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Abstract

Chemists employ a number of levels of abstraction for describing objects and
communicating ideas. Most of this knowledge is in the form of natural language,
through books, articles and oral explanations, due to its flexibility and capacity to
connect the different levels of abstraction. Despite of this, machine-learning chemi-
cal models are typically limited to low-level abstractions like graph representations
or dynamic point clouds that, although powerful, ignore important aspects like
procedural details. In this work, we propose methods for exploring the chemical
space at the rich level of natural language. In this setting, synthetic procedure
paragraphs are split into segments in four possible classes, and are subsequently
mapped into a latent space where they can be conveniently studied. We explore
the structure of this space, and find interesting connections with experimental
realisation that are beyond the scope of commonly used reaction SMILES. This
work aims to draw a path towards LLM-based data processing and chemical space
exploration, by analyzing chemical data in previously inaccessible ways that will
ultimately allow for better understanding of materials design.

1 Introduction

Chemistry, as a scientific discipline, is characterized by the multiple levels of abstraction that can
be used depending on the scientific question1. Such representations range from point clouds in
physics-based modeling in quantum chemistry2–4, to graphs and hypergraphs in fields like cheminfor-
matics1,5,6. Despite this diversity, the majority of data in chemistry is stored and presented in natural
(human) language, as evidenced by the growing volume of scientific articles published annually in the
field. Indeed, natural language serves as the principal medium for disseminating chemical knowledge
and discoveries. In the realm of synthetic organic chemistry, it conveys rich information not only
about the transformation in question but also mechanistic insights, hypotheses, and connections with
analytical data. It extends further to link with the physical world through descriptions of conditions,
experimental procedures and setups, and beyond. Natural language has thus the potential to represent
chemical knowledge in a way no other representation can, thanks to its rich information density and
wide availability.

The last years have seen the rise of models for organic reactions based on the molecular structure
abstraction7,8, succeeding at tasks like reaction outcome prediction9, retrosynthetic planning10,11,
among others12–18. Progress in this filed has been fueled by the publication of open reaction datasets
mined from patents through traditional NLP techniques19,20. Despite the usefulness of this abstraction
—which chemists also routinely use for understanding reactions— a natural barrier is established
between this abstraction and any form experimental realisation, by cleaning out information like
experimental conditions, action sequences, among others. Some works have shown success in
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attempting to compromise the two worlds21,22, and also demonstrated how the direct use of this
abstraction requires treating other relevant information as separate additions.

An additional issue of this abstraction is the potential for data corruption during conversion. As shown
in Figure 1, extraction of reaction smiles (a) from the source paragraph (b) leads to its contamination
with information from different parts of the text, namely the work-up and purification. In this example,
the reaction SMILES not only includes the addition of DCM and sodium bicarbonate —actually
part of the work-up, but also combines two separated reaction steps into a single one, distorting the
original meaning of the reaction and clearly adding noise to the reaction datasets. All this information
is, nevertheless, clearly conveyed in the procedure paragraph.
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Figure 1: Decomposition of all the levels of information that are extracted from a synthetic procedure
paragraph. a. Reaction SMILES mined from paragraphs are the most popular choice of representation,
however it may come with noise from reagents from potentially irrelevant parts of the paragraph.
b. Synthetic procedures can be split into steps, with different meanings depending on the context.
Machine understanding of such context is key for capturing only the relevant reagents. c. Examples
of the information present in each semantic segment. This decomposition gives a better idea of what
type of reaction is going on, as well as other procedural details.

Despite the drawbacks of directly modeling chemistry through language, recent advances in LLMs
have demonstrated the potential in tasks like regression, classification23 and optimization18, but also
language-modulated reasoning, shown to autonomously solve chemical tasks from organic synthesis
to materials design24,25. Systematic analysis of chemical data from this perspective has been, however,
largely ignored despite success in these applications. This work aims to fill this gap and propose
a path towards demonstrating the power of natural language for modeling and exploration of the
chemical space.

