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Abstract

Conditional diffusion models have become a leading approach for generating condition-
consistent samples, such as class-specific images. In practice, the guidance scale is a key
hyperparameter in conditional diffusion models, used to adjust the strength of the guidance
term. While empirical studies have demonstrated that appropriately choosing the scale can
significantly enhance generation quality, the theoretical understanding of its role remains
limited. In this work, we analyze the probabilistic guidance term from a geometric view
under the linear manifold assumption and, based on this analysis, construct a geometric
guidance model that enables tractable theoretical study. To address regularity issues aris-
ing from multi-modal data, we introduce a mollification technique that ensures well-posed
dynamics. Our theoretical results show that increasing the guidance scale improves align-
ment with the target data manifold, thereby enhancing generation performance. We further
extend our framework to nonlinear manifolds, and empirical results on real-world datasets
validate the effectiveness of the proposed model and are consistent with our theories.

1 Introduction

Diffusion models (Ho et al., 2020; Song et al., 2021a) have achieved state-of-the-art performance on generative
tasks across various domains, including images (Dhariwal & Nichol, 2021; Rombach et al., 2022), text-to-
image synthesis (Saharia et al., 2022), videos (Ho et al., 2022), and audio (Kong et al., 2021). As a result,
their empirical success has led to increasing interest in understanding the theoretical foundations of diffusion
models (De Bortoli et al., 2021; Lee et al., 2022; Chen et al., 2023c;a; Gao et al., 2025). In particular, under
the manifold hypothesis (Bengio et al., 2013), the ability of diffusion models to output high-quality samples
in high-dimensional spaces motivates researchers to investigate how these models can generate distributions
supported on low-dimensional manifolds in high-dimensional ambient spaces (De Bortoli, 2022; Oko et al.,
2023; Li & Yan, 2024; Wan et al., 2025).

Controlling diffusion models to generate conditional distributions is another active area of research. Based on
the theoretical framework proposed by Song et al. (2021b), both classifier guidance and classifier-free guidance
models (Dhariwal & Nichol, 2021; Ho & Salimans, 2022) apply a probabilistic guidance term—derived from
Bayes’ rule—to guide the sampling process toward the target conditional distribution. These methods also
introduce a scale to adjust the strength of the guidance, and they showed that the performance depends
strongly on the choice of the guidance scale and an appropriate value can significantly improve generation
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quality. Recent empirical studies further demonstrated the importance of the guidance scale in conditional
generation tasks (Dinh et al., 2023; Sadat et al., 2024; 2025). However, the theoretical understanding of how
the guidance scale affects the generation remains limited (Chidambaram et al., 2024; Wu et al., 2024).

In this work, we propose a new geometric guidance model to enable the theoretical analysis of the role of
the guidance scale in conditional generation. A key challenge in studying the guidance scale in classifier(-
free) models is the analytical complexity of the probabilistic guidance term. To address this, we replace the
probabilistic guidance with a new geometric guidance term. Specifically, under the linear manifold hypothesis
(Chung et al., 2022), we study the geometric property of the original probabilistic guidance term, building
on an idea introduced by Chen et al. (2023b), and construct a linear geometric guidance term that plays the
same role but more tractable for theoretical analysis.

As a next step, the analysis of the geometric guidance model requires certain regularity conditions on the score
function, such as the Lipschitz continuity. However, because of the multi-modality of data distributions, these
conditions generally fail to hold (Lee et al., 2022; Gao et al., 2025). To overcome this issue, we introduce a
mollification technique inspired by mollifiers in mathematical analysis (Evans, 2018) to construct a surrogate
score function that satisfies the required properties for our analysis.

Building on this, we construct a well-posed geometric guidance model through which we address two ques-
tions: (i) whether the model can recover the target data manifold, and (ii) what is the upper bound on the
distance between the generated distribution and the target conditional distribution. Our results reveal the
effects of the guidance scale: increasing the scale encourages the generated data to lie closer to the target
manifold, and large guidance scales do not significantly increase an upper bound on the generation error.

Finally, for the nonlinear case and real-world data distributions, we extend our framework by constructing a
nonlinear geometric guidance model. This model builds on the same principles as the linear case, with the
theoretical foundation obtained by extending the results of Chung et al. (2022) to nonlinear data manifolds.
Experimentally, we evaluate the nonlinear geometric guidance model on CIFAR-10 (Krizhevsky, 2009) and
demonstrate its effectiveness for conditional generation. We also report how performance varies with the
guidance scale, providing empirical evidence consistent with the behavior suggested by our linear analysis.

In summary, our contributions are:

1. We construct a new linear geometric guidance term to replace the original probabilistic guidance term by
studying its geometric property under the linear manifold hypothesis.

2. To ensure the regularity of the unconditional score function, we apply a mollification technique to construct
a a surrogate score function, and build a well-posed geometric guidance model.

3. By analyzing the geometric guidance model, we uncover the role of the guidance scale: a large guidance
scale encourages the generated data to lie closer to the target data manifold and does not significantly
affect the upper bound of the generation error.

4. We propose a principled nonlinear geometric guidance model and evaluate it on CIFAR-10; the experi-
ments demonstrate its effectiveness in conditional generation and illustrate guidance-scale effects beyond
the linear setting.

The remainder of this paper is organized as follows. Section 2 reviews related work, and Section 3 summarizes
the technical background on diffusion models. Section 4 introduces the construction of the geometric guidance
term, and Section 5 presents the theoretical analysis of the geometric guidance model. Section 6 extends the
model to nonlinear settings and reports experimental results. Section 7 concludes the paper and discusses
limitations. Notation is summarized in Appendix A.

2 Related Works

Convergence analysis: A number of recent works have analyzed the convergence properties of diffusion
models under various assumptions (De Bortoli et al., 2021; Lee et al., 2022; 2023; Chen et al., 2023c;a; Gao
et al., 2025). De Bortoli et al. (2021) established total variation bounds under C3-regularity assumptions
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on the score for the target distribution. Chen et al. (2023c) relaxed this requirement to Lipschitz continuity
of the score function but for each intermediate density, which was further weakened in Chen et al. (2023a)
to the Lipschitz continuity of the score only for the target density. Using functional inequalities, Lee et al.
(2022; 2023) and Gao et al. (2025) have derived convergence guarantees under the assumption that the target
density function is log-concave, with results in both total variation and Wasserstein distances. In contrast,
our setting involves multi-modal target distributions for which log-concavity and smoothness assumptions do
not hold (Lee et al., 2022). To address this, we introduce a technique that constructs a surrogate distribution
satisfying the required regularity properties while closely approximating the original target.

Geometric structure: For real-world datasets, it is widely believed that high-dimensional data lie on a
low-dimensional submanifold of the ambient space, a perspective known as the manifold hypothesis (Bengio
et al., 2013). When generating such data distributions, deep generative models often encounter challenges
such as the curse of dimensionality (Bronstein et al., 2021) and manifold overfitting (Loaiza-Ganem et al.,
2022). However, the strong empirical performance suggests that diffusion models can avoid these issues.
As a result, understanding the theoretical behavior of diffusion models under the manifold hypothesis has
attracted increasing attention. For example, De Bortoli (2022) established a Wasserstein convergence bound
assuming that the target distribution is supported on a compact set. Under the additional assumption that
the target data manifold is linear, Oko et al. (2023) showed that diffusion models can avoid the curse of
dimensionality by providing a Wasserstein bound that depends only on the intrinsic dimension. Chen et al.
(2023b) further derived a total variation bound in terms of the intrinsic dimension based on a decomposition
of the score function under the linear manifold assumption. Following this line of work, we further investigate
the geometric structure of this decomposition to clarify the role of the score function in recovering the target
data manifold, which in turn helps us construct the geometric guidance model.

Conditional generation: To control the generation (Song et al., 2021b), Dhariwal & Nichol (2021) and Ho
& Salimans (2022) applied the probabilistic guidance term to generate conditional distributions. Following
their works and based on the geometric structure of noisy data manifolds under the linear assumption of the
target data manifold (Chung et al., 2022), Chung et al. (2022; 2024) and He et al. (2024) proposed using a
new time-dependent guidance in conditional generation to constrain geometric structure of the generation
process. From a different perspective, Song et al. (2023) and Bansal et al. (2023) constructed a time-
independent guidance constructed by a loss function that is designed to enforce desired constraints on the
generated data. Instead, our geometric guidance is constructed by studying the geometric property of the
probabilistic guidance, with the goal of replacing its role in conditional generation.

To adjust the strength of guidance, Dhariwal & Nichol (2021) and Ho & Salimans (2022) also introduced a
guidance scale, and their experiments showed that selecting an appropriate scale can significantly improve
performance. However, there are limited works on theoretically analyzing the effects of the guidance scale in
conditional generation. Chidambaram et al. (2024) studied one-dimensional case and showed that increas-
ing the scale not only reduces diversity of generated distributions but also leads generated data to drift to
the extreme points in the support of the conditional distribution. Wu et al. (2024) theoretically analyzed
the influence of the guidance scale in the context of Gaussian mixture models, demonstrating that a large
guidance scale diminishes distributional diversity while boosting classification confidence. Due to the ana-
lytical complexity of the probability guidance term, previous works have focused on special cases. Therefore,
we propose a geometric guidance term that plays the same role as the probabilistic guidance but is more
amenable to theoretical analysis of the guidance scale.

3 Background

3.1 Diffusion Model

Let X ∼ PX ∈ P(RD) denote the target data distribution. The forward process in denoising diffusion
probabilistic models (DDPMs) (Ho et al., 2020) is governed by the stochastic differential equation (SDE)

dXt = −1
2β(t)Xtdt +

√
β(t)dWt, ∀ t ∈ [0, T ], (1)
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with the initial condition X0 ∼ PX , where (Wt)t≥0 is a standard Brownian motion and β : [0, T ] → (0, ∞)
is smooth; see Song et al. (2021b). This SDE admits the following analytical solution:

Xt
d= √

αtX0 +
√

1 − αtξ, ∀t ∈ [0, T ], (2)

where ξ ∼ N (0, ID) a standard Gaussian, αt := exp
(

−
∫ t

0 β(s)ds
)

, and “ d=” means equal in distribution.
The derivation is provided in Appendix B.1.

The reverse process of DDPMs aims to generate PX , which corresponds to the time-reversal process of (1).
To this end, we need to consider the process

X←t := XT−t

and study its stochastic dynamics. As shown in Anderson (1982) and Haussmann & Pardoux (1986), the
process (X←t )t∈[0,T ] satisfies the following SDE:

dX←t =
(

1
2β(T − t)X←t + β(T − t)∇x log pT−t(X←t )

)
dt +

√
β(T − t)dW t, (3)

where pt is the density function of Xt, and (W t)t∈[0,T ] is the Brownian motion in reverse time. A simplified
proof can be found in Tang & Zhao (2024).

In practice, a neural network sθ(t, ·) with parameter θ is trained to estimate the score function ∇x log pt(·)
using the score matching method (Vincent, 2011). By substituting ∇x log pt with the estimator sθ(t, ·) in
(3), experiments (Song & Ermon, 2019; Song et al., 2021b; Dhariwal & Nichol, 2021) showed that DDPMs
achieve state-of-the-art performance in data generation tasks.

3.2 Probability Flow ODE

Instead of simulating the stochastic process (3), denoising diffusion implicit models (DDIMs) (Song et al.,
2021a) employ a deterministic approach for generation, which corresponds to the following ordinary differ-
ential equation (ODE):

d
dt

X←t = 1
2β(T − t) (X←t + ∇x log pT−t(X←t )) , ∀ t ∈ [0, T ], (4)

with the initial condition X←0 ∼ pT , which is called the probability flow ODE. The evolution of the density
functions of X←t under this deterministic process is equivalent to that of the stochastic reverse process (3),
as the continuity equation associated with the ODE coincides the Fokker–Planck equation corresponding to
the SDE (1); see Song et al. (2021b) for details.

In this paper, we focus on the deterministic dynamics, as the Wasserstein distance used as the main metric
makes analyzing the ODE formulation more convenient than the SDE. It naturally extends to the SDE via
Itô’s formula (Gao et al., 2025). Following Chen et al. (2023c) and Chen et al. (2023a), we consider the
Ornstein–Uhlenbeck process by setting β(t) ≡ 2 in Equation (1) for simplicity, where this constant choice is
unimportant, as varying it merely rescales time.

3.3 Conditional Diffusion Model

When working with paired data (X, Y ) ∼ PXY , the goal of conditional generation is to generate the condi-
tional distribution PX|Y (· | Y ). In Song et al. (2021b), diffusion models are directly applied to PX|Y (· | Y ).
Specifically, the forward process (1) is first run with the initial condition X0 ∼ PX|Y (· | Y ) to obtain the
density functions py

t of Xt. Then, the stochastic reverse process (3), or the deterministic process (4), is
simulated to generate samples from PX|Y (· | Y ).

Moreover, these intermediate densities py
t admit more explicit expressions. Suppose (X, Y ) ∼ PXY and we

run the SDE (1) with initial condition X0 ∼ PX =
∫
PXY (·, dy) to obtain Xt. Let pt(xt, y) denote the joint

density function of (Xt, Y ). Then, it can be shown that

pt(xt | y) = py
t (xt);
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see Appendix B.2 for details.

Therefore, the score function for generating PX|Y (· | Y ) can be decomposed as

∇x log py
t (x) = ∇x log pt(x | y) = ∇x log pt(x) + ∇x log pt(y | x), (5)

where pt(x) is the marginal density of Xt obtained by running (1) with the initial condition X0 ∼ PX .
This term can be estimated using standard methods from unconditional DDPMs. The remaining term,
∇x log pt(y | x), is known as the guidance term, and there are two main approaches for approximating it:
classifier guidance and classifier-free guidance (Dhariwal & Nichol, 2021; Ho & Salimans, 2022). In classifier
guidance, a time-dependent classifier is trained to approximate pt(y | ·) on all noisy data. In classifier-free
guidance, a new neural network sθ(t, x, y) is trained to estimate the conditional score ∇x log pt(x | y), while
sθ(t, x, ∅) approximates the unconditional score ∇x log pt(x). The guidance term is then computed as

∇x log pt(y | x) ≈ sθ(t, x, y) − sθ(t, x, ∅).

In practice, a scaling parameter η > 0, known as the guidance scale, is typically introduced to control the
strength of the guidance term (Dhariwal & Nichol, 2021). When using the deterministic dynamics (4), this
modification is mathematically expressed as

d
dt

X←t = X←t + ∇x log pT−t(X←t ) + η∇x log pT−t(y | X←t ), ∀ t ∈ [0, T ], (6)

with the initial condition X←0 ∼ pT (· | y).

As mentioned in Section 2, although setting η ̸= 1 may seem counterintuitive from a theoretical perspective,
empirical studies (Dhariwal & Nichol, 2021; Ho & Salimans, 2022) have shown that selecting an appropriate
value of η can significantly improve performance. In particular, increasing the guidance scale η enhances
the distinguishability of generated samples, but at the cost of reduced diversity (Ho & Salimans, 2022;
Chidambaram et al., 2024; Wu et al., 2024). However, theoretical understanding of how the guidance scale η
influences generation remains limited, due to the analytical complexity of the guidance term ∇x log pt(y | x)
(Chidambaram et al., 2024; Wu et al., 2024).

Therefore, the main objective of this work is to provide a theoretical analysis of the guidance scale η, under
the assumption that the target data concentrate on a low-dimensional linear subspace My ⊂ RD, called the
target data manifold, i.e., suppPX|Y (· | Y = y) ⊂ My. This analysis consists of two main steps:

(i) First, we replace the probabilistic guidance term with a geometric guidance term in order to avoid the
difficulty of handling ∇x log pt(y | x) (see Section 4).

(ii) Second, we analyze the modified dynamics under the geometric guidance from two perspectives: (a)
how η influences the recovery of the target data manifold, and (b) how it affects the distance between
the generated distribution and the target distribution (see Section 5).

A central technical challenge in analyzing the geometric guidance dynamics is that ∇x log pt(x) may fail
to satisfy desirable properties, such as the L-Lipschitz continuity (and the log-concavity of pt(x)), due to
the fact that pt(x) arises from a diffusion process initialized with a multi-modal distribution (Lee et al.,
2022; Gao et al., 2025). To address this issue, we introduce a novel technique inspired by mollification in
mathematical analysis (Evans, 2018), which yields a surrogate distribution pσ

t (x) for which the geometric
guidance dynamics is well-posed.

4 Geometric Guidance Model

In this section, our main objective is to construct a new guidance term to replace ∇x log pt(y | x) in Equation
(6) from a geometric perspective. Specifically, the key idea is to understand the role that ∇x log pt(y | x)
plays in recovering the target data manifold My.

Note that ∇x log pt(y | x) appears as a component of ∇x log py
t (x) by Equation (5). This motivates us to

investigate the geometric interpretation of the score function ∇x log pt(x) in the setting of unconditional
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DDPMs (see Section 4.1). Based on Equation (5) and a basic property of pt(y | x), we then propose a
replacement for ∇x log pt(y | x), which preserves its geometric role but is more tractable for theoretical
analysis (see Section 4.2).

4.1 Geometric Interpretation of Score Function

To study the geometric properties of the score function ∇x log pt(x), we first examine the geometric structure
of the noisy data manifolds that arise during the DDPM process. Chung et al. (2022) showed that, under
the assumption that the target data lie on M ∈ RD, a linear subspace of the ambient space RD with
significantly lower dimension, the noisy data Xt concentrate on a hypersurface, i.e., a (D − 1)-dimensional
manifold embedded in RD, for any t > 0. We generalize this result (Chung et al., 2022, Proposition 1) in
the following proposition; the proof is provided in Appendix C.1.
Proposition 1. Assume Z ∼ PZ on Rd, and X = AZ ∼ PX on RD for an A ∈ OD×d, i.e., A ∈ RD×d and
A⊤A = Id. Define

Mt :=
{

x ∈ RD :
∥∥(ID − AA⊤)x

∥∥ = r(t)
}

,

where r(t) :=
√

(D − d)(1 − αt) and αt = e−2t. Let Xt be generated by the DDPM forward process (1) with
the initial condition X0 = X. If d ≪ D , then Xt concentrates on Mt with high probability.

Based on this result, the next question is how the score function ∇x log pt(x) contributes to recovering these
noisy data manifolds Mt during the reverse process (4).

Under the same assumptions as those in Proposition 1, Chen et al. (2023b) showed that

∇x log pt(x) = A ∇z log pZ
t (z)

∣∣
z=A⊤x

− 1
1 − αt

(ID − AA⊤)x, (7)

where pZ
t is the density associated with the forward process (1) initialized from pZ . An alternative derivation

of this formula, along with an analysis of its geometric properties, is provided in Appendix C.2.

Based on this orthogonal decomposition, we observe that the role of ∇x log pt(x) can be understood as two
components: (i) the first term serves as generating the distribution PZ in the latent space, and (ii) the
second term controls the reconstruction of the noisy data manifolds Mt in the ambient space. Informally,
this decomposition can be summarized as

∇x log pt(x) = Generate Latent Distribution + Recover Data Manifolds Mt.

We formalize this intuition in the following theorem; see the proof in Appendix C.1.
Theorem 2. Under the same setting as that in Proposition 1, let X←t,∥ = AA⊤X←t and X←t,⊥ = X←t −X←t,∥,
where X←t = XT−t.

(a) Let X←t,∥ = AZ←t with Z←t = A⊤X←t . Then Z←t satisfies

d
dt

Z←t = Z←t + ∇z log pZ
T−t(Z←t ),

which implies that Zt = A⊤Xt = Z←T−t follows the forward process (1) initialized from pZ .

