.18 KB 9.58 ms

G WHAT MAKES ANNOTATIONS COSTLY IN SIGN LANGUAGE PROCESSING?

In sign language processing, annotations refer to manually labelled data that describe the content and
structure of SL videos. These annotations are essential for training supervised learning models, but
are significantly more expensive and labour-intensive than those in natural language processing.
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There are three main reasons why annotations in this domain are costly:

1) Expert-dependent labelling : Unlike speech or text, SL. does not have a widely standardised
written form. Annotators must label each gesture with its corresponding gloss, a textual representation
of the meaning of the sign. This requires a deep level of linguistic expertise in both the SL and the
spoken language to which it is assigned. It is time-consuming, and the availability of such annotations
is limited.

2) Temporal segmentation and alignment: For CSLR and SLT tasks, annotators must align glosses
with precise time frames in SL videos. Unlike tokenising text, this process requires identifying
the exact start and end points of each sign within a continuous, unsegmented motion stream. Such
fine-grained temporal labelling demands both visual precision and linguistic expertise, making the
task exceptionally labour-intensive. In our study, temporal boundary labels are not used; glosses are
only employed for ISLR and CSLR. With the growing availability of public SL datasets, we hope
that both ISLR and CSLR can eventually be learned without relying on any costly gloss annotations.

3) Multi-layer multimodal cues: SL relies on hand gestures, facial expressions, body posture, and
spatial references. Annotating these multimodal components accurately requires frame-by-frame
observation and sometimes multi-camera viewpoints. Capturing this richness adds both time and
complexity to the annotation process.

Due to these factors, building large-scale annotated datasets for SLU or SL tasks remains a ma-
jor bottleneck. This motivates the development of SLP-based SLU models as well as the use of
self-supervised and weakly supervised methods, which can learn meaningful representations from
unannotated or minimally annotated data.

H RETHINKING THE ROLE OF GLOSSES IN SLU

Gloss annotations have long been used as an intermediate representation in sign language translation,
and they provide efficient and powerful supervision. By reducing the gap between raw visual input
and spoken language output, glosses offer a structured, linguistically meaningful signal that has
boosted SLT performance compared to purely end-to-end gloss-free approaches (Zhou et al.| |[2023)).
At the same time, this benefit comes with significant drawbacks that increasingly limit scalability
and linguistic fidelity. First, glosses are costly to obtain and difficult to scale. Producing them
requires expert annotators and fine-grained temporal alignment, making data collection expensive
and slow, and constraining the size of available datasets. Second, glosses act as an information
bottleneck. A gloss sequence compresses rich and continuous sign expressions into discrete tokens,
discarding nuances not represented in the gloss inventory and weakening the direct mapping from
visual input to textual semantics. Third, gloss-based pipelines suffer from error propagation and
mismatched objectives. Since they typically rely on a continuous sign language recognition front
end, recognition errors are passed into the translation stage, while training remains split across
recognition and translation tasks rather than being optimised jointly. Moreover, glosses often fail to
capture divergences between sign language structure and the linear order of spoken languages. By
committing to a single gloss sequence early, models risk locking in alignment hypotheses that hinder
later reordering and discourse modelling. Another limitation lies in the inability of glosses to encode
non-manual signals such as facial expressions, or the compositional use of multiple articulators, both
of which carry critical linguistic meaning. In addition, gloss conventions vary across datasets and
languages, introducing inconsistencies that reflect annotation practices rather than genuine linguistic
differences, which in turn hinders transfer learning and cross-corpus pre-training. Finally, reliance
on gloss labels restricts data efficiency. Although gloss supervision can enhance performance when
available, it blocks the use of large unlabelled video corpora, whereas direct visual-text modelling
allows learning from broader resources. Taken together, these issues highlight that glosses provide
strong but narrow supervision: while effective in guiding alignment, they remain a bottleneck for
scalability. This motivates our use of cluster-wise contrastive learning, which produces gloss-like
groupings automatically and retains the advantages of structured alignment while avoiding the
limitations of manual gloss annotation.
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I ADDITIONAL EXPERIMENT

I.1 OPTIMISING LOCAL CLUSTER-WISE CONTRASTIVE LEARNING STRATEGIES

Similarity, M Row max, R
Sign tokens Sign tokens Softmax-weighted sum, scores
(one batch) (one sample)
N
» » » » S » B
2
K )
A
)
Local sign-to-text
similarity M.,

