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Abstract

Kernels on discrete structures evaluate pairwise similarities between objects which
capture semantics and inherent topology information. Existing kernels on discrete
structures are only developed by topology information(such as adjacency matrix of
graphs), without considering original attributes of objects. This paper proposes a
two-phase paradigm to aggregate comprehensive information on discrete structures,
leading to a Discount Markov Diffusion Learnable Kernel (DMDLK). Specifically,
based on the underlying projection of DMDLK, we design a Simple Hypergraph
Kernel Convolution (SHKC) for hidden representation of vertices. SHKC can
adjust diffusion steps rather than stacking convolution layers to aggregate infor-
mation from long-range neighborhoods which prevents oversmoothing issues of
existing hypergraph convolutions. Moreover, we utilize the uniform stability bound
theorem in transductive learning to analyze critical factors for the effectiveness and
generalization ability of SHKC from a theoretical perspective. The experimental
results on several benchmark datasets for node classification tasks verified the
superior performance of SHKC over state-of-the-art methods.

1 Introduction

In real-world applications, original data with discrete structures is relatively prevalent. For instance,
graphs are commonly used in citation networks, social networks, and protein interaction networks
to represent pairwise topology relationships between discrete objects. In the community of Graph
Neural Networks (GNNs) (Kipf & Welling, 2017a; Chen et al., 2021) and Hypergraph Neural
Networks (Feng et al., 2019; Yadati et al., 2019), researchers focused on designing convolution
operators to obtain effective hidden representations for downstream tasks. It is worth addressing
that the spectral view and message passing view play important roles in inspiring the design of
those convolutions. In another perspective, we start from abstracting a convolution to a projection ϕ.
Most of the existing convolution networks for the discrete structure like graphs and hypergraphs are
essentially derived from some heuristic intuitions and rational principles aiming to obtain an effective
representation extraction projection ϕ. This hidden projection maps objects from original space Ω to
hidden representations in Euclidean space.
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In some sense, choosing a kernel on Ω×Ω is the same as choosing a feature extraction projection for
objects in Ω (Haussler, 1999). From this perspective, we need to generate a symmetrical and positive
semi-definite kernel matrix on Ω × Ω (Kondor & Lafferty, 2002) to obtain a rational projection.
However, earlier researches pay attention to generating kernels on graphs directly from the prior
topology(i.e. adjacency matrix) without considering the inherent original attributes of vertices. We
propose a two-phase paradigm to conduct Discount Markov Diffusion Learnable Kernels(DMDLK)
for discrete structures. The respective roles of the two phases are as follows: (i) aggregate topology
structure information with original attributes; (ii) aggregate information among channels by learnable
parameters.

If the topology of the original data can be determined a priori, for instance, given the adjacency
matrix for a graph, the two-phases paradigm can be naturally adapted to conduct convolution
operators for any discrete structure. However, there are flaws to model discrete data by graphs
when original objects inherently meet complex topology structures. Studies have continued to
concentrate on utilizing hypergraphs to represent complicated topology structures (Feng et al., 2019;
Zhou et al., 2006; Agarwal et al., 2006; Chitra & Raphael, 2019; Zhang et al., 2022b,a). In this
paper, we pay attention to hypergraphs which serve as more general discrete structures than simple
graphs. Specifically, we modify a generalized transition matrix from Zhang et al. (2022b) to develop
DMDLK for hypergraphs leading to a novel convolution operator for hypergraphs named Simple
Hypergraph Kernel Convolution (SHKC).It can aggregate long-range information and obtain high-
level performance by enlarging the diffusion step rather than stacking multi convolution layers. The
latter always leads to the well-known oversmoothing issue. To illustrate the effectiveness of SHKC
from a theoretical view, we use the tool of uniform stability theorem in transductive learning to
analyze the rationality and effect of detailed factors in SHKC.

Overall, the main contributions highlight as follows: (i) We propose a two-phase paradigm to
conduct DMDLK for discrete structures; (ii) By introducing a modified generalized transition
matrix of hypergraph into this paradigm, we obtain Simple Hypergraph Kernel Convolution(SHKC)
which can avoid stacking multi-layers to aggregated long-range information by simply adjusting the
diffusion steps; (iii) We utilize uniform stability theorem to explain the promising effectiveness and
generalization ability of SHKC. (iv) Empirical results on downstream node classification tasks and
object recognition tasks show the advanced performance of SHKC which corresponds well to the
theoretical analysis.

2 Related Works

2.1 Kernels for Discrete Structures

Kernel functions (Schölkopf et al., 2002; Shawe-Taylor et al., 2004; Fouss et al., 2012) k : Ω×Ω → R
can directly compute pairwise similarities k(x,x′) by implicitly constructing a projection ϕ : Ω →
Hk from the original space Ω into a high-dimensional and more well-separated Hilbert space Hk.
Discrete structures, such as strings,graphs,and trees, are dominant in real-world applications like
classification and collaborative recommendation (Fouss et al., 2012). Kernels on discrete structures
focus on mining pairwise similarity between objects which captures the semantics inherent in discrete
structures (Fouss et al., 2012), such as length of the shortest path and the total number of paths
between vertices in a graph. Kernels on discrete structures were first proposed by Kondor & Lafferty
(2002) and expanded on graphs by Smola & Kondor (2003). Fouss et al. (2006) gives a thorough
overview of several kernels on graph and proposes a kernel named regularized commute-time kernel.
However, those research focus on capturing similarity between vertices directly from the topology(i.e.
adjacency matrix) without considering inherent attributes of vertices.

2.2 Diffusion Process on Graphs

GDC(Klicpera et al., 2019) firstly proposes generalized graph diffusion to achieve significant perfor-
mance improvement across a wide range of tasks. PPNP(Klicpera et al., 2018) utilizes personalized
PageRank to formulate propagation procedure for GCNs and concluded a fast approximation version
APPNP. The diffusion process defined on APPNP can be found in Li et al. (2020) which is differ
from our defined discounted Markov diffusion process in Section 4. We start by utilizing discounted
average visiting rate to define the diffusion process rather than the recursive propagation in APPNP

2



leading to a slight difference in the coefficients of different hop neighborhoods. Furthermore, we
focus on applying the thought of diffusion process for more complex discrete data, like hypergraphs.

2.3 Hypergraphs Convolution Networks

Hypergraphs whose edges contain more than two vertices can be seen as more generalized discrete
structures than graphs. Hypergraph have shown its promising ability to model more complex topology
information than graphs (Zhou et al., 2006; Feng et al., 2019). Feng et al. (2019) firstly introduces
hypergraphs into deep learning community motivated by capturing multi-modal topology information
through vertex-hyperedge incident matrix. Yadati et al. (2019) introduces a non-linear Laplacian
Matrix for hypergraphs deducing a more expressive convolution. Dong et al. (2020) proposes a
message -passing based model with a two steps message propagation between vertex and hyperedge.
Ding et al. (2020) involves attention mechanisms in hypergraphs for the task of text classification.
Moreover, thanks to the intensive research of Markov process on hypergraphs in (Zhou et al., 2006;
Chitra & Raphael, 2019; Carletti et al., 2021; Zhang et al., 2022b), we immediately stitch the
generalized hypergraph transition matrix (Zhang et al., 2022b) with the two-phases paradigm to
conduct our effective SHKC.