(b) X←t,⊥ satisfies
d
dt

X←t,⊥ = X←t,⊥ − 1
1 − αT−t

X←t,⊥.

Moreover, ∥X←t0,⊥∥ = r(T − t0) implies ∥X←t0+δ,⊥∥ = r(T − t0 − δ), where r(t) =
√

(D − d)(1 − αt).

In Theorem 2, statement (a) demonstrates that the parallel part ∇z log pZ(z) in the decomposition (7) is
responsible for generating the target latent distribution pZ via the reverse process of DDPMs, which has
been thoroughly studied in Chen et al. (2023b). Meanwhile, statement (b) shows that, since∥∥(ID − AA⊤)X←t

∥∥ =
∥∥X←t,⊥

∥∥,

the orthogonal part (ID − AA⊤)x plays a key role in guiding the recovery of the noisy data manifolds Mt,
which provides an insight for designing geometric guidance in conditional generation.
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4.2 Geometric Guidance for Conditional Generation

Let us return to the conditional diffusion model. To apply the results from Section 4.1 in studying the role
of ∇x log pt(y | x) in guidance, we first impose the linear assumption for the target data manifold.

We consider a two-class dataset (X, Y ) ∼ PXY on RD × {1, 2} for simplicity; the following analysis readily
extends to the multi-class case. Let P(Y = 1) = w1 and P(Y = 2) = w2 so that

PX = w1PX|Y (· | Y = 1) + w2PX|Y (· | Y = 2).

The linear assumption states as follows.
Assumption I. For i = 1, 2, there exists a Zi ∼ pZ

i on Rdi and an Ai ∈ OD×di such that

Xi := AiZi ∼ PX|Y (· | Y = i),

and we further assume A⊤1 A2 = O.
Remark 1. For this assumption, we provide two remarks.

(i) It basically means that the support suppPX|Y (· | Y = i) ⊂ Mi := Im Ai, the image of x 7→ Ax; in
other words, PX|Y (· | Y = i) is supported on the linear space Im Ai. The definition of the support of
a probability measure is provided in Appendix A.

(ii) A⊤1 A2 = O indicates M1 ⊥ M2. This orthogonality assumption is introduced to simplify the sub-
sequent analysis, but it does not significantly affect our conclusions regarding the guidance scale; see
Appendix E.1 for further discussion.

Next, we fix Y = 1 and our goal is to generate the conditional distribution, which needs to consider the
geometric structure of the condition score function ∇x log pt(x | y = 1). By combining the results in Section
4.1 with Equation (5), the conditional score function has two different types of decomposition:

∇x log pt(x | y = 1) = Generate Latent Distribution + Recover Data Manifolds Mt
1

= ∇x log pt(x) + ∇x log pt(y = 1 | x).
(8)

We will show that ∇x log pt(y = 1 | x) plays the role of recovering the data manifolds Mt
1 with respect to

the first decomposition.

For the first decomposition in (8), based on Assumption I and Proposition 1, because the noisy data manifolds
generated by the forward process starting from M1 are given by

Mt
1 =

{
x ∈ RD :

∥∥(ID − A1A⊤1 )x
∥∥ = r(t)

}
, (9)

the orthogonal part of ∇x log pt(x | y = 1) in the first decomposition responsible for recovering Mt
1 is parallel

to (ID − A1A⊤1 )x as shown in Section 4.1.

Intuitively, for the second decomposition in (8), since pt(y = 1 | x) acts as a classifier for Mt
1, we have

pt(y = 1 | x) ≈ 1 for any x ∈ Mt
1, i.e., log pt(y = 1 | x) is approximately constant on Mt

1. Therefore, by
Lemma I.1, ∇x log pt(y = 1 | x) is almost normal to Mt

1,

∇x log pt(y = 1 | x) ≈ −η(ID − A1A⊤1 )x, for some η > 0,

because (ID − A1A⊤1 )x is normal to Mt
1 by Lemma I.1. Rigorous details are provided in Appendix C.3.

Therefore, the guidance term ∇x log pt(y = 1 | x) partially contributes to the recovery of the data manifolds
Mt

1 during the reverse process. Consequently, it can be replaced by (ID − A1A⊤1 )x. Based on this insight,
we propose the following geometric guidance model for conditional generation:

d
dt

X←t = X←t + ∇x log pT−t(X←t ) − ηP1X←t , P1 := ID − A1A⊤1 . (10)

7



Published in Transactions on Machine Learning Research (02/2026)

5 Main Results: Analysis of Geometric Guidance Model

In this section, we analyze the geometric guidance model (10) with the aim of uncovering the role of the
guidance scale η. To understand its effects, we consider two related questions: whether the model can
approximately estimate the target data manifold M1 (see Section 5.2), and how to quantify the distance
between the generated and target distributions (see Section 5.3). These two problems serve as a lens through
which we investigate the influence of η in conditional generation.

Before addressing these two questions, it is necessary to ensure the well-posedness of the ODE (10); that is,
we must establish regularities of ∇x log pt(x) such as its Lipschitz continuity and the log-concavity of pt(x),
which requires careful analysis (see Section 5.1) because it is obtained from a multi-modal distribution PX .

5.1 Well-posedness of Geometric Guidance Model

In general, the Lipschitz continuity of ∇x log pt(x) and the log-concavity of pt(x) induced by the DDPM
forward process depend on properties of the initial distribution µ. A basic requirement is that µ admit a
density p(x). Log-concavity of p(x) then implies log-concavity of pt(x) (Gao et al., 2025), and Lipschitz
continuity of ∇x log p(x) implies the Lipschitz continuity of ∇x log pt(x) (Chen et al., 2023a).

However, in our setting, it is clear that PX does not admit a density function. We therefore first deduce
the necessary conditions on the latent distribution implied by PX ; see Sections 5.1.1 and 5.1.2. Second, the
multi-modality of PX introduces irregularities in pt(x) (Lee et al., 2022), which we discuss in Section 5.1.3.
By solving these two problems, we construct a surrogate pσ

t (x) for use in the geometric guidance model (10),
which is well-posed; see Section 5.1.4.

5.1.1 Problems in Latent Distribution

When µ does not admit a density function—for instance, when the support of µ lies on a lower-dimensional
manifold in the ambient space—De Bortoli (2022) showed that the score function ∇x log pt is Lipschitz
continuous under the assumption that supp µ is compact, i.e., closed and bounded. This setting aligns with
our problem but guarantees only Lipschitz continuity. In contrast, we establish a stronger result in the
following Proposition 3, which does not require the compactness, under the assumption that the target data
manifold is linear. The proof is provided in Appendix D.1.
Proposition 3. Let Z be a random variable on Rk with the density function pZ , and let B ∈ Rn×k. Assume
there are m0, Λ > 0 such that

−∇2
z log pZ(z) ⪰ m0Ik, ∥B∥2

op ≤ Λ,

and λ := λmin(B⊤B) ≥ 0, the minimum of all eigenvalues of B⊤B. For α ∈ R and β > 0, let

X = αBZ + βξ, ξ ∼ N (0, In)

with the density function pX on Rn. We have

∥∥∇2
x log pX(x)

∥∥
op ≤ L, L := 1

β2 + α2Λ
β2(α2λ + m0β2) .

Remark 2. A direct application of this proposition is that it extends the result of De Bortoli (2022) to a
non-compact setting, under the additional assumption that the latent distribution is strongly log-concave,
i.e., −∇2

z log pZ(z) ⪰ m0Ik. If we are only concerned with the L-smoothness 1 of log pX , the log-concavity
of pZ can be relaxed to the L-smoothness; see Appendix F for details.
Corollary 4. Using the same notations as in Proposition 3, we have

∇2
x log pX(x) ⪯

(
α2Λ

β2(α2λ + m0β2) − 1
β2

)
In.

1L-smoothness of f and L-Lipschitz continuity of ∇f are equivalent for C2 functions; we use them interchangeably.

8
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Remark 3. Note that, if α2Λ < α2λ + m0β2, such as Λ = λ, then

−∇2
x log pX(x) ⪰ mxIn, mx := 1

β2

(
1 − α2Λ

α2λ + m0β2

)
> 0,

which implies that pX is mx-strongly log-concave. Therefore, it shows that the strong log-concavity of pZ

ensures not only the L-smoothness, but also the concavity of log pX .

Based on results in Proposition 3, even if PX does not admit a density function, the desired properties of the
score function can still be guaranteed, provided that the latent distribution admits a density and satisfies
strong log-concavity. However, in our setting, these two conditions are not satisfied:

(i) For the latent distribution of PX , because Zi ∼ PZ
i on Rdi , we first lift them on Rd with d := d1 + d2

by defining
Z̃1 = (Id1 , Od1×d2)⊤Z1 ∼ P̃Z

1 , Z̃2 = (Od2×d1 , Id2)⊤Z2 ∼ P̃Z
2 .

Let A = (A1, A2) ∈ OD×d. It follows that

AZ̃i = AiZi ∼ PX|Y (· | Y = i), i.e., A#P̃Z
i = PX|Y (· | Y = i).

Therefore, by Lemma H.7, if Z ∼ PZ := w1P̃Z
1 + w2P̃Z

2 , we have

X = AZ ∼ PX = w1PX|Y (· | Y = 1) + w2PX|Y (· | Y = 2).

But the problem is that the latent distribution PZ does not admit a density function on Rd.

(ii) For log-concavity, even if the latent distribution admits a density function, it typically does not satisfy
strong log-concavity due to its multi-modality (Lee et al., 2022).

Therefore, in the following, we first introduce a technique to address the log-concavity of the latent density
(Sections 5.1.2 and 5.1.3), and then apply Proposition 3 to establish the desired properties of the score
function (Section 5.1.4).

5.1.2 Mollification Technique

Mollification (Evans, 2018) is a standard technique in mathematical analysis to address non-smoothness of
functions. When dealing with a non-smooth function f , the idea is to find a smooth kernel function k such
that the convolution g := f ∗ k, which is clearly smooth, is closed to f .

Following this idea, we choose a Gaussian distribution N (0, σ2Id) with some σ > 0 as the kernel, and
consider its convolution with P̃Z ; see Remark B.1 for the definition of convolution between measures. Let

PZ
σ := P̃Z ∗ N (0, σ2Id) = w1PZ

1,σ + w2PZ
2,σ,

where PZ
i,σ := P̃Z

i ∗ N (0, σ2Id). Note that both PZ
σ and PZ

i,σ admit density functions, denoted by pZ
σ and pZ

i,σ

respectively, and
pZ

σ = w1pZ
1,σ + w2pZ

2,σ. (11)

Moreover, by the definition of convolution, if Zi ∼ pZ
i , then

Z1,σ := (Z1, O)⊤ + σζ1 ∼ pZ
1,σ, Z2,σ := (O, Z2)⊤ + σζ2 ∼ pZ

2,σ, (12)

for ζi ∼ N (0, Id) independent of Zi. Therefore, we obtain a smooth density pZ
σ on the latent space Rd.

Next, for PX , the following Proposition 5 addresses the question of whether sampling from pZ
σ yields a

Pσ
X := A#PZ

σ that is close PX . The proof is provided in Appendix D.1.

To measure the distance between probability measures, we use the 1-Wasserstein distance in this work for
analytical convenience. For µ, ν ∈ P(RD), it is defined by

W1(µ, ν) := inf
{∫

∥x − y∥dγ(x, y) : γ ∈ Γ(µ, ν)
}

= inf {E [∥X − Y ∥] : X ∼ µ, Y ∼ ν} ,

9
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where Γ(µ, ν) :=
{

γ ∈ P(RD × RD) : γ(A × RD) = µ(A), γ(RD × B) = ν(B)
}

; see Chewi et al. (2024) for
more details.
Proposition 5. Using the above notation, if Zσ ∼ PZ

σ , then for Xσ := AZσ ∼ Pσ
X , we have

Pσ
X = w1Pσ

X|Y (· | Y = 1) + w2Pσ
X|Y (· | Y = 2),

where Pσ
X|Y (· | Y = i) := A#PZ

i,σ for i = 1, 2, and it follows that

W1(Pσ
X ,PX) ≤ σ

√
d.

Therefore, the mollification technique provides a smooth latent density function pZ
σ that induces a distribution

Pσ
X approximating PX .

5.1.3 Log-Concavity of Latent Density

In general, even if pZ
σ is smooth, we cannot directly assume that it is strongly log-concave, as it is multi-modal

by Equation (11). However, we can still assume that each of its components pZ
i,σ is strongly log-concave,

which, in fact, follows from the assumption of strong log-concavity of the original latent density pZ
i .

Assumption II. Let pZ
i be the density function of PZ

i defined on Rdi . There exits a large m > 1 such that

−∇2
z log pZ

i (z) ⪰ mIdi ,

i.e., pZ
i is m-strongly log-concave for i = 1, 2.

Assumption II ensures the strong log-concavity of each component pZ
i,σ, but it does not guarantee that the

overall mixture pZ
σ is strongly log-concave—this is a common difficulty in the case of multi-modal distribu-

tions. However, due to the mollification construction, the parameter σ can be freely chosen, which enables
us to establish the strong log-concavity of pZ

σ under the following assumption.
Assumption III. For a chosen σ, we assume that

M := sup
z

∥∥∇z log pZ
1,σ(z) − ∇z log pZ

2,σ(z)
∥∥ < 2

√
m − 1.

Remark 4. This assumption is novel but essential for addressing log-concavity in multi-modal settings.
Characterizing the classes of pZ

i that satisfy it is nontrivial. As a concrete example, if each pZ
i (z) is a

Gaussian truncated to a compact, convex set, then compactness implies that the difference of ∇ log pZ
i,σ is

uniformly bounded by a quantity depending on σ. Therefore, with an appropriate choice of σ, Assumption
III holds. The details, with a sufficient condition for Assumption III, are discussed in Appendix E.2.

Assumption III is required to obtain an upper bound on ∇2 log p, even when the density p is multi-modal,
as shown in the following lemma; see the proof in Appendix D.1.
Lemma 6. Let p1, p2 be two probability density functions on Rn such that ∇2 log pi ⪯ LiIn for some constant
Li ∈ R. Suppose that

sup
x

∥∇ log p1(x) − ∇ log p2(x)∥ ≤ M < ∞.

Then, for the mixture density p = wp1 + (1 − w)p2 with w ∈ (0, 1), it holds that

∇2 log p ⪯
(

max {L1, L2} + 1
4M2

)
In.

By Lemma 6 and Proposition 3, the strong log-concavity of the multi-modal latent density function pZ
σ can

be guaranteed.
Theorem 7. Under Assumptions II and III, if σ2 < (4m − M2)/(M2m), then pZ

σ is strongly log-concave
for pZ

σ = w1pZ
1,σ + w2pZ

2,σ, i.e.,

−∇2
z log pZ

σ (z) ⪰ mz
0Id, mz

0 := 4m − M2(1 + mσ2)
4(1 + mσ2) .

10
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Proof. Note that
Z1,σ = (Id1 , O)⊤Z1 + σζ1 ∼ pZ

1,σ.

By Assumption II and Corollary 4, with the choices B = (Id1 , O)⊤, m0 = m, α = 1, and β = σ, we obtain

∇2
z log pZ

1,σ(z) ⪯
(

1
σ2(1 + mσ2) − 1

σ2

)
Id.

For pZ
2,σ, we similarly have

∇2
z log pZ

2,σ(z) ⪯
(

1
σ2(1 + mσ2) − 1

σ2

)
Id.

Then, because pZ
σ = w1pZ

1,σ + w2pZ
2,σ, it follows from Assumption III and Lemma 6 that

∇2
z log pZ

σ (z) ⪯
(

1
σ2(1 + mσ2) − 1

σ2 + 1
4M2

)
Id = −mz

0Id.

5.1.4 Smoothness and Concavity

Before proceeding, let us recall that the latent distribution PZ of PX is not “good”. To address this, we
construct a new distribution Pσ

X whose latent distribution PZ
σ admits a “good” density function pZ

σ , and
which is close to PX . Consequently, instead of considering the score function associated with a DDPM
initialized from PX , we consider a DDPM initialized from Pσ

X , i.e.,

Xσ
t = √

αtAZσ +
√

1 − αtξ ∼ pσ
t , (13)

where Zσ ∼ pZ
σ and ξ ∼ N (0, ID). We then modify the dynamics in (10) to define our final version of the

geometric guidance model:
Definition 1 (Geometric Guidance Model). For any t ∈ [0, T − δ],

d
dt

X̃t = X̃t + ∇x log pσ
T−t(X̃t) − ηP1X̃t, X̃0 ∼ N (0, ID), (∗)

where P1 = ID − A1A⊤1 .
Remark 5. (i) The initial condition is taken as N (0, ID) instead of pT (· | y) to reflect practical implementation
settings. (ii) The time interval is chosen as [0, T − δ] for some δ > 0 to avoid the singularity at time T .

Therefore, our main objective now becomes establishing the Lipschitz continuity of ∇x log pσ
t (x) and the

log-concavity of pσ
t (x), which follows from the strong log-concavity of the latent density pZ

σ (z).
Theorem 8. Under Assumption I and the same settings as in Theorem 7, for the density function pσ

t defined
in Equation (13), we have∥∥∇2

x log pσ
t (x)

∥∥
op ≤ Lt, Lt := 2αt + (1 − αt)mz

0
(1 − αt) (αt + (1 − αt)mz

0) ,

and
−∇2

x log pσ
t (x) ⪰ mtID, mt := mz

0
αt + (1 − αt)mz

0
.

Proof. First, by Theorem 7, the latent density pZ
σ is mz

0-strongly log-concave. By the definition of pσ
t ,

Proposition 3 implies that ∥∥∇2
x log pσ

t (x)
∥∥

op ≤ 2αt + (1 − αt)mz
0

(1 − αt) (αt + (1 − αt)mz
0) ,

with the choices B = A, m0 = mz
0, α = √

αt, and β =
√

1 − αt. This follows from the fact that A⊤A = Id

(Assumption I), which indicates ∥A∥2
op = 1 and λmin(A⊤A) = 1.

For the log-concavity, Corollary 4 directly yields

−∇2
x log pσ

t (x) ⪰
(

1
1 − αt

(
1 − αt

αt + (1 − αt)mz
0

))
ID.

11
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Therefore, we have established the desired properties of pσ
t , which ensure the well-posedness of the geometric

guidance model (∗). Moreover, from the definition of mt in Theorem 8, we can derive a lower bound that
will be useful in the following analysis; see Appendix D.1 for the proof.
Corollary 9. There exists a small σ > 0 such that mz

0 > 1 and mI := inft∈(0,T ] mt > 1.

5.2 Estimating Target Data Manifold

For the geometric guidance model (∗), the first problem is whether it can estimate the target data manifold
M1. Specifically, we aim to show that the generated sample X̃T−δ approximately lies in M1. Since M1 =
Im A1 is a linear subspace by Assumption I, it suffices to examine whether E

[∥∥ỸT−δ

∥∥] ≈ 0, where

Ỹt = P1X̃t, P1 = ID − A1A⊤1 .

Multiplying both sides of Equation (∗) by P1, we obtain that Ỹt satisfies the following dynamics:

d
dt

Ỹt = Ỹt + P1∇x log pσ
T−t(X̃t) − ηỸt, Ỹ0 ∼ N (0, P1), (14)

for t ∈ [0, T − δ]. By analyzing the dynamics (14), the following theorem provides a convergence rate of
E
[∥∥ỸT−δ

∥∥] → 0 with respect to the guidance scale η.
Theorem 10. Consider the dynamics (14) under Assumptions II and III. Then,

E
[
∥ỸT−δ∥

]
≤ O

(
e−η + 1

η

)
.