To assess the predictive power of the additional data extracted as explained in Section 2.2, we consider
the task of reaction prediction, where the outcome of a reaction is predicted based on some input
information. This task has previously been tackled as an open ended product prediction task from
the reaction precursors26,27, simulating what human experts would solve when planning a reaction
sequence, that is by trying to guess the outcome given some hypothetical precursors. More recently,
work has been focused on predicting the product given some analytical data as an input28,29, a task
which aims to tackle the product elucidation challenge once a reaction has already been performed
and analytical data is available; despite good performance, these models still use only one type of
analytical data, like NMR or IR spectroscopy. A more realistic chemical scenario would include both
the precursors used for a reaction —narrowing down the space of possible products, as well as the
analytical data, which allows to further resolve the obtained product. Here we show how the reaction
data processing pipeline described in this work produces a valuable asset to tackle this task.
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2 Methods

2.1 Data

The USPTO patent database contains a large collection of chemical synthesis procedures –paragraphs
extracted from patent grants (from 1976 to 2016) and applications (from 2001 to 2016). The
paragraphs were originally mined and processed by19,20, from which reaction SMILES and other
properties were extracted. More than 3.7M paragraphs are obtained in this way. For the subsequent
analysis, a subset of this data was selected that corresponds to paragraphs in the quartiles 2 and 3
of the paragraph length distribution, to limit the data distribution to short enough, but informative
enough paragraphs. This process resulted in a total 1.87M samples.

2.2 Semantic procedure segmentation

As shown in Figure 1, organic synthesis procedures can typically be split in four main semantically
distinct types of segments —“reaction set-up”, “work-up”, “purification”, and “analysis”— that are
clearly differentiated in the practice, but not explicitly separated in texts. Segmenting and classifying
these paragraphs is an important part of the work towards analyzing these data form the perspective
of natural language, and due to the subtle linguistic distinctions between different segment classes,
particularly reaction set-up and work-up, it is only feasible through algorithms capable of capturing
and leveraging local context, such as modern language models.

To achieve this goal, we followed a knowledge distillation approach to generate pairs of samples
“paragraph”:“segmented paragraph” from state-of-the-art LLMs like GPT-3.530 and GPT-431. Para-
graphs were segmented by prompting the LLMs using a combination of prompting techniques such as
zero and few-shot32 in-context learning23, chain-of-thought33 and instruction tuning30; the complete
prompt is given in the Appendix B.1. A training set with 29349 datapoints —23629 from GPT-3.5 +
5720 from GPT-4— was generated in this manner, containing paragraphs X associated with JSON
files Y, which specifies the information from each paragraph segment along with its segment class and
step order, as shown in Figure 4. To scale this procedure to the complete USPTO dataset (Section 2.1),
a Flan-T5 model32 was then fine-tuned for this task using LoRA adapters34, improving the efficiency
of segmentation and significantly reducing costs. Training details and testing results are provided in
the Appendix B.2. With this model, the complete database of 1.8M reaction paragraphs was mapped
to segments. After filtering of defective segmentations (see Appendix B.3), a total of 4’881.123 text
segments are obtained, each with a segment class and associated step order, corresponding to a total
of 1’743.928 paragraphs.

2.3 Sentence embeddings and reaction fingerprints

As proposed by35, the chemical reaction space can be suitably explored by mapping reaction SMILES
into convenient vectorial representations —reaction fingerprints (RXNFP), that encode relevant
information about the reactions into a high dimensional vector space. Such representations allow
similarity quantification, but also clustering and visualization. This method revealed important
insights about reaction datasets, and unlocked a number of applications within the RXN4Chemistry
program36, including reaction property prediction and reaction search.

In a similar fashion, the paragraph segments (Section 2.2) are encoded into a high dimen-
sional vector space using pre-trained open-source Language Embedding Models (LEM)37.
In particular, the BAAI/bge-large-en-1.5 (BGE)37 model was used, as it ranks first in the
https://huggingface.co/spaces/mteb/leaderboard, which compares multiple LEMs in tasks such as text
classification, clustering, among others38. This model encodes input text into a 1024-dimensional
representation. Although both embeddings point in principle to the same object (i.e. a chemical
reaction), both are fundamentally different as RXNFP encodes the reaction SMILES —a graph
representation—, while BGE encodes more global information, such as procedure execution details,
reaction loadings and times used, and other conditions, while also offering a linguistic molecular
representation, typically IUPAC names.
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2.4 Reaction prediction

Following the work of39, we use OpenNMT as a framework for training and running inference of
encoder-decoder transformers. We tackle the task of product prediction from reaction precursors
smiles and NMR analytical data. For this, the obtained dataset was filtered to obtain those including
NMR data and reaction smiles. The NMR data was preprocessed in a similar manner as proposed
in28, and the resulting spectra were tokenized using an in-house trained BPE tokenizer40 with 5k
vocabulary size and WhiteSpace pre-tokenizer. The precursor and product SMILES are tokenized
using the regex tokenizer proposed in39. The inputs to the model are the concatenated strings of
tokenized NMR data and precursor SMILES, while the output is the product SMILES.

