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Abstract

Deep learning has revolutionized the field of com-
puter vision by introducing large scale neural net-
works with millions of parameters. Training these
networks requires massive datasets and leads to in-
transparent models that can fail to generalize. At
the other extreme, models designed from partial
differential equations (PDEs) embed specialized
domain knowledge into mathematical equations
and usually rely on few manually chosen hyper-
parameters. This makes them transparent by con-
struction and if designed and calibrated carefully,
they can generalize well to unseen scenarios. In
this paper, we show how to bring model- and
data-driven approaches together by combining
the explicit PDE-based approaches with convolu-
tional neural networks to obtain the best of both
worlds. We illustrate a joint architecture for the
task of inpainting optical flow fields and show
that the combination of model- and data-driven
modeling leads to an effective architecture. Our
model outperforms both fully explicit and fully
data-driven baselines in terms of reconstruction
quality, robustness and amount of required train-
ing data. Averaging the endpoint error across dif-
ferent mask densities, our method outperforms the
explicit baselines by 11 — 27%, the GAN baseline
by 47% and the Probabilisitic Diffusion baseline
by 42%. With that, our method sets a new state of
the art for inpainting of optical flow fields from
random masks.
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1. Introduction

Diffusion is a fundamental process in physics that leads to
an equilibrium of local concentrations. It explains many phe-
nomena and finds applications in image processing (Weick-
ert, 1998) and computer vision tasks (Weickert & Schnorr,
2001). In particular, it motivates the smoothness term
in dense optical flow estimation in variational techniques.
However, recent advancements in optical flow estimation
have been dominated by deep-learning approaches (Doso-
vitskiy et al., 2015; Ilg et al., 2017; Teed & Deng, 2020;
Xu et al., 2022; Huang et al., 2022). While all these ar-
chitectures include a task-specific model-driven operation
that represents the data term, the regularization through the
smoothness term is handled in a fully data-driven manner
by the learned parameters of the convolutions (Dosovitskiy
etal., 2015; llg et al., 2017; Teed & Deng, 2020) and more
recently by attention (Xu et al., 2022; Huang et al., 2022).
Notably, none of these approaches utilize a specialized reg-
ularization operation as it has been studied in traditional
computer vision. For this reason, we investigate whether it
is possible to integrate diffusion with its rich mathematical
foundations based on partial differential equations (PDEs)
into neural architectures. In the following, we refer to these
model-driven operations that integrate specialized domain
knowledge for a certain task as explicit, the general data-
driven operations as neural, and the combination of both as
neuroexplicit.

The role of the regularization in traditional computer vision
is to propagate information from confident correspondences
to regions with less or little information. Variational meth-
ods do so using smoothness terms that lead to diffusion
terms in the Euler-Lagrange equations. To isolate this be-
havior, we focus on inpainting of sparsely masked optical
flow fields and compare our novel architecture with popular
state-of-the-art methods. By imposing the diffusion behav-
ior explicitly, our goal is to achieve interpretable models
with fewer parameters, improved generalization capabilities,
and less dependence on large-scale datasets.

1.1. Contributions

For the first time, we implement an end-to-end trainable net-
work to predict the diffusion tensor used in an image driven
diffusion inpainting of an optical flow field. Additionally, it
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Figure 1: We present a neuroexplicit architecture for inpaint-
ing of optical flow fields. An explicit inpainting model based
on partial differential equations (PDEs) is enhanced with
neural parameter selection. The resulting model inherits
both the exceptional out-of-domain generalization from the
explicit side and the reconstruction quality from the neural
side.

predicts the parameters for the discretization of Weickert
et al. (2013), which ensures that the diffusion evolution is
stable and well-posed.

We compare our learned diffusion inpainting network with
Edge-Enhancing Diffusion (Weickert, 1994) inpainting, Ab-
solutely Minimizing Lipschitz (Raad et al., 2020) inpainting
and Laplace-Beltrami (Raad et al., 2020) inpainting. Addi-
tionally, we consider the most popular state-of-the-art deep
learning methods that use U-Nets (Ronneberger et al., 2015),
Wasserstein GANs (Vasata et al., 2021), and Probabilistic
Diffusion (Saharia et al., 2022; Lugmayr et al., 2022) and
show that our proposed method can reconstruct flow fields
with a high level of detail and generalize exceptionally well.
Evaluated with test data from the same domain as the train-
ing data, our method achieves an average improvement of
48 — 66% in terms of endpoint error when compared to the
baselines, while when tested on a new domain, our method
manages to outperform by 11 — 47% and sets a new state
of the art. Finally, we evaluate on real world data from au-
tonomous driving and show that in this practical application,
our method is on-par with other methods or significantly out-
performs them. Beyond the good generalization capabilities,
the diffusion networks have comparatively few learnable
parameters and competitive inference times. Our ablation
studies show that they can be trained with much less data
and still outperform baselines trained on the full dataset.

1.2. Related Work

Diffusion inpainting. Reconstructing missing information
from images, known as inpainting (Guillemot & Le Meur,
2014), has been a long-standing goal in image process-
ing (Masnou & Morel, 1998; Bertalmio et al., 2000). For
inpainting-based image compression (Gali¢ et al., 2008),
diffusion processes offer very good performance. They
are theoretically well-founded (Weickert, 1998), and their
discretizations are well-understood (Weickert et al., 2013).

Moreover, they are inherently explainable and can recon-
struct high resolution images in real time (Kdmper & We-
ickert, 2022).

Inpainting with deep learning. In recent years, the ad-
vances in deep learning methods have shifted the attention
towards large-scale data-driven models. Generative Adver-
sarial Networks (GANSs) (Vasata et al., 2021) or Probabilistic
Diffusion (PD) models (Lugmayr et al., 2022) show impres-
sive inpainting qualities for image restoration and artistic
purposes. They do, however, require large amounts of train-
ing data and can fail to generalize to out-of-distribution
scenarios.

Inpainting of flow fields. Inpainting for optical flow fields
has rarely been addressed. Jost et al. (2020) investigated
PDE-based inpainting for compression of general piecewise
smooth vector fields. Andris et al. (2021) use flow field
compression and inpainting of optical flow fields as part
of their video compression codec. However, both works
assume having access to the complete flow to optimize the
inpainting mask accordingly, whereas our method works
with random, non-optimal masks.

Relationships between PDE-models and deep learning.
A variety of other neuroexplicit approaches have been ex-
plored. Researchers recently have turned to investigating
connections between discrete models for solving PDEs and
deep learning (Alt et al., 2022; Haber & Ruthotto, 2017;
Ruthotto & Haber, 2020; Chen et al., 2018). CNN architec-
tures share a particularly close relationship to discrete PDE
models due to the inherent similarity of convolutions and
discrete derivatives in the form of finite differences (Morton
& Mayers, 2005).

Alt et al. (2022) and Ruthotto & Haber (2020) connected
discrete models for solving PDEs and residual blocks (He
et al., 2016). Their diffusion blocks realize one explicit
step of a discrete diffusion evolution in a residual block
with symmetric filter structure. Similar to our approach,
they construct architectures that realize diffusion evolutions.
However, their work only involves the formulation as a
neural network for executing the method (Alt et al., 2022),
or the focus revolved around learning the finite differences
(Ruthotto & Haber, 2020).