In particular, for any ε > 0, by choosing η = Θ(max{log(1/ε), 1/ε}), E
[
∥ỸT−δ∥

]
< ε.

Proof sketch. We provide a sketch of the proof here; the full proof is given in Appendix D.2.

The key idea is to derive a differential inequality for E
[∥∥Ỹt

∥∥]. First, we have

d
dt

E
[∥∥Ỹt

∥∥] ≤ (1 − η)E
[∥∥Ỹt

∥∥]+ E
[∥∥∇x log pσ

T−t(X̃t)
∥∥] . (15)

To bound E
[∥∥∇x log pσ

T−t(X̃t)
∥∥], the Lt-smoothness of log pσ

t is required, which follows from Theorem 8.
The smoothness implies that ∥∥∇x log pσ

T−t(X̃t)
∥∥ ≤ LS

∥∥X̃t

∥∥+ C

for some constants LS and C. Therefore, it suffices to bound E
[∥∥X̃t

∥∥]. By deriving a differential inequality
from Equation (∗) and applying Grönwall’s inequality (Lemma H.11), we obtain E

[∥∥X̃t

∥∥] ≤ M1 for some
constant M1, and thus E

[∥∥∇x log pσ
T−t(X̃t)

∥∥] ≤ M2. Substituting this bound into (15) and applying
Grönwall’s inequality once more yields the desired result.

Remark 6. For this theorem, we provide two remarks.

(i) Note that this result depends only on the Lt-smoothness of log pσ
t , and not on strong log-concavity.

Therefore, Assumptions II and III can be relaxed; see further discussion in Appendix F.

(ii) The universal guidance model,

dX←t
dt

= X←t + ∇x log pT−t(X←t ) − η∇f(X←t ),

was proposed by Bansal et al. (2023) to control the generation process such that the generated images
match the prompt g(X←T ) ≈ c. In their setting, f(x) = ℓ(c, g(x)) for some loss function ℓ. A similar
idea used in the proof of Theorem 10 can be extended to theoretically analyze the universal guidance
model. If the L-smoothness of log pt holds (see Appendix F) and f is strongly convex,

E [f(X←T )] → min f, as η → ∞;

see Appendix D.3 for more details.
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Theorem 10 shows that the geometric guidance model can approximate the target data manifold. Specifically,
as the guidance scale η increases, the generated data increasingly lie close to the target manifold. This result
is consistent with empirical observations on both synthetic datasets (Wu et al., 2024; Chidambaram et al.,
2024) and real-world datasets (Dhariwal & Nichol, 2021; Sadat et al., 2024; 2025), as well as with the
theoretical results in the one-dimensional case studied by Chidambaram et al. (2024), which demonstrate
that increasing η causes the generated data to move toward the extreme points in the support of the target
conditional distribution.

5.3 Distance to Target Distribution

Let p̃t be the density function of X̃t in the geometric guidance model (∗). The second question is how to mea-
sure the 1-Wasserstein distance between the generated density p̃T−δ and the target conditional distribution
PX|Y (· | Y = 1). Specifically, the goal is to provide an upper bound on W1

(
p̃T−δ,PX|Y (· | Y = 1)

)
.

First, we require an additional assumption: the boundedness of the first moment of each conditional distri-
bution PX|Y (· | Y = i), which can be reduced to the same condition on the latent distribution pZ

i .
Assumption IV. For i = 1, 2 and Zi ∼ pZ

i , mZ
i := E [∥Zi∥] < ∞.

Theorem 11. Under Assumptions I, II, III, and IV, we obtain that

W1
(
p̃T−δ,PX|Y (· | Y = 1)

)
≤ O(e−T + δ1/2 + σ + η−1) + C̃

for some constant C̃.

Proof sketch. The proof consists of two main steps:

(i) Let Q1 = A1A⊤1 be the orthogonal projection onto M1 = Im A1. By Theorem 10, we have

W1
(
p̃T−δ,PX|Y (· | Y = 1)

)
≤ W1

(
(Q1)#p̃T−δ,PX|Y (· | Y = 1)

)
+ O(e−T + η−1).

(ii) For W1
(
(Q1)#p̃T−δ,PX|Y (· | Y = 1)

)
, it has

W1
(
(Q1)#p̃T−δ,PX|Y (· | Y = 1)

)
≤ W1 (p̃T−δ,PX) + W1

(
(Q1)#PX ,PX|Y (· | Y = 1)

)
,

where the first term W1 (p̃T−δ,PX) can be bounded by comparing the geometric guidance model (∗)
with the unconditional reverse dynamics, and the second term is directly bounded by Lemma D.3.

The full proof is provided in Appendix D.4.

Remark 7. Since geometric guidance cannot carry as much information as probabilistic guidance due to its
analytical simplicity, the error floor C̃ does not vanish as η = 1, unlike in probabilistic guidance models; see
further discussion in Remark D.1.

This result suggests that increasing the guidance scale does not harm the generating performance, which may
appear counterintuitive and inconsistent with empirical observations. In practice, however, ODE dynamics
are typically approximated using the Euler discretization (or the Euler–Maruyama scheme for SDEs), which
introduces additional discretization error. In our setting, the Euler discretization error for the geometric
guidance model (∗) is bounded by O(hη2), where h denotes the step size; see Appendix D.5 for details.
Therefore, the performance degradation observed at large guidance scales arises not from the model formu-
lation itself, but from the discretization algorithm. For example, Wu et al. (2024, Figure 3) showed that the
large guidance scale would harm the modality of the original data, but this problem can be mitigated by
reducing the discretization step size.

6 Nonlinear Extension

In this section, our main objective is to construct a nonlinear geometric guidance model suitable for real-world
image datasets, and to evaluate its generation performance under varying guidance scales η.
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The first challenge is to construct the geometric guidance term for image datasets, which may not lie in a
linear subspace. To this end, we study the geometric structure of noisy data manifolds without assuming
linearity of the target data manifold, by extending the result of Proposition 1 to the nonlinear case (see
Section 6.1). Then, following the idea of Ross et al. (2024), we train functions F t

θ : RD → R to model noisy
data manifolds via Mt = (F t

θ)−1(0) so that ∇xF t
θ can replace (ID − AA⊤)x to be the nonlinear geometric

guidance term (see Section 6.2). Finally, we examine this nonlinear geometric guidance model on CIFAR-10
(Krizhevsky, 2009), and evaluate its performance under the different guidance scale (see Section 6.3).

6.1 Noisy Data Manifolds for Nonlinear Case

The geometric guidance term (ID − AA⊤)x is constructed based on the result in Proposition 1, which
assumes that the target data manifold M = Im A is linear. However, for real-world image datasets, it may
unrealistic to assume that the data lie in a linear subspace. Instead, it is more reasonable to assume that
the target image data lie on a nonlinear manifold M ⊂ RD with intrinsic dimension d ≪ D; see Appendix
I for basic knowledge of manifolds. This assumption is known as the manifold hypothesis (Bengio et al.,
2013), and it has been supported by both theoretical analyses (Fefferman et al., 2016) and empirical studies
(Brown et al., 2022; Loaiza-Ganem et al., 2022).

To construct a new geometric guidance term, because of the nonlinearity of M, we must extend the result
of Proposition 1 to uncover the geometric structure of noisy data manifolds. Although the d-dimensional
manifold M ⊂ RD is not assumed to be linear, we additionally require that it is locally isometric to Rd.
More precisely, we assume the existence of a C∞ function ϕ : Rd → RD such that Im ϕ = M and ϕ is an
isometry; that is, Jϕ⊤Jϕ ≡ Id. Then, by Lemma 12, we obtain an analogue of Proposition 1 in Theorem 13,
which shows that the noisy data manifolds Mt are hypersurfaces—i.e., (D − 1)-dimensional submanifolds of
RD; see the proofs in Appendix G.1.
Lemma 12. Let ϕ : Rd → RD be a C∞ isometry such that M = Im ϕ ⊂ RD is a d-dimensional submanifold.
Then, there exists a C∞ function ϕ∗ : RD → Rd such that ϕ∗ ◦ ϕ = idRd and

Jϕ∗(ϕ(z)) = Jϕ(z)⊤, ∀ z ∈ Rd.

Remark 8. In fact, the isometry of ϕ implies that Im ϕ is a submanifold, because it is proper (i.e., the
preimage of every compact set is compact) by the Hopf–Rinow theorem (Jost, 2008).
Theorem 13. Let M ⊂ RD be a d-dimensional submanifold as defined in Lemma 12, and let PX on RD

such that suppPX ⊂ M. Let Xt be generated by DDPM (1) initialized from PX . If d ≪ D, then Xt

concentrates on a hypersurface Mt ⊂ RD with high probability, where

Mt :=
{

x : f t(x) = r(t)
}

, r(t) =
√

(D − d)(1 − αt),

for some C∞ function f t : RD → R.

6.2 Learning Geometric Guidance

For an image dataset (X, Y ) ∼ PXY with class label Y ∈ {1, 2, . . . , K}, we adopt the union of manifold
hypothesis (Brown et al., 2022), that is,

suppPX|Y (· | Y = y) ⊂ My,

where My ⊂ RD is a dy-dimensional submanifold. To apply Theorem 13, we further assume that, for each
My, there exists an isometry ϕy : Rdy → RD such that Im ϕy = My. Then, the noisy data manifolds
generated by the forward process initialized from My are given by

Mt
y :=

{
x ∈ RD : f t

y(x) = r(t)
}

, r(t) =
√

(D − d)(1 − αt),

for some function f t
y : RD → R.

By adopting the same idea as in Section 4.2, for x ∈ Mt
y, the guidance term ∇x log pt(y | x) is approximately

normal to Mt
y at x—that is, it is approximately parallel to ∇xf t

y(x). Therefore, we construct the nonlinear
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Figure 1: Images generated by GeGM on CIFAR-10

geometric guidance term as ∇xf t
y(x) to replace the probabilistic guidance ∇x log pt(y | x) in the reverse

process for conditional generation. The resulting nonlinear geometric guidance model (in deterministic form)
is defined by

d
dt

X←t = X←t + ∇x log pT−t(X←t ) − η∇xfT−t
y (X←t ), (16)

where ∇x log pt is the score function of the unconditional DDPM initialized from PX .

To implement the nonlinear geometric guidance model, one must estimate both the score function and the
nonlinear geometric guidance term. The score function ∇x log pt(x) can be estimated using an unconditional
diffusion model—specifically, by training a network sθ(t, x) via the score matching method (Vincent, 2011)
on the unconditional data X. The main task, then, is to estimate ∇xf t

y(X←t ).

First, Theorem 10 shows that Mt
y = (f t

y)−1(r(t)), so such function f t
y is called a manifold-defining function

in Ross et al. (2024). Following a similar idea, we train a network F t
y,θ : RD → R to estimate f t

y − r(t), so
F t

y,θ needs to satisfy
F t

y,θ(x) = 0, and ∇xF t
y,θ(x) ̸= 0, ∀ x ∈ Mt

y,

where the first condition follows directly from the definition of Mt
y, and the second condition, called the

rank condition, ensures F t
y,θ a manifold-defining function, as guaranteed by the Constant Rank Theorem

(Lemma I.2). Therefore, the loss function for training F t
y,θ is designed as

Lt
y(θ) := EX∼pt(·|y)

[∣∣F t
y,θ(X)

∣∣2 − κ
∥∥∇xF t

y,θ(X)
∥∥2
]

, (17)

where κ > 0 is chosen for controlling the strength of the rank condition. We simply set κ = 1.

6.3 Experiments

Effectiveness of GeGM. We use the Fréchet Inception Distance (FID) (Heusel et al., 2017) as the metric
for evaluating generation performance, because it can be regarded as a practical surrogate for the Wasserstein
distance. We compare the FID of samples generated by the nonlinear geometric guidance model (16) (GeGM)
with those generated by the classifier guidance model (CGM) (6). The results are reported in Table1, where
we present results for selected classes; the remaining classes are provided in Appendix G.2. Note that the
guidance scales used for CGM and GeGM differ, since the norms of the probabilistic and geometric guidance
terms are not comparable. For visualization, Figure 1 displays images generated by the nonlinear GeGM.
These results demonstrate the effectiveness of the nonlinear GeGM in generating real-world images.

Performance vs. guidance scale. By applying the nonlinear GeGM (16), we evaluate how generation
performance varies with the guidance scale η on selected classes from CIFAR-10; results for the remaining
classes are provided in Appendix G.2. As shown in Figure 2, performance improves with increasing η within
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Table 1: Comparison of FID on CIFAR-10

Automobile Frog Horse Ship Truck
CGM (η = 1) 13.46 17.87 13.97 11.61 16.85

GeGM (η = 50) 9.70 16.28 12.65 13.84 11.02

0 5 10 50 100

20

40

60

80

100
FID

automobile
frog
horse
ship
truck

Figure 2: FID v.s. guidance scale η of GeGM on selected classes of CIFAR-10

a reasonable range. Since FID serves as a practical approximation of the Wasserstein distance, this trend is
consistent with Theorem 11, even in the nonlinear setting.
Remark 9. We emphasize that the observed trends are consistent with the spirit of Theorem 11 in nonlinear
regimes, but they are not derived from it. Establishing nonlinear analogues of Theorems 10–11 will require
additional analysis and is left for future work.

7 Conclusion

In this work, we studied the role of the guidance scale in conditional generation with diffusion models. To
address the analytical intractability of the probabilistic guidance term, we introduced a geometric guidance
model that enables theoretical analysis under the linear manifold hypothesis. To facilitate this analysis, we
proposed a mollification technique to ensure the regularity of the score function in the presence of multi-
modality. Our results showed that increasing the guidance scale within a reasonable range can enhance
generation performance, in line with empirical observations reported in prior studies. We further extended
the model to nonlinear settings, and experiments on real-world datasets demonstrated the effectiveness of
the geometric guidance model and provided additional evidence consistent with our theoretical findings.

Limitations: While the geometric guidance offers a more tractable alternative to probabilistic guidance,
it comes with certain limitations. Notably, our analysis showed that the upper bound of the Wasserstein
distance between the generated and target conditional distributions is bounded by a constant, regardless of
the choice of the guidance scale. This implies that, unlike probabilistic guidance, which can approximate
the target conditional distribution by setting the scale to 1, the geometric guidance does not guarantee
convergence to the target distribution. This is a trade-off made for the sake of analytical tractability.

Although our experiments on the nonlinear extension partially supported the theoretical results, our current
theoretical analysis is restricted to the linear manifold setting. In the nonlinear case, the geometric structure
of the score function remains unclear. Regarding regularity of the score function, while Lipschitz continuity
can be ensured under compactness assumptions, extending this to the non-compact setting remains an
open problem. Furthermore, the log-concavity of the score function cannot be guaranteed, even in compact
nonlinear cases.
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A Notation

The symbols used throughout this paper are clarified below.

1. Letters: Unless otherwise specified, lowercase letters such as x and x denote deterministic variables,
while uppercase letters such as X and X denote random variables. Scalars are typically represented by
non-bold symbols such as x and Y , whereas vectors are denoted using bold symbols such as x and X. In
particular, we use In ∈ Rn×n to denote the identity matrix and 0 ∈ Rn to denote the zero vector.

2. Linear Algebra:
(i) Let Om×n ⊂ Rm×n (with m > n) denote the set of matrices whose columns are orthonormal, i.e.,

those satisfying A⊤A = In.
(ii) For a vector x ∈ Rn, the notation ∥x∥ refers to the ℓ2-norm. For a matrix A ∈ Rm×n, the operator

norm is defined as
∥A∥op = sup

∥x∥=1
∥Ax∥ =

√
λmax(A⊤A),

where λmax(·) denotes the maximum eigenvalue.
(iii) Let A, B ∈ Rn×n be symmetric matrices, i.e., A = A⊤ and B = B⊤. We write A ⪯ B (or

equivalently, B ⪰ A) if B − A is positive semi-definite, i.e.,

x⊤(B − A)x ≥ 0, ∀ x ∈ Rn.

3. Calculus:
(i) For a scalar-valued function f : Rn → R, the gradient with respect to x is denoted by ∇xf(x), and

the Hessian matrix by ∇2
xf(x).

(ii) For a vector-valued function F : Rn → Rm, JF denotes the Jacobian matrix of F , and the second-
order derivative D2F is a bilinear map D2F (x) : Rn × Rn → Rm defined by

D2F (x)[v, w] = ∂2

∂s∂t
F (x + sv + tw) =

(
v⊤∇2

xF 1(x)w, · · · , v⊤∇2
xF m(x)w

)⊤
,

where F = (F 1, . . . , F m). If each F i has continuous derivative of order k, F is called Ck.
(iii) For any set U ⊂ Rn, the characteristic function χU : Rn → R is defined by χU (x) = 1 if x ∈ U , and

χU (x) = 0 otherwise.
(iv) For integrable functions f, g : Rn → R, their convolution is denoted by

f ∗ g(x) =
∫
Rn

f(y)g(x − y)dy.

(v) For a function f : Rn → Rm, let Im f = f(Rn) denote the image of f . In particular, for a matrix
A ∈ Rm×n, Im A refers the image of the linear map x 7→ Ax.
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4. Probability-related Symbols:
(i) We fix the base probability space (Ω, F ,P), where Ω is the sample space, F is a σ-algebra, and P

is a probability measure on F .
(ii) On Rn, we typically work with the Borel σ-algebra B(Rn), and let P(Rn) denote the set of all

probability measures defined on B(Rn). Symbols such as µ and ν represent elements of P(Rn). The
integral with respect to a measure µ is denoted by

∫
f(x)dµ(x) or equivalently by

∫
f(x)µ(dx).

(iii) For a measurable map f : Ω → Rn, the push-forward measure of P under f is denoted by f#P, and
is defined as

f#P(U) = P(f−1(U)), ∀ U ∈ B(Rn).

(iv) A random variable (or vector) X : Ω → Rn is a measurable map. Its distribution, denoted by PX

(or PX), is a probability measure on Rn defined by PX = X#P. For some µ ∈ P(Rn), we say
X ∼ µ if µ = PX . Two random variables X and Y are said to be equal in distribution, denoted by
X

d= Y , if PX = PY .
(v) For X ∼ PX , if PX is absolutely continuous with respect to the Lebesgue measure dx, then by the

Radon-Nikodym Theorem, there is a function pX (or denoted by pX) such that

PX(U) =
∫

U

pX(x)dx, ∀ U ∈ B(Rn),

and pX is said the density function 2 of X. For a measurable function g : Rn → Rm, if X ∼ PX ,
then g(X) ∼ g#PX . When PX admits a density pX , the density of g(X) is denoted by g#pX . In
particular, if g(x) = Ax for a matrix A ∈ Rm×n, g#PX is also denoted by A#PX for simplicity.