3 Preliminaries

Notions. In this paper, we use a boldface capital letter A ∈ RN×M to denote an N ×M matrix
and use Aij or A(i, j) to denote its ij-th entry. We use the boldface letter x or θ⃗ to indicate the
column vector, where xi or θ⃗i is the i-th entry of x or θ⃗. The word "vector" always denotes a column
vector in this paper. Thus, we use the transposition of the column vector x⊤ or (θ⃗)⊤ to denote the
row vector. For vectors with subscript like xk and θ⃗k mean k-th column of the matrix where xki and
θ⃗ki also mean their i-th component. Let I ∈ RN×N denote the identity matrix, and ei represents the
vector where the i-th component is 1 and otherwise 0.

3.1 Kernels on Discrete Structures

Given an original space Ω with |Ω| = N discrete objects , the kernel function k can be uniquely
represented by a N ×N matrix called Kernel Matrix. The Matrix should generally be symmetrical
and positive semi-definite (Haussler, 1999). A finite vertex set V = {v1, · · · ,vN} denotes the
original space Ω and an implicit ϕ(vi) maps the vertex vi to a Hilbert space Hk. In fact, ϕ(vi)
denotes a hidden representation for vi in Hk. Thus, We call Hk "hidden representation space"
according to its specific meaning. Give original attributes X = {x1, · · · ,xN}⊤ ∈ RN×d whose i-th
row x⊤

i ∈ R1×d denotes a d-dimension attribute on the i-th vertex vi. Define K as the kernel matrix
where Kij = k(vi,vj) is the pairwise similarity through a kernel function k.

An Instinctive Kernel on Discrete Structures. An effective kernel should capture semantics
information inside the discrete structure induced by ϕ, which cannot be trivially represented by the
original attributes as we discussed below. A most instinctive idea for the design of the kernel is that
define Kori = XX⊤ directly from the original attributes where Kori(i, j) = k(vi,vj) = x⊤

i xj .
Here the underlying ϕ from vi to its hidden representation denotes as ϕ(vi) = xi = X⊤ei.
Obviously, ϕ only captures original attributes without neither structure information nor information
aggregated among different channels of original attributes. It is significant to address that there is
a distance in the hidden representation space associated with the kernel: (d(vi,vj))

2 = ∥ϕ(vi)−
ϕ(vj)∥22 = (ei − ej)

⊤Kori(ei − ej). This indicates meaningful distances defined on hidden
representation space can be associated with effective kernels. There has been various kernels on
graphs aiming at extracting semantics information inside the graphs (Fouss et al., 2012). However,
these kernels are developed merely from adjacency matrix of graphs without considering information
from original attributes of vertices which means those kernels can not be trivially used in GNNs. From
this perspective, we propose a two-phase paradigm for effective kernels and its induced convolutional
operators.
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4 Two Phases for Effective Kernels on Discrete Structure

4.1 Phase I: Topology Information Aggregation with Original Attributes

In the first phase, we mainly consider effective approaches to excavate structure information from the
underlying topology of discrete structures. We start from the perspective of defining a specific Markov
Diffusion Process on discrete structures. Note that this idea is directly suitable for hypergraphs as the
random walk on hypergraphs has been intensively researched in (Chitra & Raphael, 2019; Carletti
et al., 2021; Zhang et al., 2022b; Chen & Zhang, 2022).

Discounted Average Visiting Rate. For a Markov process on a finite state space {si, · · · , sN}, we
denote T as the probability transition matrix where Tik = Pr{s(t+ 1) = sk|s(t) = si}. Note that a
τ -step transition from state i to k can be formulated as Pr{s(t+ τ) = sk|s(t) = si} = (Tτ )ik. We
define the discounted average visiting rate as:

v̄ik(t) =
1

t

t∑
τ=1

ατ Pr{s(τ) = sk|s(0) = si}, t ∈ Z++ (1)

The discounted average visiting rate is considered as the probability of a random walker starting from
si standing in sk during t steps diffusion. It is modified by introducing a scalar discounted factor
from the average visiting rate (Fouss et al., 2006) to alleviate long-range information aggregation
which is motivated by a thought that more global information aggregation makes undistinguished
among vertices.

Discounted Markov Diffusion Process. Recall that we have the original attributes X =
{x1, · · · ,xN}⊤ where xi ∈ Rd is a d-dimension vector which can be seen as d channels sig-
nal on vi. We define a t-step process of vertex signal passing among the discrete structure named the
discounted Markov diffusion process with original attributes which follows the formulation as:

y
(t)
k = β

N∑
i=1

v̄ik(t)xi + (1− β)xk (2)

This equation depicts a process where original attributes are aggregated to the vertex vk from all
other vertices during a t-step diffusion. The diffusion process captures the topology information
underlying the discrete structure through the associated transition matrix. We call this phase as
topology information aggregation with original attributes. Then we define the t-step Discounted
Markov Diffusion distance with original attributes d(t)M between vi,vj as:

d
(t)
M (vi,vj) = ∥y(t)

i − y
(t)
j ∥2 = ∥X⊤(βZ(t) + (1− β)I)(ei − ej)∥2

= [(ei − ej)
⊤KM (t)(ei − ej)]

1
2

where KM (t) = (βZ(t) + (1 − β)I)⊤XX⊤(βZ(t) + (1 − β)I) denotes the Discounted Markov
Diffusion Kernel with original attributes and Z(t) = 1

t

∑t
τ=1 α

τTτ . The underlying projection
behind the kernel denotes ϕ(t)(vi) = e⊤i (βZ(t) + (1 − β)I)⊤X. It is easy to see that KM (t)
is symmetrical and positive semi-definite which means KM (t) is indeed a kernel. However, the
underlying projection still has flaws to represent comprehensive vertex representation. The projection
failed to involve information interactions between channels of original attributes which leads to the
second phase to remedy for the flaws.

4.2 Phase II: Channels Aggregation

From Eq. (2), it is obvious that the vertex representation of vk derived from KM only captures infor-
mation within the same channel. Specifically, for channel c: y(t)kc = β

∑N
i=1 v̄ik(t)xic + (1− β)xkc.

Thus, in the second phase, we consider aggregating among channels to find a more comprehensive
feature space Hk .

Discounted Markov Diffusion Learnable Kernel (DMDLK). Define Θ = {θ⃗1, · · · , θ⃗M} ∈ Rd×M

where θ⃗m = {θ1m, · · · , θdm}⊤ ∈ Rd×1 denotes the m-th set of weights concerning all channels and
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θcm specifically denotes the weight of the c-th channel in the aggregation. Thus we can aggregate
information among channels by:

ỹ
(t)
k (θ⃗m) =

d∑
c=1

(
N∑
i=1

βv̄ik(t)xic

)
θcm + (1− β)xkcθcm

Here ỹ(t)k (θ⃗m) captures both topology information and information aggregated among channels by
θ⃗m for vk. Let ỹ(t)

k (Θ) = {ỹ(t)k (θ⃗1), · · · , ỹ(t)k (θ⃗M )}⊤. Naturally, we can define a new distance
between two vertices:

(d̃(t)(vi,vj))
2 = ∥ỹ(t)

i (Θ)− ỹ
(t)
j (Θ)∥22 = (ei − ej)

⊤KΘ
M (t)(ei − ej)

We define the Discounted Markov Diffusion Learnable Kernel as:

KΘ
M (t) = (βZ(t) + (1− β)I)⊤XΘΘ⊤X⊤(βZ(t) + (1− β)I)

It is also easy to see that KΘ
M (t) is symmetrical and positive semi-definite. The underlying projection

from the original space Ω to the new hidden representation space denotes as

ϕ̃
(t)
Θ (vi) = e⊤i (βZ(t) + (1− β)I)⊤XΘ (3)

Totally, the new hidden representation ϕ̃(t)Θ (vi) of vk can be described as the two phases: (i) original
signals on all vertices propagate to vk concerning the discounted Markov diffusion process which
aggregates the structure information underlying the hypergraph. (ii) Θ is introduced to aggregate
information among different channels of the representation after the first phase. In the next part, we
would directly expand KΘ

M (t) to an effective convolutional operator for hypergraphs.