Most closely related to our method are the works of Alt &
Weickert (2021) and Chen & Pock (2017) that focused on
parameterizing diffusion processes through learning. Both
methods use learning to estimate contrast parameters for
the diffusivity, but formulate the diffusion tensor as explicit
functions of image contrast. Alt & Weickert (2021) con-
struct a multiscale anisotropic diffusion process for image
denoising. Chen & Pock (2017) formulate a general frame-
work for diffusion-reaction systems that support learnable
contrast parameters in an isotropic diffusion process and
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learnable weights for the finite difference operators. How-
ever, once trained, these parameters are the same for all
pixels and do not adapt themselves to the presented input
image content. In contrast, our model learns to drive the
explicit diffusion process in a fully neural way and does not
rely on first order image derivatives as an edge detector.

2. Inpainting with Explicit Diffusion

In this section, we review diffusion (Weickert, 1994) and
how it can be used for inpainting.

2.1. Definition of Diffusion Inpainting

A given vector valued image f(x) : Q — R€ is only known
on the subset 2 C  of the rectangular image domain
Q) C R2. For each channel i € {1, ..., ¢}, diffusion results
in the steady state approached for ¢ — oo of the initial
boundary value problem:

Opui(x, t) = div(DVu,;(x, 1)),

forz € O\ Q¢ x (0,00), W

wi(x,t) = fi(x), forz € Q¢ x [0, 00), 2)
u;(x,0) =0, for 2\ Q¢, 3)
Onui(z,t) =0, for z € 0N x [0, 00). “4)

Here, u;(x, c0) denotes the final inpainting result in channel
i, div = VT denotes the spatial divergence operator, and
On, represents the directional derivative along the normal
vector to the image boundary 0S2. The diffusion tensor D
is a 2x2 positive definite symmetric matrix that describes
the propagation behavior.

2.2. Edge-Enhancing Diffusion

Edge-Enhancing Diffusion (EED) (Weickert, 1994) pro-
vides superior inpainting quality (Schmaltz et al., 2014),
achieved by deriving the diffusion tensor D through the
structure tensor (Di Zenzo, 1986):

S(u) := Z Vui,quZp . %)

=1

Here, u; , denotes a convolution of channel u; with a Gaus-
sian of standard deviation p. The eigenvalues p; > o >0
of S measure the local contrast along the corresponding
eigenvectors v, v2. EED penalises smoothing across im-
age structures by transforming the larger eigenvalue with
a positive, decreasing diffusivity function g. For the re-
maining direction along image structures, full diffusion is
allowed by setting the eigenvalue to 1. This results in

D :=g4(S) =g(u1) ~v1'u;r +1- ’021); ) 6)

In our setting, f is a sparse flow field that should be in-
painted. So far, we illustrated a nonlinear diffusion process
where the structure tensor from Equation 5 and consequently
the diffusion tensor are determined from the evolving signal.
This has the disadvantage that the diffusion tensor needs
to be re-estimated for every diffusion step. For this reason,
we choose a linear diffusion process, and determine the dif-
fusion tensor using the image I(x) : Q — R3 relative to
which the optical flow field is defined. We will refer to I as
the reference image.

2.3. Discretization

Equation 1 can be discretized by means of a finite difference
scheme. To transform the continuous into discrete signals,
we sample u, f and I at grid sizes h,, h,. We discretize
the temporal derivative by a forward difference with time
step size 7. The spatial first-order derivative operator V and
its adjoint V' T are implemented by a convolution matrix K
and its negated transpose —K T, respectively.

To discretize computation and multiplication with the diffu-
sion tensor D, we introduce the following notation for an
activation function:

C

o(I, Ku) :g(Z(KI)i(KI)iT)(Kuk). @
1=0

S

Finally, we can define the discrete diffusion evolution and
solve it for the next time step to obtain an explicit scheme:

T k
—— = -K'o(I, Ku") & ®

uftl = b — 7 (KTO(I, Ku")),

where the time levels are indicated by superscripts.

To achieve an inpainting process with good reconstruction
qualities, the choice of the convolution matrix K is crucial.
Weickert et al. (2013) introduced a nonstandard finite differ-
ence discretization that implements the discrete divergence
term K " ®(I, Ku*) on a 3x3 stencil. It introduces two
free parameters

ael0,3], 1Bl <1-2aq, ©

that have an impact on sharpness and rotation invariance of
the discretization.

2.4. Fast-Semi Iterative Scheme

In practice, enforcing the stability of an explicit scheme
requires restricting the time step 7. However, depending on
the data, a stable scheme may require a substantial amount
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of iterations to converge. Formulated as a neural architec-
ture, this results in an excessive amount of operations and
intractable optimization. Fortunately, explicit schemes can
be accelerated by extrapolating the outcome of each time
step, e.g. by the Fast Semi-iterative (FSI) Scheme proposed
by Hafner et al. (2016). In contrast to a naive discretization,
FSI-schemes implement a cycle of L steps and extrapolate
the diffusion result at a fractional time step k + l_Tl:

Wt =y (M (KT (01, KultE))) (10)
(-t T

with [ = 0,..., L — 1 indexing the step and v; := (4l +
2)/(21+ 3) denoting the time-varying extrapolation weights.

3. From Explicit to Neuroexplicit Flow
Inpainting

In the following paragraphs, we discuss how to transform
an explicit diffusion inpainting approach into a hybrid neu-
roexplicit architecture, where we define explicit as parts of
the architecture that are derived from the well known PDE
framework for the diffusion process, and neural as generic
data-driven, non-interpretable deep learning architecture
parts.

To solve the inpainting task, our method and the baselines
receive a sparse, initial flow field as well as a binary mask
that marks the positions of the known flow vectors. Addi-
tionally, we provide the reference image for an image-driven
inpainting process. Image-driven regularizers in traditional
optical flow methods exploit the correlation of contrast in
the reference image and the discontinuities in the unknown
flow field. However, considering contrast alone is not suffi-
cient and leads to over-segmented flow fields. In practice,
due to the aperture problem, one must decide how to reg-
ularize based on the individual image content. As this is
of statistical nature and requires prior knowledge, lever-
aging deep learning here seems adequate. We bring in a
U-Net (Ronneberger et al., 2015) as the Diffusion Tensor
Module (DTM), that we train end-to-end to predict the ideal
diffusion parameters. Concretely, it replaces the heuristic
choice of the structure tensor in the activation ¢ in Equa-
tion 7 and the discretization parameter v in Equation 9. An
overview of the complete model is shown in Figure 2.

3.1. Coarse-to-Fine Diffusion Inpainting

Our architecture implements an explicit image-driven in-
painting process. In contrast to traditional methods, the
parameters of the process are obtained from the reference
image using the DTM. To reduce the required time steps
of the inpainting process and make it computationally fea-
sible, we employ a coarse-to-fine scheme (Bornemann &
Deuflhard, 1996). We build the pyramid using pooling oper-

ations that downsample by a factor 2, where we use average
pooling for the reference image and max pooling for the
mask. To obtain the coarse version of the sparse flow field,
we use average pooling of known flow values. After obtain-
ing the coarse versions of all inputs, we start the diffusion
inpainting process from the coarsest sparse flow field. The
inpainted flow field is then upsampled using bilinear inter-
polation and initializes the inpainting process at the next
finer resolution.