(vi) For random variables X : Ω → Rn and Y : Ω → R, the joint distribution of (X, Y ) : Ω → Rn × R
is denoted by PXY = (X, Y )#P, a probability measure on Rn × R. The conditional distribution
PX|Y (· | Y ) is defined as

PX|Y (U | Y ) := P(X ∈ U | Y ), ∀ U ∈ B(Rn),

which is a probability measure on Rn.
(vii) For a probability measure µ ∈ P(Rn), the support of µ is denoted by

supp µ = {x ∈ Rn : µ(Br(x)) > 0, ∀ r > 0}

where Br(x) ⊂ Rn denotes the open ball centered at x with radius r. When µ admits a density
function p,

supp µ = {x ∈ Rn : p(x) > 0}

B More Details in Background

B.1 Analytic Solution for DDPMs

To solve the SDE
dXt = −1

2β(t)Xtdt +
√

β(t)dWt, ∀ t ∈ [0, T ],

we multiply both sides by the integrating factor e
1
2

∫ t

0
β(s)ds. This gives

e
1
2

∫ t

0
β(s)dsdXt + 1

2β(t)e
1
2

∫ t

0
β(s)ds

Xtdt =
√

β(t)e
1
2

∫ t

0
β(s)dsdWt,

which leads to
d
(

e
1
2

∫ t

0
β(s)ds

Xt

)
=
√

β(t)e
1
2

∫ t

0
β(s)dsdWt,

2When unambiguous, pX is also occasionally referred to as the distribution.
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by applying Itô’s formula to e
1
2

∫ t

0
β(s)ds

Xt. Therefore, we obtain the solution

Xt = √
αtX0 + ξt,

where αt := exp
(

−
∫ t

0 β(s)ds
)

, and

ξt :=
∫ t

0
e
− 1

2

∫ t

s
β(r)dr

√
β(s)dWs.

Since (Wt)t≥0 is a standard Brownian motion on RD, it follows that ξt ∼ N (0, σ2
ξt

ID). To compute σ2
ξt

, let
[·, ·] denote the quadratic variation. Then

σ2
ξt

= E [[ξ, ξ]t]

= E
[∫ t

0
e
−
∫ t

s
β(r)dr

β(s)d [W , W ]s
]

=
∫ t

0
e
−
∫ t

s
β(r)dr

β(s)ds = 1 − exp
(

−
∫ t

0
β(s)ds

)
.

(see Le Gall (2016) for details). As a result,

ξt
d=

√
1 − αtξ, ξ ∼ N (0, ID).

B.2 Density Functions in Conditional DDPMs

Proposition B.1. Consider a joint data density function p(x, y) and the process governed by the SDE:

dXt = −1
2β(t)Xtdt +

√
β(t)dWt.

For the following two scenarios:

(a) Let X ∼ p(x | Y = y), and run the SDE for X0 = X. Let py
t (xt) be the distribution of Xt,

(b) Let (X, Y ) ∼ p(x, y), and run the SDE for X0 = X. Let pt(xt, y) be the distribution of (Xt, Y ),

Then, we have
py

t (xt) = pt(xt | y).

Proof. As shown in Equation (2),

Xt
d= √

αtX0 +
√

1 − αtξ, ξ ∼ N (0, ID),

where αt = exp
(

−
∫ t

0 β(s)ds
)

. Therefore, in the first case, we have

py
t (xt) = (√αt)#p(x | y) ∗ N (0, (1 − αt)ID).

Moreover, by Lemma B.2, since ξ is independent of (X0, Y ), it follows that

pt(xt | y) = p
(√

αtx0 +
√

1 − αtξ | y
)

= p (√αtx | y) ∗ N (0, (1 − αt)ID)
= (√αt)#p(x | y) ∗ N (0, (1 − αt)ID).

Consequently, we obtain:
py

t (xt) = pt(xt | y).
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Lemma B.2. Consider three random variables, X, Y ∈ Rn, and Z ∈ R. Let Y be independent of paired
(X, Z), and W = X + Y . Then, we have

pW |Z(w | z) =
(
pX|Z(· | z) ∗ pY (·)

)
(w).

Or informally,
pXY |Z(x + y | z) = pX|Z(x | z) ∗ pY (y).

Proof. Because Y is independent of (X, Z),

pXY Z(x, y, z) = pXZ(x, z)pY (y).

Let Dw = {(x, y) : x + y ≤ w}. Then, we have

P(W ≤ w, Z ≤ z) = P(X + Y ≤ w, Z ≤ z)

=
∫ z

0

(∫∫
Dw

pXY Z(x, y, z)dxdy

)
dz

=
∫ z

0

(∫∫
Dw

pXZ(x, z)pY (y)dxdy

)
dz

=
∫ z

0

∫ w

0
(pXZ(·, z) ∗ pY (·)) (s)dsdz,

where W = (Wi)i ≤ w = (wi)i means Wi ≤ wi for all i = 1, . . . , n, and
∫w

0 ds =
∫ wn

0 · · ·
∫ w1

0 ds1 · · · dsn. It
follows that

pW Z(w, z) = (pXZ(·, z) ∗ pY (·)) (w).
Therefore,

pW |Z(w | z) = pW Z(w, z)
pZ(z) =

(
pXZ(·, z)

pZ(z) ∗ pY (·)
)

(w) =
(
pX|Z(· | z) ∗ pY (·)

)
(w).

Remark B.1. In Lemma B.2, the existence of density functions is assumed, which also makes it necessary to
assume the existence of the density for X0 in the proof of Proposition B.1. However, this condition is often
not satisfied in practice. To address this limitation, consider the convolution of two probability measures
µ, ν ∈ P(Rn), defined by

µ ∗ ν(U) :=
∫
Rn

∫
Rn

χU (x + y)dµ(x)dν(y).

Note that µ ∗ ν is still a probability measure. Moreover, it follows that if X ∼ µ and Y ∼ ν with X
independent of Y , then X + Y ∼ µ ∗ ν. Under this formulation, the conclusion of Lemma B.2 remains valid
in the general case:

PW |Z(· | Z) = PX|Z(· | Z) ∗ PY |Z(· | Z) = PX|Z(· | Z) ∗ PY (·),

where the first equality follows from the fact that independence of Y and (X, Z) implies that Y is inde-
pendent of X conditional on Z, and the second equality holds because Y is independent of Z due to its
independence from the pair (X, Z). Therefore, by following a similar line of reasoning as in the proof of
Proposition B.1—replacing statements about densities with statements about distributions—we can obtain
the same result even when X0 does not admit a density function.

C More Details of Geometric Guidance

C.1 Omitted Poofs in Section 4

Proof of Proposition 1. Fix a time t > 0. By Equation (2),

Xt = √
αtAZ +

√
1 − αtξ,
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for some ξ ∼ N (0, ID). It follows that

f(Xt) :=
∥∥(ID − AA⊤)Xt

∥∥ =
√

1 − αt

∥∥(ID − AA⊤)ξ
∥∥.

Note that AA⊤ is the orthogonal projection to Im A. Therefore, there exists a U ∈ OD×D such that

ID − AA⊤ = U⊤ diag(1, . . . , 1︸ ︷︷ ︸
D−d

, 0, . . . , 0)U.

Moreover, the orthogonality of U implies that ν = (ν1, . . . , νD)⊤ = Uξ ∼ N (0, ID). Hence,

f(Xt) =
√

1 − αt

∥∥(ID − AA⊤)ξ
∥∥ =

√
1 − αt

(
ν2

1 + · · · + ν2
D−d

) 1
2 .

For any ε > 0, by setting α = (D − d)ε in the Laurent-Massart bound (Lemma H.1), we obtain

P
(

r(t)
√

1 − 2
√

ε ≤ f(Xt) ≤ r(t)
√

1 + 2
√

ε + 2ε

)
≥ 1 − 2e−2(D−d)ε.

Since d ≪ D, we can choose ε sufficiently small such that δ = e−2(D−d)ε is also sufficiently small. As a
result, P(f(Xt) ≈ r(t)) ≥ 1 − δ, i.e., Xt concentrates on Mt = f−1(r(t)) with high probability.

Proof of Theorem 2. First, by applying the orthogonal decomposition of the score function in Equation (7),
the deterministic reverse process (4) can be rewritten as

d
dt

X←t = X←t + A∇z log pZ
T−t(A⊤X←t ) − 1

1 − αT−t
(ID − AA⊤)X←t . (18)

(a) Because A ∈ OD×d, we have A⊤A = Id and A⊤(ID − AA⊤) = O. Therefore, by multiplying A⊤ on the
both sides of (18),

d
dt

Z←t = Z←t + ∇z log pZ
T−t(Z←t ),

for Z←t = A⊤Xt. Moreover, by the equivalence of the continuity equation of the Fokker-Planck equation
(or by the statements in Appendix C.2), Zt = Z←T−t satisfies the forward process of DDPMs starting
from pZ .

(b) Similarly, by multiplying ID − AA⊤ on the both sides of (18),

d
dt

X←t,⊥ = X←t,⊥ − 1
1 − αT−t

X←t,⊥ = − αT−t

1 − αT−t
X←t,⊥,

for X←t,⊥ = (ID − AA⊤)Xt. Note that αT−t = e−2(T−t). Therefore, this equation has the analytical
solution given by

X←t0+δ,⊥ =

√
1 − e−2(T−(t0+δ))

1 − e−2(T−t0) X←t0,⊥.

When ∥X←t0,⊥∥ =
√

(D − d)
(
1 − e−2(T−t0)

)
, it follows that

∥∥X←t0+δ,⊥
∥∥ =

√
1 − e−2(T−(t0+δ))

1 − e−2(T−t0)

∥∥X←t0,⊥
∥∥ =

√
(D − d)

(
1 − e−2(T−(t0+δ))

)
.
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C.2 Decomposition of Score Function

By Equation (2) and the assumption X0 = AZ, we have

Xt = √
αtX0 +

√
1 − αtξ

= √
αtX0 +

√
1 − αtQξ︸ ︷︷ ︸

=:Xt,∥

+
√

1 − αt(ID − Q)ξ︸ ︷︷ ︸
=:Xt,⊥

for some ξ ∼ N (0, ID), where Q = AA⊤ is the orthogonal projection onto Im A.

We compute the covariance:

Cov(Qξ, (ID − Q)ξ) = E
[
Qξ · ((ID − Q)ξ)⊤

]
− E [Qξ] · E [(ID − Q)ξ)]⊤

= E
[
Qξ · ((ID − Q)ξ)⊤

]
= QE

[
ξξ⊤

]
(ID − Q)

= Q(ID − Q) = 0,

which shows that Qξ and (ID − Q)ξ are uncorrelated. Since both are Gaussian, they are independent.
Hence, Xt,⊥ is independent of

√
1 − αtQξ. Combined with the fact that ξ is independent of X0, it follows

that Xt,∥ is independent of Xt,⊥. By Lemma H.2, the density of Xt admits the decomposition

pt(x) = pt,∥(x∥)pt,⊥(x⊥), (19)

where pt,∥ and pt,⊥ are the densities of Xt,∥ and Xt,⊥ with respect to the canonical volume measures on
Im A and (Im A)⊥, respectively. Here, x∥ = Qx and x⊥ = x − x∥.

Next, let us analyze pt,∥ and pt,⊥, respectively.

(i) For the parallel part, first define Zt := A⊤Xt. Then, by multiplying A⊤ on the both sides of Equation
(1), we obtain

dZt = −Ztdt +
√

2dBt,

where (Bt)t≥0 = (A⊤Wt)t≥0 is a standard Brownian motion on Rd by Lemma H.3. Therefore, the
process Zt ∼ pZ

t is governed by the DDPM dynamics initialized from pZ . Since

Xt,∥ = QXt = AZt,

this shows that Xt,∥ evolves as a diffusion process on the target data manifold M = Im A.
Moreover, applying Lemma H.4 gives

pt,∥(x∥) = A#pZ
t (x∥) = pZ

t (A⊤x∥) = pZ
t (A⊤x). (20)

(ii) For the orthogonal part, we have

Xt,⊥ =
√

1 − αtPξ ∼ N (0, (1 − αt)P ),

where P = ID −Q is an orthogonal projection with rank D−d. So P = B⊤B for some B ∈ OD×(D−d).
It follows that Xt,⊥ is a Gaussian on Im B, i.e., Xt,⊥ = BW for some W ∼ N (0, (1 − αt)ID−d).
Therefore, Xt,⊥ is basically a (D − d)-dimensional Gaussian. When d ≪ D, as shown in the proof in
Proposition 1, ∥∥(ID − AA⊤)Xt

∥∥ = ∥Xt,⊥∥ ≈ r(t),

which implies that the orthogonal part Xt,⊥ is responsible for the concentration of Xt on Mt and
endows Xt with its geometric structure. Furthermore, by Lemma H.5, p⊥t is approximately uniform
on the sphere S(D−d)−1(r(t)). In other words, the density pt, which is concentrated on the cylindrical-
like surface Mt, remains constant along radial directions and varies only in the longitudinal direction
governed by pt,∥—a consequence of diffusion along the subspace Im A.
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Moreover, applying Lemma H.4 again, we obtain

pt,⊥(x⊥) = B#pW (x⊥) = pW (B⊤x⊥) = pW (B⊤x), (21)

where

pW (w) = (2π(1 − αt))−
D−d

2 exp
(

− ∥w∥2

2(1 − αt)

)
.

Finally, for the decomposition, by combining (20) and (21) with (19), we get

log pt(x) = log pZ
t (A⊤x) + log pW (B⊤x),

from which the orthogonal decomposition formula immediately follows:

∇x log pt(x) = A ∇z log pZ
t (z)

∣∣
z=A⊤x

− 1
1 − αt

(ID − P )x,

as originally derived via direct computation by Chen et al. (2023b).

For the geometric property, the randomness of Xt arises from the diffusion process on the target data
manifold M = Im A, while the geometric structure of Xt results from the concentration behavior of the
orthogonal part.

C.3 Construction of Geometric Guidance

To clarify our intuition about ∇x log pt(y = 1 | x) “almost normal” to Mt
1, we will show that there exists a

small βt > 0 such that
∥∇x log pt(y = 1 | x) + ηtP1x∥ ≤ βt, ∀ x ∈ Mt

1,

for some scalar ηt > 0. But first, we need the following lemma.
Lemma C.1. Let M ⊂ RD be a smooth manifold with dimension D − 1. Let V ⊂ RD be a tubular
neighborhood of M with the orthogonal projection π : V → M. Let f : V → R be a C2-function satisfying
the following two conditions.

(a) ∥∇2
xf(x)∥op ≤ L.

(b) f |M is β-Lipschitz with the induced distance of Rn on M.

Then for any x ∈ V ,
∥∇xf(x) − ∂nf(π(x))n(π(x))∥ ≤ β + L dist(x, M),

where n : M → Rn is a continuous unit normal vector field along M, ∂nf = ⟨∇f, n⟩ the derivative along n,
and dist(x, M) = inf {∥x − y∥ : y ∈ M} is the distance from x to M.

Proof. Let M be equipped with the induced Riemannian structure of Rn and ∇M be the corresponding
Levi-Civita connection. Because M ⊂ RD is a hypersurface, i.e., submanifold with dimension D − 1,

∇f = ∇M f + (∂nf)n, (22)

see the details in Lee (2019, Chapter 8). Fix x ∈ V with y = π(x) ∈ M. Note that

dist(x, M) = ∥x − y∥, (23)

by Lee (2019, Proposition 5.26 (c)). Writing

∥∇xf(x) − ∂nf(y)n(y)∥ ≤ ∥∇xf(x) − ∇xf(y)∥ + ∥∇xf(y) − ∂nf(y)n(y)∥. (24)
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I. For the first term, by

∇xf(x) − ∇xf(y) =
∫ 1

0
∇2

xf(y + s(x − y))(x − y)ds,

the fact that ∥∇2
xf(x)∥op ≤ L, and Equation (23), we have

∥∇xf(x) − ∇xf(y)∥ ≤ L∥x − y∥ = L dist(x, M). (25)

II. For the second term, first, by (22),

∥∇xf(y) − ∂nf(y)n(y)∥ = ∥∇M f(y)∥.

By assumption, f |M is β-Lipschitz with the induced distance of Rn on M, i.e.,

|f(y1) − f(y2)| ≤ βdM(y1, y2),

where dM. It implies that
∥∇M f(z)∥ ≤ β, ∀ z ∈ M, (26)

see the details in Boumal (2023, Proposition 10.43).

Then combining the inequalities (25) and (26) with (24),

∥∇xf(x) − ∂nf(y)n(y)∥ ≤ β + L dist(x, M).

Let ft(x) = log pt(y = 1 | x). It is natural to assume that ft is C2 on a tubular neighborhood V of Mt
1,

that ∥∇2ft∥op ≤ Lt on V , and that ft is βt-Lipschitz continuous on Mt
1. Then by Lemma C.1,

∥∇xft(x) − ∂nft(π(x))nt(π(x))∥ ≤ βt + Lt dist(x, Mt
1).

In particular, for any x ∈ Mt
1 and π(x) = x, we have

∥∇xft(x) − ∂nft(x)nt(x)∥ ≤ βt.

Two questions remain: whether ∂nft(x)nt(x) = −ηtP1x for some scalar ηt > 0, and how to bound βt.

For the first question, we can choose nt(x) = P1x/∥P1x∥ by the definition (9) of Mt
1 and Lemma I.1. So

∂nft(x)nt(x) = −ηtP1x,

for
ηt = −∂nft(x)

∥Pxx∥
.

Moreover, because pt(y = 1 | x) is the classifier for (Xt, y = 1) and such Xt concentrates on Mt
1 by

Proposition 1, ft(x) = log pt(y = 1 | x) decreases when x moves away from M t
1. So

∂nft(x) < 0 ⇒ ηt > 0.

Next, to bound βt, we introduce the following lemma.
Lemma C.2. Let p(y = k | x) be a softmax classifier with logits gk(x) for k = 1, 2, · · · , K, that is,

p(y = k | x) = exp(gk(x))∑K
k=1 exp(gk(x))

.

Assume ∥∇xgk(x)∥ ≤ L for all k, x. Let Mk be the region where points with label y = k concentrate on.
Assume classifier confidence

p(y = k | x) > 1 − ε, ∀ x ∈ Mk.

Then
∥∇x log p(y = k | x)∥ ≤ 2Lε, ∀ x ∈ Mk.
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Proof. Fix k. Let f(x) = log p(y = k | x).

∇xf(x) = ∇xgk(x) −
K∑

j=1
p(y = j | x)∇xgj(x)

=
K∑

j=1
p(y = j | x) (∇xgj(x) − ∇xgk(x))

=
∑
j ̸=k

p(y = j | x) (∇xgj(x) − ∇xgk(x))

By assumption,
∥∇xgj(x) − ∇xgk(x)∥ ≤ ∥∇xgj(x)∥ + ∥∇xgk(x)∥ ≤ 2L.

Therefore,

∥∇xf(x)∥ ≤
∑
j ̸=k

p(y = j | x)∥∇xgj(x) − ∇xgk(x)∥

≤ 2L
∑
j ̸=k

p(y = j | x) = 2L(1 − p(y = k | x)).

It implies that
∥∇xf(x)∥ ≤ 2Lε, ∀ x ∈ Mk,

by the assumption that classifier confidence > 1 − ε on Mk.

Therefore, for all pt(y = 1 | x), we assume that they satisfy the conditions in Lemma C.2. Then if

pt(y = 1 | x) > 1 − εt, ∀ x ∈ Mt
1,

for a small εt, then

∥∇M ft(x)∥ ≤ ∥∇xft(x)∥ =
√

∥∇M ft(x)∥2 + |∂nft(x)|2 ≤ 2Cεt, ∀ x ∈ Mt
1.

So βt ≤ 2Cεt.

Combining above results, we have

∥∇x log pt(y = 1 | x) + ηtP1x∥ ≤ βt, ∀ x ∈ Mt
1,

for some ηt > 0. Moreover, βt = O(εt) for pt(y = 1 | x) > 1 − εt on Mt
1.

D More Details related to Main Results

D.1 Omitted Proofs in Section 5.1

Proof of Proposition 3. First, the Hessian is

∇2
x log pX(x) = ∇2

xpX(x)
pX(x) − ∇xpX(x)∇xpX(x)⊤

pX(x)2 .