For comparison, multiple models were trained on the selected subset of reactions with reported NMR:
A baseline model, for the task of precursors to products prediction, along with a number of models
trained for the task of NMR+precursors to product, with varying sizes. Results for this are given in
Table 1.

To further test the approach, we select a subset of Buchwald-Hartwig reactions from USPTO for
which NMR data has been reported, leading to 8,593 test reactions. The results shown in Table 1
correspond to models trained on the full USPTO dataset described above, and tested on this subset.

3 Results & Discussion

In the current setting, each reaction paragraph maps to 5 different vector spaces, each encoding
different information about the reaction. Many questions arise regarding the inner structure of this
spaces, as well as the interrelations between them. In particular, analogous to the different reaction
types that can be found using RXNFPs35, the different types of workup and purification may as well
be explored. Exploring the interrelations between spaces might shed light on the factors driving
choices of workup or purification, given a reaction schema or reaction set-up. Furthermore, the effect
of work-up and purification on reaction yield may now be explored with this dataset.
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Figure 2: Language Model embeddings of reaction set-ups and work-ups in the USPTO database,
as colored by reaction type. The subspaces look highly structured and clusters correlate to a certain
extent with the reaction classes. Common topics within the clusters include specific reagents, or
types of reagents, as well as specific types of procedures. Using procedural representations such as
these is ought to improve models for various tasks, by providing more context regarding experimental
realisation.

As shown in Figure 2, LEMs encode reaction set-ups and work-ups into a somewhat structured
vector space. In particular, we find that reaction set-ups are mostly clustered by reagents –or type
of reagents used, which non-surprisingly correlates with reaction class (extracted from the reaction
SMILES). This clustering seems to be largely independent from other irrelevant factors, such as
text segment length or writing style, and indeed was seen to capture relevant information regarding
experimental conditions. Namely, the “tert-amine” cluster groups reactions executed with DIPEA,
TBA, DMAP, etc, or other clusters of reactions executed at high temperatures, among others. The
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same model, applied to work-up segments, is seen to roughly cluster them into multiple different
types, characterized now by the type of procedure followed, e.g. filtration and drying with sulfates, or
washing and removal of catalyst. The clustering no longer correlates with the associated reaction
types, which is to be expected given the generality of some of these methods. Other segment classes
and colorings are shown in the Appendix C.

To demonstrate the power of the data obtained through the approach described in this work, a number
of reaction prediction models were trained, as specified in Section 2.4. The results in Table 1 show
that, as expected, including NMR data improves reaction prediction by a small margin in a large,
non-specific test set, but also in the more specific Buchwald-Hartwig set, where baseline accuracy is
already >95%. Scaling of the models also improve performance, expectedly as NMR data increases
the vocabulary size of the transformer encoder.

USPTO Test acc (%) Buchwald-Hartwig Test acc (%)
Input type Model size

SMILES 20M 85.22 95.49

SMILES + NMR
24M 85.31 96.03
69M 86.69 97.04

133.4M 86.70 97.02

Table 1: Reaction prediciton results. Performance of reaction prediction models for different
data accessibility regimes. The effect of additional NMR data is assessed on two distinct test
sets. Results show that including NMR data systematically improves performance of models.
Especially on the Buchwald-Hartwig test set, where baseline accuracy is already >95%, including
experimental NMR data further improves the results, indicating that these data are necessary to
resolve the structure of some products.

To illustrate the advantage of a SMILES+NMR model, consider the reaction in Figure 3. In this
example, the SMILES-only model fails to predict the correct product, despite it producing correct
chemistry, namely by predicting an amide formation reaction. The correct reaction however, as pre-
dicted by the NMR-augmented model, installs a triazole heterocycle in the product. Both possibilities
are clearly distinguishable from NMR spectra: the product below would display peaks characteristic
to the N-H hydrogens, which is not observed in the experimental data. Our model successfully
leverages this information to make its prediction.
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Figure 3: Example reaction that is incorrectly predicted by smiles-only reaction prediction models,
but correctly predicted when NMR data is used.