5 A Specific Instance: Simple Hypergraph Kernel Convolution Networks

To give a specific formulation for a DMDLK, we should identify a specific topology for the discrete
structure. In this paper, we make effort for hypergraphs as it has a wider concept and is capable of
engaging more sophisticated topology information than graphs.

5.1 Probability Transition Matrix on Hypergraph

Assume a hypergraph defined as H(V, E ,W, Q1,Q2). Here the V is a finite vertex set with N
vertices and E denotes a hyperedge set where each hyperedge e ∈ E can contain more than 2 vertices.
W ∈ R|E|×|E| is a diagonal matrix whose diagonal denotes the prior weights of hyperedges. Q1

and Q2 ∈ R|V|×|E| denote two different edge-dependent vertex weights matrices. Qi(v, e) denotes
the weight of vertex v depending on an incident hyperedge e which means the vertex v contributes
different weights to different hyperedges. Note if e is not linked to v, Qi(v, e) = 0.

Then, we introduce a generalized random walk defined on hypergraphs from (Zhang et al., 2022b)
where the probability of the random walk from vertex u to vertex v with a two-step manner is:

Pr(u, v) =
∑
e

(
w(e)Q1(u, e)δ(e)ρ(δ(e))

d(u)

)(
Q2(v, e)

δ(e)

)
(4)

Here, δ(e) =
∑

v Q2(v, e) is defined as the degree of hyperedge e and d(u) =∑
e w(e)Q1(u, e)δ(e)ρ(δ(e)) is defined as the degree of vertex u. ρ(·) denotes a selectable function

that determines the effect of δ(e) to d(u). Q1 and Q2 play their roles of representing fine-grained
topology information in the generalized random walk. In practice, we choose Q1 = Q2 = Q with a
rational assumption that the vertex weights depending on hyperedge keep constant in the two-step
random walk. Then we choose to use a modified symmetrical form of P to define the probability
transition matrix T on hypergraph:

T = D
−1/2
V QWρ(DE)Q

⊤D
−1/2
V (5)

Hyperedges Containing Isolated Vertex. However, as we analyze the effectiveness of ϕ̃(t)Θ (vi)
from a transductive learning perspective in Section 5.3, we find it is important to bound the l1-norm
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of T to derive a bounded generalization gap between training error and testing error. We find
it derive from a flaw of the defined random walk in Eq. (4) where those hyperedges containing
only one vertex(isolated vertex) have not been taken into account. Unfortunately, when there are
isolated vertices in a hypergraph, the l1-norm of T defined above can not be bounded, leading to
an inadequate performance in downstream classification tasks. This also provides a new view to
explain the experiments of Huang & Yang (2021) and Zhang et al. (2022b) w.r.t self-loops. We find it
derive from a flaw of the defined random walk in Eq. (4) where those hyperedges containing only
one vertex(isolated vertex) have not been taken into account. This can be amended by modifying
Q: Q̃ = concate(Q, {ei1 , · · · , eik}) if there is an isolated vertex subset {vi1 , · · · ,vik} ⊂ V . Here
eik ∈ R|V| denotes a vector whose ik-th component is 1 otherwise 0. However, if the number of
isolated vertices is large, this modification leads to extra expensive computation costs due to the
added dimension of Q. In fact, this modification is equal to set Tii = 1 if the original Tii = 0. Thus,
we take an approximate method by modifying T directly to define the generalized transition matrix
on hypergraphs :

T̃ = D̃
−1/2
V (QWρ(DE)Q

⊤ + I)D̃
−1/2
V (6)

where D̃V(i, i) = d̃(vi) = 1 +
∑

e w(e)Q(u, e)δ(e)ρ(δ(e)). This modification is well-known as the
renormalization trick proposed in GCNs (Kipf & Welling, 2017b). We hope to describe why this
trick works from this perspective. Finally, we give a proposition below to bound l1-norm of T̃.

Proposition 5.1 (Bound l1 norm of T̃). For any hyperedge e ∈ E , let ne be the number of vertices
incident to e;For any vertex v ∈ V , let nv be the number of hyperedges incident to v. Assume that
Q is a normalized edge-dependent vertex weight matrix (Q(v, e) ∈ [0, 1]), W is a normalized prior
hyperedge weights diagonal matrix, ne ≤ E for any hyperedge e,nv ≤ D for any vertex v ,and ρmax

is the maximum value of ρ(x) when x ∈ [0, E]. Let T̃ be the generalized transition matrix for a
hypergraph defined above. Then, ∥T̃∥1 ≤

√
1 + ρmaxED.

The proof is referred to in Appendix D.5. During the analysis of the effectiveness of ỹ(t)
k (Θ) in

Section 5.3, this proposition plays a critical role to derive a bounded generalization gap between
training error and testing error.

5.2 Simple Hypergraph Kernel Convolution (SHKC)

Take the transition matrix T̃ into the projection ϕ̃(t)Θ (vi) underlying KΘ
M (t) in Eq. (3). We have the

hidden representation on all vertices as: H(t) = (β
∑t

τ=1
ατ

t T̃τ + (1− β)I)XΘ.

Recall that t is the diffusion step. α is the introduced discounted factor to weaken long-range global
information through the diffusion process and β plays a role in balancing information aggregated
to the vertex through the diffusion process and original signals in the vertex itself. By adding an
activation function ψ(·) to make up nonlinearity of the underlying projection, we define the Simple
Hypergraph kernel Convolution as follows:

H(t) = ψ

((
β

t∑
τ=1

ατ

t
T̃τ + (1− β)I

)
XΘ

)
(7)

where Θ is the parameter of the filter to be learned during training. SHKC could gain stronger local
and weaker global information, thereby improving the expressive power in a long diffusion step.
Thus, SHKC can choose a long step t to replace stacking multi convolution layers for long-range
information aggregation. The latter always leads to an oversmoothing issue in GNNs. Actually,
SHKC is a spatial-based model while we can analyze it (detailed in Appendix B) from a spectral-
based view which may lead to some intrinsic connections between the kernel-based convolution and
spectral-based convolution.

5.3 A Transductive Learning Perspective for Generalization Analysis for SHKC

For simplicity, we give the theoretical analysis of SHKC in the setting of binary classification. Let
H(L) be the hidden representation of all vertices with the L-steps discounted Markov diffusion
process. The i-th row h

(L)
i in H(L) denotes the hidden representation of vi: h

(L)
i = ψ(ϕ̃

(L)
Θ (vi)).
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Let ω⃗ be the weight of a downstream classifier f . Thus, the prediction label of vertex vi denotes as
f(h

(L)
i ) = σ(h

(L)
i ω⃗) where σ is the sigmoid function.