For a multiscale diffusion process that spans across N reso-
lutions, we need a set of parameters at each scale. The DTM
performs N down- and upsampling convolutions. At each
feature map after the bottleneck, we apply a separate convo-
Iution to estimate a feature map z with five channels. Below,
we explain how each z is transformed to parameterize the
diffusion process along the coarse-to-fine pyramid.

3.2. Discretization

To implement our scheme, we use the discretization of We-
ickert et al. (2013) that we discussed in Section 2.3. This
formulation introduces the two free parameters « and
shown in Equation 9. The first channel of z is used as the
discretization parameter o = o (2g)/2. Notably, the restric-
tion of |3] < 1 — 2« depends on «. To guarantee a stable
scheme, we choose 8 = (1 — 2a)sign(b), where b is the
off-diagonal element of the diffusion tensor.

3.3. Learning the Diffusion Tensor

The remaining four channels in z are used to estimate the
diffusion tensor in the activation ®. Replacing the structure
tensor with a neural edge detector allows learning a prior
that decides which image edges will likely coincide with
flow discontinuities. Due to the anisotropic diffusion pro-
cess, these discontinuities can be maintained throughout the
inpainting process even if the mask distribution is sparse
and suboptimal.

Concretely, we obtain two eigenvalues 1 = g(z1), pz =

L
g(22) and one eigenvector v = %

. We explicitly

(el
The eigenvalues are constrained to the range [0, 1] using
the Perona-Malik diffusivity g(x) = (1 + i{f;)_l (Perona &
Malik, 1990), where the free parameter A is learned during
training. In contrast to the formulation in Equation 6, we
apply the diffusivity to both eigenvalues. This gives the
DTM additional freedom to either replicate the behavior in
Equation 6 or restrict the diffusive flux in both directions.

compute vy = to ensure orthogonality to v;.

4. Experiments

Our experiments are divided into three parts. In the first
part, we compare our method with a selection of fully ex-
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Figure 2: Our proposed hybrid inpainting model. The Diffusion Tensor Module takes the reference image as input, and
outputs a specific diffusion tensor D and discretization parameter « for every stage of the coarse-to-fine inpainting pipeline.
The inpainting itself is done using a stable and well-posed anisotropic diffusion process that solves ¢ steps of the explicit

scheme in Equation 8.

plicit and neural inpainting methods. In the second part, we
show an ablation study to test the effectiveness of learning
different components of the diffusion inpainting process to
analyze and determine the balance between explicit and neu-
ral parameter selection. For both parts, we train on the final
subset of the FlyingThings dataset (Mayer et al., 2016). To
evaluate generalization, we test on the Sintel dataset (Butler
etal., 2012).

Finally, we demonstrate the usefulness of our method in
a real-world application. The KITTI (Geiger et al., 2012)
dataset is well known for autonomous driving and provides
sparse ground truth that is acquired from registering LiDAR
scans. Densifying it presents a practically highly relevant
use case of our method.

4.1. Network and Training Details

For our diffusion inpainting network, we leverage four reso-
lutions for the coarse-to-fine pyramid. Going from coarsest
to finest, we perform 1 iterations, where ¢ € {5, 15,30,45}
increases with the resolution. At each resolution, the feature
map z is obtained from the DTM and transformed into the
parameters as described in Section 3. Each resolution has ac-
cess to a separate contrast parameter A in the Perona-Malik
diffusivity discussed in Section 3.3, which is initialized as 1
and learned during training. To further speed up the inpaint-
ing process, we use the Fast-Semi Iterative (FSI) scheme
proposed by Hafner et al. (2016) and perform one cycle per

resolution. Time step size and FSI extrapolation weights are
chosen to satisfy a stable and well-posed diffusion inpaint-
ing process. For more information about the FSI scheme,
we refer to the supplementary material.

We choose three fully explicit baselines. First, a linear
EED inpainting method where all parameters are chosen
explicitly and the diffusion tensor is also estimated using
the reference image. For a fair comparison, we use the same
coarse-to-fine strategy and optimize its hyperparameters on
a subset of the training data and let the inpainting process
converge. The previous state of the art is held by Raad et al.
(2020), who propsoe two anisotropic optical flow inpainting
algorithms: the first is based on the Absolutely Minimizing
Lipschitz Extension (AMLE) PDE and the second one uses
the Laplace-Beltrami (LB) operator. They propose a set
of robust hyperparameters for the Sintel dataset, which we
will use for all evaluations. Note that other methods are not
trained or tuned on Sintel and therefore this setting gives
Raad et al. (2020) an advantage.

As the first neural baseline, we choose a FlowNetS (Doso-
vitskiy et al., 2015) as a general purpose U-Net architecture.
Instead of two images, we feed it a concatenation of im-
age, mask, and sparse flow and let the network learn the
inpainting process. As more recent and advanced deep
learning-based methods, we include Generative Adversarial
Networks (GANSs) and Probabilistic Diffusion (PD). We
use WGAIN (Vasata et al., 2021) as the GAN baseline, as
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Table 1: Comparison of our method with the baselines on
the Sintel dataset. Surprisingly, the explicit EED diffusion
inpainting outperforms the data-driven baselines across both
datasets. Learning the proposed parts of the diffusion pro-
cess with our method further improves the reconstruction
qualities with significantly fewer iterations and leads to a
new state of the art. *indicates that the method was already
tuned for Sintel.

Training-Domain Test EPE

EED AMLE* LB* Ours FlowNetS WGAIN PD
1% | 2.06 2.03 2.03 1.01 233 226 3.96
5% | 1.00 1.08 1.00 0.55 1.68 1.73 1.09
10% | 0.73 0.82 0.75 0.39 1.55 143 0.72

Sintel Test EPE

EED AMLE* LB* Ours FlowNetS WGAIN PD
1% | 094 094 086 0.72 085 1.14 2.39
5% | 0.52 0.51 043 040 057 0.80 0.55
10% | 0.43 0.38 0.31 0.28 0.51 0.60 0.40

it has been used successfully for inpainting images from
sparse masks. For the PD network, we adapted the popu-
lar efficient U-Net architecture (Saharia et al., 2022) and
use the inpainting formulation of RePaint (Lugmayr et al.,
2022) during inference. Both GAN and PD network are
conditioned on the reference image to learn the correlation
between flow and image edges. For more details on training
and adaptations, we refer to the supplemental material.

