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ABSTRACT

Normalization techniques, such as batch normalization (BN), are a boon for mod-
ern deep learning. They let weights converge more quickly with often better gener-
alization performances. It has been argued that the normalization-induced scale in-
variance among the weights provides an advantageous ground for gradient descent
(GD) optimizers: the effective step sizes are automatically reduced over time, sta-
bilizing the overall training procedure. It is often overlooked, however, that the
additional introduction of momentum in GD optimizers results in a far more rapid
reduction in effective step sizes for scale-invariant weights, a phenomenon that
has not yet been studied and may have caused unwanted side effects in the current
practice. This is a crucial issue because arguably the vast majority of modern deep
neural networks consist of (1) momentum-based GD (e.g. SGD or Adam) and
(2) scale-invariant parameters (e.g. more than 90% of the weights in ResNet are
scale-invariant due to BN). In this paper, we verify that the widely-adopted com-
bination of the two ingredients lead to the premature decay of effective step sizes
and sub-optimal model performances. We propose a simple and effective rem-
edy, SGDP and AdamP: get rid of the radial component, or the norm-increasing
direction, at each optimizer step. Because of the scale invariance, this modifi-
cation only alters the effective step sizes without changing the effective update
directions, thus enjoying the original convergence properties of GD optimizers.
Given the ubiquity of momentum GD and scale invariance in machine learning,
we have evaluated our methods against the baselines on 13 benchmarks. They
range from vision tasks like classification (e.g. ImageNet), retrieval (e.g. CUB
and SOP), and detection (e.g. COCO) to language modelling (e.g. WikiText) and
audio classification (e.g. DCASE) tasks. We verify that our solution brings about
uniform gains in performances in those benchmarks. Source code is available at
https://github.com/clovaai/adamp.

1 INTRODUCTION

Normalization techniques, such as batch normalization (BN) (Ioffe & Szegedy, 2015), layer nor-
malization (LN) (Ba et al., 2016), instance normalization (IN) (Ulyanov et al., 2016), and group
normalization (GN) (Wu & He, 2018), have become standard tools for training deep neural network
models. Originally proposed to reduce the internal covariate shift (Ioffe & Szegedy, 2015), normal-
ization methods have proven to encourage several desirable properties in deep neural networks, such
as better generalization (Santurkar et al., 2018) and the scale invariance (Hoffer et al., 2018).

Prior studies have observed that the normalization-induced scale invariance of weights stabilizes the
convergence for the neural network training (Hoffer et al., 2018; Arora et al., 2019; Kohler et al.,
2019; Dukler et al., 2020). We provide a sketch of the argument here. Given weights w and an input
x, we observe that the normalization makes the weights become scale-invariant:

Norm(w>x) = Norm(cw>x) ∀c > 0. (1)
The resulting equivalence relation among the weights lets us consider the weights only in terms of
their `2-normalized vectors ŵ := w

‖w‖2 on the sphere Sd−1 = {v ∈ Rd : ‖v‖2 = 1}. We refer to
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Sd� 1 as theeffective space, as opposed to the nominal spaceRd where the actual optimization algo-
rithms operate. The mismatch between these spaces results in the discrepancy between the gradient
descent steps onRd and their effective steps onSd� 1. Speci�cally, for the gradient descent updates,
the effective step sizesk� bw t +1 k2 := k bw t +1 � bw t k2 are the scaled versions of the nominal step
sizesk� w t +1 k2 := kw t +1 � w t k2 by the factor 1

kw t k2
(Hoffer et al., 2018). Sincekw t k2 increases

during training (Soudry et al., 2018; Arora et al., 2019), the effective step sizesk� bw t k2 decrease as
the optimization progresses. The automatic decrease in step sizes stabilizes the convergence of gra-
dient descent algorithms applied on models with normalization layers: even if the nominal learning
rate is set to a constant, the theoretically optimal convergence rate is guaranteed (Arora et al., 2019).

Figure 1. Optimizer tra-
jectories. Shown is the w t

for the optimization problem
maxw

w > w ?

kw k 2 kw ? k 2
s. Trajectories

start fromw 0 towards the opti-
mal solutionw ? . The problem is
invariant to the scale ofw . Video
version in the attached code.

In this work, we show that the widely usedmomentum-based gradi-
ent descent optimizers (e.g. SGD and Adam (Kingma & Ba, 2015))
decreases the effective step size� bw t even more rapidly than the
momentum-less counterparts considered in (Arora et al., 2019).
This leads to a slower effective convergence forbw t and poten-
tially sub-optimal model performances. We illustrate this effect on
a 2D toy optimization problem in Figure 1. Compared to “GD”,
“GD+momentum” is much faster in the nominal spaceR2, but the
norm growth slows down the effective convergence inS1, reducing
the acceleration effect of momentum. This phenomenon is not con-
�ned to the toy setup, for example, 95.5% and 91.8% of the param-
eters of the widely-used ResNet18 and ResNet50 (He et al., 2016)
are scale-invariant due to BN. The majority of deep models nowa-
days are trained with SGD or Adam with momentum. And yet, our
paper is �rst to delve into the issue in the widely-used combination
of scale-invariant parameters and momentum-based optimizers.

We propose a simple solution to slow down the decay of effective
step sizes while maintaining the step directions of the original opti-
mizer in the effective space. At each iteration of a momentum-based
gradient descent optimizer, we propose to project out the radial
component (i.e. component parallel tow ) from the update, thereby
reducing the increase in the weight norm over time. Because of the
scale invariance, the procedure does not alter the update direction
in the effective space; it only changes the effective step sizes. We
can observe the bene�t of our optimizer in the toy setting in Fig-
ure 1. “Ours” suppresses the norm growth and thus slows down the
effective learning rate decay, allowing the momentum-accelerated
convergence inR2 to be transferred to the actual spaceS1. “Ours”
converges most quickly and achieves the best terminal objective value. We do not discourage the use
of momentum-based optimizers; momentum is often an indispensable ingredient that enables best
performances by deep neural networks. Instead, we propose to use our method that helps momen-
tum realize its full potential by letting the acceleration operate on the effective space, rather than
squandering it on increasing norms to no avail.

The projection algorithm is simple and readily applicable to various optimizers for deep neural net-
works. We apply this technique on SGD and Adam (SGDP and AdamP, respectively) and verify the
slower decay of effective learning rates as well as the resulting performance boosts over a diverse set
of practical machine learning tasks including image classi�cation, image retrieval, object detection,
robustness benchmarks, audio classi�cation, and language modelling.

As a side note, we have identi�ed certain similarities between our approaches and Cho & Lee (2017).
Cho & Lee (2017) have considered performing the optimization steps for the scale-invariant param-
eters on the spherical manifold. We argue that our approaches are conceptually different, as ours
operate on the ambient Euclidean space, and are more practical. See AppendixxG.1 for a more
detailed argumentation based on conceptual and empirical comparisons.

2 PROBLEM

Widely-used normalization techniques (Ioffe & Szegedy, 2015; Salimans & Kingma, 2016; Ba et al.,
2016; Ulyanov et al., 2016; Wu & He, 2018) in deep networks result in the scale invariance for
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