We start from introducing the transductive uniform stability bound(USB) theorem from El-Yaniv
& Pechyony (2006)(detailed in Appendix E). The USB theorem shows that the generalization gap
depends on the uniform stability µ of M. A most recent work (Cong et al., 2021) decompose µ
into three parts: Lipschitz constant LM, upper bound on gradient GM, and smoothness constant
SM of the learning model M, which is formulated as µ = 2ηLMGM

m

∑T
t=1(1 + ηSM)t−1 where

T is training steps and η is the learning rate. We follow this approach to evaluate the effectiveness
of ϕ̃(L)

Θ which is described by the generalization gap of SHKC. Then the main effort to analyze the
generalization gap boils down to the bound of LM, GM, SM for SHKC. We firstly start from three
Lemmas shown in Appendix C. Then, we get our main results:

Theorem 5.2 (Main Results For SHKC). Assume that (i) for any vertex i, its norm of the feature
vector is bounded by a constant ∥xi∥2 ≤ Cx; (ii) the norm of learnable parameters of SHKC is
bounded as ∥Θ∥2 ≤ CΘ; (iii) the norm of the weight of the classifier is bounded as: ∥ω⃗∥2 ≤ 1. Let
α,L, β be the hyper-parameters defined in SHKC during training and η be the learning rate. Then
the model SHKC is µSHKC uniform stable with µSHKC = 2ηLMGM

m

∑T
t=1(1 + ηSM)t−1 where:

LM = CxCαβL max{1, CΘ}; GM = CxCαβL(1 + CΘ);

SM = C2
xC

2
αβL max{1, CΘ}2 + C2

xC
2
αβLCΘ + CxCαβL

Here CαβL = β
L

∑L
l=1(αdT )

l +(1− β) and dT =
√
1 + ρmaxED is the l1 norm of the generalized

transition matrix for a hypergraph in Proposition 5.1.

Proof sees in Appendix D.4. The key of the three components uniquely corresponded to SHKC is
CαβL. We conclude that: (i) In CαβL, it is easy to see that α discounts dlT when l is large which
corresponds to our intuition to weaken the effect of global information on vertex representation. (ii)
The defined discounted average visiting rate in Eq. (1) leads to 1

L in CαβL which relatively limits the
enlargement of CαβL as L increases. This keeps relative balanced weights to information aggregated
from different diffusion steps. (iii) β is introduced to balance the CαβL between 1

L

∑L
l=1(αdT )

l

and 1. This corresponds to the intuition of balancing the effect between aggregated information and
original feature to the hidden representation of vertices. Furthermore, this theorem reveals that SHKC
can tighten the generalization bound by adjusting α,β and L.

Contributions of DMDLK and SHKC. Firstly, it is significant to discuss our contribution over
Zhang et al. (2022b). They propose a framework for transforming existing GNNs to HyperGNNs
based on a equivalency condition. We utilize a core technique from them which is involving fine-
grained edge-vertex topology information to construct comprehensive probability transition matrix.
However, we start from a two-phase kernel-based perspective to conduct the convolutional operator
for hypergraph rather than the spectral perspective in Zhang et al. (2022b). This means it is possible
to conduct convolutional operator for wider hypergraphs which are not satisfied the equivalency
conditions in the previous paper. Furthermore, we show that the renormalization trick helps to bound
l1-norm of T̃ for hypergraphs containing isolated vertex which provides a theoretical perspective
to explain the promising trick. Secondly, previous studies have shown that graph diffusion leads
to significant performance improvements for GNNs(Klicpera et al., 2019). We concentrate on
explaining that increasing diffusion step in DMDLK can avoid stacking convolutional layers to
alleviate over-smoothing issues and showing that diffusion thoughts can be naturally applied to
broader discrete data with complex topology information than graphs. Overall, we conduct the
kernel-based two-phase paradigm aiming at designing simple and comprehensive convolutional
operator for representing wider discrete data. We also provide a theoretical perspective to explain
how tricks(i.e. renormalization) and critical parameters(i.e. diffusion step, discount factor α and
balance factor β ) works in SHKC.
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6 Experiments

6.1 Citation Network Classification

This is a semi-supervised node classification task. The datasets we use are hypergraph benchmarks
constructed by Yadati et al. (2019)(See Appendix Table 5). We adopt the same public datasets3 and
train-test splits in Yadati et al. (2019). Note these datasets satisfy Q1 = Q2 = H. For baselines, we
involve MLP with explicit Hypergraph Laplacian Regularization (MLP+HLR), HNHN, HyperSAGE,
HGAT, UniGNN, HGNN and HyperGCN.

Table 1: Summary of classification accuracy(%) results. We report the average test accuracy and its standard
deviation over 10 train-test splits. The number in parentheses corresponds to the number of diffusion step of
SHKC. (OOM: out of memory)

Dataset Architecture Cora
(co-authorship)

DBLP
(co-authorship)

Cora
(co-citation)

Pubmed
(co-citation)

Citeseer
(co-citation)

MLP+HLR - 59.8±4.7 63.6±4.7 61.0±4.1 64.7±3.1 56.1±2.6
FastHyperGCN Yadati et al. (2019) spectral-based 61.1±8.2 68.1±9.6 61.3±10.3 65.7±11.1 56.2±8.1
HyperGCN Yadati et al. (2019) spectral-based 63.9±7.3 70.9±8.3 62.5±9.7 68.3±9.5 57.3±7.3
HGNN (Feng et al., 2019) spectral-based 63.2±3.1 68.1±9.6 70.9±2.9 66.8±3.7 56.7±3.8
HNHN (Dong et al., 2020) message-passing 64.0±2.4 84.4±0.3 41.6±3.1 41.9±4.7 33.6±2.1
HGAT (Ding et al., 2020) message-passing 65.4±1.5 OOM 52.2±3.5 46.3±0.5 38.3±1.5
HyperSAGE Arya et al. (2020) message-passing 72.4±1.6 77.4±3.8 69.3±2.7 72.9±1.3 61.8±2.3
UniGNN (Huang & Yang, 2021) message-passing 75.3±1.2 88.8±0.2 70.1±1.4 74.4±1.0 63.6±1.3

SHKC (ours) kernel-based 76.05±0.7(6) 89.17±0.2(16) 70.64±1.8 (32) 75.08±1.1(4) 65.14±1.0(32)

Comparison with SOTAs. As shown in Table 1, the results successfully verify the effectiveness
of SHKC which achieves a new SOTA performance across all five datasets. We have the observa-
tions: (i) SHKC consistently outperforms the baselines, indicating that it can utilize the elaborately
designed diffusion process. (ii) HGNN, HNHN and HGAT show poor performance on disconnected
datasets(e.g. Citeseer), mainly due to the values of the row corresponding to an isolated vertex leading
to information loss which corresponds to the theoretical explanation in Section 5 that l1-norm of
the transition matrix in Eq.(5) can not be bounded. By modifying Eq.(5) to Eq.(6), SHKC makes
up the flaws of performance degradation when meets isolated vertex.(iii) SHKC has a lower bias
and standard deviation than others, showing better generalization. Furthermore, comparison of
running time and computational complexity with existing hypergraph neural networks can be found
in Appendix A.1.