These results not only the capacity of large pre-trained language models at extracting relevant
procedural information from reactions, but also the potential of this type of data for applications in
cheminformatics, like multi-modal reaction search and chemical space exploration.
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4 Conclusions

We have shown an approach for including partially structured procedural information into chemical
reaction representations. A model for semantic segmentation of synthesis procedure paragraphs was
trained and applied on 1.8M such paragraphs from the USPTO dataset, allowing for their efficient
mapping into semantically distinct parts. The model is shown to perform well even in challenging
cases, where simpler algorithms could fail by design. This newly-created database allowed us to
explore the chemical space in a new, natural language driven manner. Mapping of these semantically
distinct segments into high-dimensional vector spaces was shown to encode relevant procedural
information, which is entirely ignored in the commonly used reaction SMILES or fingerprints
representations, specially in the “reaction set-up” and “work-up” spaces. While the reaction set-up
embeddings are seen to cluster reactions by reagent type used or even similarity in conditions, and
roughly by reaction type, work-up embeddings encode procedural information like the types of
filtering or washing performed. Just as in experimental chemistry, analytical data plays a key role for
reaction prediction. We have shown that by including NMR data mined from the USPTO reaction
database, reaction prediction models learn leverage this additional information to better resolve
products, especially in cases where multiple products are possible.

Analyses of this type allow us to explore the chemical space from a more procedural perspective, an
important topic specially with recent advances in one-pot multi-step synthetic chemistry, automated
platforms and even self-driving labs. More than that, this work sets the basis for future applications
in multi-modal models for reaction search and generation of synthetic procedures. Indeed, under-
standing the relationships between the different segments, and how one follows from the others, has
the potential to unlock enhanced automatized prediction of work-up and purification steps. Future
research might involve exploring the role of these extended reaction steps in critical reaction results
like reaction yield and selectivities, classification, and procedure generation, among others. Addition-
ally, the proposed semantic segmentation is expected to reduce the noise added in reaction SMILES,
thereby directly improving future predictive models on this modality.
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A Language Models

Language models have revolutionized the field of natural language processing thanks to recent
advancements in model design41, along with a wide availability of text datasets42 and capacity to
scale to large computational budgets. These models are generally trained to predict the likelihood of
tokens in text sequences. The most successful models in the field, the Transformers41, employ an
attention mechanism43 to weigh the importance of each word in a sentence when predicting the next
word, thereby learning to extract long-rage dependencies from text sequences.

Two relevant pretrained models are GPT-431 and Flan-T532. These state-of-the-art models have been
built and trained for different purposes, and thus serve different purposes.

A.1 GPT-4

GPT-4 is a decoder-only model developed by OpenAI31 trained with an autoregressive objective
on large text datasets to generate human text. Capabilities of this, and similar models, include
translation, question-answering and general content creation, however additional capabilities have
been demonstrated such as chain-of-though reasoning33, in-context learning18, and capacity to use
tools44.

In combination, these capabilities make it possible for users to solve generic NLP problems by simply
prompting the model with explanations about how to complete the task, along with examples and
other relevant information.

A.2 FLAN-T5

FLAN-T5 is a model developed by Google32 whose training paradigm is that any NLP problem is
a text-to-text problem. Under this setting, instead of training individual models for each task, T5
unifies a number of tasks into a single framework as a text generation task.

For our purposes, a key property of the FLAN-T5 model is that it can be fine-tuned to perform any
text-to-text task, for which enough data is available, which yields a model with a small parameter
count, facilitating local inference and escalation to large datasets. GPT-4, on the other hand, can
only be accessed through a costly API, that is additionally restricted to one API call per generation,
preventing batches of data to be processed.

B Semantic segmentation model

As discussed, the analysis centers initially in decomposing synthesis procedure paragraphs into
semantically distinct segments belonging to different classes, namely “reaction set-up”, “work-up”,
“purification” and “analysis”. An example of a solution to this task is given in Figure 4. Solving this
task requires that the model learns to copy and paste text from the input, into the output, however
separating the different segments based on their meaning in the context of a chemical synthesis, while
also assigning a label or class to each.

The task cannot be trivially formulated as a per-sentence classification task as, as shown in Figure 4,
some segments can actually extend up to the first words of the next sentence and beyond, as is the
case of the piece “Stir for 30 hours,”, which belongs together with the “reaction set-up” segment. The
semantic segmentation task thus requires certain level of contextual understanding, making (large)
language models suitable candidates for solving the task.