Textual clusters (one batch)

Figure 9: Illustration of the computation of our local sign-to-text cluster-wise similarity inspired by
(Chen et al., 2020} Radford et al., 2021} |L1 et al.|, [2022al, [Hou et al.} [2024). The similarity matrix
M is computed between the sign tokens of each sample and all textual clusters. For each row, the
maximum similarity value is obtained using a row max operation. The resulting values are passed
through a softmax-weighted sum function to obtain the local similarity scores. Finally, in-batch local
cluster contrastive learning is applied to pull semantically aligned visual-text pairs (highlighted by
light yellow borders) closer, while pushing apart unaligned pairs. This process enables localised
semantic grounding by focusing on the most relevant visual-text associations within each cluster.

I.1.1 ROW-WISE OPERATIONS

To compute cluster-wise similarity (as illustrated in Figure 0 in an optimal way, we evaluate several
row-wise operations in Table [16] including row max, average, top-k average, and softmax-based
operation. For the top k average, the value of & is dynamically determined based on the number of
clusters or tokens that exist in the cosine similarity matrix M, using the formula:

b= max (1, 4])

This ensures that £ remains a valid positive integer bounded by the length of the last dimension of M,
with a lower bound of 1 to avoid degenerate cases. In addition to max and average operation over the
similarity matrix M, we also evaluated a softmax-based operation expressed as:

R = sum(softmax(M) ® M, dim = 1)

Empirically, our ablation results (as listed in the Table [I6) show that row max consistently yields
optimal performance across tasks. For instance, on CSLR (CSL Daily), the max operation achieves
a WER of 26.12, compared to 26.70 with row average, 26.12 with top k average, and 26.59 with
softmax. Similarly, for SLT (CSL Daily), max results in a BLEU 4 score of 28.24, outperforming
27.28 (average), 27.84 (top k average), and 27.12 (softmax).

These findings suggest that while top-k average and softmax aim to balance or smooth cluster-level
similarities, they tend to dilute the most salient alignment cues. In contrast, the max operation
emphasises the strongest cluster level signals, providing sharper contrastive gradients and thus more
discriminative cross-modal alignment. This justifies our decision to adopt row wise max as the default
in our local contrastive learning.

1.1.2 LOCAL-LEVEL SCORING

To score similarity across visual tokens or textual clusters, we investigate several scoring methods in
Table[T7] While simple summation and averaging provide basic baselines, they often fail to adequately
emphasise the most informative local level correspondences. Therefore, we highlight three more
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Table 16: Row operations for local cluster-wise contrastive learning.

| WLASL2000 | CSL-Daily
Strategy ISLR CSLR SLT
P-It P-CT | WER| B@lT B@4f R@L7T
Row max 64.40 62.32 | 26.12 56.83 28.24 58.04
Row average 6420 6191 | 26.70 5595 27.28 56.81
Row top-k average | 64.32 62.32 | 26.12 5636 27.84 57.52
Row softmax 64.27 62.06 | 26.59 5624 27.12  56.66

expressive alternatives: softmax, log-sum-exp and variance-reduced-sum, which offer improved
semantic sensitivity presented below. This softmax method serves as our primary scoring method
and consistently outperforms the others by dynamically weighting token pairs. The probabilistic
weighting of token similarity provided by softmax enables the model to emphasise informative
alignments while still preserving contextual diversity. Although log-sum-exp and variance-reduced-
sum perform competitively, they exhibit larger variability across benchmarks. Therefore, we adopt
softmax as our default accumulation method, as it offers a reliable and generalisable approach for
semantic alignment in cluster-wise contrastive learning.

Table 17: Local-level scoring methods.

Scoring Method | Pseudocode
Softmax score < sum(softmax(R) ® R, dim = 1)
Log-sum-exp score < log(sum(exp(R), dim = 1))

Variance-reduced-sum | score < sum((R — mean(R, dim = 1)), dim = 1)

Table 18: Local-level scoring methods for the local cluster-wise contrastive learning.