4.2. Reconstruction and Generalization

Table 1 shows a comparison of our method to the introduced
baselines. Edge-Enhancing Diffusion (EED) inpainting out-
performs the purely neural baselines and can reconstruct a
high level of detail. It does, however, require a significant
number of iterations to converge (anywhere from 3,000 to
100,000), varying drastically with the content of the im-
ages and the given mask density. The reason for this slow
convergence is the reliance on the structure tensor that we
discussed in Section 2.2. The diffusivity is limiting the diffu-
sive flux wherever there is image contrast, which increases
the number of required time steps. Figure 5 shows that
relying on the structure tensor can also be harmful in low-
contrast regions where no edge is identified and information
leaks across edges. Since we let the inpainting process fully
converge, this leaking effect can be detrimental to the final
performance. Furthermore, replacing the structure tensor
with a neural edge detector leads to a more robust inpainting
in cases where there is a high variance of contrast within
the images, which happens frequently in the FlyingThings
data. Consequently, the discrepancy between EED and our
method is much more severe on that dataset.

As can be seen in Figure 5, the CNN methods
FlowNetS (Dosovitskiy et al., 2015) and WGAIN (Vasata
et al., 2021) produce noisy flow fields at the flow edges.
They fail to capture the same level of detail as the anisotropic
diffusion methods that adapt their smoothing behavior to the
image content. Compared to the CNN methods, the Prob-
abilistic Diffusion (PD) model with the RePaint (Lugmayr
et al., 2022) inpainting has well-localized discontinuities.
However, PD models are highly affected by the distribution
of the training data. Figure 5 shows a case of overfitting in
the first two rows. The FlyingThings dataset contains mostly
rigid objects with straight edges and no materials compara-
ble to the fuzzy beard of the shaman. Consequently, PD fails
to generalize to the out-of-domain sample and reconstructs
a blocky and unnatural looking beard.

Since our method realizes a well-posed diffusion process by
construction, it is naturally robust to changes in its input. We
tested the generalization capabilities to new mask densities
and show the results in Figure 3. Increasing the mask density
compared to observed training density should lead to an
increase in performance since more information is presented.
The data-driven baselines that are trained with a specific
density (FlowNetS and WGAIN) fail to capture this intuition
and have decreasing performance. Our proposed method
has an increasingly better reconstruction quality with higher
densities. When evaluated on a density of 10%, the network
trained on 5% density can even reach a very close EPE on
to the network that was optimized on this density (0.28 vs.
0.29).

Figure 4 shows the number of learned parameters of all
models. Since the inpainting behavior in our method is
steered by an explicit anisotropic diffusion process, the net-
work has significantly fewer parameters than the compared
baselines. A vast majority of these parameters are placed
in the DTM to identify flow discontinuities and drive the
diffusion process accordingly. Having so few parameters
provides an inherent regularizing effect and leads to less re-
liance on available training data. This is reflected in the left
plot in Figure 3, where we compared the performance of all
baselines when trained on a subset of the available training
data. Even with a drastic cut of training data, our proposed
method outperforms all other baselines. The reconstruction
quality barely decreases compared to the networks that were
trained on more data.

4.3. Effects of Learned Components

Table 2 shows quantitative results of trained inpainting net-
works, where we illustrate the effect of learning the eigen-
values p1, o, eigenvectors vy, vo, and the discretization
parameter «. As one can see from Equation 5, the struc-
ture tensor computation considers only first-order image
derivatives. Especially in the presence of noisy images, the
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Figure 3: Our proposed method is robust to changes in the training Figure 4: Weights and inference time of
and inference setting. The left plot shows the weaker reliance of our  the models. Compared to the baselines, our
method on training data. Using 194 samples, we reach a competitive  model is very lightweight and has competitive
performance to the network trained on the full dataset. The right plot inference times. Notably, we omitted the ex-
shows the favorable generalization to unseen mask densities of our method  plicit baselines, since there is no clear way to
and the explicit EED inpainting. As indicated by the gray vertical line, compare the methods.

we evaluated each model optimized for 5% on previously unseen mask

densities.

Reference Image Sparse Flow Ground Truth EED AMLE LB Our Method FlowNetS WGAIN PD

Figure 5: Samples generated with a mask density of 5%. Every other row displays the zoomed in area of the red rectangle
in the row above. Our method manages to retain a much higher level of detail in the reconstructed flow fields. In the bottom
row at the dragons chin, we can observe that the PDE methods (EED, AMLE, and LB) fail to maintain flow edges in low
contrast regions. Notably, both WGAIN and the PD model have poor out-of-distribution performance. WGAIN tends to
have large outliers and fails in the zero flow in the background. The PD model fails to reproduce the fuzzy material of the
shamans beard due to a lack of comparable materials in the training data.
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Table 2: Ablation study of replacing learned with explicit components. The values indicate endpoint errors relative
to our final network for different mask densities. Learning the eigenvalues over explicit ones (— ) plays the biggest role.
Exchanging learned with explicit eigenvectors (—v) and the learned, spatially-varying discretization parameter with a
constant explicit one (—«) leads to consistent decreases in performance. Learning the second discretization parameter (+/3)
can further push the performance, but does not guarantee stability. We also test the ResNet implementation of Alt et al.
(2022) and learn the finite difference operators (+W'). However, this does not give a significant performance improvement

and leads to additional computation cost.

Training-Domain Test EPE Sintel Test EPE
Full — i —v —« +05 +W Full — i —v —« +5 +W
1%| 1.01 4095 +0.07 +0.05 -0.04 +0.00 | 0.72 +0.17 +40.07 +40.03 —-0.02 +0.01
5%| 0.55 4+0.28 +40.02 +0.06 -0.03 —-0.01 | 0.40 +0.04 +0.06 +0.02 —-0.01 -0.01
10%| 0.39 +0.20 +40.00 +0.02 -0.01 +40.03 | 0.28 +40.04 +0.04 +0.02 —-0.01 +0.00

structure tensor relies on Gaussian pre-smoothing that can
lead to worse edge localization in the final flow field. In
the case of explicit eigenvalues, the network has to learn a
small contrast parameter A to avoid smoothing across struc-
tures. This leads to a slow convergence within the limited
number of performed diffusion steps and poor inpainting
quality. Supplying the eigenvectors of the diffusion tensor
by the learnable module provides a consistent increase in
performance.

The discretization parameters are usually chosen as constant
hyperparameters, whereas our DTM outputs one a-value
per pixel and outperforms the global constant for all mask
densities. This suggests that adapting the discretization
parameters to the image content is preferable to obtain high-
quality reconstructions. We also performed an additional ab-
lation study to estimate the second discretization parameter
£ independently of . The improvements are insignificant,
while doing so voids the restriction 9. Hence, we do not
recommend learning the second discretization parameter 3.

Alt et al. (2022) showed that for each discrete diffusion
evolution with a fixed stopping time, there is an equiva-
lent ResNet architecture that implements it. We addition-
ally compare our method to the ResNet formulation of Alt
et al. (2022) where we learned the discrete derivative op-
erators. This formulation requires much more arithmetic
operations compared to the efficient 3x3-stencil of Weickert
et al. (2013), since each derivative operator has to be real-
ized with its own convolution kernel. On the other hand,
also in this case, the performance difference is insignificant
and the explicit discretization from Weickert et al. (2013)
is preferable. For the derivation of the equivalent ResNet
architecture, we refer the reader to the supplementary mate-
rial.