B.1 Knowledge Distillation

Knowledge distillation is the process where the knowledge from a more capable model is distilled
to be transfered to another, potentially cheaper model45. In the case of the paragraph segmentation
task, we found that LLMs like GPT-3.5 and GPT-4 excelled when adequately prompted, thanks to
their demonstrated abilities to follow instructions and formats, and produce step-by-step reasoning
sequences. The following text was used as a template prompt to achieve the desired behavior from
the models:

10



{
‘text segment’: 'Suspend anhydrous AlCl3 (156 g, 1.15 mol) in toluene (1500 mL) 

and cool to 2-4° C. Add, by slow addition, a solution of 4-chlorobutyryl chloride 
(165.5 g, 1.15 mol) in toluene (300 mL). Stir for 15 minutes and pour into stirring 
ice-water (2.5 L). Stir for 30 hours,',
  ‘text class’: 'reaction set-up',
  'step order’: 1,
}
{

'text segment’: 'decant the toluene and extract the aqueous phase with toluene 
(700 mL). Combine the organic layers and wash three times with water (1 L, 1 L, 
500 mL).',

‘text class': 'work-up',
'step order’: 2

},
 {

'txt_sgm': 'Evaporate the solvent in vacuo to give the title compound as a pale 
yellow oil (292.3 g, 95%).',

'segment class': 'purification',
'step order’: 3

}

Suspend anhydrous AlCl3 (156 g, 1.15 mol) in toluene (1500 mL) and cool to 2-4° C. 
Add, by slow addition, a solution of 4-chlorobutyryl chloride (165.5 g, 1.15 mol) in 
toluene (300 mL). Stir for 15 minutes and pour into stirring ice-water (2.5 L). Stir for 
30 hours, decant the toluene and extract the aqueous phase with toluene (700 mL). 
Combine the organic layers and wash three times with water (1 L, 1 L, 500 mL). 
Evaporate the solvent in vacuo to give the title compound as a pale yellow oil (292.3 
g, 95%).

Input paragraph:

Output segmentation:

Figure 4: Example of the semantic segmentation task for synthetic procedure paragraphs. The color
code shows the origin of each extracted segment from the original paragraph.

You are an adept experimentalist in chemistry. Your role is to teach new researchers
how to recognize reaction steps of a chemical reaction and to chunk the procedure
into steps based on steps’ meanings in the context of a chemical reaction.
Steps in a chemical reaction have an outline to follow as below:

• ’reaction set-up’: the preparation of a chemical synthesis procedure, where
reactants, solvents, and catalysts are specified. Specific conditions in which
the reaction is initiated, such as temperature, pressure, atmosphere, are indi-
cated. Chemical treatments may come along to stop the reaction, such as the
portionwise addition of acid, base, water or liquid.

• ’work-up’: the process of isolating the desired product from the reaction
mixture after the chemical reaction has taken place. It always comes after the
completion of reaction-set up in order to separate products from unreacted
starting materials, byproducts, and other impurities. Common techniques in
work-up includes quenching, extraction, washing, phase separation, evapo-
ration and filtration. Some key words of work-up steps in sentence include
’adding acid (ex. HCL, H2SO4) or base (ex. NaOH) into reaction mix-
ture/residue’, ’cooling the mixture to ambient temperature or below 0 degree
celsius’, ’solvents being removed/filtered/concentrated by rotary evaporation’,
’diluting the solution or forming two layers to do extraction’.

• ’purification’: Purification is the process of removing impurities and unwanted
byproducts from the desired product to obtain a pure compound. It some-
times comes after the work-up step to obtain a high-quality product with the
desired properties. Common purification techniques include crystallization,
recrystallization, chromatography, and distillation.
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• ’analysis’: Analysis refers to the characterization and evaluation of the synthe-
sized product to confirm its identity, purity, and properties. This step involves
the use of various analytical techniques to determine the product’s structure,
composition, and physical properties. Common analytical methods include
melting point determination, nuclear magnetic resonance (NMR) spectroscopy,
infrared spectroscopy (IR), mass spectrometry (MS), Ultraviolet-visible (UV-
Vis) spectroscopy, and X-ray crystallography. "Assay", "analysis" are key
words usually found in analysis steps.

To do the task, please follow the approach:
1. First, you receive a paragraph of text ’input’. Read the paragraph clause-by-

clause (ps. a clause means a group of words separated by a semicolon(;), a
comma(,), or a period(.)); when reading a sentence, reason the meaning of this
individual reaction step to a chemical reaction by recognizing the keywords;
label in mind this reaction step by thinking of their meaning in the context

2. Then, start chunking the paragraph as output
3. Finally, when giving the output, give directly the formatted output; do not

output your reasonings on how to chunk the paragraph
To chunk the text, you must follow the format below:
text segment: text segment from step 1 goes here
text class: the category of the segment; it can be ’reaction set-up’, ’work-up’,
’purification’, or ’analysis’
explanation: the explanation of this step; write down why you assign the class to
this segment and why you think the next part of text differs from this segment.
step order: the number of steps already done, starting from ’No.1’
Step end #.
You should follow key points below when chunking; the key points are given in
order of importance:

1. Copy literally the text; do not paraphrase the text when transcribing texts into
a segment.

2. If a sentence contains information that pertains to two different text classes,
divide this sentence into 2 steps

3. If the segmented text has the same text class as its preceding segment, this
segmented text should be involved into the preceding segment; if the seg-
mented text has the same text class as its following segment, this segmented
text should be involved into the following segment.