\ WLASL2000 \ CSL-Daily

Strategy ISLR CSLR SLT

P-It P-Ct | WER| B@It B@417 R@L?T
Sum 6422 62.00 | 26.64 5546 28.10 57.43
Average 64.17 6206 | 27.06 5624 27.67 57.15
Log-sum-exp 64.37 6228 | 26.12 5641 2797 58.08
Softmax 6440 62.32 | 26.12 56.83 28.24 58.04
Variance-reduced-sum | 64.35 62.08 | 26.38 56.25 2747 57.03

1.2 SHOULD THE TEXT ENCODER BE TRAINABLE IN SIGMA’S PRE-TRAINING?

To evaluate the role of the text encoder during pre-training, we compare the effects of freezing
and unfreezing its parameters, as shown in Table[T9] While the improvements are relatively small,
unfreezing the text encoder consistently leads to better performance across all SLU tasks. On
CSL-Daily, it lowers the CSLR WER and yields marginal gains in SLT metrics such as BLEU1,
BLEU4, and ROUGE-L. ISLR also shows improvements in both per-instance and per-class accuracy.
These findings suggest that allowing the text encoder to update during pre-training would support
better adaptation to visual features, contributing to more coherent cross-modal representations. This
adjustment, though modest, would offer broader benefits beyond the specific benchmarks used in this
study.

1.3  COOPERATE DIFFERENT MODALITIES DURING PRE-TRAINING

For the sake of understanding how different input modalities contribute during pre-training, we inves-
tigate the effect of using either sign features or text features as inputs to the cross-attention module
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Table 19: Impact of freezing text encoder during pre-training.

\ WLASL2000 \ CSL-Daily
Text encoder ISLR CSLR SLT
P-It P-C1? | WER| B@l1T B@41 R@LYT
Freezed 6432 62.19 | 2649 56.62 27.63 57.03
Unfreezed 6440 62.32 | 26.12 56.83 28.24 58.04

Table 20: Impact of different feature modalities.

| WLASL2000 | CSL-Daily

Features ‘

ISLR CSLR SLT
PIt P-Ct | WER| B@I{ B@41 R@L?T

Sign feature

Text feature 64.37 62.15

64.40 62.32‘ 2612 56.83 28.24

58.04
26.12 56.82 2821 5

8.12

Table 21: SLT results on OpenASL dataset.

Method \ DEV \ TEST
‘ B@l B@2 B@3 B@4 R@L ‘ B@l B@2 B@3 B@4 R@L
GIoFE-VN (Lin et al.|[2023) 21.06 1234 8.68 6.68 2137 | 21.56 12.74 9.05 7.06 21.75
Conv-GRU (Camgoz et al.|[2018) | 16.72  8.95 6.31 482 1625 | 16.11 8.85 6.18 4.58 16.10
I3D-transformer (Shi et al.|[2022) | 18.26 10.26  7.17 5.60 18.88 | 18.31 10.15 7.19 5.56 18.64
OpenASL (Shi et al.[[2022) 20.10 11.81 8.43 6.57 2043 | 2092 12.08 8.59 6.72 21.02
Uni-Sign (L1 et al.|[2025) 50.84 37.82 29.83 24.16 4458 | 49.35 3632 28.55 23.14 4322
C?RL (Chen et al.[[2025) - - - - - 3146 21.85 16.58 13.21 31.36
Sigma 51.35 38.67 30.88 25.03 46.13 | 49.55 36.52 28.74 23.19 4447
Table 22: SLT results on How2Sign dataset.
Method ‘ TEST
\ B@l] B@2 B@3 B@4 R@L
GIloFE-VN (Lin et al.,2023) 14.90 7.30 3.90 220 12.60
YouTube-ASL (Uthus et al.,[2023) | 37.80 24.10 16.90 12.40 -
MSLU (Zhou et al., [2024) 20.10 7.70 - 240 17.20
SLT-1V (Tarrés et al., 2023 34.00 19.30 1220 8.00 -
C?RL (Chen et al.; 2025) 29.10 18.60 1290 940 27.00
FLa-LLM (Chen et al.,|2024) 29.80 19.00 1330 9.70 27.80
Sigma 40.06 27.48 20.30 15.61 36.71
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Table 23: SLT results on CSL-Daily dataset.