To express the above formula explicitly, by the definition, for any x ∈ Rn,

pX(x) =
∫
Rk

Kz(x)pZ(z)dz, Kz(x) := (2πβ2)−n
2 exp

(
−∥x − αBz∥2

2β2

)
,

and so

∇xKz(x) = αBz − x

β2 Kz(x),
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∇2
xKz(x) = − 1

β2 Kz(x)In + (x − αBz)(x − αBz)⊤
β4 Kz(x).

Let
dµx(z) = Kz(x)pZ(z)

pX(x) dz

be the posterior probability measure on Rk. Then, for the first term

∇2
xpX(x)
pX(x) =

∫
Rk ∇2

xKz(x)pZ(z)dz

pX(x) = − 1
β2 In + 1

β4EZ∼µx

[
(x − αBZ)(x − αBZ)⊤

]
,

and for the second term

∇xpX(x)∇xpX(x)⊤
pX(x)2 = 1

β4EZ∼µx [x − αBZ]EZ∼µx [x − αBZ]⊤ .

Moreover, note that

EZ∼µx

[
(x − αBZ)(x − αBZ)⊤

]
− EZ∼µx [x − αBZ]EZ∼µx [x − αBZ]⊤

= CovZ∼µx(x − αBZ) = α2 Covµx(BZ) = α2B Covµx(Z)B⊤.

Therefore, we get

∇2
x log pX(x) = α2

β4 B Covµx
(Z)B⊤ − 1

β2 In. (27)

It follows that ∥∥∇2
x log pX(x)

∥∥
op ≤ 1

β2 + α2Λ
β4 ∥Covµx

(Z)∥op. (28)

It is sufficient to bound ∥Covµx(Z)∥op. To do that, µx is required to satisfy the Poincaré Inequality. Let
pZ(z) = exp(−V (z)) for some V : Rk → R and

Ux(z) := ∥x − αBz∥2

2β2 + V (z),

which indicates that dµx(z) = e−Ux(z)dz/
∫

e−Ux . Because ∇2
zV (z) = −∇2

z log pZ(z) ⪰ m0Ik,

∇2
zUx(z) = α2

β2 B⊤B + ∇2
zV (z) ⪰

(
α2λ

β2 + m0

)
Ik.

Then, by Lemma H.6, µx satisfies the Poincaré Inequality with constant m := α2λ/β2 + m0. Thus, for any
C1 function f : Rk → R,

Varµx
(f) ≤ 1

m
Eµx

[
∥∇f∥2

]
.

For any u ∈ Rn, let fu(z) = ⟨u, z⟩ with ∇zfu(z) = u. The above inequality implies that

u⊤Covµx(Z)u = Varµx(fu) ≤ 1
m
Eµx

[
∥∇zfu∥2

]
≤ 1

m
∥u∥2

,

for any u ∈ Rk. Therefore,
∥Covµx

(Z)∥op ≤ 1
m

. (29)

Finally, by plugging inequality (29) into Equation (28), we get the result

∥∥∇2
x log pX(x)

∥∥
op ≤ 1

β2 + α2Λ
β2(α2λ + m0β2) .
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Proof of Corollary 4. By Equation (29),

∥∥B Covµx
(Z)B⊤

∥∥
op ≤ Λ

m
⇒ B Covµx

(Z)B⊤ ⪯ Λ
m

In.

By combining this with Equation (27), we have

∇2
x log pX(x) ⪯

(
α2Λ

β2(α2λ + m0β2) − 1
β2

)
In.

Proof of Proposition 5. By Lemma H.7,

Pσ
X = A#PZ

σ = w1A#PZ
1,σ + w2A#PZ

2,σ.

Moreover, because Z1,σ = (Z1, 0)⊤ + σζ ∼ PZ
i,σ with ζ ∼ N (0, Id),

AZ1,σ = A1Z1 + σAζ ∼ Pσ
X|Y (· | Y = 1).

Note that A1Z1 ∼ PX|Y (· | Y = 1). Therefore,

W1(Pσ
X|Y (· | Y = 1),PX|Y (· | Y = 1)) ≤ E [∥AZ1,σ − A1Z1∥] = σE [∥Aζ∥] ≤ σ

√
d,

where the final inequality is because Aζ ∼ N (0, Id) and Lemma H.8. Similarly, it can get

W1(Pσ
X|Y (· | Y = 2),PX|Y (· | Y = 2)) ≤ σ

√
d.

Combining these two inequality and by Lemma H.9, we have

W1(Pσ
X ,PX) ≤ w1W1(Pσ

X|Y (· | Y = 1),PX|Y (· | Y = 1))
+ w2W1(Pσ

X|Y (· | Y = 2),PX|Y (· | Y = 2))

≤ σ
√

d.

Proof of Lemma 6. Let

r1(x) := wp1(x)
p(x) , r2(x) := 1 − r1(x) = (1 − w)p2(x)

p(x) .

We have
∇ log p = w∇p1 + (1 − w)∇p2

p
= r1∇ log p1 + r2∇ log p2,

and
∇2 log p = r1∇2 log p1 + r2∇2 log p2 + ∇r1(∇ log p1 − ∇ log p2)⊤.

For r1 = wp1/p,

∇r1 = w
p∇p1 − p1∇p

p2

= w
(wp1 + (1 − w)p2)∇p1 − p1(w∇p1 + (1 − w)∇p2)

p2

= w(1 − w)
p2 (p2∇p1 − p1∇p2)

= r1r2 (∇ log p1 − ∇ log p2) .

Therefore,

∇2 log p = r1∇2 log p1 + r2∇2 log p2 + r1r2 (∇ log p1 − ∇ log p2) (∇ log p1 − ∇ log p2)⊤ .
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For the first two terms, by the assumption,

r1∇2 log p1 + r2∇2 log p2 ⪯ r1L1In + r2L2In ⪯ max {L1, L2} In.

For the third term, because supx∥∇ log p1(x) − ∇ log p2(x)∥ ≤ M ,∥∥∥(∇ log p1 − ∇ log p2) (∇ log p1 − ∇ log p2)⊤
∥∥∥

op
≤ M2,

which implies that
(∇ log p1 − ∇ log p2) (∇ log p1 − ∇ log p2)⊤ ⪯ M2In.

For the coefficients r1r2, because r1, r2 ∈ (0, 1), r1r2 ≤ 1/4. Combining these results, we have

∇2 log p ⪯
(

max {L1, L2} + 1
4M2

)
In.

Proof of Corollary 9. Because

mz
0 = mz

0(σ) = m

1 + mσ2 − M2

4
is decreasing in σ,

mz
0 ≤ mz

0(0) = m − M2

4 .

With the Assumption III, we have

m − M2

4 > 1

Therefore, by choosing a small σ, we can also have mz
0 > 1. It follows that

mt = mz
0

mz
0 + (1 − mz

0)e−2t

is decreasing in t. So
mI := inf

t∈(0,T ]
mt = mT = mz

0
mz

0 + (1 − mz
0)e−2T

> 1.

D.2 Proof of Theorem 10

Proof of Theorem 10. By differentiating
∥∥Ỹt

∥∥2 from (14),

1
2

d
dt

∥∥Ỹt

∥∥2 =
〈

Ỹt,
d
dt

Ỹt

〉
=
〈
Ỹt, Ỹt + P1∇x log pσ

T−t(X̃t) − ηỸt

〉
= (1 − η)

∥∥Ỹt

∥∥2 +
〈
Ỹt, P1∇x log pσ

T−t(X̃t)
〉

≤ (1 − η)
∥∥Ỹt

∥∥2 +
∥∥Ỹt

∥∥∥∥∇x log pσ
T−t(X̃t)

∥∥.

Therefore,
d
dt

∥∥Ỹt

∥∥ ≤ (1 − η)
∥∥Ỹt

∥∥+
∥∥∇x log pσ

T−t(X̃t)
∥∥.

Taking the expectation on the both sides yields

d
dt

mt ≤ (1 − η)mt + E
[∥∥∇x log pσ

T−t(X̃t)
∥∥] , (30)

where mt := E
[∥∥Ỹt

∥∥]. Therefore, the next step is to bound E
[∥∥∇x log pσ

T−t(X̃t)
∥∥].
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Let
LS := sup

t∈[δ,T ]
Lt, C := sup

t∈[δ,T ]
∥∇x log pσ

t (0)∥ < ∞, (31)

where Lt is defined in Theorem 8. By the LS-Lipschitz of ∇x log pσ
t (Theorem 8),∥∥∇x log pσ

T−t(X̃t)
∥∥ ≤

∥∥∇x log pσ
T−t(X̃t) − ∇x log pσ

T−t(0)
∥∥+

∥∥∇x log pσ
T−t(0)

∥∥
≤ LS

∥∥X̃t

∥∥+ C
(32)

For X̃t in Equation (∗), we have
d
dt

∥∥X̃t

∥∥2 = 2
∥∥X̃t

∥∥2 + 2
〈
X̃t, ∇x log pσ

T−t(X̃t)
〉

− 2η
〈
X̃t, P1X̃t

〉
≤ 2
∥∥X̃t

∥∥2 + 2
〈
X̃t, ∇x log pσ

T−t(X̃t)
〉

≤ 2
∥∥X̃t

∥∥2 + 2
∥∥X̃t

∥∥∥∥∇x log pσ
T−t(X̃t)

∥∥,

where the second inequality is because
〈
X̃t, P1X̃t

〉
≥ 0. Combining this with (32),

d
dt

∥∥X̃t

∥∥ ≤ (1 + LS)
∥∥X̃t

∥∥+ C.

By taking the expectation on the both sides of above inequality, Grönwall’s Inequality (Lemma H.11) implies

E
[∥∥X̃t

∥∥] ≤ E
[∥∥X̃0

∥∥] e(1+LS)t + C

1 + LS

(
e(1+LS)t − 1

)
. (33)

Because X̃0 ∼ N (0, ID), E
[∥∥X̃0

∥∥] ≤
√

D (Lemma H.8). It follows that

sup
t∈[0,T−δ]

E
[
∥X̃t∥

]
≤

√
De(1+LS)T + C

1 + LS

(
e(1+LS)T − 1

)
=: M1,

and (32) implies
sup

t∈[0,T−δ]
E
[∥∥∇x log pσ

T−t(X̃t)
∥∥] ≤ sup

t∈[0,T−δ]
LSE

[∥∥X̃t

∥∥]+ C

≤ LSM1 + C =: M2.
(34)

Then by substituting this into (30),
d
dt

mt ≤ −(η − 1)mt + M2.

Because m0 = E
[∥∥Ỹ0

∥∥] ≤
√

D − d1 by Lemma H.8, by applying Grönwall’s Inequality again, we obtain

E
[∥∥Ỹt

∥∥] = mt ≤
√

D − d1e−(η−1)t + M2

η − 1

(
1 − e−(η−1)t

)
=: Mη(t), (35)

which implies that
E
[∥∥ỸT−δ

∥∥] ≤
√

D − d1e−(η−1)(T−δ) + M2

η − 1 .

For any ε > 0,
M2

η − 1 ≤ ε

2 ⇒ η ≥ 2M2

ε
+ 1,

and √
D − d1e−(η−1)(T−δ) ≤ ε

2 ⇒ η ≥ 1
T − δ

log 2
√

D − d1

ε
+ 1.

Therefore, for any ε > 0, by choosing

η ≥ max
{

2M2

ε
,

1
T − δ

log 2
√

D − d1

ε

}
+ 1,

we have
E
[∥∥ỸT−δ

∥∥] ≤ ε.
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D.3 Theoretical Analysis for Universal Guidance

Consider the universal guidance model

dX←t
dt

= X←t + ∇x log pT−t(X←t ) − η∇xf(X←t ), X←0 ∼ N (0, ID), (36)

for t ∈ [0, T ], where pt is the density function in DDPMs.
Theorem D.1. For the dynamics (36), assume that log pt is L-smoothness, f is ρ-strongly convex, and
E [f(X←0 )] < ∞. Then

E [f(X←T )] − f(x∗) = O
(

e−η + 1
η

)
,

where x∗ is the unique minimizer of f .

Proof. By differentiating f(X←t ),

d
dt

f(X←t ) =
〈

∇xf(X←t ), d
dt

X←t

〉
= ⟨∇xf(X←t ), X←t + ∇x log pT−t(X←t ) − η∇xf(X←t )⟩
≤ ∥X←t ∥∥∇xf(X←t )∥ + ∥∇x log pT−t(X←t )∥∥∇xf(X←t )∥ − η∥∇xf(X←t )∥2

.

Let C = supt∈[δ,T ]∥∇x log pt(0)∥ < ∞. Then, the L-smoothness of log pt implies that

∥∇x log pT−t(X←t )∥ ≤ L∥X←t ∥ + C.

Therefore, by ab ≤ (a2 + b2)/2, we have

d
dt

f(X←t ) ≤ (1 + L)∥X←t ∥∥∇xf(X←t )∥ + C∥∇xf(X←t )∥ − η∥∇xf(X←t )∥2

≤ 1 + L

2

(
∥X←t ∥2 + ∥∇xf(X←t )∥2

)
+ 1

2

(
C2 + ∥∇xf(X←t )∥2

)
− η∥∇xf(X←t )∥2

= −1
2(η − 2 − L)∥∇xf(X←t )∥2 + 1 + L

2 ∥X←t ∥2 + C2

2
Because f is ρ-strongly convex, by Lemma H.12, it satisfies the ρ-PL inequality,

∥∇xf(X←t )∥2 ≥ 2ρ (f(X←t ) − f(x∗)) ,

For η > L + 2, we obtain

d
dt

f(X←t ) ≤ −ρ(η − 2 − L) (f(X←t ) − f(x∗)) + 1 + L

2 ∥X←t ∥2 + C2

2 .

Taking the expectation on the both sides yields that

d
dt

E [f(X←t )] ≤ −ρ(η − 2 − L) (E [f(X←t )] − f(x∗)) + 1 + L

2 E
[
∥X←t ∥2

]
+ C2

2 . (37)

The next step is to bound E
[
∥X←t ∥2

]
. Let Rt := X←t − x∗. Then

1
2

d
dt

∥Rt∥2 = ⟨Rt, X←t + ∇x log pT−t(X←t ) − η∇xf(X←t )⟩

= ⟨Rt, X←t ⟩ + ⟨Rt, ∇x log pT−t(X←t )⟩ − η ⟨Rt, ∇xf(X←t )⟩ .
(38)

To obtain the desired inequality, we consider these three terms respectively. For the first term,

⟨Rt, X←t ⟩ = ∥Rt∥2 + ⟨Rt, x∗⟩ ≤ ∥Rt∥2 + ∥x∗∥∥Rt∥. (39)
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Let c = ∥∇x log pT−t(x∗)∥. By the L-smoothness of log pt, we have

∥log pT−t(X←t )∥ ≤ ∥log pT−t(X←t ) − ∇x log pT−t(x∗)∥ + ∥∇x log pT−t(x∗)∥
≤ L∥Rt∥ + c.

Therefore, for the second term,

⟨Rt, ∇x log pT−t(X←t )⟩ ≤ ∥Rt∥∥∇x log pT−t(X←t )∥
≤ L∥Rt∥2 + c∥Rt∥.

(40)

For the third term, because f is ρ-strongly convex, ∇xf(x∗) = 0 and

⟨Rt, ∇xf(X←t )⟩ = ⟨Rt, ∇xf(X←t ) − ∇xf(x∗)⟩ ≥ ρ∥Rt∥2
. (41)

Then, by combining (38) with (39) (40) (41), we have

d
dt

∥Rt∥2 ≤ 2(L + 1 − ηρ)∥Rt∥2 + 2c̃∥Rt∥

≤ (2L + 3 − 2ηρ)∥Rt∥2 + c̃2.

where c̃ = ∥x∗∥ + c. By taking the expectation on the both sides, Grönwall’s Inequality (Lemma H.11)
implies that

E
[
∥Rt∥2

]
≤ E

[
∥R0∥2

]
e−(2ηρ−2L−3)t + c̃2

2ηρ − 2L − 3

(
1 − e−(2ηρ−2L−3)t

)
By taking a sufficiently large η such that 2ηρ − 2L − 3 > c̃2 > 0, we have

E
[
∥Rt∥2

]
≤ E

[
∥R0∥2

]
+ 1

Note that X←0 ∼ N (0, ID), which implies that E
[
∥X←0 ∥2

]
= D. Therefore,

E
[
∥R0∥2

]
≤ E

[
∥X←0 ∥2

]
+ ∥x∗∥2 ≤ D + ∥x∗∥2

,

and
E
[
∥X←t ∥2

]
≤ E

[
∥Rt∥2

]
+ ∥x∗∥2 ≤ D + 2∥x∗∥2 + 1 =: M3.

By substituting M3 into (37), we obtain

d
dt

E [f(X←t )] ≤ −ρ(η − 2 − L) (E [f(X←t )] − f(x∗)) + M4

for M4 := ((1 + L)M3 + C2)/2. Then, by Grönwall’s Inequality,

E [f(X←T )] − f(x∗) ≤ (E [f(X←0 )] − f(x∗)) e−ρ(η−2−L)T + M4

ρ(η − 2 − L) ,

which means that
E [f(X←T )] − f(x∗) = O

(
e−η + 1

η

)
.

D.4 Proof of Theorem 11

Proof of Theorem 11. The proof consists two main steps:
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(i) Let Q1 = A1A⊤1 . For any coupling (X̃, X) ∼
(
p̃T−δ,PX|Y (· | Y = 1)

)
, we have

W1
(
p̃T−δ,PX|Y (· | Y = 1)

)
≤ E

[
∥X̃ − X∥

]
= E

[
∥Q1X̃ − Q1X∥

]
+ E

[
∥P1X̃ − P1X∥

]
= E

[
∥Q1X̃ − X∥

]
+ E

[
∥ỸT−δ∥

]
,

where the final equality holds because X ∼ PX|Y (· | Y = 1) implies that Q1X = X, and X̃ ∼ p̃T−δ

implies that P1X̃ = ỸT−δ. And by (35),

E
[∥∥ỸT−δ

∥∥] ≤ Mη(T − δ) = O(e−T + η−1).

Let (Q1X̃, X) be chosen as the optimal coupling for
(
(Q1)#p̃T−δ,PX|Y (· | Y = 1)

)
, i.e.,

W1
(
(Q1)#p̃T−δ,PX|Y (· | Y = 1)

)
= E

[
∥Q1X̃ − X∥

]
.

