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ABSTRACT

Large Vision-Language Models (LVLMs) can understand the world comprehen-
sively by integrating rich information from different modalities, achieving remark-
able advancements on various multimodal downstream tasks. However, deploying
LVLMs is often problematic due to their massive computational/energy costs and
carbon consumption. Such issues make it infeasible to adopt conventional iterative
global pruning, which is costly due to computing the Hessian matrix of the entire
large model for sparsification. Alternatively, several studies have recently proposed
layer-wise pruning approaches to avoid the expensive computation of global prun-
ing and efficiently compress model weights according to their importance within
a layer. However, they often suffer from suboptimal model compression due to
their lack of a global perspective. To address this limitation in recent efficient
pruning methods for large models, we propose Efficient Coarse-to-Fine Layer-
Wise Pruning (ECoFLaP), a two-stage coarse-to-fine weight pruning approach
for LVLMs. We first determine the sparsity ratios of different layers or blocks by
leveraging the global importance score, which is efficiently computed based on
the zeroth-order approximation of the global model gradients. Then, the model
performs local layer-wise unstructured weight pruning based on globally-informed
sparsity ratios. We validate our proposed method across various multimodal and
unimodal models and datasets, demonstrating significant performance improve-
ments over prevalent pruning techniques in the high-sparsity regime.

1 INTRODUCTION

Deep learning models have been increasingly growing in size (Radford et al., 2018; Brown et al.,
2020; Liu et al., 2023; Zhu et al., 2023) in order to have a sufficient capacity to learn challenging
tasks in the real world. However, this exorbitant model size requires significant computations and
memory to deploy, which limits their applicability in many resource-constrained environments. Model
compression, a strategy to reduce the size of neural networks while preserving their capabilities (Dai
et al., 2018; Park et al., 2022; Xiao et al., 2023; Fang et al., 2023), has gained popularity in tackling
this problem. In order to build lighter, faster, and more interpretable models, various directions have
been studied in parallel, including model pruning (Dai et al., 2018; Fang et al., 2023; Frantar &
Alistarh, 2023), quantization (Park et al., 2022; Xiao et al., 2023), layer drop (Sajjad et al., 2023), and
token merging (Bolya et al., 2022; Bolya & Hoffman, 2023). Among them, in this paper, we study an
unstructured model pruning approach that has strong potential to preserve model performance, even
with a high compression rate of large vision-language models.

While most model pruning approaches tackle the problem of vision-based tasks (Liang et al., 2022b;
Kong et al., 2022; Wei et al., 2023) and a few recent works have studied to reduce the size of language
models (Ma et al., 2023; Sun et al., 2023a; Frantar & Alistarh, 2023), efficient pruning for multimodal
models like Large Vision-Language Models (LVLMs) (Ye et al., 2023; Li et al., 2023a) have been
understudied due to their architectural complexity and the disparities in data characteristics between
different modalities (Shi et al., 2023). Unlike unimodal learning methods, network architectures for
multimodal learning (Li et al., 2022; 2023c) are often composed of modality-specific sub-modules to
capture the knowledge for each modality, which substantially expands the scale of multimodal models.

Our project page and code are available at https://ecoflap.github.io/
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Moreover, this modularization leads to significant imbalances in the weight/gradient distributions
between modules associated with different modalities, making unified pruning difficult.

As conventional iterative pruning (Mallya & Lazebnik, 2018; Molchanov et al., 2019; Wang et al.,
2020; Zhang et al., 2022b) demands extensive computations to learn pruning masks by computing the
inverse Hessian in large models, layer-wise one-shot pruning (Chen & Zhao, 2018; Frantar & Alistarh,
2023; Sun et al., 2023a) has recently been developed to compress them efficiently. These approaches
discard uninformative model weights in a single iteration without computing the expensive second-
order Hessian matrix for the entire model architecture, yet often suffer from finding the optimal
sparsity ratio per layer, as they resort to intra-layer weight importance without sufficient understanding
of global (i.e., inter-layer) weight correlations in the model, hence leading to suboptimal pruning.

To overcome this limitation of layer-wise pruning and build an efficient approach for LVLM compres-
sion, we propose Efficient Coarse-to-Fine Layer-Wise Pruning (ECoFLaP) that obtains an adaptive
sparsity ratio per layer in a single step based on a ‘global importance score’ (Coarse) and then
removes parameters that are less critical (to the model’s performance), in a layer-wise manner (Fine).
Note that our proposed method is computationally efficient by leveraging the first-order gradient to
obtain a global importance score without Hessian operations, allowing layer-wise pruning to leverage
a holistic correlation across the model weights. To further improve the memory efficiency of the
global score computation, we introduce the zeroth-order approximate gradient computed by the
forward-forward algorithm (Malladi et al., 2023; Hinton, 2022). In the end, our ECoFLaP obtains
highly compressed large models in a single shot, with adaptive sparsity in each layer, leveraging
global weight importance approximated by memory-efficient forward-forward operations. We note
that our proposed pruning method generalizes well not only to vision-language multimodal tasks but
also to unimodal tasks, including ImageNet (Vision) and MMLU (NLP).