Method \ DEV \ TEST
| Bel B@2 B@3 B@4 R@L | B@l B@2 B@3 B@4 R@L
Gloss-based
SLRT (Camgoz et al.|[2020) 3747 24.67 1686 11.88 37.96 | 37.38 2436 1655 11.79 36.74
ConSLT (Fu et al.[[2023) - - - 14.80 41.46 - - - 14.53  40.98
SignBT (Zhou et al.[[2021a) 5146 3723 27.51 20.80 49.49 | 5142 3726 2776 21.34 4931

MMTLB (Chen et al.|[2022a) 53.81 40.84 3129 2442 5338 | 53.31 4041 30.87 2392 5325
SLTUNET (Zhang et al.[[2023) - - - 2399 5358 | 5498 41.44 31.84 2501 54.08
TS-SLT (Chen et al.|[2022b) 5521 4231 3271 2576 55.10 | 55.44 4259 3287 2579 55.72

CV-SLT (Zhao et al.|[2024a) 58.05 44.73 35.14 28.24 56.36 | 58.29 45.15 35.77 28.94 57.06
Gloss-free
SLRT (Camgoz et al.|[2020) 21.03 997 596 4.04 20.51 | 20.00 9.11 493  3.03 19.67
GASLT (Yin et al.[[2023) - - - - - 1990 994 598 4.07 20.35
MSLU (Zhou et al.;[2024) 33.28 21.31 - 10.27 33.13 | 33.97 2220 - 11.42 338
NSLT (Camgoz et al.[[2018) 3422 19.72 1224 796 3428 | 34.16 1957 11.84 17.56 34.54
GFSLT-VLP (Zhou et al.[[2023) | 39.20 25.02 16.35 11.07 36.70 | 39.37 2493 1626 11.00 36.44
FLa-LLM (Chen et al.[[2024) - - - - - 37.13 25.12 18.38 14.20 37.25
C?RL (Chen et al.[[2025) - - - - - 49.32 36.28 27.54 21.61 4321
Uni-Sign (L1 et al.||[2025) 55.30 4221 3294 26.25 56.03 | 55.08 42.14 3298 2636 56.51

SignLLM (Gong et al.[[2024) 4245 2688 1790 1223 39.18 | 39.55 28.13 20.07 15.75 3991
Sign2GPT (Wong et al.[[2024) - - - - - 4175 28.73 20.60 1540 4236
Sigma 56.83 44.09 34.94 2824 58.04 | 55.97 43.00 3391 27.30 57.58

in our SGT encoder, as shown in Table 20} The results show that both modalities independently
support performance across ISLR, CSLR, and SLT tasks. Sign features slightly outperform text
features on ISLR, highlighting their strength in capturing fine-grained visual details. In contrast, text
features offer marginal gains on SLT, particularly in ROUGE-L, reflecting their advantage in encoding
linguistic structure. The identical CSLR WER of 26.12 in both settings suggests that each modality
provides similar semantic information for effective sequence alignment. These findings confirm
the impact of our cross-modal pre-training strategy in learning semantically rich and transferable
representations from both visual and textual sources.

J COMPLETE RESULTS OF EXPERIMENTS

Due to the page limit of the main paper, certain experimental results could not be included. We
present the full set of results (see Table[21] Table[22] and Table 23) here to ensure transparency and
to support future research by providing comprehensive reference data.

K LIMITATIONS

1) Despite the effectiveness of gloss annotations in improving ISLR and CSLR performance, their re-
liance presents a limitation. Annotating glosses, especially for large-scale datasets, is time-consuming
and requires domain expertise to ensure accuracy and consistency. These glosses, even when an-
notated by experts, serve only as approximate representations of the corresponding sign sequences.
While recent methods attempt to reduce or bypass gloss supervision, there is currently no best
optimal solution that can fully replace gloss annotations without compromising performance for all
aforementioned SLU tasks. As a result, existing SLU pipelines still depend heavily on manually
curated glosses for training, which hinders scalability and limits applicability in low-resource or
less-annotated sign languages.