6.2 Visual Object Classification

Table 2: Test accuracy on visual object classification. GVCNN+MVCNN represents combining the features or
structures to generate multi-modal data.

Datasets Feature Structure HGNN UniGNN HGAT SHKC(ours)

NTU
MVCNN MVCNN 80.11±0.38 75.25±0.17 80.40±0.47 82.56±0.39
GVCNN GVCNN 84.26±0.30 84.63± 0.21 84.45±0.12 83.35±0.30
BOTH BOTH 83.54±0.50 84.45±0.40 84.05±0.36 85.12±0.25

Model-
Net40

MVCNN MVCNN 91.28±0.11 90.36±0.10 91.29±0.15 92.01±0.08
GVCNN GVCNN 92.53±0.06 92.88±0.10 92.44±0.11 92.69±0.06
BOTH BOTH 97.15±0.14 96.69±0.07 96.44±0.15 97.78±0.03

This experiment is about semi-supervised learning. We employ two public benchmarks: Prince-
ton ModelNet40 dataset (Wu et al., 2015) and the National Taiwan University (NTU) 3D model
dataset (Chen et al., 2003) to evaluate our method. We follow HGNN (Feng et al., 2019) to preprocess
the data by MVCNN (Su et al., 2015) and GVCNN (Feng et al., 2018). Finally, we use the datasets
provided by the public Code 4. Details can be found in Appendix A.2.

Results. Table 3 depicts that SHKC significantly outperform the image-input or point-
input methods. These results demonstrate that SHKC can capture the similarity be-
tween objects in the hidden representation space to improve the performance of the clas-
sification task. Table 2 compares our methods with HGNN on NTU and ModelNet40.

3https://github.com/malllabiisc/HyperGCN
4https://github.com/iMoonLab/HGNN
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Table 3: Classification accuracy (%) on ModelNet40.
The embedding means the output representations of
MVCNN+GVCNN Extractor.

Methods input Accuracy

MVCNN (Feng et al., 2018) image 90.1
PointNet (Qi et al., 2017a) point 89.2
PointNet++ (Qi et al., 2017b) point 90.1
DGCNN (Wang et al., 2019) point 92.2
InterpCNN (Mao et al., 2019) point 93.0
SimpleView (Uy et al., 2019) image 93.6
pAConv (Xu et al., 2021) point 93.9
HGAT (Ding et al., 2020) embedding 96.4
UniGNN (Huang & Yang, 2021) embedding 96.7
HGNN Feng et al. (2019) embedding 97.2
SHKC(ours) embedding 97.7

From those results, we can see that our methods
outperform HGNN on both single modality and
multi-modality (BOTH) datasets and our SHKC
achieves much better performance on multi-
modality compared with others. These results re-
veal that our SHKC has the advantage of combin-
ing such multi-modal information through con-
catenating the weighted incidence matrices (Q)
of hypergraphs, which means merging the multi-
level hyperedges.

6.3 Over-Smoothing Analysis

It is worth to note that a stacked k-layers convolution could capture information from k-hop neighbor-
hood. In order to capture long-range information, HGNN and HyperGCN are required to stack multi
convolution layers leading to performance descending, as shown in Table 4, which is well-known
as over-smoothing issues. However, our proposed SHKC significantly avoids the performance de-
scending by enlarge step of diffusion to capture long-range information rather than stacking multi
convolution layers. In other words, SHKC can gain k-hop information by setting the diffusion step to
k rather than stacking k one-step SHKC layers. From 4, when the number of layers in other models
is same with diffusion steps in SHKC, it can be observed that SHKC outperforms the other models in
almost all datasets, especially when number of layers is large.

Table 4: Summary of classification accuracy (%) results with various depths. In our SHKC, the number of layers
is equivalent to t in Eq. (7). We report mean test accuracy over 10 train-test splits.

Dataset Method Layers/diffusion steps
2 4 8 16 32 64

Cora
(co-authorship)

HyperGCN 60.66 57.50 31.09 31.10 30.09 31.09
HGNN 69.23 67.23 60.17 29.28 27.15 26.62
SHKC (ours) 74.60 75.78 75.70 75.04 75.26 74.79

DBLP
(co-authorship)

HyperGCN 84.82 54.65 22.37 23.96 23.04 24.13
HGNN 88.55 88.28 85.38 27.64 27.62 27.56
SHKC (ours) 86.63 88.26 89.00 89.17 89.05 88.60

Cora
(co-citation)

HyperGCN 62.35 58.29 31.09 31.17 31.09 29.68
HGNN 55.60 55.72 42.10 26.16 24.40 24.43
SHKC (ours) 62.21 64.57 67.59 68.96 69.37 68.15

Pubmed
(co-citation)

HyperGCN 68.12 63.59 39.99 39.97 40.01 40.02
HGNN 46.41 47.16 40.93 40.24 40.30 40.29
SHKC (ours) 74.39 74.91 74.41 73.90 72.79 71.49

Citeseer
(co-citation)

HyperGCN 56.94 36.75 20.72 20.41 20.16 18.95
HGNN 39.93 38.98 36.67 19.91 19.86 19.79
SHKC (ours) 61.63 62.75 63.86 64.62 65.14 65.10

7 Conclusion

In this paper, we review the design of convolution for discrete structure from a kernel perspective.
We propose a two-phase paradigm that play roles in topology information aggregation and channel
aggregation respectively to conduct convolutions. Specifically, we concentrate on hypergraph which
is considered as a more general discrete structure to capture complex topology information. The
proposed SHKC could adjust diffusion step to aggregate long-range information which avoids
stacking multi existing convolution layers which leads to oversmoothing issues. Analysis based on
uniform stability theorem corresponds to the outperforming empirical results on downstream tasks.
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A Details of experiments

All the settings of our experiments follow Zhang et al. (2022b). The details show below.

A.1 Citation Network Classification

Datasets. The datasets we use for citation network classification include co-authorship and co-
citation datasets: PubMed, Citeseer, Cora (Sen et al., 2008) and DBLP (Rossi & Ahmed, 2015). We
adopt the hypergraph version of those datasets directly from Yadati et al. (2019), where hypergraphs
are created on these datasets by assigning each document as a node and each hyperedge represents
(a) all documents co-authored by an author in the co-authorship dataset and (b) all documents cited
together by a document in co-citation dataset. The initial features of each document (vertex) are
represented by bag-of-words features. The details about vertices, hyperedges and features are shown
in Table 5.

Table 5: Real-world hypergraph datasets used in our citation network classification task.
Dataset # vertices # Hyperedges # Features # Classes # isolated vertices

Cora (co-authorship) 2708 1072 1433 7 320(11.8%)
DBLP (co-authorship) 43413 22535 1425 6 0 (0.0%)
Pubmed (co-citation) 19717 7963 500 3 15877 (80.5%)
Cora (co-citation) 2708 1579 1433 7 1274 (47.0%)
Citeseer (co-citation) 3312 1079 3703 6 1854 (55.9%)

Settings and baselines. We adopt the same dataset and train-test splits (10 splits) as provided in
their publically available implementation5. Note that this dataset just has the edge-independent vertex
weights H, which is also called the incidence matrix. So this experiment can be regarded as a special
case of the specific application of our model (i.e. Q = H).