4.4. Generalization to Real World Data

We further tested the generalization capabilities of all meth-
ods to real world data using the KITTI2015 (Geiger et al.,
2012) optical flow dataset. This dataset provides accu-

rate sparse measurements obtained from registering LIDAR
scans. Densifying these measurements resembles a highly
relevant application of our method for autonomous driving.

The original density of the measurements is between 15 —
25%. To measure the accuracy of our reconstructed dense
flow fields, we subsample according to our different density
settings 1, 5 and 10%. After reconstructing the dense flow
field, we then measure the accuracy of the previously left
out measurements and report the results in Table 3. Please
note that we omit the Probabilistic Diffusion method, since
it is optimized for a specific image resolution and fails to
generalize from the square training images to the wide-angle
setting in KITTIL.

When looking at the numbers, the advantage in terms of
robustness of all the PDE-based, neural and neuroexplicit
methods becomes apparent. The neural models fail to gener-
alize to this new real-world setting, as well as non-uniform
mask distributions. This is consistent with the observa-
tions from Figure 3. The results show, that our method
which combines neural and explicit components is on-par
with Laplace-Beltrami in terms of EPE, but has significantly
fewer outliers especially in the most challenging low density
setting. Most likely, our method could still be improved by
supplying different non-uniform mask distributions during
training to adapt to the setting in KITTIL.

5. Conclusion and Future Work

We studied discrete diffusion processes in a deep learning
context and illustrated a novel approach to steer the diffusion
process by a deep network. We showed that our method can
outperform both model-based and fully data-driven base-
lines, while requiring less training data, having fewer param-
eters, generalizing better, being well-posed, being supported
by a stability guarantee, and offering competitive runtimes.

In the current work, we only focus on the regularization
aspect of optical flow. Future work will be on embedding
our diffusion regularization into an end-to-end optical flow
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Table 3: Generalization Capabilities to Real World Data.
We report the mean EPE on all measured pixels in the origi-
nal KITTI training dataset. As customary for KITTI, we ad-
ditionally report flow (F1) outliers in % as defined by Geiger
et al. (2012). A displacement is considered an outlier if
its endpoint error is > 3, or it differs by at least 5% of
the ground truth displacement. The results show that our
method is on par with Laplace-Beltrami in terms of EPE but
has significantly fewer outliers in the most challenging low
density setting.

KITTI EPE

EED AMLE LB Ours  FlowNetS ~ WGAIN
1% 111 1.26 1.07 1.07 143 3.18
5% 0.46 056 046 047 2.53 7.0
10% | 0.23 0.30 0.23 0.23 496 6.82

KITTI F1

EED AMLE LB Ours  FlowNetS ~ WGAIN
1% 1.14  1.19 094 0.87 1.2 3.59
5% 0.27 035 026 025 226 448
10% | 0.11 0.16 0.11 0.11 3.77 4.39

algorithm. We expect that this will yield more interpretable
methods with the benefits of stability guarantees, better
generalization and requiring less training data.

Impact Statement

In this paper, we show how the benefits of a well-studied
explicit paradigm can be combined with data-driven deep
learning. We call this combination neuroexplicit, as it is
interpretable by design and shows significantly better gener-
alization abilities, while requiring much fewer parameters
and training data. Our results demonstrate that for the task
of optical flow inpainting, such a neuroexplicit approach
is able to outperform both, purely explicit and state-of-the-
art data-driven methods by a large margin, and thus is re-
ally able to leverage the strengths of both worlds. Since
data-driven models today dominate many areas without be-
ing interpretable, and explicit models are well understood,
integrating more explicit components into state-of-the-art
models opens up a path to increase trustworthiness and relia-
bility, while requiring less training data. Our work motivates
to explore further neuroexplicit models in the future.

Acknowledgements

We gratefully acknowledge the stimulating research en-
vironment of the GRK 2853/1 “Neuroexplicit Models of
Language, Vision, and Action”, funded by the Deutsche
Forschungsgemeinschaft (DFG, German Research Founda-
tion) under project number 471607914.

References

Alt, T. and Weickert, J. Learning integrodifferential models
for denoising. In Proc. 2021 IEEE International Con-
ference on Acoustics, Speech and Signal Processing, pp.
2045-2049, Toronto, Canada, June 2021. IEEE Computer
Society Press.

Alt, T., Schrader, K., Augustin, M., Peter, P., and Weickert,
J. Connections between numerical algorithms for pdes
and neural networks. Journal of Mathematical Imaging
and Vision, 65(1):185-208, jun 2022. ISSN 0924-9907.

Andris, S., Peter, P., Mohideen, R., Weickert, J., and Hoff-
mann, S. Inpainting-based video compression in FullHD.
In Elmoataz, A., Fadili, J., Quéau, Y., Rabin, J., and
Simon, L. (eds.), Scale Space and Variational Methods
in Computer Vision, volume 12679 of Lecture Notes in
Computer Science, pp. 425-436. Springer, Cham, 2021.

Arjovsky, M., Chintala, S., and Bottou, L. Wasserstein gen-
erative adversarial networks. In International Conference
on Machine Learning, pp. 214-223. PMLR, 2017.

Ba, J. L., Kiros, J. R., and Hinton, G. E. Layer normalization.
arXiv preprint arXiv:1607.06450, 2016.

Bertalmio, M., Sapiro, G., Caselles, V., and Ballester, C.
Image inpainting. In Proc. SIGGRAPH 2000, pp. 417-
424, New Orleans, LI, July 2000.

Bornemann, F. and Deuflhard, P. The cascadic multigrid
method for elliptic problems. Numerische Mathematik,
75:135-152, 1996.

Butler, D. J., Wulff, J., Stanley, G. B., and Black, M. J.
A naturalistic open source movie for optical flow eval-
vation. In Proceedings of the 12th European Confer-
ence on Computer Vision - Volume Part VI, ECCV’12,
pp. 611-625, Berlin, Heidelberg, 2012. Springer-Verlag.
ISBN 9783642337826.

Chen, R. T. Q., Rubanova, Y., Bettencourt, J., and Duvenaud,
D. Neural ordinary differential equations. In Proceedings
of the 32nd International Conference on Neural Informa-
tion Processing Systems, NIPS’18, pp. 6572—6583, Red
Hook, NY, USA, 2018. Curran Associates Inc.

Chen, Y. and Pock, T. Trainable nonlinear reaction diffu-
sion: A flexible framework for fast and effective image
restoration. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 39(6):1256-1272, jun 2017. ISSN
0162-8828.

Di Zenzo, S. A note on the gradient of a multi-image.
Computer Vision, Graphics and Image Processing, 33:
116-125, 1986.



Neuroexplicit Diffusion Models for Inpainting of Optical Flow Fields

Dosovitskiy, A., Fischer, P., Ilg, E., Hausser, P., Hazirbas,
C., Golkov, V., Smagt, P. v. d., Cremers, D., and Brox,
T. Flownet: Learning optical flow with convolutional
networks. In Proceedings of the 2015 IEEE International
Conference on Computer Vision (ICCV), ICCV 15, pp.
2758-2766, USA, 2015. IEEE Computer Society. ISBN
9781467383912.