2) While our framework unifies multiple SLU tasks, task-specific methods may still perform better
in certain scenarios. In future work, we plan to incorporate additional modalities such as RGB
and depth, which provide richer visual information and have the potential to further improve SLU
performance. However, these modalities may introduce additional computational overhead that
could impact real-time efficiency depending on the deployment context. We aim to explore balanced
solutions that leverage the richness of multi-modal inputs while maintaining computational efficiency
for real-time SLU.
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L VISUALISING CROSS-MODAL ALIGNMENT WITH T-SNE

To visually evaluate the quality of the learned representations, we randomly sample eighty paired
sign sequences and their corresponding translated text(s) to visualise the 2D distribution of sign and
text features using t-distributed stochastic neighbour embedding (t-SNE). This dimensionality
reduction technique preserves local neighbourhood structure in high-dimensional data, making it
especially effective for examining the alignment between modalities in the latent space. The features
used in this analysis are derived from the downstream model of Sigma, ensuring that they reflect task-
specific representations. Specifically, sign features are extracted from the output of the sign encoder,
while text features are obtained immediately after the text embedding layer of the SGT decoder.
This design choice reflects the decoding process during inference, where the sign encoder outputs
are fed into the SGT decoder to generate textual representations. For each task, We compare the
features learned by models initialised with only the mT5 weight to those initialised with pre-trained
parameters from the pre-training stage. This comparison provides insight into how pre-training shapes
cross-modal alignment and reveals the effectiveness of Sigma in learning semantically grounded
representations.

Text feature Sign feature
(a) Initialized without pre-trained parameters (b) Initialized with pre-trained parameters

Figure 10: t-SNE visualisation of ISLR on WLASL.
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Figure 11: t-SNE visualisation of CSLR on CSL-Daily.

Figure [T0]illustrates the effect of pre-training on cross-modal alignment in the ISLR task using the
WLASL2000 dataset. The left panel shows a t-SNE visualisation of features from a model trained
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from scratch, where sign and text features appear loosely scattered with blurred boundaries between
modalities. This diffuse distribution reflects weak semantic alignment and limited interaction between
visual and linguistic representations. In contrast, the right panel visualises features from the Sigma
model initialised with pre-trained parameters. In this case, the sign features form tighter and more
coherent clusters with clearer boundaries, demonstrating relatively stronger alignment with their
corresponding textual representations. This comparison underscores the effectiveness of semantically
informed pre-training in learning structured, discriminative representations that enhance cross-modal
understanding in SLU.

The effect of pre-training on cross-modal alignment in the CSLR task is more pronounced than in the
ISLR setting. As shown in Figure[TT] we visualise t-SNE projections of sign and text features from
the CSL-Daily dataset, comparing models with and without pre-trained initialisation. In both the
DEYV and TEST sets, the model trained from scratch produces dispersed and weakly aligned feature
distributions across modalities. By contrast, the pre-trained model yields more compact, coherent
clusters with noticeably improved alignment between sign and text features. This structural refinement
highlights the effectiveness of semantically informed pre-training in strengthening visual-linguistic
alignment, ultimately resulting in more robust and generalizable representations for CSLR.

Compared to ISLR and CSLR, the effect of pre-training in SLT is more evident than in ISLR but
somewhat less so than in CSLR. Figure [I2] presents t-SNE visualisations of the SLT task on the
CSL-Daily dataset, contrasting feature distributions from models trained with and without pre-trained
initialisation. In the absence of pre-training, the sign and text features appear loosely distributed
with little structural alignment, reflecting weak semantic integration across modalities. By contrast,
pre-trained models exhibit more compact clustering and clearer alignment between sign and text
features in both the development and test sets. This suggests that pre-training not only enriches
modality-specific semantics but also fosters cross-modal coherence essential for accurate and fluent
translation. These findings reinforce the importance of semantically guided pre-training in shaping
interpretable representations for SLT.

The t-SNE visualisations across ISLR, CSLR, and SLT consistently demonstrate that semantically
informed pre-training effectively mitigates the cross-modality gap between sign and text represen-
tations. The degree of improvement varies, with the effect most pronounced in CSLR, moderately
strong in SLT, and relatively limited in ISLR, the overall trend confirms that pre-training enhances
both the semantic expressiveness of each modality and their alignment within a unified representation
space.
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Figure 12: t-SNE visualization of SLT on CSL-Daily.
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M ADDITIONAL ABLATION STUDY

[ In the main paper, we assess the impact of each core component by varying the number of fusion
layers, balancing local-global feature modelling (a), and adjusting the weights of text matching
and language modelling (3). In this section, we extend those analyses with additional experiments
targeting extreme configurations. Together with the t-SNE visualisations, these results provide further
evidence that each component plays a valuable role in bridging the cross-modality gap. They also
highlight that the effectiveness of pre-training depends on balanced feature modelling and structured
modality interaction, which collectively ensure semantically aligned SLU representations across
ISLR, CSLR, and SLT tasks.