Therefore, we have

W1
(
p̃T−δ,PX|Y (· | Y = 1)

)
≤ W1

(
(Q1)#p̃T−δ,PX|Y (· | Y = 1)

)
+ O(e−T + η−1). (42)

(ii) For W1
(
(Q1)#p̃T−δ,PX|Y (· | Y = 1)

)
, by the triangular inequality,

W1
(
(Q1)#p̃T−δ,PX|Y (· | Y = 1)

)
≤ W1 ((Q1)#p̃T−δ, (Q1)#PX)

+ W1
(
(Q1)#PX ,PX|Y (· | Y = 1)

)
≤ W1 (p̃T−δ,PX) + W1

(
(Q1)#PX ,PX|Y (· | Y = 1)

)
,

(43)

where the final inequality is because Q1 is an orthogonal projection (Lemma H.13).
By Lemma D.3, the second term in above inequality is bounded by

W1
(
(Q1)#PX ,PX|Y (· | Y = 1)

)
≤ C̃1 (44)

for some constant C̃1. For the first term, it can be divided into

W1 (p̃T−δ,PX) ≤ W1 (p̃T−δ, p̂δ) + W1 (p̂δ, pσ
δ ) + W1 (pσ

δ ,Pσ
X) + W1 (Pσ

X ,PX) , (45)

where p̂t is defined in dynamics (51), pσ
t is the density evolving in the DDPM initialized from Pσ

X ; see
(13), and Pσ

X is defined in Proposition 5. For the four terms in (45):
(a) By Proposition D.5 and mI > 1 (Corollary 9),

W1 (p̃T−δ, p̂σ
δ ) ≤ O(e−T + η−1) + C̃2 (46)

for some constant C̃2.
(b) By Proposition D.4,

W1 (p̂δ, pσ
δ ) ≤ O(e−T ). (47)

(c) Note that
Xσ

δ = √
αδAZ +

√
1 − αδξ ∼ pσ

δ , αδ = e−2δ

for Z ∼ pZ
σ . Moreover, AZ ∼ Pσ

X . Therefore,

W1 (pσ
δ ,Pσ

X) ≤ E [∥Xσ
δ − AZ∥]

≤ E [∥Xσ
δ −

√
αδAZ∥] + (1 −

√
αδ)E[∥AZ∥]

=
√

1 − αδE [∥ξ∥] + (1 −
√

αδ)EZ∼pZ
σ

[∥Z∥]

≤
√

2δD + δmZ
σ ,

where mZ
σ = EZ∼pZ

σ
[∥Z∥] < ∞ by Lemma D.2. It follows that

W1 (pσ
δ ,Pσ

X) ≤ O(δ1/2). (48)
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(d) By Proposition 5,
W1 (Pσ

X ,PX) ≤ O(σ). (49)

Then, combining (46) (47) (48) (49) with (45), we have

W1 (p̃T−δ,PX) ≤ O(e−T + δ1/2 + σ + η−1) + C̃2. (50)

Combining (50) (44) with (43), it follows

W1
(
(Q1)#p̃T−δ,PX|Y (· | Y = 1)

)
≤ O(e−T + δ1/2 + σ + η−1) + C̃,

where C̃ = C̃1 + C̃2. Therefore, substituting this in (42), we obtain

W1
(
p̃T−δ,PX|Y (· | Y = 1)

)
≤ O(e−T + δ1/2 + σ + η−1) + C̃.

Remark D.1. For the error floor C̃, we provide two further discussions.

(i) First, it follows from the above proof that C̃ = C̃1 + C̃2, where

• C̃1 is determined by (44) and Lemma D.3,

C̃1 = w2m
Z
1 , mZ

1 := mZ
1 = EZ∼PZ

1
[∥Z∥],

which is independent of the parameters T, δ, σ.
• C̃2 is given by (46) and Proposition D.5,

C̃2 = M2

mI − 1 ,

where M2 is defined in (34) and depends on LS = supt∈[0,T−δ] Lt and T , while mI =
inft∈[0,T−δ] mt. Since Lt and mt are specified by Theorem 8 through pσ

t , C̃2 depends implic-
itly on T , δ, and σ.

(ii) We believe the error floor is inherent to the geometric guidance model. Because of the analytical
simplicity of the geometric guidance, it cannot provide as much information as the probability guidance
term did. More precisely, in Appendix C.3, we show that

∥∇x log pt(y = 1 | x) + ηtP1x∥ ≤ βt, ∀ x ∈ Mt
1,

for some scalar ηt > 0, and βt = O(εt), when pt(y = 1 | x) > 1 − εt for all x ∈ Mt
1. This shows that

the probabilistic guidance ∇x log pt(y = 1 | x) is “almost parallel” to the geometric guidance P1x, but
the norm of the probabilistic guidance carries additional information that the geometric term cannot
capture. This is a trade-off made for the sake of analytical tractability.

Lemma D.2. Let Zi ∼ pZ
i for i = 1, 2. If mZ

i = E [∥Zi∥] < ∞, then for pZ
σ defined in (11) (12),

mZ
σ := EZ∼pZ

σ
[∥Z∥] < ∞.

Proof. By the definition of (12),

E [∥Zi,σ∥] ≤ E [∥Zi∥] + σE [∥ζi∥] ≤ mZ
i + σ

√
d < ∞

for Zi,σ ∼ pZ
i,σ, where the second inequality is by Lemma H.8. Then, by (11),

EZ∼pZ
σ

[∥Z∥] =
∫
Rd

zpZ
σ (z)dz

= w1

∫
Rd

zpZ
1,σ(z)dz + w2

∫
Rd

zpZ
2,σ(z)dz

= w1E [∥Z1,σ∥] + w2E [∥Z2,σ∥] < ∞.
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Lemma D.3. For
PX = w1PX|Y (· | Y = 1) + w2PX|Y (· | Y = 2)

under Assumption I,
W1((Q1)#PX ,PX|Y (· | Y = 1)) ≤ w2m

Z
1 ,

where Q1 = A1A⊤1 and mZ
1 = EZ∼PZ

1
[∥Z∥].

Proof. First, by Lemma H.7,

(Q1)#PX = (Q1)#PX|Y (· | Y = 1) + (Q1)#PX|Y (· | Y = 2)

For the two terms, if X ∼ PX|Y (· | Y = 1), then Q1X = X, which implies that

(Q1)#PX|Y (· | Y = 1) = PX|Y (· | Y = 1)

On the other hand, X ∼ PX|Y (· | Y = 2) implies that Q1X = 0 so that

(Q1)#PX|Y (· | Y = 2) = δ0,

the Dirichlet measure at 0. Therefore, by Lemma H.9,

W1((Q1)#PX ,PX|Y (· | Y = 1)) ≤ w2W1(δ0,PX|Y (· | Y = 1)).

For any coupling (D, X) ∼ (δ0,PX|Y (· | Y = 1),

W1(δ0,PX|Y (· | Y = 1)) ≤ E [∥D − X∥]
= E [∥X∥] = EZ∼PZ

1
[∥A1Z∥] = EZ∼PZ

1
[∥Z∥] ,

where the last two equalities are because PX|Y (· | Y = 1) = (A1)#PZ
1 and A1 ∈ OD×d1 by Assumption I.

In the following, unless otherwise specified, we assume that Assumptions I, II, III, and IV hold.
Proposition D.4. Let pσ

t be defined in (13). Consider the following two dynamics:

dX̂t

dt
= X̂t + ∇x log pσ

T−t(X̂t), X̂0 ∼ N (0, ID) (51)

with the notation X̂t ∼ p̂σ
T−t, and

dX̄t

dt
= X̄t + ∇x log pσ

T−t(X̄t), X̄0 ∼ pσ
T ,

where note that X̄t ∼ pσ
T−t. For δ > 0, we

W1(p̂σ
δ , pσ

δ ) ≤ e−mI (T−δ)
(
mZ

σ +
√

D
)

,

where mZ
σ = EZ∼pZ

σ
[∥Z∥] and mI = inft∈[δ,T ] mt is defined in Theorem 8.

Proof. First, by the Theorem 8, pσ
T−t is mI -strong log-concavity for t ∈ [0, T − δ], which follows that〈

X̂t − X̄t, ∇x log pσ
T−t(X̂t) − ∇x log pσ

T−t(X̄t)
〉

=
〈

X̂t − X̄t, ∇2
x log pσ

T−t(x)
(

X̂t − X̄t

)〉
≤ −mI∥X̂t − X̄t∥2.

Therefore, we have

d
dt

∥X̂t − X̄t∥2 = 2
〈

X̂t − X̄t,
d
dt

(
X̂t − X̄t

)〉
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= 2∥X̂t − X̄t∥2 + 2
〈

X̂t − X̄t, ∇x log pσ
T−t(X̂t) − ∇x log pσ

T−t(X̄t)
〉

≤ −2(mI − 1)∥X̂t − X̄t∥2,

which indicates that
d
dt

∥X̂t − X̄t∥ ≤ −(mI − 1)∥X̂t − X̄t∥,

Then, by Grönwall’s Inequality(Lemma H.11),

∥X̂T−δ − X̄T−δ∥ ≤ e−(mI−1)(T−δ)∥X̂0 − X̄0∥.

Therefore, by the definition of Wasserstein distance,

W1(p̂σ
δ , pσ

δ ) ≤ E
[
∥X̂T−δ − X̄T−δ∥

]
≤ e−(mI−1)(T−δ)E

[
∥X̂0 − X̄0∥

]
.

By choosing (X̂0, X̄0) as the optimal coupling, we obtain that

W1(p̂σ
δ , pσ

δ ) ≤ e−(mI−1)(T−δ)W1(N (0, ID), pσ
T ). (52)

For the right hand side of (52), by the definition of pσ
t in Equation (13), i.e.,

Xσ
t = √

αtAZ +
√

1 − αtξ ∼ pσ
t

for Z ∼ pZ
σ , ξ ∼ N (0, ID), and αt = e−2t, we have

W1(pσ
t , N (0, (1 − αt)ID)) ≤

√
αtE [∥AZ∥] = e−tEZ∼pZ

σ
[∥Z∥] .

Moreover,
W1(N (0, (1 − αT )ID), N (0, ID)) ≤ (1 −

√
1 − αT )E [∥ξ∥] ≤ e−T

√
D.

Therefore,

W1(pσ
T , N (0, ID)) ≤ W1(pσ

T , N (0, (1 − αT )ID)) + W1(N (0, (1 − αT )ID), N (0, ID))

≤ e−T
(
mZ

σ +
√

D
)

.

Substituting this in the inequality (52) implies that

W1(p̂σ
δ , pσ

δ ) ≤ e−mI (T−δ)−δ
(
mZ

σ +
√

D
)

≤ e−mI (T−δ)
(
mZ

σ +
√

D
)

.

Proposition D.5. Consider the geometric guidance model (∗) and the dynamics (51), for the corresponding
generated distribution p̃σ

t and p̂σ
t , we have

W1 (p̃T−δ, p̂σ
δ ) ≤ η

√
D − d1

η − mI
e−(mI−1)(T−δ) + ηM2

(mI − 1) (η − 1) ,

where M2 is the constant defined in (34).

Proof. By the mI -strong log-concavity of pσ
t (Theorem 8), we have

1
2

d
dt

∥X̂t − X̃t∥2 =
〈

X̂t − X̃t,
d
dt

(
X̂t − X̃t

)〉
=
〈

X̂t − X̃t, X̂t − X̃t + ∇x log pσ
T−t(X̂t) − ∇x log pσ

T−t(X̃t) + ηP1X̃t

〉
≤ −(mI − 1)∥X̂t − X̃t∥2 + η∥X̂t − X̃t∥

∥∥P1X̃t

∥∥
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Note that P1X̃t = Ỹt. It follows that

d
dt

∥X̂t − X̃t∥ ≤ −(mI − 1)∥X̂t − X̃t∥ + η
∥∥Ỹt

∥∥.

Moreover, by (35), taking the expectation on the both sides yields

d
dt

E
[
∥X̂t − X̃t∥

]
≤ −(mI − 1)E

[
∥X̂t − X̃t∥

]
+ ηMη(t).

Then, Grönwall’s inequality implies that

W1 (p̃T−δ, p̂σ
δ ) ≤ E

[
∥X̂T−δ − X̃T−δ∥

]
≤ η

∫ T−δ

0
Mη(s)e−(mI−1)(T−δ−s)ds =: I(η),

when the initial coupling is chosen as X̂0 = X̃0 ∼ N (0, ID). For I(η), by the definition of Mη(t) in (35), we
have

I(η) ≤ η

∫ T−δ

0

(√
D − d1e−(η−1)s + M2

η − 1

)
e−(mI−1)(T−δ−s)ds

= η
√

D − d1

η − mI
e−(mI−1)(T−δ)

(
1 − e−(η−mI )(T−δ)

)
+ ηM2

(mI − 1) (η − 1)

(
1 − e−(mI−1)(T−δ)

)
≤ η

√
D − d1

η − mI
e−(mI−1)(T−δ) + ηM2

(mI − 1) (η − 1) .

D.5 Discretization Error

To clarify why performance degrades in practice when η becomes too large, we analyze the discretization error
of the geometric guidance model (∗). In practice, ODEs are typically solved using the Euler method, while
SDEs are solved using the Euler–Maruyama (EM) scheme. Since our model is formulated as a deterministic
ODE in (∗), we focus on the Euler approximation; the analysis for the corresponding SDE and the EM
scheme is analogous.

More specifically, we partition the interval [0, T − δ] into N subintervals with step size h = (T − δ)/N , and
define tk = kh for k = 0, 1, . . . , N . The Euler scheme then constructs the sequence

{
Xh

k

}N

k=0 via

Xh
k+1 = Xh

k + h
(
Xh

k + ∇x log pσ
T−tk

(Xh
k ) − ηP1Xh

k

)
, Xh

0 ∼ N (0, ID).

Let Xh
k ∼ p̃h

k . Our goal is to bound the Wasserstein error W1(p̃T−δ, p̃h
N ). Under the Lipschitz continuity of

∇x log pσ
t , standard results yield W1(p̃T−δ, p̃h

N ) ≤ O(heη) (Griffiths & Higham, 2010, Theorem 2.4). Because
of Theorem 8, we not only have the LS-smoothness∥∥∇2

x log pσ
t (x)

∥∥
op ≤ LS , LS = sup

t∈[δ,T ]
Lt,

but also the mI -strong log-concavity

−∇2
x log pσ

t (x) ⪰ mIID, mI = inf
t∈[δ,T ]

mt.

The additional strong log-concavity yields the improved bound

W1(p̃T−δ, p̃h
N ) ≤ O(hη2).
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Theorem D.6. Assume that t 7→ ∇x log pσ
t (x) is C1 for each x, and there exist A, B ≥ 0 such that

∥∂t∇x log pσ
t (x)∥ ≤ A + B∥x∥.

For η > 2, if h(η − 1) < 1, we have
W1(p̃T−δ, p̃h

N ) ≤ O(hη2).

Proof. Let
b(t, x) = x + ∇x log pσ

T−t(x) − ηP1x.

Let Φk(x) =: xtk+1 , where xt is the solution of ODE

dxt

dt
= b(t, xt), t ∈ [tk, tk+1], (53)

with initial value xtk
= x. By (∗), we can see

X̃tk+1 = Φk(X̃tk
)

Moreover, define the Euler one-step map

Ψk(x) = x + hb(tk, x),

so that Euler scheme is
Xh

k+1 = Ψk(Xh
k ).

Therefore,

ek+1 := X̃tk+1 − Xh
k+1 = Φk(X̃tk

) − Ψk(Xh
k )

=
(
Φk(X̃tk

) − Φk(Xh
k )
)

+
(
Φk(Xh

k ) − Ψk(Xh
k )
)

.

Next, we analyze these two terms respectively.

(i) By the mI -strong log-concavity, we have〈
∇x log pσ

T−t(x) − ∇x log pσ
T−t(y), x − y

〉
≤ −mI∥x − y∥2.

Moreover, since P1 is an orthogonal projection,

⟨(ID − ηP1)(x − y), x − y⟩ = ∥x − y∥2 − η∥P1(x − y)∥2 ≤ ∥x − y∥2.

Therefore,
⟨b(t, x) − b(t, y), x − y⟩ ≤ −(mI − 1)∥x − y∥2

Let xt, yt be the solution of (53) with the initial value xtk
= x and ytk

= y. So we have

d
dt

∥xt − yt∥2 = 2 ⟨b(t, xt) − b(t, yt), xt − yt⟩ ≤ −2(mI − 1)∥xt − yt∥2.

Then by the Grönwall’s Inequality (Lemma H.11),∥∥xtk+1 − ytk+1

∥∥ ≤ e−(mI−1)h∥x − y∥,

which implies that
∥Φk(x) − Φk(y)∥ ≤ e−(mI−1)h∥x − y∥. (54)
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(ii) Fix x ∈ RD and let xt be the solution of (53) with the initial value xtk
= x. Note that by definition

Φk(x) = x +
∫ tk+1

tk

b(t, xt)dt.

Therefore,

Φk(x) − Ψk(x) =
∫ tk+1

tk

(b(t, xt) − b(tk, x)) dt

=
∫ tk+1

tk

(b(t, xt) − b(t, x)) dt +
∫ tk+1

tk

(b(t, x) − b(tk, x)) dt.

For above two terms, we analyze them respectively.
(a) Since ∥ID − ηP1∥op = η − 1 (η > 2) and ∇x log pt is LS-Lipschitz continuous, b(t, ·) is K(η)-

Lipschitz continuous for K(η) = LS + η − 1. So∫ tk+1

tk

∥b(t, xt) − b(t, x)∥ds ≤ K(η)
∫ tk+1

tk

∥xt − x∥ds

Note that

∥xt − x∥ =
∥∥∥∥∫ t

tk

b(s, xs)ds

∥∥∥∥ ≤
∫ t

tk

∥b(s, xs)∥ds ≤ (t − tk) sup
s∈[tk,tk+1]

∥b(s, xs)∥.

Therefore, ∫ tk+1

tk

∥b(t, xt) − b(t, x)∥ds ≤ h2

2 K(η) sup
s∈[tk,tk+1]

∥b(s, xs)∥. (55)

For the right hand side, using same notation as (31), let

C = sup
t∈[δ,T ]

∥∇x log pσ
t (0)∥ < ∞.

It implies that ∥b(t, 0)∥ ≤ C and so

∥b(s, xs)∥ ≤ ∥b(s, xs) − b(s, 0)∥ + ∥b(t, 0)∥ ≤ C + K(η)∥xs∥.

Let S = sups∈[tk,tk+1]∥xs∥ < ∞. Using the similar idea as in the proof of Theorem 10 in Appendix
D.2,

S = sup
s∈[tk,tk+1]

∥xs∥ ≤ C1∥x∥ + C2

where C1 = exp ((1 + LS)h) and C2 = C(exp((1 + LS)h) − 1)/(1 + LS) as shown in (33) and they
are independent of η. So

sup
s∈[tk,tk+1]

∥b(s, xs)∥ ≤ C + K(η) sup
s∈[tk,tk+1]

∥xs∥ ≤ C1K(η)∥x∥ + C2K(η) + C. (56)

Combining (55) and (56), we have∫ tk+1

tk

∥b(t, xt) − b(t, x)∥dt ≤ h2

2
(
C1K(η)2∥x∥ + C2K(η)2 + CK(η)

)
. (57)

(b) Since b(t, x) − b(tk, x) = ∇x log pσ
T−t(x) − ∇x log pσ

T−tk
(x),

∥b(t, x) − b(tk, x)∥ ≤
∫ t

tk

∥∥∂t∇x log pσ
T−s(x)

∥∥ds ≤ (t − tk) (A + B∥x∥) .

It implies that ∫ tk+1

tk

∥b(t, x) − b(tk, x)∥dt ≤ h2

2 (A + B∥x∥). (58)
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Therefore, combining (57) and (58),

∥Φk(x) − Ψk(x)∥ ≤
∫ tk+1

tk

∥b(t, xt) − b(t, x)∥dt +
∫ tk+1

tk

∥b(t, x) − b(tk, x)∥dt

≤ h2

2
(
A + C2K(η)2 + CK(η) + (B + C1K(η)2)∥x∥

)
.

(59)

Combining (54) and (59), by setting x = Xh
k and y = X̃tk

,

∥ek+1∥ ≤
∥∥Φk(X̃tk

) − Φk(Xh
k )
∥∥+

∥∥Φk(Xh
k ) − Ψk(Xh

k )
∥∥

≤ e−(mI−1)h∥ek∥ + h2

2
(
A + C2K(η)2 + CK(η) + (B + C1K(η)2)∥Xh

k ∥
)

.