Gali¢, 1., Weickert, J., Welk, M., Bruhn, A., Belyaev, A.,
and Seidel, H.-P. Image compression with anisotropic
diffusion. Journal of Mathematical Imaging and Vision,
31(2-3):255-269, July 2008.

Geiger, A., Lenz, P., and Urtasun, R. Are we ready for
autonomous driving? the kitti vision benchmark suite. In
2012 IEEE Conference on Computer Vision and Pattern
Recognition, pp. 3354-3361. IEEE, 2012.

Guillemot, C. and Le Meur, O. Image inpainting: Overview
and recent advances. IEEE Signal Processing Magazine,
31(1):127-144, 2014.

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and
Courville, A. C. Improved training of wasserstein gans.
Advances in Neural Information Processing Systems, 30,
2017.

Haber, E. and Ruthotto, L. Stable architectures for deep
neural networks. Inverse Problems, 34(1), 2017.

Hafner, D., Ochs, P, Weickert, J., Reif3el, M., and Grewenig,
S. Fsi schemes: Fast semi-iterative solvers for PDEs
and optimisation methods. In Pattern Recognition: 38th
German Conference, GCPR 2016, Hannover, Germany,
September 12-15, 2016, Proceedings 38, pp. 91-102.
Springer, 2016.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp- 770-778, 2016.

Huang, Z., Shi, X., Zhang, C., Wang, Q., Cheung, K. C.,
Qin, H., Dai, J., and Li, H. Flowformer: A transformer
architecture for optical flow. In Proceedings of the 17th
European Conference on Computer Vision — Volume Part
XVII, pp. 668—685, Berlin, Heidelberg, October 2022.
Springer-Verlag. ISBN 978-3-031-19789-5.

Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A.,
and Brox, T. Flownet 2.0: Evolution of optical flow
estimation with deep networks. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 2462-2470, 2017.

Jost, F., Peter, P., and Weickert, J. Compressing flow fields
with edge-aware homogeneous diffusion inpainting. In
Proc. 45th International Conference on Acoustics, Speech,

10

and Signal Processing, pp. 2198-2202, Barcelona, Spain,
May 2020. IEEE Computer Society Press.

Kéamper, N. and Weickert, J. Domain decomposition algo-
rithms for real-time homogeneous diffusion inpainting in
4k. In Proceedings of the IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP),
pp. 1680-1684. IEEE, 2022.

Karras, T., Aittala, M., Aila, T., and Laine, S. Elucidating
the design space of diffusion-based generative models.
Advances in Neural Information Processing Systems, 35:
2656526577, 2022.

Kingma, D. and Ba, J. Adam: A method for stochastic
optimization. In International Conference on Learning
Representations (ICLR), San Diega, CA, USA, 2015.

Krizhevsky, A., Sutskever, 1., and Hinton, G. E. Imagenet
classification with deep convolutional neural networks. In
Proceedings of the 25th International Conference on Neu-
ral Information Processing Systems - Volume 1, NIPS’12,
pp- 1097-1105, Red Hook, NY, USA, 2012. Curran As-
sociates Inc.

Lugmayr, A., Danelljan, M., Romero, A., Yu, F., Timofte,
R., and Van Gool, L. Repaint: Inpainting using denoising
diffusion probabilistic models. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 11461-11471, 2022.

Masnou, S. and Morel, J.-M. Level lines based disocclusion.
In Proc. 1998 IEEE International Conference on Image
Processing, volume 3, pp. 259-263, Chicago, IL, October
1998.

Mayer, N., Ilg, E., Hausser, P., Fischer, P., Cremers, D.,
Dosovitskiy, A., and Brox, T. A large dataset to train
convolutional networks for disparity, optical flow, and
scene flow estimation. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pp.
40404048, 2016.

Morton, K. W. and Mayers, D. F. Numerical Solution of Par-
tial Differential Equations: An Introduction. Cambridge
university press, 2005.

Nair, V. and Hinton, G. E. Rectified linear units improve
restricted boltzmann machines. In Proceedings of the
27th International Conference on Machine Learning,
ICML’10, pp. 807-814, Madison, WI, USA, 2010. Omni-
press. ISBN 9781605589077.

Perona, P. and Malik, J. Scale-space and edge detection
using anisotropic diffusion. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 12(7):629-639, jul
1990. ISSN 0162-8828.



Neuroexplicit Diffusion Models for Inpainting of Optical Flow Fields

Raad, L., Oliver, M., Ballester, C., Haro, G., and Meinhardt,
E. On anisotropic optical flow inpainting algorithms.
Image Processing On Line, 10:78-104, 2020.

Ronneberger, O., Fischer, P, and Brox, T. U-net: Con-
volutional networks for biomedical image segmentation.
In Medical Image Computing and Computer-Assisted
Intervention—-MICCAI 2015: 18th International Confer-
ence, Munich, Germany, October 5-9, 2015, Proceedings,
Part II1 18, pp. 234-241. Springer, 2015.

Ruthotto, L. and Haber, E. Deep neural networks motivated
by partial differential equations. Journal of Mathematical
Imaging and Vision, 62:352-364, 2020.

Saharia, C., Chan, W., Saxena, S., Li, L., Whang, J., Denton,
E. L., Ghasemipour, K., Gontijo Lopes, R., Karagol Ayan,
B., Salimans, T., et al. Photorealistic text-to-image dif-
fusion models with deep language understanding. Ad-
vances in Neural Information Processing Systems, 35:
36479-36494, 2022.

Schmaltz, C., Peter, P., Mainberger, M., Ebel, F., Weick-
ert, J., and Bruhn, A. Understanding, optimising, and
extending data compression with anisotropic diffusion. In-
ternational Journal of Computer Vision, 108(3):222-240,
jul 2014. ISSN 0920-5691.

Teed, Z. and Deng, J. Raft: Recurrent all-pairs field trans-
forms for optical flow. In Proceedings of the 12th Euro-
pean Conference on Computer Vision — Volume Part 11,
pp- 402-419, Berlin, Heidelberg, August 2020. Springer-
Verlag. ISBN 978-3-030-58535-8.

Vasata, D., Halama, T., and Friedjungov4, M. Image in-
painting using wasserstein generative adversarial impu-
tation network. In Artificial Neural Networks and Ma-
chine Learning — ICANN 2021: 30th International Con-
ference on Artificial Neural Networks, Bratislava, Slo-
vakia, September 14—17, 2021, Proceedings, Part II,
pp- 575-586, Berlin, Heidelberg, 2021. Springer-Verlag.
ISBN 978-3-030-86339-5.

Weickert, J. Theoretical foundations of anisotropic dif-
fusion in image processing. In Proceedings of the 7th
TFCYV on Theoretical Foundations of Computer Vision,
pp. 221-236, Berlin, Heidelberg, 1994. Springer-Verlag.
ISBN 3211827307.

Weickert, J. Anisotropic  Diffusion
Processing. Teubner Stuttgart, 1998.
https://www.mia.uni-saarland.de/
weickert/Papers/book.pdf.

in Image

URL

Weickert, J. and Schnorr, C. A theoretical framework for
convex regularizers in pde-based computation of image
motion. International Journal of Computer Vision, 45(3):
245-264, December 2001. ISSN 0920-5691.