Table 24: Impact of SignEF.

| WLASL2000 | CSL-Daily

Layers ISLR CSLR SLT
PIt P-Ct | WER| B@If B@4! R@Lt

62.82 60.38 | 2686 56.43 26.80 56.01
63.17 60.77 | 2658 56.79 27.50 56.64
63.79 6140 | 26.12 56.83 2824  58.04
64.22 62.09 | 2653 56.72 2793  57.36
63.97 61.70 | 26.40 56.80 2798 57.86
6440 6232 | 26.69 5679 28.09 57.56

LNhWwWoO~RO

When the number of fusion layers is set to zero (see Table[24)), the model disables the SignEF mecha-
nism, leading to a performance drop across all SLU tasks. For instance, ISLR on the WLASL2000
dataset records its lowest performance in this setting, with per-instance and per-class accuracies of
62.82% and 60.38%, respectively. Similarly, CSLR on CSL-Daily yields a higher WER of 26.86%.
SLT performance also declines, with BLEU-1 at 56.43, BLEU-4 at 26.80, and ROUGE-L at 56.01,
indicating a broader degradation across tasks. These results indicate the importance of SignEF in dif-
ferentiating visually similar gestures, especially in tasks like ISLR and SLT where semantic precision
and expressive generation are crucial, which beyond what WER alone can capture. The absence of
early visual-linguistic interaction hampers the ability of Sigma to establish strong alignment between
sign and text representations. In contrast, even minimal integration of SignEF yields consistent
gains, emphasising the importance of early-stage modality fusion for deeper semantic grounding and
improved sequence modelling.

Table 25: Local-global feature balancing.

| WLASL2000 | CSL-Daily

Alpha ISLR CSLR SLT
P-It P-Ct | WER| B@17 B@4! R@L}

0.0 63.85 61.72 | 27.12 56.00 27.16 57.32
0.2 64.14 62.14 | 2652 56.11 2799 57.89
0.4 64.30 6224 | 2655 56.65 28.12 57.82
0.5 6440 6232 | 26.12 56.83 2824 58.04
0.6 64.14 62.09 | 27.05 56.82 27.99 58.10
0.8 64.14 62.08 | 26.65 5621 27.66 57.65
1.0 63.67 61.55 | 27.27 5599 27.00 57.24

The performance at the two extremes of the o parameter (0.0 and 1.0) highlights the importance
of balancing local and global feature alignment (see Table 25). When « is set to 0.0, the model
relies solely on global alignment, ignoring fine-grained local interactions. This leads to degraded
performance across all SLU tasks. On the other hand, when « is set to 1.0, the model depends entirely
on local contrastive learning, without leveraging global class-level alignment. Comparing these
extremes reveals that ISLR and SLT performance suffers more when relying exclusively on local
features, while CSLR shows slightly better results under local-only alignment. These findings suggest
that neither local nor global alignment alone is sufficient to capture the full spectrum of semantic
relationships required for SLU. The strongest performance is achieved when both are combined,
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Table 26: Trade-off analysis between text matching and language modelling.

| WLASL2000 | CSL-Daily

ISLR CSLR SLT
P-It  P-Ct | WER| B@lt B@41 R@L?

0.0 | 6407 6182 | 26,77 56.01 27.63 57.36
02 | 6430 6221 | 2662 5631 27.82 57.88
04 | 6440 62.15 | 2643 5638 27.88 57.76
05 | 6427 62.03 | 26.12 56.83 2824 58.04
06 | 6440 6232 | 2633 56.00 2779 5743
08 | 64.12 6222 | 2627 5558 27772 5736
1.0 | 6392 61.76 | 26.55 55.26 2698 56.88

Beta

reinforcing the necessity of joint local-global modelling for learning semantically meaningful and
generalizable representations across diverse SLU tasks.