Let ak = E [∥ek∥]. By the following Lemma D.7, because h(η − 1) < 1, E
[∥∥Xh

k

∥∥] ≤ Me. Taking the
expectation of above inequality, we have

ak+1 ≤ e−(mI−1)hak + h2

2
(
A + C2K(η)2 + CK(η) + (B + C1K(η)2)Me

)
.

Therefore, by coupling X̃0 = Xh
0 , i.e., a0 = 0, we have

aN = E
[∥∥X̃T−δ − Xh

N

∥∥] ≤ h2

2
(
A + C2K(η)2 + CK(η) + (B + C1K(η)2)Me

)N−1∑
k=0

e−(mI−1)hk

≤ h

2
(
A + C2K(η)2 + CK(η) + (B + C1K(η)2)Me

) e(mI−1)h

mI − 1 .

It follows that as h → 0 and η → ∞,

W1(p̃T−δ, p̃h
N ) ≤ E

[∥∥X̃T−δ − Xh
N

∥∥] ≤ O(hη2).

Lemma D.7. For η > 2, if h(η − 1) < 1, then

sup
k

E
[∥∥Xh

k

∥∥] ≤ Me,

where Me is independent of η.

Proof. First, by construction,

Xh
k+1 = (ID + h(ID − ηP1)) Xh

k + h∇x log pσ
T−tk

(Xh
k ).

Let Mh = ID + h(ID − ηP1). Then because P1 is an orthogonal projection, there are only two eigenvalues
of Mh: for x ∈ ker P1, Mhx = (1 + h)x, and for x ∈ Im P1, Mhx = (1 + h(1 − η))x. Because h(η − 1) < 1,
1 + h(1 − η) ∈ [0, 1]. So

∥Mh∥op = 1 + h.

Similarly, as shown in (32), ∥∥∇x log pσ
T−tk

(Xh
k )
∥∥ ≤ LS

∥∥Xh
k

∥∥+ C.

Therefore, ∥∥Xh
k+1
∥∥ ≤ ∥Mh∥op

∥∥Xh
k

∥∥+ h
∥∥∇x log pσ

T−tk
(Xh

k )
∥∥

≤ (1 + h(1 + LS))
∥∥Xh

k

∥∥+ Ch.

Taking expectations on the both sides, we have

E
[∥∥Xh

k

∥∥] ≤ (1 + h(1 + LS))k E
[∥∥Xh

0
∥∥]+ Ch

k−1∑
j=0

(1 + h(1 + LS))j
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≤ e(1+LS)tk
(
E
[∥∥Xh

0
∥∥]+ Ctk

)
.

Because Xh
0 ∼ N (0, ID), E

[∥∥Xh
0
∥∥] ≤

√
E
[∥∥Xh

0
∥∥2
]

=
√

D. Therefore, if let

Me := e(1+LS)(T−δ)
(√

D + C(T − δ)
)

,

which is independent of η, then
E
[∥∥Xh

k

∥∥] ≤ Me.

E Analysis for Assumptions

E.1 More Details for Orthogonality Assumption

For Assumption I, consider the case where A⊤1 A2 ̸= O, i.e., M1 is not orthogonal to M2. In this case,
A = (A1, A2) /∈ OD×d, meaning that A⊤A ̸= Id and AA⊤ is no longer an orthogonal projection. We claim
that this relaxation does not affect our analysis regarding the guidance scale η. Based on our results, it is
necessary to examine its influence from three perspective: the smoothness and concavity of log pσ

t (Section
5.1), the estimation of the target manifold M1 (Section 5.2), and the distance between generated and target
distributions (Section 5.3).

(a) Smoothness and Convexity: First, the results on the strong log-concavity of the latent density in
Theorem 7 are independent of the orthogonality of A. Therefore, to analyze the smoothness and
concavity of log pσ

t , it suffices to revisit the proof of Theorem 8. Note that

Xσ
t = √

αtAZσ +
√

1 − αtξ ∼ pσ
t .

By Proposition 3, Corollary 4, and the mZ
0 -strong log-concavity of the latent density pZ

σ (Theorem 7),
we obtain the following bounds:∥∥∇2

x log pσ
t (x)

∥∥
op ≤ LA

t , LA
t := αt(ΛA + λA) + (1 − αt)mZ

0
(1 − αt)(αtλA + mz

0(1 − αt))
,

and
−∇2

x log pσ
t (x) ⪰ mZ

t ID, mZ
t := (1 − αt)mz

0 − αt(ΛA − λA)
(1 − αt)(αtλA + mz

0(1 − αt))
,

where
ΛA = ∥A∥2

op = λmax(A⊤A), λA = λmin(A⊤A).

Because A = (A1, A2) and Ai are orthogonal,

A⊤A =
(

Id1 C
C⊤ Id2

)
= Id +

(
O C

C⊤ O

)
, C := A⊤1 A2.

Let σmax(C) be the maximal singular value of C. Then, we have

1 − σmax(C) ≤ λA ≤ ΛA ≤ 1 + σmax(C).

Moreover, because ∥C∥op ≤ ∥A1∥op∥A2∥op = 1, σmax(C) ≤ 1, which implies that 0 ≤ λA ≤ ΛA ≤ 2.
For smoothness, it is clear that 0 < LA

t < ∞, so the non-orthogonality of A does not affect the
L-smoothness of log pσ

t , except that the constant changes from Lt to LA
t . However, for strong log-

concavity, it requires mA
t > 1 (Corollary 9), which holds if

t >
1
2 log mz

0 − ΛA

mz
0 − λA

, (60)

under the condition mZ
0 > 2 ≥ ΛA. This requires a modification of Assumption III, M ≤ 2

√
m − 2, for

the same reason discussed in the proof of Corollary 9.
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(b) Estimating Target Manifold: Since Theorem 10 depends only on the L-smoothness of log pσ
t , and the

geometric guidance model (∗) does not involve A, the result of Theorem 10 remains valid even when A
is not orthogonal.

(c) Distance to Target Distribution: Because the condition mA
t > 1 requires inequality (60), one can set

δ >
1
2 log mz

0 − ΛA

mz
0 − λA

,

and consider the geometric guidance model (∗) on interval [0, T − δ]. With this adjustment, the results
in Theorem 11 still hold, up to changes in certain constants. For instance, the non-orthogonality of A
changes the bound on W1((Q1)#PX ,PX|Y (· | Y = 1)), specifically the constant C̃ in Theorem 11.

E.2 More details of Assumption III

In the following, we demonstrate a family of distributions that satisfy both Assumption II and Assumption
III. Consider the density function pZ

i of the distribution PZ
i , given by the form:

pZ
i (z) = e−Vi(z)χKi(z),

where Ki ⊂ Rdi is a convex and compact set, and

∇2
zVi(z) ⪰ mIdi .

In other words, pZ
i belongs to the class of strongly log-concave densities supported on convex and compact

subsets of Rdi .

First, for such pZ
i , strong log-concavity on a convex set does not perfectly align with Assumption II, which

induces a question of whether this property can substitute for Assumption II in deriving the strong log-
concavity of the mixture latent density pZ

σ defined in Equation (11).

In the proof of Theorem 7, the strong log-concavity of pZ
σ is inherited from that of the component densities

pZ
i,σ defined in Equation (12), which are shown to be strongly log-concave via Corollary 4, under Assumption

II. In other words, the key question is whether strong log-concavity on a convex set suffices to replace
the strong log-concavity condition in Proposition 3, and thereby still allow us to deduce the conclusion of
Corollary 4.
Proposition E.1. Let Z be a random variable on Rk with the density function pZ given by

pZ(z) = e−V (z)χK(z),

where K is a convex set. Let B ∈ Rn×k. Assume there are m0, Λ > 0 such that

∇2
zV (z) ⪰ m0Ik, ∥B∥2

op ≤ Λ,

and λ := λmin(B⊤B) ≥ 0. For α ∈ R and β > 0, let

X = αBZ + βξ, ξ ∼ N (0, In)

with the density function pX on Rn. We have

∇2
x log pX(x) ⪯

(
α2Λ

β2(α2λ + m0β2) − 1
β2

)
In.

Proof. By the same calculation, we have

∇2
x log pX(x) = α2

β4 B Covµx
(Z)B⊤ − 1

β2 In,
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Note in this case,

dµx(z) = e−Ux(z)χK(z)dz∫
K

e−U (y)dy
,

where
Ux(z) = 1

2σ2 ∥x − Bz∥2 + V (z).

It follows that
∇2

zUx(z) = α2

β2 B⊤B + ∇2
zV (z) ⪰ mIk, m := α2λ

β2 + m0.

Instead of applying Lemma H.6, by using the Brascamp–Lieb Inequality on a convex set (Bobkov & Ledoux,
2000, Proposition 2.1), we still have

Varµx(f) ≤ 1
m
Eµx

[
∥∇f∥2

]
,

for any C1 function f : Rk → R, which also indicates that

∥Covµx(Z)∥op ≤ 1
m

.

Then, the following proof is as same as the proof in Proposition 3 and in Corollary 4 so that we have the
same result

∇2
x log pX(x) ⪯

(
α2Λ

β2(α2λ + m0β2) − 1
β2

)
In.

Therefore, Proposition E.1 shows that, in our settings, Assumption II can be replaced Assumption II′:
Assumption II′. For i = 1, 2, PZ

i admits the density function pZ
i that has the form pZ

i (z) = e−Vi(z)χKi
(z)

such that Ki ⊂ Rdi is a convex and compact set, and

∇2
zVi(z) ⪰ mIdi

.

Next, we verify if pZ
i in such class can satisfy Assumption III.

Proposition E.2. For i = 1, 2, let pZ
i satisfy Assumption II′, and let pZ

i,σ defined by Equation (12). Fix a
σ > 0, we have

sup
x

∥∥∇x log pZ
1,σ(x) − ∇x log pZ

2,σ(x)
∥∥ ≤

√
|K1|2 + |K2|2

σ2 ,

where |Ki| = sup {∥z∥ : z ∈ Ki}.

Proof. First, by the definition (12),

pZ
1,σ(z) = (2πσ2)− d

2

∫
K1

exp
(

− 1
2σ2

∥∥z − (z1, 0)⊤
∥∥2
)

pZ
1 (z1)dz1,

Therefore,

∇z log pZ
1,σ(z) =

∇zpZ
1,σ(z)

pZ
1,σ(z)

=
− 1

σ2

∫
K1

(z − (z1, 0)⊤) exp
(

− 1
2σ2

∥∥z − (z1, 0)⊤
∥∥2
)

pZ
1 (z1)dz1∫

K1
exp

(
− 1

2σ2 ∥z − (z1, 0)⊤∥2
)

pZ
1 (z1)dz1

.

It follows that
∇z log pZ

1,σ(z) = 1
σ2

(
(m1(z), 0)⊤ − z

)
,

where

m1(z) =

∫
K1

z1 exp
(

− 1
2σ2

∥∥z − (z1, 0)⊤
∥∥2
)

pZ
1 (z1)dz1∫

K1
exp

(
− 1

2σ2 ∥z − (z1, 0)⊤∥2
)

pZ
1 (z1)dz1

.
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Similarly,
∇z log pZ

2,σ(z) = 1
σ2

(
(0, m2(z))⊤ − z

)
,

for

m2(z) =

∫
K2

z2 exp
(

− 1
2σ2

∥∥z − (z2, 0)⊤
∥∥2
)

pZ
2 (z2)dz2∫

K2
exp

(
− 1

2σ2 ∥z − (z2, 0)⊤∥2
)

pZ
2 (z2)dz2

.

Therefore,∥∥∇z log pZ
1,σ(z) − ∇z log pZ

2,σ(z)
∥∥ = 1

σ2

∥∥(m1(z), m2(z))⊤
∥∥ = 1

σ2

√
∥m1(z)∥2 + ∥m2(z)∥2

.

Note that

mi(z) = EZ∼µi
z
[Z], dµi

z(zi) :=
exp

(
− 1

2σ2

∥∥z − (zi, 0)⊤
∥∥2
)

pZ
i (zi)dzi∫

Ki
exp

(
− 1

2σ2 ∥z − (zi, 0)⊤∥2
)

pZ
i (zi)dzi

.

By the convexity of Ki and Lemma H.10, mi(z) ∈ Ki. Then, the boundedness of Ki implies

sup
x

∥∥∇x log pZ
1,σ(x) − ∇x log pZ

2,σ(x)
∥∥ ≤

√
|K1|2 + |K2|2

σ2 .

Sufficient conditions for Assumption III. If pZ
i belongs to the class of distributions{

e−V (z)χK(z) : ∇2V ⪰ mI, K is compact and convex.
}

, (61)

then pZ
i,σ given Equation (12) is strongly log-concave by Proposition E.1. Moreover, if we choose σ such that

M ≤

√
|K1|2 + |K2|2

σ2 ≤ 2
√

m − 1 ⇔ σ2 ≥

√
|K1|2 + |K2|2

4(m − 1) , (62)

Proposition E.2 shows that Assumption III is satisfied. Then the mixture latent distribution pZ
σ given by

Equation (11) is mz
0-strongly log-concave provided by Theorem 7, which further implies that pσ

t in the
geometric guidance model (∗) satisfies:∥∥∇2

x log pσ
t (x)

∥∥
op ≤ Lt, −∇2

x log pσ
t (x) ⪰ mtID.

F Lipschitz Continuity of Score Function

If we only focus on the Lipschitz continuity of the score function ∇x log pt, where pt is obtained by a DDPM
initialized from a distribution whose latent distribution admits a smooth density function pZ , then the
conditions in Proposition 3 can be relaxed. We consider two cases below.

The first case aligns with the setting considered in De Bortoli (2022), where supp pZ is assumed to be
compact. We provide an alternative proof for this case, motivated by the argument used in the proof of
Proposition 3.
Proposition F.1. Let Z be a random variable on Rk with the density function pZ , and let ϕ : Rk → Rn be
continuous. Assume supp pZ is compact. For α ∈ R and β > 0, let

X = αϕ(Z) + βξ, ξ ∼ N (0, In),

with the density function pX on Rn. We have∥∥∇2
x log pX(x)

∥∥
op ≤ 1

β2 + α2R2

β4 ,

for some constant R > 0.
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Proof. By the similar calculation as in the proof of Proposition 3,

∇2
x log pX(x) = α2

β4 Covµx(ϕ(Z)) − 1
β2 In,

which follows that ∥∥∇2
x log pX(x)

∥∥
op ≤ 1

β2 + α2

β4 ∥Covµx
(ϕ(Z))∥op.

To bound the second term, first by the definition of µx, supp µx = supp pZ . Because supp pZ is compact and
ϕ is continuous, ϕ(supp µx) is compact, which means that there exists a R > 0 such that

sup {∥ϕ(z)∥ : z ∈ supp µx} ≤ R.

Then, we obtain that for any u ∈ Rn,

u⊤Covµx
(ϕ(Z))u = Varµx

(
u⊤ϕ(Z)

)
≤ Varµx

(∥u∥∥ϕ(Z)∥) ≤ R2∥u∥2
,

which indicates that
∥Covµx(ϕ(Z))∥op ≤ R2.

Therefore, we have ∥∥∇2
x log pX(x)

∥∥
op ≤ 1

β2 + α2R2

β4 .

Remark F.1. This proposition shows that when the latent density function has compact support, no addi-
tional conditions—such as log-concavity or L-smoothness—are required for the latent distribution. Moreover,
under the compactness assumption, the results of Proposition 3 can be extended to the nonlinear case, as
shown in De Bortoli (2022).

Next, in the non-compact case, Proposition 3 requires the strong log-concavity of the latent density pZ , as it
is used to establish not only the L-smoothness but also the concavity of log pX (see Corollary 4). However,
if we are only interested in the L-Lipschitz continuity of the score function, the assumption of concavity
can be relaxed to the L0-smoothness of log pZ , i.e.,

∥∥∇2
z log pZ(z)

∥∥ ≤ L0, or even to the weaker condition
∇2

z log pZ(z) ⪯ L0Ik; see Proposition F.2 below.
Proposition F.2. Let Z be a random variable on Rk with the density function pZ and B ∈ Rn×k. Assume
there are L0, Λ > 0 such that

∇2
z log pZ(z) ⪯ L0Ik, ∥B∥2

op ≤ Λ,

and λ := λmin(B⊤B) > 0, the minimum of all eigenvalues of B⊤B. For α ∈ R and β > 0, let

X = αBZ + βξ, ξ ∼ N (0, In),

with the density function pX on Rn. If α2λ − L0β2 > 0, we have∥∥∇2
x log pX(x)

∥∥
op ≤ 1

β2 + α2Λ
β2(α2λ − L0β2)

and
∇2

x log pX(x) ⪯
(

α2Λ
β2(α2λ − L0β2) − 1

β2

)
In.

Proof. The main difference of this proof to the proof in Proposition 3 is how to bound ∥Covµx(Z)∥op.

Note that
∇2

zUx(z) = α2

β2 B⊤B + ∇2
zV (z) ⪰

(
α2λ

β2 − L0

)
Ik,

because −∇2
z log pZ(z) = ∇2

zV (z) ⪰ −L0Ik. When α2λ − L0β2 > 0, we similarly obtain

∥Covµx
(Z)∥op ≤ β2

α2λ − L0β2 .
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Therefore, ∥∥∇2
x log pX(x)

∥∥
op ≤ 1

β2 + α2Λ
β2(α2λ − L0β2) .

On the other hand,

B Covµx
(Z)B⊤ ⪯ Λβ2

α2λ − L0β2 In,

which follows that
∇2

x log pX(x) ⪯
(

α2Λ
β2(α2λ − L0β2) − 1

β2

)
In.

G More Details for Nonlinear Extension

G.1 Omitted Proofs in Section 6

Proof of Lemma 12. The proof consists of the following three steps. First, let z ∈ Rd be arbitrary.

(i) Local construction: Because ϕ : Rd → M ⊂ RD is an isometry, the columns of Jϕ(z) form an or-
thonormal basis for the tangent space Tϕ(z)M. These vectors can be extended to an orthonormal
basis of RD by adjoining

{n1(z), n2(z), . . . , nD−d(z)} ,

where each ni is a smooth normal vector fields along M. For such ni, one can define the Fermi
coordinates map as

F : Rd × RD−d −→ RD, F (z, v) = ϕ(z) +
D−d∑
i=1

vini(z).

Then, by the Tubular Neighborhood Theorem (Theorem I.3), there exists a ε : Rd → (0, ∞) such that
for the set

V =
{

(z, v) ∈ M × RD−d : ∥v∥ < ε(z)
}

,

F : V → U = F (V ) is a diffeomorphism, where the open set U ⊂ RD is a neighborhood of M, called
a tubular neighborhood. Let π : Rd × RD−d → Rd be the projection, i.e., π(z, v) = z. Then, one can
construct

ϕ̃∗ : U −→ Rd, ϕ̃∗(x) = π(F−1(x))

(ii) Check conditions: First, because M ⊂ U , and F is diffeomorphic from V to U with F (z, 0) = ϕ(z),

ϕ̃∗(ϕ(z)) = π(F−1(ϕ(z))) = π(z, 0) = z, ∀ z ∈ Rd.

For the derivative condition, by the definition of F , we have

JF (z, 0) = (JzF (z, 0), JvF (z, 0)) = (Jϕ(z), n(z)) ,

where n = (n1(z), . . . , nD−d(z)). By Jϕ⊤Jϕ = Id, JF (z, 0) is orthogonal, which follows that

J(F−1)(F (z, 0)) = JF (z, 0)−1 = JF (z, 0)⊤ =
(

Jϕ(z)⊤
n(z)⊤

)
.