We extensively validate the efficacy of our approach across a variety of models and datasets, including
but not limited to EVA-ViT, FlanT5, LLaMA, BLIP/BLIP-2, CLIP, and on image classification
(ImageNet-1k), multitask multiple-choice question answering (MMLU), next token prediction (Wiki-
Text), visual reasoning (NLVR2), visual question answering (VQAv2, OK-VQA, GQA), image
captioning (NoCaps, COCO Captions), and image-text retrieval (Flickr30k). Our proposed ECoFLaP
surpasses iterative global pruning and SoTA layer-wise pruning methods, SparseGPT (Frantar &
Alistarh, 2023) and Wanda (Sun et al., 2023a), with relative improvements up to 5% in average
performance across multiple VL tasks. Additionally, our approach outperforms a recent SoTA in
pruning vision-language model, UPop (Shi et al., 2023), achieving relative improvements of 1.8% and
2.6% on NLVR2 and COCO captions. ECoFLaP also generalizes well to unimodal models (FlanT5,
LLaMA, EVA-ViT), particularly in a higher sparsity regime. It is worth noting that ECoFLaP with the
zeroth-order gradient reduces the GPU memory usage by up to 40% compared to baselines using the
first-order gradient to estimate the global importance. These results not only underscore the potential
of our method but also pave the way for more efficient and effective pruning techniques in the future.

We summarize our contributions as threefold:

• We propose a novel layer-wise pruning method for vision-language models, coined Efficient Coarse-
to-Fine Layer-Wise Pruning for Vision-Language Models (ECoFLaP), that finds adaptive sparsity
per layer by leveraging the global importance score approximated via zeroth-order gradients.

• We validate the proposed method on various backbone structures with diverse vision-language and
unimodal tasks, and demonstrate the superiority of our method by consistently outperforming the
SoTA pruning baselines for large models on multiple benchmark datasets.

• We provide extensive analyses and ablation studies that help to understand the challenges of unified
multimodal model pruning and the strengths of our proposed methods compared to baselines,
including visualizations of importance score distribution, dynamic sparsity, loss landscape, etc.

2 RELATED WORK

Model pruning for transformers. Efficient model inference via pruning (Yoon & Hwang, 2017;
Dai et al., 2018; Zhang et al., 2022a; Fang et al., 2023) is one of the long-standing topics in the
community and is coming to the fore as transformer-based models grow in size. Model pruning is
typically categorized into structured pruning and unstructured pruning. The former (McCarley et al.,
2019; Wang et al., 2019; Kwon et al., 2022) aims to accelerate inference speed and throughput at

2



Published as a conference paper at ICLR 2024

the expense of model performance. Unstructured pruning (Sun et al., 2023a; Frantar & Alistarh,
2023), on the other hand, can be advantageous in preserving performance even with high model
sparsity given AI acceleration software or sparse matrix computation schemes (Han et al., 2016;
Mishra et al., 2021; Das & Ramamoorthy, 2022; NeuralMagic, 2022). Recently, Frantar & Alistarh
(2023) suggest a one-shot pruning technique, SparseGPT, for generated pre-trained transformers
(GPTs) in an unstructured manner. They newly employ a sparse regression solver that prunes weights
at each layer based on row-wise Hessian reconstruction as formulated by a closed-form solution.
Wanda (Sun et al., 2023a) proposes a magnitude-based unstructured pruning approach for large
language models (LLMs). It promotes layer-wise weight sparsification based on the importance,
computed by multiplying weights and input activations. However, these SoTA pruning methods
rely on the pre-defined pruning ratio that all layers resort to the same sparsity, restricting the upper
bound on model compression. In addition, their methods are tailored to language models without
concern for different modalities. On the other hand, our proposed method allows adaptive pruning at
each layer without heavy computation of global gradients. Further, to the best of our knowledge, we
propose a first unified sparse approximate solver for vision-language multimodal models.

Transformers for vision-language multimodal learning. Vision-language multimodal learning
has shown remarkable achievement on various tasks, such as classification (Liu et al., 2018; Liang
et al., 2022a), retrieval (Fei et al., 2021), few-shot learning (Tsimpoukelli et al., 2021; Alayrac et al.,
2022), visual QA (Kim et al., 2016; Liu et al., 2023), and image/video generation (Zhou et al., 2022b;
Singer et al., 2022; Lee et al., 2023). Recently, transformer modules have become the new standard
for both language and visual-based (Dosovitskiy et al., 2020; Liu et al., 2021) tasks, and the powerful
representation of these transformers allows for the modularization of multimodal learning frameworks
with existing pre-trained uni-modal models without an expensive re-training phase for multimodal
data (Radford et al., 2021; Zhou et al., 2022a).