The results for 5 = 0.0 and 3 = 1.0 in Table 26]illustrate the importance of balancing text matching
and language modelling during training. At 5 = 0.0, when the objective is driven entirely by text
matching, performance drops across all SLU tasks. At the other end, with 5 = 1.0, the model relies
only on language modelling, yielding lower SLT results than at 3 = 0.0, but more pronounced
degradation in ISLR and similar degree of degradation in CSLR. These observations show that
placing too much emphasis on either modality-specific alignment or generative fluency fails to deliver
consistent performance across tasks. The performance drop at both ends highlights the need for a
balanced approach, where integrating text matching and language modelling allows the model to
align cross-modal semantics while producing coherent textual outputs.

The extent of performance degradation under extreme parameter settings in our proposed method
varies across tasks and evaluation metrics. Overall, the most substantial decline occurs when
the SignEF module is removed, underscoring its essential role in enabling effective cross-modal
interaction. One exception is the BLEU-1 score, where the decrease is relatively modest, suggesting
that surface-level lexical matching may be less dependent on early fusion compared to deeper
semantic metrics like BLEU-4 or ROUGE-L. When comparing the impact of imbalanced feature
modelling versus unbalanced text matching and language modelling, the former tends to result in
more pronounced performance drops. An exception occurs when 5 = 1.0, where BLEU-4 reaches
its second lowest value, indicating that overreliance on language modelling can impair the ability of
the model to preserve fine-grained sign-text correspondence. These findings highlight the need for
balanced integration across both feature learning and text objectives to achieve robust and semantically
aligned SLU performance.

N ETHICS STATEMENT

Our work focuses on sign language understanding, aiming to improve accessibility and communi-
cation for people with hearing or speech impairment. The datasets we use (WLASL, CSL-Daily,
How2Sign, OpenASL) are publicly available and widely adopted in SLU research. We strictly follow
dataset licenses and use them only for academic purposes. No personally identifiable information or
sensitive attributes beyond the original releases are introduced. We acknowledge the cultural and
linguistic importance of sign languages and stress that our models are intended to support accessibility
rather than replace human interpreters.

O REPRODUCIBILITY STATEMENT

We ensure reproducibility by providing detailed descriptions of our models, objectives, and training
configurations in the main text and appendix. Dataset statistics and preprocessing steps are clearly
reported. Hyperparameters, loss formulations, and evaluation protocols are included to enable
replication. To further support reproducibility, we will release our code upon publication. These
resources will allow the community to replicate our experiments and extend our work on sign
language understanding.
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P USE OF LARGE LANGUAGE MODELS

We used a large language model (ChatGPT) as an assistive tool to polish certain parts of the paper for
clarity and readability. Specifically, we employed prompts such as "Polish the following" to improve
the fluency and presentation of text that had already been drafted by the authors. ChatGPT was not
used for ideation, analysis, experiment design, or the generation of technical content. All research
ideas, methods, experiments, and results were conceived, implemented, and validated by the authors.
We take full responsibility for the content of this work, and ChatGPT is not considered a contributor
or author.

31



	Introduction
	Related work
	Semantically informative visual feature
	Sign language understanding
	Sign language pre-training

	Method
	Preliminaries
	Sign language pre-training
	Sign-aware early fusion mechanism
	Hierarchical alignment learning
	Sign-grounded text matching and language modelling

	Sign language fine-tuning

	Experiment
	Impact of sign-aware early fusion
	Impact of local-global feature balancing
	Trade-off analysis between text-matching and language modelling
	Contribution of the core components

	Comparison with state-of-the-art methods
	Conclusion
	Motivation
	Weak semantic grounding.
	Local-global imbalance.
	Ineffective cross-modal alignment.

	Advances in skeleton-based SLU
	Qualitative analysis
	Cluster aggregator
	Sign-grounded text encoder
	Skeletal data
	What makes annotations costly in sign language processing?
	Rethinking the role of glosses in SLU
	Additional experiment
	Optimising local cluster-wise contrastive learning strategies
	Row-wise operations
	Local-level scoring

	Should the text encoder be trainable in Sigma's pre-training?
	Cooperate different modalities during pre-training

	Complete results of experiments
	Limitations
	Visualising cross-modal alignment with t-SNE
	Additional ablation study
	Ethics Statement
	Reproducibility Statement
	Use of Large Language Models