Here’s a ground truth example you could take into consideration:
{example}
Here’s the paragraph you need to complete:
{paragraph}
Think step-by-step. Then give the output!
Begin!

The placeholder example is replaced by the text below, that gives an idea to the LLM of what the
output should look like.

Input:
Methyl (1R)-2-[(2S,4S)-2-(5-2-[(2S,4S)-1-(2S)-2-
[(methoxycarbonyl)amino]-3-methylbutanoyl-4-methylpyrrolidin-2-yl]-1,11-
dihydroisochromeno[4’,3’:6,7]naphtho[1,2-d]imidazol-9-yl-1H-imidazol-2-yl)-
4-(methoxymethyl)pyrrolidin-1-yl]-2-oxo-1-phenylethylcarbamate: Tert-butyl
(2S,4S)-2-[5-(2-(2S,4S)-1-[N-(methoxycarbonyl)-L-valyl]-4-methylpyrrolidin-
2-yl-1,11-dihydroisochromeno[4’,3’:6,7]naphtho[1,2-d]imidazol-9-yl)-1H-
imidazol-2-yl]-4-(methoxymethyl)pyrrolidine-1-carboxylate (166 mg, 0.21
mmol) was dissolved in DCM (4 mL), MeOH (1 mL) and HCl (4 M in
dioxane, 1 mL) was added. The reaction mixture was stirred for 2 h and then
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concentrated under reduced pressure. The crude residue was treated with
(R)-2-(methoxycarbonylamino)-2-phenylacetic acid (44 mg, 0.21 mmol), COMU
(100 mg, 0.21 mmol) and DMF (5 mL), then DIPEA (0.18 mL, 1.05 mmol) was
added dropwise. After 1 h, the mixture was diluted with 10% MeOH/EtOAc and
washed successively with saturated aqueous NaHCO3 and brine. The organics
were dried over MgSO4, filtered and concentrated under reduced pressure. The
crude residue was purified by HPLC to afford title compound (71 mg, 38%).
LCMS-ESI+: calculated for C49H54N8O8: 882.41; observed [M+1]+: 884.34.
1H NMR (CD3OD): 8.462 (s, 1H), 8.029-7.471 (m, 7H), 7.394-7.343 (m, 5H),
5.410 (d, 2H, J=6.8 Hz), 5.300 (m, 1H), 5.233 (m, 2H), 4.341 (m, 1H), 4.236 (d,
1H, J=7.2 Hz), 3.603 (s, 3H), 3.551 (s, 3H), 3.522-3.241 (m, 8H), 2.650 (m, 1H),
2.550 (m, 2H), 1.977-1.926 (m, 4H), 1.221 (d, 3H, J=3.2 Hz), 0.897-0.779 (dd, 6H,
J=19.2, 6.8 Hz).
Let’s think step by step before giving the output:

1. Let’s read the first sentence, "Tert-butyl (2S,4S)-2-[5-(2-(2S,4S)-
1-[N-(methoxycarbonyl)-L-valyl]-4-methylpyrrolidin-2-yl-1,11-
dihydroisochromeno[4’,3’:6,7]naphtho[1,2-d]imidazol-9-yl)-1H-imidazol-
2-yl]-4-(methoxymethyl)pyrrolidine-1-carboxylate (166 mg, 0.21 mmol)
was dissolved in DCM (4 mL), MeOH (1 mL) and HCl (4 M in dioxane,
1 mL) was added. " In this sentence, reactants (Tert-butyl (2S,4S)-2-[5-
(2-(2S,4S)-1-[N-(methoxycarbonyl)-L-valyl]-4-methylpyrrolidin-2-yl-1,11-
dihydroisochromeno[4’,3’:6,7]naphtho[1,2-d]imidazol-9-yl)-1H-imidazol-
2-yl]-4-(methoxymethyl)pyrrolidine-1-carboxylate, MeOH, and HCl) and
sovlent (DCM), together with their amounts and concentrations, are given.

2. As reactants, solvents, and catalysts are specified in the reaction set-up step,
and as reactants and solvents are given in this sentence, this sentence should
be categorized as ’reaction set-up’.