On the other hand, F−1 can be written as F−1(x) = (F1(x), F2(x)), where F1 = π ◦ F−1 = ϕ̃∗ on U .
It implies that

J(F−1)(F (z, 0)) =
(

Jϕ̃∗(ϕ(z))
JF2(ϕ(z))

)
.

Therefore, Jϕ̃∗(ϕ(z)) = Jϕ(z)⊤.
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(iii) Global construction: By the Urysohn Lemma (Munkres, 2018), there exists a smooth function χ : RD →
[0, 1] such that χ|Ũ ≡ 1 and χ|RD\U ≡ 0, where Ũ ⊂ U is a open neighborhood of M. Let h : RD → Rd

be any smooth function—for instance, a constant function h ≡ c. Define

ϕ∗(x) = χ(x)ϕ̃∗(x) + (1 − χ(x))h(x),

then the desired identities hold:

ϕ∗ ◦ ϕ = idRd , Jϕ∗(ϕ(z)) = Jϕ(z)⊤.

Proof of Theorem 13. Let ϕ : Rd → RD be the isometry for defining M = Im ϕ. Because suppPX ⊂ M,
there exists a PZ defined on Rd such that X = ϕ(Z) ∼ PX when Z ∼ PZ . Let t be fixed in (0, T ]. By (2),

Xt = √
αtϕ(Z) +

√
1 − αtξ.

Define F t : RD → RD by

F t(x) := √
αtϕ ◦ ϕ∗

(
x

√
αt

)
, αt = e−2t,

where ϕ∗ is defined in Lemma 12. Then we have

F t(Xt) = √
αtϕ ◦ ϕ∗

(
X0 +

√
1 − αt

αt
ξ

)
, X0 := ϕ(Z).

Now consider the Taylor expansion of φ := ϕ ◦ ϕ∗ at X0 = ϕ(Z), with integral remainder. We obtain

F t(Xt) = F t(X0) +
√

1 − αtJφ(X0)ξ + R(ξ),

where R(ξ) denotes the remainder term.

Next, we analyze the three terms on the right-hand side one by one. For the first term, because X0 =
ϕ(Z) ∈ M, Z = ϕ∗(X0) by the definition of ϕ∗; see the proof of Lemma 12. It implies that

F t(X0) = √
αtϕ ◦ ϕ∗(X0) = √

αtX0.

For the second term, by Lemma 12,

Jφ(X0) = Jϕ(Z)Jϕ∗(ϕ(Z)) = Jϕ(Z)Jϕ(Z)⊤.

Moreover, because Jϕ⊤Jϕ = Id, P := Jφ(X0) is an orthogonal projection with rank d. For the third term,

R(ξ) = 1 − αt√
αt

∫ 1

0
(1 − s)D2φ

(
X0 + s

√
(1 − αt)/αtξ

)
[ξ, ξ]ds.

By the proof of Lemma 12, ϕ∗ ≡ c on RD\U for a tubular neighborhood U of M, which means Jϕ∗ = 0 and
D2ϕ∗ = 0 on RD\U . It follows that

D2φ(x)[u, v] = D2ϕ(ϕ∗(x)) [Jϕ∗(x)u, Jϕ∗(x)v] + Jϕ(ϕ∗(x))(D2ϕ∗(x)[u, v]) = 0

for x ∈ RD\U . For a chosen δ, we can choose a tubular neighborhood U sufficiently thin such that X0 +
s
√

(1 − αt)/αtξ /∈ U for s > δ. Therefore, we have

R(ξ) = 1 − αt√
αt

∫ δ

0
(1 − s)D2φ

(
X0 + s

√
(1 − αt)/αtξ

)
[ξ, ξ]ds.

Assume D2φ is bounded on U . Then, for any small ε′ > 0, one can choose δ sufficiently small such that
∥R(ξ)∥ ≤ ε′.
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Combining these analyses, we obtain
√

1 − αt∥(ID − P )ξ∥ − ε′ ≤ ∥Xt − F t(Xt)∥ ≤
√

1 − αt∥(ID − P )ξ∥ + ε′. (63)

Let f t(x) := ∥x − F t(x)∥. Similarly as the proof of Proposition 1, by the Laurent-Massart bound (Lemma
H.1), (63) implies that

P
(

r(t)
√

1 − 2
√

ε − ε′ ≤ f t(Xt) ≤ r(t)
√

1 + 2
√

ε + 2ε + ε′
)

≥ 1 − 2e−2(D−d)ε,

where r(t) =
√

(D − d)(1 − αt). Because d ≪ D, one can choose small ε such that δ = e−2(D−d)ε is also
small enough. As a result, P(f t(Xt) ≈ r(t)) ≥ 1 − δ, i.e., Xt concentrates on Mt = (f t)−1(r(t)) with high
probability.

G.2 More Results of Experiments

Comparison of FID. Table 2 serves as a complement to Table 1.

Table 2: Comparison of FID on CIFAR-10

Airplane Bird Cat Deer Dog Overall
CGM (η = 1) 17.95 21.69 20.34 19.24 23.62 4.07

GeGM (η = 50) 18.98 18.39 17.35 17.38 18.45 5.15

FID v.s. guidance scale on CIFAR-10. By sampling with the nonlinear GeGM (16), Figure 3 shows
how the FID varies with the guidance scale η across all classes from CIFAR-10, which is consistent with the
result of Theorem 11.
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Figure 3: FID v.s. guidance scale η of GeGM on all classes of CIFAR-10

H Technical Lemmas

Lemma H.1 (Laurent & Massart (2000)). Let X be a χ2-random variable with n degrees of freedom, i.e.,
X =

∑n
i=1 ξ2

i with ξi
i.i.d.∼ N (0, 1). Then, for any α > 0, we have

P(X − n ≥ 2
√

nα + 2α) ≤ e−α,

P(X − n ≤ −2
√

nα) ≤ e−α.
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Lemma H.2. Let Rn = V ⊕ V ⊥ be an orthogonal decomposition of Rn, where V is a linear subspace and
V ⊥ is its orthogonal complement. Let X, Y ∈ Rn be random variables such that X ∈ V , Y ∈ V ⊥, and
X independent of Y . Suppose that X and Y admit densities pX and pY on V and V ⊥, respectively, with
respect to the canonical volume measures on V and V ⊥. Then the density function of Z = X + Y is given
by

pZ(z) = pX(Qx)pY (Q⊥x),

where Q is the orthogonal projection onto V , and Q⊥ = In − Q is the orthogonal projection onto V ⊥.

Proof. Let mV and mV ⊥ be the canonical volume measure on V and V ⊥, respectively. Define Φ: V ×V ⊥ →
Rn by ϕ(x, y) = x + y. Clearly, Φ is an orthogonal linear map, which indicates |det JΦ| = 1, so

Φ# (mV ⊗ mV ⊥) = mn,

where mn is the Lebesgue measure on Rn.

Let PX and PY be the distributions of X and Y , respectively. Then dPX = pXdmV and dPY = pY dmV ⊥ .
By the independence of X and Y , we have

d (PX ⊗ PY ) = pX(x)pY (y)d (mV (x) ⊗ mV ⊥(y)) .

Since Z = X + Y = Φ(X, Y ), it follows that Z ∼ PZ = Φ# (PX ⊗ PY ), and thus

PZ(U) =
∫
Rn

χU (z)dPZ(z)

=
∫

V×V ⊥
χU (x + y)d (PX ⊗ PY )

=
∫

V×V ⊥
χU (x + y)pX(x)pY (y)d (mV (x) ⊗ mV ⊥(y))

=
∫
Rn

χU (z)pX(Qz)pY (Q⊥z)dΦ# (mV (x) ⊗ mV ⊥(y))

=
∫
Rn

χU (z)pX(Qz)pY (Q⊥z)dmn(z).

Therefore, we have
pZ(z) = pX(Qx)pY (Q⊥x).

Lemma H.3. Let (Wt)t≥0 be a standard Brownian motion on Rm and A ∈ Om×n. Let

Bt := A⊤Wt.

Then (Bt)t≥0 is a standard Brownian motion on Rn.

Proof. The path continuity of t 7→ Bt = A⊤Wt follows directly from the path continuity of t 7→ Wt, as
does the independence of increments. The initial condition B0 = A⊤W0 = 0 is immediate. Moreover, since
A ∈ Om×n, we have,

Bt − Bs = A⊤(Bt − Bs) ∼ N (0, (t − s)Im), ∀ t > s.

Lemma H.4 (Jost (2008)). For a function g : Rn → Rm, if g : Rn → Im g is a diffeomorphism, that is, both
g and its inverse g−1 : Im g → Rn are continuously differentiable, then g#pX , the density function of g#PX

on Im g with respect to the canonical volume measure on Im g, satisfies

g#pX(y) = pX(x)
∣∣det

(
Jg(x)Jg(x)⊤

)∣∣ 1
2 , x = g−1(y).

Moreover, when g(x) = Ax for an A ∈ Om×n, A#pX(y) = pX(A⊤y).
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Remark H.1. This result is essentially a general form of the change-of-variables formula, which has been
widely used in the context of generative models on manifolds (see, e.g., Loaiza-Ganem et al. (2024)). To
rigorously justify this result, some basic knowledge of Riemannian geometry is required. Since g : Rn → Im g
is a diffeomorphism, the image Im g ⊂ Rn is a submanifold. When Im g is equipped with the canonical
Riemannian structure induced from the ambient Euclidean space Rn, the canonical volume measure on Im g
coincides with the Riemannian volume measure. Therefore, the relevant results from Jost (2008, Section 1.4)
can be applied to establish the desired formula rigorously.
Lemma H.5. Let X ∼ N (0, In) with large n. Then, with high probability, X is approximately uniformly
distributed on the sphere Sn−1(

√
n), i.e., X ∼ Unif(Sn−1(

√
n)).

Proof. First, consider Y := X
∥X∥ . We first show that Y ∼ Unif(Sn−1). Note that Sn−1 is a compact

homogeneous space:
Sn−1 ∼= SO(n)/ SO(n − 1),

where SO(n) ⊂ Rn×n denotes the special orthogonal group. Consider the natural action of SO(n) on Sn−1

given by R : Sn−1 → Sn−1, x 7→ Rx for all R ∈ SO(n). Then by the existence and uniqueness of Haar
measure (Folland, 2016, Theorem 2.49), Unif(Sn−1) is the unique rotation-invariant probability measure on
Sn−1. Therefore, it is sufficient to prove that the distribution of Y is rotation-invariant, i.e., Y

d= RY for
all R ∈ SO(n).

Since X ∼ N (0, In) and R ∈ SO(n), we have RX ∼ N (0, In) and ∥RX∥ = ∥X∥. Hence,

Y = X

∥X∥
d= RX

∥RX∥
= RY ,

which implies that Y ∼ Unif(Sn−1). Similarly, by the uniqueness of the invariant measure,

√
nY =

√
n

∥X∥
X ∼ Unif(Sn−1(

√
n)).

Moreover, as shown in the proof in Proposition 1, the Laurent-Massart Bound implies that ∥X∥ ≈
√

n with
high probability when n is large. Therefore,

X ≈
√

n

∥X∥
X ∼ Unif(Sn−1(

√
n)).

Lemma H.6 (Corollary 4.8.2 of Bakry et al. (2013)). Let U : Rn → R be C2 such that ∇2U ⪰ ρIn for some
ρ > 0. Then the probability measure

dµ(x) = e−U(x)∫
e−U(y)dy

dx

on Rn satisfies the Poincaré Inequality with the constant 1/ρ.
Lemma H.7. Let µ, ν ∈ P(Rn) be two probability measures, and let f : Rn → Rm be measurable. Then

f#(w1µ + w2ν) = w1f#µ + w2f#ν,

for any w1, w2 ∈ [0, 1] with w1 + w2 = 1.

Proof. For any A ∈ B(Rm),

f#(w1µ + w2ν)(A) = (w1µ + w2ν)
(
f−1(A)

)
= w1µ

(
f−1(A)

)
+ w2ν

(
f−1(A)

)
= w1f#µ(A) + w2f#ν(A).
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Lemma H.8. Let µ be a probability measure on Rn. Then, we have

EX∼µ [∥X∥] ≤
√
EX∼µ

[
∥X∥2

]
.

In particular, if µ = N (0, In),
E [∥X∥] ≤

√
n.

Proof. Because µ is a probability measure, by the Hölder’s Inequality,∫
Rn

∥x∥ · 1dµ(x) ≤
(∫

Rn

∥x∥2dµ(x)
) 1

2
(∫

Rn

1dµ(x)
) 1

2

,

that is, EX∼µ [∥X∥] ≤
√
EX∼µ[∥X∥2]. In particular, if µ = N (0, In), E[∥X∥2] = n.

Lemma H.9. Let µ1, µ2, ν1, ν2 be probability measures on Rn, and let

µ = wµ1 + (1 − w)µ2, ν = wν1 + (1 − w)ν2, w ∈ [0, 1].

Then, we have
W1(µ, ν) ≤ wW1(µ1, ν1) + (1 − w)W1(µ2, ν2).

Proof. By the existence of optimal coupling on Rn (Chewi et al., 2024), there is a γi ∈ Γ(µi, νi) for i = 1, 2
such that

W1(µi, νi) =
∫
Rn×Rn

∥x − y∥dγi(x, y).

Let
π = wγ1 + (1 − w)γ2.

Clearly, π is a probability measure on Rn × Rn. Moreover, by definition,

π(A × Rn) = wγ1(A × Rn) + (1 − w)γ2(A × Rn) = wµ1(A) + (1 − w)µ2(A) = µ(A),
π(Rn × B) = wγ1(Rn × B) + (1 − w)γ2(Rn × B) = wν1(B) + (1 − w)ν2(B) = ν(B),

which means π ∈ Γ(µ, ν). Therefore,

W1(µ, ν) ≤
∫
Rn×Rn

∥x − y∥dπ(x, y)

= w

∫
Rn×Rn

∥x − y∥dγ1(x, y) + (1 − w)
∫
Rn×Rn

∥x − y∥dγ2(x, y)

= wW1(µ1, ν1) + (1 − w)W1(µ2, ν2).

Lemma H.10. Let µ ∈ Rn be a probability measure such that its support K is closed and convex. Then

EX∼µ[X] ∈ K.

Proof. Suppose that m = EX∼µ[X] /∈ K. By the convexity and closedness of K, the strong separation
theorem (Rockafellar, 1997) implies that there are u ∈ Rn\ {0} and c ∈ R such that ⟨u, m⟩ > c and

⟨u, x⟩ ≤ c, ∀ x ∈ K.

Let X ∼ µ. X ∈ K for almost everywhere and so

⟨u, X⟩ ≤ c, a.e..

Then taking the expectation on the both sides, we have

⟨u, m⟩ ≤ c,

which induces a contradiction.
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Lemma H.11 (Grönwall’s Inequality). If u : [0, T ] → R satisfies the linear ODE inequality as

d
dt

u(t) ≤ a(t)u(t) + b(t),

then
u(t) ≤ u(0)e

∫ t

0
a(r)dr +

∫ t

0
b(s)e

∫ t

s
a(r)drds.

Proof. Let Φ(t) = exp
(

−
∫ t

0 a(s)ds
)

. Then, Φ′(t) = −a(t)Φ(t) and

Φ(t) d
dt

u(t) ≤ Φ(t)a(t)u(t) + Φ(t)b(t) ⇒ d
dt

(Φ(t)u(t)) ≤ Φ(t)b(t).

By integrating on the both sides of above inequality, we have

u(t) ≤ u(0)e
∫ t

0
a(r)dr +

∫ t

0
b(s)e

∫ t

s
a(r)drds.

Lemma H.12. If a C1 function f : Rn → R is ρ-strongly convex, then it satisfies ρ-Polyak–Łojasiewicz
(PL) inequality:

∥∇xf(x)∥2 ≥ 2ρ (f(x) − f(x∗)) ,

where x∗ is the unique minimizer of f .

Proof. Because f is ρ-strongly convex,

f(y) ≥ f(x) + ⟨∇xf(x), y − x⟩ + ρ

2∥y − x∥2.

Minimizing the both sides with respect to y, we obtain

f(x∗) ≥ f(x) − 1
2ρ

∥∇xf(x)∥2
,

which is precisely the ρ-PL inequality.

Lemma H.13. Let f : Rk → Rn be L-Lipschitz continuous. For two probability measures µ, ν ∈ P(Rn),

W1(f#µ, f#ν) ≤ LW1(µ, ν).

Proof. Let (X, Y ) be an optimal coupling for (µ, ν), that is, X ∼ µ, Y ∼ ν, and W1 = E[∥X −Y ∥]. Besides,
f(X) ∼ f#µ and f(Y ) ∼ f#ν. Then, by the Lipschitz continuity of f ,

W1(f#µ, f#ν) ≤ E [∥f(X) − f(Y )∥]
≤ LE [∥X − Y ∥]
= LW1(µ, ν).

I Preliminaries for Manifold

We provide only the minimal background on smooth manifolds necessary for this work. For a comprehensive
treatment, we refer the reader to Lee (2012).
Definition I.1. A subset M ⊂ Rn is called a m-dimensional (embedded) (sub)manifold of Rn if there are a
family open sets {Uα}α∈Γ in Rn, a family of open sets {Vα}α∈Γ in Rm, and a family of smooth (C∞) maps
{ϕα}α∈Γ such that

M ⊂
⋃

α∈Γ
Uα, and ϕα : Vα → Uα ∩ M

is a diffeomorphism, i.e., ϕ−1
α : Uα ∩ M → Vα is also smooth.
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Each pair (ϕα, Vα) is called a chart, and {(ϕα, Vα)}α∈Γ is called an atlas of M. In general, a single chart
cannot cover the entire manifold M. However, if M is closed, then there exists a chart ϕ : V → M that can
almost cover M, in the sense that the volume measure of the set M \ ϕ(V ) is zero; see Lee (2019) for more
details.
Definition I.2. Let M ⊂ Rn be a m-dimensional manifold. For any x ∈ M, the tangent space, denoted
TxM, is a vector space defined as

TxM := {γ′(0) : ∃ ε > 0, γ : (−ε, ε) → M smooth, γ(0) = x} .

Lemma I.1. Let M ⊂ Rn be a smooth submanifold. If a C1 function g : Rn → R is constant on M, then
for any x ∈ M, ∇g(x) is normal to M; that is, ∇g(x) ⊥ TxM.

Proof. For any v ∈ TxM, let γ : [0, 1] → M be a smooth curve such that γ(0) = x and γ′(0) = v. Then,
because g(γ(t)) ≡ c,

0 = d
dt

∣∣∣∣
t=0

g(γ(t)) = ⟨∇g(γ(0)), γ′(0)⟩ = ⟨∇g(x), v⟩

Therefore, ∇g(x) ⊥ TxM.

Theorem I.2 (Constant Rank Theorem (Lee, 2012)). Let f : Rn → Rr be a smooth map and c ∈ Rr. Let

M := {x ∈ Rn : f(x) = c} .

If rank JF (x) = r for any x ∈ M, then M is a (n − r)-dimensional manifold.
Theorem I.3 (Tubular Neighborhood Theorem (Lee, 2012)). Let M ⊂ RD be a d-dimensional submanifold.
There is a smooth ε : M → (0, ∞) such that for

V :=
{

(z, v) ∈ M × RD−d : ∥v∥ < ε(z)
}

,

F : V → U = F (V ) is a diffeomorphism and U ⊂ RD is a neighborhood of M.
Remark I.1. For a given tubular neighborhood V of M, we also call U = F (V ) ⊂ RD is its tubular
neighborhood in RD. Moreover, we can define the corresponding orthogonal projection π : U → M as

π(x) = π1(F−1(x)),

where π1 : V → M is π1(z, v) = z.
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