11

Weickert, J., Welk, M., and Wickert, M. L2-stable non-
standard finite differences for anisotropic diffusion. In
Scale Space and Variational Methods in Computer Vision,
volume 7893, pp. 380-391. Springer, 2013.

Xu, H., Zhang, J., Cai, J., Rezatofighi, H., and Tao, D.
Gmflow: Learning optical flow via global matching. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 8121-8130, 2022.


https://www.mia.uni-saarland.de/weickert/Papers/book.pdf
https://www.mia.uni-saarland.de/weickert/Papers/book.pdf

Neuroexplicit Diffusion Models for Inpainting of Optical Flow Fields

A. Training Details

In this section, we provide further details about the training
procedure of our method. Unless otherwise specified, these
details also apply to the considered baselines we will discuss
in later sections.

We evaluate our methods on a combination of two datasets.
We train on the FlyingThings3D (Mayer et al., 2016) subset
that removes overly large displacements and evaluate on
the Sintel dataset (Butler et al., 2012). For both datasets,
we use the final versions that include image degradations
such as motion or depth-of-field blur. As the evaluation
metric, we choose the average Endpoint Error (EPE), as it
is customary for optical flow evaluation. While training, the
mask is drawn from a uniform distribution and binarized to
adhere to the desired density. During evaluation, we use a
fixed mask for each image. To speed up the training, we use
center-cropped images of size 384x384 pixels.

All methods are implemented in PyTorch and trained on an
Nvidia A100 GPU. We trained the neural networks for a
total of 900,000 iterations using a batch size of 16. For the
optimizer, we choose Adam (Kingma & Ba, 2015) with the
default parameter configuration 51 = 0.9, 52 = 0.999. We
use an initial learning rate of 0.0001 that is halved every
100,000 iterations after the first 300,000.

B. Implementation Details

In this section, we provide some additional implementation
details of our methods.

The CNN architecture we use to estimate parameters to the
diffusion process is a simple UNet (Ronneberger et al., 2015)
architecture. Table 4 shows the layers and corresponding
channel dimensions in our Diffusion Tensor Module.

B.1. ResNet implementation of Diffusion Evolutions

As stated by Alt et al. (2022), a discretization of any higher
order diffusion evolution can be formulated as a variant
of a ResNet (He et al., 2016) block. Alt et al. (2022) in-
troduced their diffusion blocks for nonlinear diffusion pro-
cesses where the diffusion tensor is determined from the
evolving signal. To translate ResNet into diffusion blocks,
we will follow their formulation and consider such a dif-
fusion process. However, in the following subsection we
will show how to adapt these diffusion blocks into the linear,
image-driven diffusion process we considered as part of our
ablation study.

Starting from the conventional version of a ResNet block,
we are now constructing a nonlinear diffusion process from
it. To this end, we reintroduce the activation function we

12

used in the main section of the paper:

(&

o(Ku) = (Y (Ku)i(Ku)] ) (Ku).

=0

(In

S

Note the change in notation, where we removed the first
argument that determines the structure tensor. We do this, to
make the translation into the ResNet block more intuitive.

A normal ResNet block can be written in the following
form:

u=0z(f+Waoi(Wif+bi, y)+bs, ), (12)

with W7, W5 denoting the application of a convolution
kernel, by, bs denoting the respective biases, and o1, o5 de-
noting arbitrary activation functions, such as the ReLU (Nair
& Hinton, 2010).

o1(x) = 79(x),
W, =K,

oo(x) = x,

- KT (13)
= —

and with by = by = 0, we can transform our diffusion
process into a ResNet architecture.

Notably, the convolution kernels share their weights since
they implement the same operator K. In practice, this
is implemented by maintaining one kernel W that resem-
bles the inner convolution. The outer convolution kernel
can be obtained by mirroring and negating W (Alt et al.,
2022). When dealing with more than one input channel, the
PDE formulation suggests that inter-channel communica-
tion should only happen through the joint diffusion tensor in
the activation and not the derivative (e.g. the convolution).
This behavior can be realized by implementing the convolu-
tion kernel W' as grouped convolutions (Krizhevsky et al.,
2012) with an equal number of groups to channels.

When learning the finite difference operators in the diffu-
sion block, stability of the diffusion process can be harmed.
To avoid this, Alt et al. (2022) suggested a weight normal-
ization process that rescales the convolution kernels after
each optimization step. The stability assumptions hold, as
long as the maximal absolute eigenvalue of K is less or
equal to 1. In practice, this constraint can be satisfied by
rescaling each grouped convolution by v/C||W||3, where
C is the number of channels of the considered signal w. For
more information about diffusion blocks, we kindly refer
the reader to the original publication (Alt et al., 2022).

B.2. Diffusion Block formulation of our Scheme

To translate our considered diffusion process into a ResNet-
style architecture, we need to construct the diffusion blocks
that correspond to the discretization of Weickert et al. (2013)
and adapt the activation function shown in Equation 11.
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Table 4: Architecture of the Diffusion Tensor Module

Encoder

Layer in-ch out-ch stride

cnv0 3 44 1

cnvl 44 44 2

cnvl_1 44 44 1

cnv2 44 88 2

cnv2_1 88 88 1

cnv3 88 176 2

cnv3_1 176 176 1

cnv4 176 352 2

Decoder

Layer in-ch out-ch input
denv4 352 176 cnv4
denv3 352 176 denv4+cnv3_1
denv2 264 88 denv3+cnv2_1
denvl 132 44 denv2+cnvl_1
de4 352 5 denv4+cnv3_1
de3 352 5 denv3+cnv2_1
de2 264 5 denv2+cnvl_1
dtl 132 5 denv1+cnv0

Adapting the activation is straightforward. We only need to
go back to our initial formulation in the main section of the
paper and let the diffusion block accept an additional input,
which corresponds to the structure tensor of the reference
image. Since the reference image does not change during the
diffusion evolution, the diffusion tensor can be precomputed
for each level in the coarse-to-fine pyramid, allowing for a
more efficient scheme. By accepting the reference image in
the activation, it brings us back to the original definition of
the activation function ®(I, Ku).

To design the diffusion blocks, we need to decompose the
3x3-stencil of Weickert et al. (2013) into the individual
finite difference operators. Weickert et al. (2013) propose a
weighted average of two 2x2 for each x— and y—derivative.
Consequently, they leverage 4 total finite differences per
discrete gradient operator. Therefore, each diffusion block
requires 4 convolution kernels. The required kernels are
shown in Table 5.

Let in the following D = (Z I;) denote the considered

diffusion tensor based on the reference image I. The dis-
crete divergence term is then implemented as

K'd(I, Ku)=w' Hw, (14)

where w := (W}u, W2u, W}u, W u) . The construc-
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Table 5: All required convolution operators per diffusion
block. The outer convolution is obtained by mirroring
around the center of the kernel and multiplying by —1.
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tion of the matrix H introduces the discretization parame-
ters « and 8 which will be used to weight the influence of
the finite difference operators:
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In this formulation, the role of the discretization parameters
also become more clear. « and 3 are used to determine
the relative importance of the diagonal and off-diagonal
entries of the diffusion tensor respectively. For more details
about the discretization, we refer the reader to the original
publication of Weickert et al. (2013).