3. Let’s read the next sentence, "The reaction mixture was stirred for 2 h and
then concentrated under reduced pressure." In this sentence, the duration of
the reaction (2 h) and the pressure under which the reaction was undergone
(redcued pressure) are given.

4. The step giving the reaction condition is a ’reaction set-up’ step; thus, this
sentence is categorized as ’reaction set-up’.

5. Let’s move on to the next sentence, "The crude residue was treated with (R)-
2-(methoxycarbonylamino)-2-phenylacetic acid (44 mg, 0.21 mmol), COMU
(100 mg, 0.21 mmol) and DMF (5 mL), then DIPEA (0.18 mL, 1.05 mmol)
was added dropwise." In this step, the acid ((R)-2-(methoxycarbonylamino)-
2-phenylacetic acid), and other liquids (COMU, DMF, DIPEA) are added to
stop the reaction.

6. Given that the step describes how to stop the reaction, it is categorized as a
reaction set-up step.

7. In next sentence, "After 1 h, the mixture was diluted with 10% MeOH/EtOAc
and washed successively with saturated aqueous NaHCO3 and brine", the
clause "after 1 h" tells the duration to wait before the work-up get started.
Hence, this is a reaction set-up step. Then, the sentence "the mixture was
diluted with 10% MeOH/EtOAc and washed successively with saturated aque-
ous NaHCO3 and brine" specifies approaches to isolate desired products from
the reaction mixture (’diluted’ with 10% MeOH/EtOAc, ’washed’ succes-
sively with saturated aqueous NaHCO3 and brine). Thus, it is a ’work-up’
step.

8. The next sentence, ’The organics were dried over MgSO4, filtered and con-
centrated under reduced pressure’, indicates actions to isolate product from
mixture (’dried’ over MgSO4, ’filtered’ and ’concentrated’ under reduced
pressure). Thus, it is a work-up step.

9. In the next sentence, ’The crude residue was purified by HPLC to afford title
compound (71 mg, 38%)’, the verb ’purify’ is mentioned and a purification
method (HPLC) is given; therefore, it is a purification step.
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10. Next, a series of characterization data (LCMS-ESI+: calculated for
C49H54N8O8: 882.41; observed [M+1]+: 884.34. 1H NMR (CD3OD):
8.462 (s, 1H), 8.029-7.471 (m, 7H), 7.394-7.343 (m, 5H), 5.410 (d, 2H, J=6.8
Hz), 5.300 (m, 1H), 5.233 (m, 2H), 4.341 (m, 1H), 4.236 (d, 1H, J=7.2 Hz),
3.603 (s, 3H), 3.551 (s, 3H), 3.522-3.241 (m, 8H), 2.650 (m, 1H), 2.550 (m,
2H), 1.977-1.926 (m, 4H), 1.221 (d, 3H, J=3.2 Hz), 0.897-0.779 (dd, 6H,
J=19.2, 6.8 Hz).) are given. Analytical techinques (LCMS-ESI+, 1H NMR)
are specified, which shows that the step is an ’analysis’ step.