For baselines MLP+HLR, HNHN (Dong et al., 2020) , HyperSAGE (Arya et al., 2020),
UniGNN (Huang & Yang, 2021), HGNN (Feng et al., 2019) and FastHyperGCN (Yadati et al.,
2019), HyperGCN (Yadati et al., 2019), UniGNN (Huang & Yang, 2021) we reuse the results re-
ported by Huang & Yang (2021). For HNHN (Dong et al., 2020) and HGAT (Ding et al., 2020), we
implement them according to their public code.

We use cross-entropy loss and Adam SGD optimizer with early stopping with the patience of 100
epochs to train SHSC. For hyper-parameters, we use the grid search strategy. More details of
hyper-parameters can be found in Table 8.

Running Time and Computational Complexity Firstly, we analyze the theoretical computational
complexity of SHKC: For SHKC, the computational cost is the O(K|E|d+K|V|d), which includes
K sparse matrix multiplication and K summation over filters(|V|d is the cost of adding features
X). Then, we compare the running time with existing models in Table 6. The results illustrate that
our method is of the same order of magnitude as SOTA’s approach UniGNN and outperforms the
HyperGCN and HGAT.

Table 6: The average training time per epoch with different methods on citation network classification task is
shown below and timings are measured in seconds.(OOM: Out of Memory)

Methods cora coauthorship dblp coauthorship cora cocitation pubmed cocitation citeseer cocitation

HyperGCN 0.150±0.058 1.181±0.071 0.151±0.029 1.203±0.104 0.130±0.029
HGNN 0.005±0.002 0.081±0.006 0.005±0.040 0.008±0.002 0.005±0.002

UniGNN 0.014±0.044 0.042±0.040 0.014±0.042 0.023±0.043 0.0168±0.043
HNHN 0.001±0.0026 0.007±0.014 0.0010±0.004 0.009±0.006 0.001±0.003
HGAT 0.381±0.080 OOM 0.279±0.083 1.329±0.016 0.286±0.087

SHKC (ours) 0.055±0.001 0.291±0.001 0.205±0.003 0.135±0.056 0.193±0.057
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Table 7: summary of the ModelNet40 and NTU datasets
Dataset ModelNet40 NTU

Objects 12311 2012
MVCNN Feature 4096 4096
GVCNN Feature 2048 2048

Training node 9843 1639
Testing node 2468 373

Classes 40 67

A.2 Visual Object Classification

Datasets and Settings. We employ two public benchmarks: Princeton ModelNet40 dataset (Wu
et al., 2015) and the National Taiwan University (NTU) 3D model dataset (Chen et al., 2003), as
shown in Table 7.

In this experiment, each 3D object is represented by the feature vectors which are extracted by
Multi-view Convolutional Neural Network (MVCNN) (Su et al., 2015) or Group-View Convolutional
Neural Network (GVCNN) (Feng et al., 2018). The features generated by different methods can be
considered as multi-modality features. The hypergraph structure we designed is similar to Zhang
et al. (2018)( but they did not give spectral guarantees for supporting the rationality of their practices).
We represent the hypergraph structure as an edge-dependent vertex weight Q (i.e. Q1 = Q2 = Q).
Specifically, we firstly generate hyperedges by k-NN approach, i.e. each time one object can be
selected as a centroid and its k nearest neighbors are used to generate one hyperedge including
the centroid itself (in our experiment, we set k = 6). Then, given the features of the data, the
vertex-weight matrix Q is defined as

Q(v, e) =

{
exp(−d(v,vc)

γd̂2
), if v ∈ e

0, otherwise,
(8)

where d(v, vc) is the euclidean distance of features between an object v and the centroid object vc
in the hyperedge and d̂ is the average distance between objects. γ is a hyper-parameter to control
the flatness. As we have two-modality features generated by MVCNN and GVCNN, we can obtain
the matrix Q{i} which corresponds to the data of the i-th modality (i ∈ {1, 2}). After all the
hypergraphs from different features have been generated, these matrices Q{i} can be concatenated to
build the multi-modality hypergraph matrix Q = [Q{1},Q{2}]. The features generated by GVCNN
or MVCNN can be singly used, or concatenated to a multi-modal feature for constructing the
hypergraphs.

We use cross-entropy loss and Adam SGD optimizer with early stopping with the patience of 100
epochs to train SHSC. More details of hyper-parameters can be found in Table 8.

Table 8: Hyper-parameter search range for citation network classification and visual object classification.

Methods Hyper-parameter Range

SHKC

σ {-2,-1,-0.5,0,0.5,1,2}
γ(visual object classification) {0.1, 0.2, 0.4, 0.5, 0.8,1.0}

Learning rate {0.001, 0.005, 0.01}
Hidden dimension {128}

Layers {2,4,6,8,16,32,64}
Weight decay {1e-3,1e-4,5e-4, 1e-5}

α {1,0.97,0.95,0.9,0.85,0.8,0.75,0.7,0.65,0.6}
β { 1,0.95,0.90,0.85,0.8 }

Optimizer Adam
Epoch 1000

Early stopping patience 100
GPU Tesla V100

5https://github.com/malllabiisc/HyperGCN, Apache License
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Figure 1: Test accuracy by varying the hyper-parameters σ (left), β (middle) and α (right).

A.3 Sensitivity Analysis

Performance of SHKC on co-authorship cora, co-citation cora and co-citation pubmed with different
ρ, β and α is reported in Figure 1 where ρ(·) = (·)σ. For σ, we can see that the best choice will
vary depending on the dataset but mainly concentrate around −0.5, which verifies that the effect of
hyperedges degree to the transition probability is various and it has negative effect in most cases. For
β, with the growth of β, the performance of SHKC stably increases, which means that the topology
information is successfully aggregated through the defined diffusion process. Moreover, the fact that
the performance remains stable on cora (coauthorship) and pubmed (cocitation) when β is at 0.8-1.0
suggests we can only adjust this hyper-parameter at a range of value close to 1. For α, the tendency
of it is similar to β, so we can also adjust this hyper-parameter at a range of value close to 1 to obtain
a satisfying performance.

B Spectral view of SHKC

Spectral View of SHKC. Actually, SHKC is a spatial-based model while we can analyze it from
a spectral-based view. Let L = I − T̃ denote the normalized Laplacian matrix. Then the SHKC
can be viewed as a special spectral-based polynomial filter through

∑I
i=0 ξiL

i =
∑K

k=0 θkT̃
k

where θk = αk

K . Finally, we can deduce the coefficients of the special polynomial filter as ξi =

(−1)i
∑K

k=i

(
k
i

)
αk

K showing the strong relationships between SHKC and spectral-based model. The
explicit form of ξi can be derived as:

K∑
k=0

θkT̃
k =

K∑
k=0

θk(I− L)k =

K∑
k=0

θk

k∑
i=0

(
k

i

)
(−1)iLi

=

K∑
i=0

(
K∑
k=i

(−1)i
(
k

i

)
αk

K

)
Li

The Spectrum Analysis of SHKC We calculate the eigenvalues of
(
β
∑K

k=1
αk

K T̃k + (1− β)I
)

with various (α, β) on NTU2012 dataset (|V| = 2012) and count the number of eigenvalues in
different size ranges, which is shown in Table 9. The table suggests that our SHKC can capture both
low and high-frequency information of the graph signal, depending on the selection of the appropriate
hyper-parameters (α, β).