Although this scheme can be implemented very efficiently
in its traditional form, translating it into a diffusion block
introduces a severe computational overhead. When consid-
ering the original stencil, one diffusion step requires a single
3x3 convolution of the input signal. In the diffusion block
formulation where each finite difference operator can be
learned, one diffusion step requires a total of 8 2x2 convolu-
tions. This does not only slow down the effective inference
time, it also bloats the computational graph severely when
optimizing each convolution kernel. Since we also did not
see a meaningful performance benefit to learning the opera-
tors, we opted against the use of the diffusion blocks in our
final model.

C. Baseline details
C.1. Edge-Enhancing Diffusion Inpainting

We implement the EED inpainting baseline in PyTorch us-
ing the same discretization of Weickert et al. (2013). The
reference images are normalized to the range [0,1]. For
faster convergence, we use the Fast-Semi-Iterative (FSI)
scheme (Hafner et al., 2016) and the same coarse-to-fine
setup as in our method. However, instead of a fixed number
of iterations as in our learned approach, we let each the
inpainting process converge at each resolution. We deter-
mine a sufficiently converged state by observing the relative
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Table 6: Grid Search to determine the optimal EED-
parameters for each density. Step denotes how many evenly
spaced values we consider within the search space.

Parameter 10% 5% 1% Search Space  Step
A 104 1074 1074 [10=%,1072) 9
a 0.1 0.3 0.42 [0.001,0.5] 14

residual and stop the inpainting once it has decreased below
1076,

To make for a fair comparison with the deep learning meth-
ods, we optimize the free parameters \, a for each consid-
ered density on a subset of the training data and keep them
fixed during evaluation. Parameters are determined via grid
search on 128 samples and we consider the best parameters
as the ones that minimize the EPE with the ground truth.
Compared to the final evaluation, we stop the inpainting
during the parameter optimization once the relative resid-
ual decreased by 10~°. We show the chosen parameter per
resolution and the considered interval in Table 6

C.2. FlowNetS Training Details

In the inpainting setting we start with a sparse initialization
of correct displacements, whereas FlowNetS (Dosovitskiy
et al., 2015) needs to find identifiable correspondences given
sequential images. Consequently, with over 15.6 million
parameters FlowNetS might be unneccessarily complex for
our inpainting task. In its original form, FlowNetS estimates
the flow at a lower spatial resolution and upsamples the
initial estimation with bilinear interpolation. This was done
to achieve optical flow estimation in real time. Since runtime
is not a critical factor for us, we extend the decoder to
the full output resolution with two additional transposed
convolution layers. The number of channels per layer is
reduced throughout the whole network, such that we end up
with roughly 8.8 million learnable parameters.

To train the network, we follow mostly the same approach as
discussed in A. In addition to that, we added weight decay
with weighting parameter 0.0004 and a deep supervision ap-
proach for the loss as proposed in (Dosovitskiy et al., 2015).
Concretely, this means that we predict a (low resolution)
flow at the last 4 layers in the decoder and compute the
EPE with downsampled versions of the flow. All losses are
aggregated as a weighted combination, where we used the
weights [0.32,0.08, 0.04, 0.02,0.01] going from coarse to
fine resolution.

C.3. WGAIN Training Details

WGAIN (Vasata et al., 2021) does not adapt well to the flow
setting in its original form. We noticed extremely unstable
training with diverging loss after a few hundred iterations.

14

We suspect, that this is due to the combination of dealing
with (potentially large) flow values and the gradient clipping
introduced in (Arjovsky et al., 2017) and used in (Vasata
etal., 2021). As a way of mitigating the outliers in the flow,
we divide the flow fields by 100 to largely contain them in
the range of [—1, 1], but keep the relative distribution the
same. To stabilize the training, we replaced the gradient
clipping operation with a gradient penalty term (Gulrajani
etal., 2017) in the training objective. As discussed in (Gulra-
jani et al., 2017), we also introduce layer normalization (Ba
et al., 2016) in the critic for additional stability. The genera-
tor remained largely unchanged, with the exception of the
removal of the hard-sigmoid function after the output layer.
We adopted the rest of the training procedure from (Vasata
et al., 2021), with the exception of using the EPE instead of
the Mean Absolute Error (MAE) and choosing A, = 1. The
model was trained for the same number of iterations as our
method.

C.4. Probabilistic Diffusion Training Details

With the exception of RePaint (Lugmayr et al., 2022), sparse
mask inpainting with probabilistic diffusion has rarely been
addressed. Since RePaint is only applied during inference,
any type of PD model for conditional image generation
can be used for our task. We chose the efficient UNet
architecture of Imagen (Saharia et al., 2022) and adopted
their cascading image generation pipeline. They propose to
generate a low-resolution image initially and compose super-
resolution models to transform it to the desired resolution. In
our case, we generate the initial image at resolution 96x96
and chain one super-resolution net to obtain the final flow at
resolution 384x384.

Both networks obtain the reference image as conditioning
signal and are otherwise trained for conditional image gener-
ation. We used the proposed training parameters in (Saharia
et al., 2022), but observed suboptimal results and slow con-
vergence during inference times. Consequently, we adopted
the novel training procedure from (Karras et al., 2022) which
yielded more effective training and significantly reduced the
sampling time during inference. As can be seen in Table
7, this work adds several parameters to control the noise
distribution. We kept most of them the same as the optimal
parameters in (Karras et al., 2022), but we noticed some
improvements by increasing o4, and ogq¢q.

During inference, we perform 48 sampling steps and apply
the RePaint (Lugmayr et al., 2022) inpainting at both reso-
lutions. RePaint introduces two parameters, the number of
resampling steps and the jump length. In (Lugmayr et al.,
2022) the jump length was introduced to avoid blurred out-
puts. However, we observed sharp edges with a jump length
of 1 and therefore kept this parameter fixed. The resampling
steps, on the other hand, are more critical. They provide
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Table 7: Added hyperparameters for training and inference
of our Probabilistic Diffusion baseline

Parameter Value Source
Omin 0.002 (Karras et al., 2022)
Omaz (120, 480) (Karras et al., 2022)
Odata 1 (Karras et al., 2022)
P 7 (Karras et al., 2022)
Prean -1.2 (Karras et al., 2022)
Psa 1.2 (Karras et al., 2022)
Schurn 80 (Karras et al., 2022)
Stmin 0.05 (Karras et al., 2022)
Stmaz 50 (Karras et al., 2022)
Shoise 1.003 (Karras et al., 2022)
Jump Length 1 (Lugmayr et al., 2022)
Resampling Steps 45 (Lugmayr et al., 2022)

a tradeoff between added runtime during sampling and in-
creased conditioning on the known pixels. In (Lugmayr
et al., 2022) the masks were dense compared to our setting.
We noticed that the proposed number of 10 resampling steps
in (Lugmayr et al., 2022) yields poor inpainting quality with
mask densities below 10%. To achieve competetive perfor-
mance on low densities, we had to increase the number of
steps and lower the inference time even further. We show
the additional parameters we used in Table 7.
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