11. Integrate segmented paragraphs with the same category into a segment and
then give the formatted output

Output:
text segment: ’Tert-butyl (2S,4S)-2-[5-(2-(2S,4S)-1-[N-(methoxycarbonyl)-L-
valyl]-4-methylpyrrolidin-2-yl-1,11-dihydroisochromeno[4’,3’:6,7]naphtho[1,2-
d]imidazol-9-yl)-1H-imidazol-2-yl]-4-(methoxymethyl)pyrrolidine-1-
carboxylate (166 mg, 0.21 mmol) was dissolved in DCM (4 mL), MeOH
(1 mL) and HCl (4 M in dioxane, 1 mL) was added. The reaction mixture was
stirred for 2 h and then concentrated under reduced pressure. The crude residue
was treated with (R)-2-(methoxycarbonylamino)-2-phenylacetic acid (44 mg,
0.21 mmol), COMU (100 mg, 0.21 mmol) and DMF (5 mL), then DIPEA (0.18
mL, 1.05 mmol) was added dropwise. After 1 h, ’, text class: reaction set-up,
explanation: this is the reaction set-up because the main reactants (Tert-butyl
(2S,4S)-2-[5-(2-(2S,4S)-1-[N-(methoxycarbonyl)-L-valyl]-4-methylpyrrolidin-
2-yl-1,11-dihydroisochromeno[4’,3’:6,7]naphtho[1,2-d]imidazol-9-yl)-1H-
imidazol-2-yl]-4-(methoxymethyl)pyrrolidine-1-carboxylate), MeOH and HCL
were added into the solvent (DCM). Also, the time of the reaction undergoing
(stir for 2h for the reaction mixture, 1h for the crude residue), the condition
of the reaction (reduced pressure) and the portionwise addition of (R)-2-
(methoxycarbonylamino)-2-phenylacetic acid, COMU and DMF are specified in
this paragraph. step order: 1
Step end #
text segment: ’the mixture was diluted with 10% MeOH/EtOAc and washed
successively with saturated aqueous NaHCO3 and brine. The organics were dried
over MgSO4, filtered and concentrated under reduced pressure.’
text class: work-up
explanation: this is the work-up step because the paragraph states that the products
is diluted, washed, dried, filtered and concentrated.
step order: 2
Step end #
text segment: ’The crude residue was purified by HPLC to afford title compound
(71 mg, 38%).’
text class: purification
explanation: this is the purification step because the purification method (HPLC) is
indicated in this segment.
step order: 3
Step end #
text segment: ’LCMS-ESI+: calculated for C49H54N8O8: 882.41; observed
[M+1]+: 884.34. 1H NMR (CD3OD): 8.462 (s, 1H), 8.029-7.471 (m, 7H), 7.394-
7.343 (m, 5H), 5.410 (d, 2H, J=6.8 Hz), 5.300 (m, 1H), 5.233 (m, 2H), 4.341
(m, 1H), 4.236 (d, 1H, J=7.2 Hz), 3.603 (s, 3H), 3.551 (s, 3H), 3.522-3.241 (m,
8H), 2.650 (m, 1H), 2.550 (m, 2H), 1.977-1.926 (m, 4H), 1.221 (d, 3H, J=3.2 Hz),
0.897-0.779 (dd, 6H, J=19.2, 6.8 Hz).’
text class: analysis
explanation: this is the analysis as the analytical methods (LCMS-ESI+, 1H NMR
(CD3OD)) are given in this paragraph.
step order: 4
Step end #
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B.2 Model training

Nearly 30k samples were obtained from GPT-4 and GPT-3.5 using the prompt above. To transfer this
task to a smaller specialist model, we fine-tuned a flan-t5-large model using the adapters46 library.

To fully profit from the generated dataset, a 2-stage training procedure was followed, where at first
the model is fine-tuned on the more abundant –however potentially less accurate– GPT-3.5 dataset in
order for it to learn the format and an initial representation of what the task is about. The model is
subsequently fine-tuned on the GPT-4 dataset, which is more scarse but assumed to be better quality.

For every stage of training a batch size of 2 was used, over 20 epochs, with a linear learning rate
decay starting from 5e-4.

B.3 Output post-processing

Although the resulting model behaves well in multiple situations, in some cases it can generate
erroneous outputs by copying the same sentence multiple times, or by missing some text in the output.
These cases can easily be detected by calculating the edit distance between the original paragraph
and the concatenation of all the output segments which, if correctly done, should equal zero.

With this, we found that the resulting model produces output with satisfactory results in around
66% of cases. This filtering technique is further extended to the inference step to the whole USPTO
database, to ensure data quality.

C Segment Embedding Maps

To explore the rich structure of the newly defined semantic subspaces, the sentence embeddings
for each segment were calculated and plotted using different labels, in order to facilitate pattern-
finding. Yield was chosen as it was readily available as a part of the dataset; the resulting plots are
shown in Figure 5. As can be seen, despite the rich structure observed in each space, there is very
little correlation with yield. Although some localization of colors can be seen in e.g. work-up and
purification, it must be noted that these two types of segments typically contain the yield textually, so
the patterns shown may be an artifact. Still, as previously noted by other authors, yield prediction is a
very challenging issue47–50, due to the noisy nature of data51 and other social factors such as lack of
overlap of different research works47.

Inspection of the purification and analysis plots (Figure 5c,d) shows even more structure than the
other two, however these are less interesting as clustering in this case is correlated with clearly
defined concepts in each subspace, such as different types of purification, or the multiple analytical
techniques. A more in-depth exploration of these spaces would be required to discover new insights,
such as for instance clusterings by type of products in the analysis space, which would make sense
knowing that results from analytical chemistry typically encode structural information about the
analysed susbtances.
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Yield

a. Reaction set-up

c. Purification

b. Work-up

d. Analysis

a. Reaction set-up b. Work-up

Figure 5: UMAP of each of the defined semantic subspaces, as colored by reaction yield.
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