Table 9: The number of eigenvalues of SHKC in different size ranges on NTU2012 dataset.

α, β λ ≥ 0.0 λ ≥ 0.1 λ ≥ 0.2 λ ≥ 0.3 λ ≥ 0.4 λ ≥ 0.5 λ ≥ 0.6 λ ≥ 0.7 λ ≥ 0.8 λ ≥ 0.9

(1,1) 2012 364 163 108 82 66 52 38 26 13
(1,0.8) 2012 327 140 90 71 51 33 19 1 0
(0.8,1) 2012 161 40 0 0 0 0 0 0 0

(0.8,0.8) 2012 139 8 0 0 0 0 0 0 0
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C Main Lemma.

Lemma C.1. Let h(l)max = maxi∥[H(l)]i,:∥2 be the maximum norm of the vertex hidden representa-
tion with an l-step diffusion. Then for L, h(L)

max is bounded by:

h(L)
max ≤ (

β

L

L∑
l=1

(α
√

1 + ρmaxED)l + 1− β)CxCΘ

The proof is referred to in Appendix D.1. Lemma C.1 derives the bound of the maximum norm of the
hidden representation among all vertices which is required in the proofs of Lemma C.3 and Theorem
5.2.
Lemma C.2. Define ∆h(l)max = maxi ∥[H(l)(Θ)−H(l)(Θ̃)]i,:∥2 as the maximum distance of hidden
vertex representation with an l-step diffusion between different parameters Θ and Θ̃. Then, this
distance with an l-step diffusion can be bounded by:

∆h(L)
max ≤ (

β

L

L∑
l=1

(αdT )
l + 1− β)Cx∥∆Θ∥2

where ∆Θ = Θ− Θ̃.

The proof is referred to Appendix D.2. This Lemma bounds the maximum norm of changes of
hidden vertex representation with L-step diffusion between two different sets of parameters which is
significant to compute the Lipschitz LM and smoothness constant SM of SHKC.

Lemma C.3. Define GΘ = ∂f
∂Θ as the gradient of the prediction concerning learnable weights

Θ and Gω⃗ = ∂f
∂ω⃗ as the gradient of the prediction concerning the weights of the classifier. Let

∆ΘG = GΘ −GΘ̃ and ∆ω⃗G = Gω⃗ −G ˜⃗ω be the difference between gradient computed on two
different learnable and classifier weights. Then we have:

∥GΘ∥2 ≤ CxCαβL; ∥Gω⃗∥2 ≤ CxCαβLCΘ;

∥∆ΘG∥2 ≤ C2
xC

2
αβL∥∆Θ∥2 + C2

xC
2
αβLCΘ∥∆ω⃗∥2 + CxCαβL∥∆ω⃗∥2;

∥∆ω⃗G∥2 ≤ C2
xC

2
αβLC

2
Θ∥∆ω⃗∥2 + C2

xC
2
αβLCΘ∥∆Θ∥2 + CxCαβL∥∆Θ∥2

where CαβL = β
L

∑L
l=1(αdT )

l + 1− β and dT =
√
1 + ρmaxED in Proposition 5.1.

The proof is referred to Appendix D.3.

D Missing Proofs.

D.1 The Lemma 1

Lemma D.1. Let h(l)max = maxi∥[H(l)]i,:∥2 be the maximum norm of the vertex hidden representa-
tion with an l-step diffusion. Then for L, h(L)

max is bounded by:

h(L)
max ≤ (

β

L

L∑
l=1

(α
√

1 + ρmaxED)l + 1− β)CxCΘ

Proof. For deduction simplicity, we use T to represent the generalized transition matrix in the
following deduction and define dT =

√
1 + ρmaxED from Proposition 5.1. We first deduce the

reclusive formulation of SHKC between layers as:

H(0) = XΘ;

H(l+1) =
αl

l + 1
TH(l) +

α

l + 1
TH(0), l = 0, · · · , L− 2; (9)

H(L) = ψ(β(
α(L− 1)

L
TH(L−1) +

α

L
TH(0)) + (1− β)XΘ) = ψ(Z(L)) (10)

where ψ is the ReLu activation function.
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From h
(L)
max, we deduce the bound as:

h(L)
max = max

i
∥[ψ(β(α(L− 1)

L
TH(L−1) +

α

L
TH(0)) + (1− β)XΘ)]i,:∥2

≤ max
i

∥ [βα(L− 1)

L
TH(L−1)]i,:∥2 + ∥[βα

L
TXΘ]i,:∥2 + ∥(1− β)[XΘ]i,:∥2

≤(a) max
i

βα(L− 1)

L
∥
∑
j

Tijh
(L−1)
j ∥2 +

βα

L
∥
∑
j

Tijh
(0)
j ∥2 + (1− β)CxCΘ

≤ βα(L− 1)

L
dTh

(L−1)
max +

βα

L
dTCxCΘ + (1− β)CxCΘ (11)

where inequality (a) is due to Proposition 5.1 and assumptions in Theorem E.1. From the reclusive
formulation of SHKC in Eq. (9), we have:

h(L−1)
max ≤ α(L− 2)

L− 1
dTh

(L−2)
max +

α

L− 1
dTCxCΘ

· · ·

≤
∑L−1

l=1 (αdT )
l

L− 1
CxCΘ (12)

Add the Eq. (12) to Eq. (11) we get:

h(L)
max ≤ (

β

L

L∑
l=1

(αdT )
l + 1− β)CxCΘ

D.2 The Lemma 2

Lemma D.2. Define ∆h(l)max = maxi ∥[H(l)(Θ)−H(l)(Θ̃)]i,:∥2 as the maximum distance of hidden
vertex representation with an l-step diffusion between different parameters Θ and Θ̃. Then, this
distance with an l-step diffusion can be bounded by:

∆h(L)
max ≤ (

β

L

L∑
l=1

(αdT )
l + 1− β)Cx∥∆Θ∥2

where ∆Θ = Θ− Θ̃.

Proof. We first denote H(l)(Θ̃) as H̃(l) for similarity in deduction below.

∆h(L)
max = max

i
∥[H(L)(Θ)−H(L)(Θ̃)]i,:∥2

≤ max
i

∥ [βα(L− 1)

L
T(H(L−1) − H̃(L−1))

+
βα

L
TX(Θ− Θ̃) + (1− β)X(Θ− Θ̃)]i,:∥2

· · ·

≤ (
β

L

L∑
l=1

(αdT )
l + 1− β)Cx∥∆Θ∥2

D.3 The Lemma 3

Lemma D.3. Define GΘ = ∂f
∂Θ as the gradient of the prediction concerning learnable weights

Θ and Gω⃗ = ∂f
∂ω⃗ as the gradient of the prediction concerning the weights of the classifier. Let
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∆ΘG = GΘ −GΘ̃ and ∆ω⃗G = Gω⃗ −G ˜⃗ω be the difference between gradient computed on two
different learnable and classifier weights. Then we have:

∥GΘ∥2 ≤ CxCαβL; ∥Gω⃗∥2 ≤ CxCαβLCΘ;

∥∆ΘG∥2 ≤ C2
xC

2
αβL∥∆Θ∥2 + C2

xC
2
αβLCΘ∥∆ω⃗∥2 + CxCαβL∥∆ω⃗∥2;

∥∆ω⃗G∥2 ≤ C2
xC

2
αβLC

2
Θ∥∆ω⃗∥2 + C2

xC
2
αβLCΘ∥∆Θ∥2 + CxCαβL∥∆Θ∥2

where CαβL = β
L

∑L
l=1(αdT )

l + 1− β and dT =
√
1 + ρmaxED in Proposition 5.1.

Proof. Note that the classifier f has the formulation as f(h(L)
i ) = σ(h

(L)
i ω⃗) where σ is the sigmoid

function and z
(L)
i is the ith node representation in the last layer before the activation function ψ.

∥GΘ∥2 =
1

m

∑
i

∥∂Loss(f(h
(L)
i ), yi)

∂Θ
∥2

≤ max
i
κσ′(zi)∥

∂ω⃗⊤h
(L)
i

∂Θ
∥2

≤ max
i
κ∥([β

L∑
l=1

(αT)l

L
X+(1− β)X]i,:)

⊤1Diag(ψ′(z
(L)
i )⊙ ω⃗)∥2

≤ max
i
κ∥([β

L∑
l=1

(αT)l

L
X+(1− β)X]i,:)

⊤1∥2∥ω⃗∥2

≤ max
i
κ∥[β

L∑
l=1

(αT)l

L
X+(1− β)X]i,:∥2

≤ κCx(
β
∑L

l=1(αdT )
l

L
+ 1− β)

For the norm of Gω⃗:

∥Gω⃗∥2 =
1

m

∑
i

∥∂Loss(f(h
(L)
i ), yi)

∂ω⃗
∥2

≤ max
i
κσ′(zi)h

(L)
i

≤ κ(
β

L

L∑
l=1

(αdT )
l + 1− β)CxCΘ

For the norm of ∆ΘG:

∥∆ΘG∥2 ≤ max
i
κ∥∂h

(L)
i

∂Θ
(
∂f(h

(L)
i )

∂h
(L)
i

− ∂f(h̃
(L)
i )

∂h̃
(L)
i

)∥2

≤ max
i
κ∥[β

L∑
l=1

(αT)l

L
X+(1− β)X]i,:)

⊤1Diag(r− r̃)∥2

≤ κCxCαβL(∥∆ω⃗∥2(1 + h(L)
max) + ∆h(L)

max)

≤ κC2
xC

2
αβL∥∆Θ∥2 + κC2

xC
2
αβLCΘ∥∆ω⃗∥2 + κCxCαβL∥∆ω⃗∥2

where r = σ′(ω⃗⊤h
(L)
i )ψ′(z

(L)
i )⊙ ω⃗ and CαβL = β

L

∑L
l=1(αdT )

l + 1− β.

Finally, for ∆ω⃗G:

∥∆ω⃗G∥2 ≤ κ(∆h(L)
max + h(L)

max(∆h
(L)
max + h(L)

max∥ω⃗∥2))
≤ κC2

xC
2
αβLC

2
Θ∥∆ω⃗∥2 + κC2

xC
2
αβLCΘ∥∆Θ∥2 + κCxCαβL∥∆Θ∥2
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D.4 The Theorem 5.2

Theorem 5.2 (Main Results For SHKC). Assume that (i) for any vertex i, its norm of the feature
vector is bounded by a constant ∥xi∥2 ≤ Cx; (ii) the norm of learnable parameters of SHKC is
bounded as ∥Θ∥2 ≤ CΘ; (iii) the norm of the weight of the classifier is bounded as: ∥ω⃗∥2 ≤ 1. Let
α,L, β be the hyper-parameters defined in SHKC during training and η be the learning rate. Then
the model SHKC is µSHKC uniform stable with µSHKC = 2ηLMGM

m

∑T
t=1(1 + ηSM)t−1 where:

LM = CxCαβL max{1, CΘ}; GM = CxCαβL(1 + CΘ);

SM = C2
xC

2
αβL max{1, CΘ}2 + C2

xC
2
αβLCΘ + CxCαβL

Here CαβL = β
L

∑L
l=1(αdT )

l +(1− β) and dT =
√
1 + ρmaxED is the l1 norm of the generalized

transition matrix for a hypergraph in Proposition 5.1.

Proof. We use {Θ, ω⃗} and {Θ̃, ˜⃗ω} to denote two different sets of parameters throughout the model
SHKC. We first give the deduction of LM = CxCαβL max{1, CΘ} from Lemma C.1 and Lemma
C.2:

max
i

|f(Θ, ω⃗|xi)− f(Θ̃, ˜⃗ω|xi)| ≤ ∆h(L)
max + h(L)

max∥∆ω⃗∥2

≤ CxCαβL∥∆Θ∥2 + CxCαβLCΘ∥∆ω⃗∥2
≤ CxCαβL max{1, CΘ}(∥∆Θ∥2 + ∥∆ω⃗∥2)

Then, from Lemma C.3, we get the bound of the gradient GM = CxCαβL(1 + CΘ) Finally, from
Lemma C.3, we have the smoothness of M that SM:

max
i

∥∇Θ,vf(Θ, ω⃗|xi)−∇Θ̃,ṽf(Θ̃,
˜⃗ω|xi)∥2 ≤

(∥∆Θ∥2 + ∥∆v∥2)(C2
xC

2
αβL max{1, CΘ}2 + C2

xC
2
αβLCΘ + CxCαβL)

D.5 Proof of Proposition 5.1

Proof. We have T̃ to be formulated as:

T̃ = D̃−1/2
v (I+QWρ(DE)Q

⊤)D̃−1/2
v

Then the l1 norm of T̃ is bounded as:

∥T̃∥1 = max
i

∑
j

|T̃ij | = max
i

∑
j

1{i = j}+
∑

eQ(i, e)W (e)ρ(δ(e))Q(j, e)√
d̃v(i)

√
d̃v(j)

≤(a) max
i

d̃v(i)√
d̃v(i)

= max
i

√
d̃v(i)

≤(b)

√
1 + Eρmax

where d̃v(i) = 1 +
∑

eQ(i, e)w(e)ρ(δ(e))δ(e) and δ(e) =
∑

v Q(v, e). The inequality (a) is due to
d̃v(i) ≥ 1. The inequality (b) is due to δ(e) =

∑
v Q(v, e) ≤ ne ≤ E and

d̃v(i) = 1 +
∑
e

Q(i, e)w(e)ρ(δ(e))δ(e)

≤ 1 +
∑
e

ρ(δ(e))δ(e) ≤ 1 + ρmaxED
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E Uniform Stability Bound

We slightly modify the Uniform Stability Bound in El-Yaniv & Pechyony (2006) for more distinct
analysis of generalization error of SHKC.
Theorem E.1 (Uniform Stability Bound (El-Yaniv & Pechyony, 2006)). Denote M to be a transduc-
tive learning model with uniform stability µ. Let K(m,n) =

∑m
i=1

n2

(n+i)2 . For a κ-Lipschitz loss
function bounded in [0, 1] and δ > 0, the gap between the training error and testing error is bounded
as:

gap(M, γ, δ) ≤ µκ(1 +O(2
√
2K(m,n) ln δ−1))

+O(
m+ n

mn

√
2K(m,n) ln δ−1)

where m,n denote the number of samples in the training and testing sets respectively.
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