3 BACKGROUND: LAYER-WISE PRUNING FOR VISION-LANGUAGE MODELS

3.1 PRELIMINARIES: A FRAMEWORK FOR VISION-LANGUAGE MODELS

Multiple vision-language multimodal models introduce different architectural designs to understand
compositional multimodal semantics, which can affect the pruning strategy. In this paper, we basically
build our pruning method upon two popular multimodal learning frameworks for vision-language
tasks, BLIP (Li et al., 2022) and BLIP-2 (Li et al., 2023c), which are modularized with the pre-trained
ViT (Dosovitskiy et al., 2020) and FlanT5 (Chung et al., 2022) architectures to encode visual and
language information, respectively. They have achieved remarkable zero-shot performance on various
vision-language tasks. Let the visual encoder fv(·;Wv) and language model fl(·;Wl) in BLIP
variants be composed of a set of the weights Wv = {Wv

i |1 ≤ i ≤M} and Wl = {Wl
i|1 ≤ i ≤ N},

respectively, where M and N indicate the number of the corresponding layers. While freezing these
pre-trained backbones, BLIPs introduce Query transformer (Q-Former) fq(·;Wq), a lightweight
module with a set of the weights Wq, that extracts essential information from visual representation
and warps it to the input space of the language model (Li et al., 2021). Given the multimodal input
pair (xv, xl), the output of the model is represented as fl([ov, xl];Wl), where ov denotes the aligned
visual representation fq(fv(xv;Wv);Wq).

3.2 CHALLENGES IN PRUNING VISION-LANGUAGE MODELS

Let us first describe a primary strategy for Hessian-based global pruning, which aims to remove the
optimal subset1 of parameters minimizing the loss change δL = L(w+δw)−L(w). Here, w denotes
the weight vector of the model. When the ith model parameter is removed, implying e⊺i δw + wi = 0,
where e⊺i indicates the ith canonical basis vector, its importance is represented as w2

i /(2 · [H−1]ii).
After that, the model prunes its weights with the lowest importance. However, computing the inverse
Hessian H−1 requires significant computational budgets and is often infeasible for large models.

On the other hand, layer-wise one-shot pruning aims to leverage a small amount of calibration
data (such as 128 data points) to remove less important weights from the model in a single step

1The subset size (i.e., sparsity) is often pre-defined or obtained through training.
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Figure 1: (a) and (b): The imbalance of the magnitude and gradient distributions between vision
and language models. (c): The skewed distribution of the layer-wise scores of SparseGPT.

based on their local significance per layer. This approach is significantly efficient in terms of
computation/memory in the model pruning phase without expensive iterations of the re-training or
Hessian matrix computation for the parameters of the entire model, which is particularly beneficial
for large language/multimodal models with billions of parameters. The model compression procedure
of recent layer-wise pruning methods (Lazarevich et al., 2021; Yu & Xiang, 2023; Frantar & Alistarh,
2023) can be summarized in the three steps given a target sparsity of p% and a layer index i = 1, i ∈
{1, ..., L}: (1) Compute the importance score for each parameter within the layer i, (2) Discard p%
of the parameters of layer i based on their importance score and adjust the remaining weights (usually
for Hessian-based methods), and (3) calculate the layer’s output with only activated (i.e., not pruned)
weights, and repeat the process for the next layer (i← i+ 1) until i = L.

However, most layer-wise pruning approaches focus on removing unnecessary weights or parameters
from single-modal models, such as vision-only (Chen & Zhao, 2018; Lazarevich et al., 2021; Yu &
Xiang, 2023) or language-only (Frantar & Alistarh, 2023; Sun et al., 2023a) architectures, which
face significant limitations when extended to multimodal (e.g., vision-language) models due to the
critical gap in weight/gradient distributions between different modalities, as shown in Figures 1a
and 1b. Unlike global pruning methods estimating the importance of each parameter based on
the objective loss, layer-wise pruning without the guidance of global weight correlations suffers
from obtaining relative significance across weights in different layers/modules due to such severe
distributional imbalances in the different modality modules. For example, in Wanda, inputs for
different layers significantly vary in their scales (Ba et al., 2016; Ioffe & Szegedy, 2015), and in
SparseGPT, the importance of the local loss functions for different layers is also incomparable (Please
see the skewed distribution of the local score shown in Figure 1c). This problem makes layer-wise
pruning approaches usually set the pruning ratio to be a fixed value for all layers, resulting in a
suboptimal compression rate and performance. This is also evident in the results from Singh &
Alistarh (2020) that the global WoodFisher pruner outperforms its layer-wise counterpart by a large
margin, especially at high sparsity regimes.

4 ECOFLAP: EFFICIENT COARSE-TO-FINE LAYER-WISE PRUNING

As discussed above, deploying a layer-wise pruning approach for large vision-language models
is challenging due to three primary issues; distributional/architectural disparity between different
modalities, significantly large model size, and lack of global knowledge. To overcome such critical
challenges, we propose Efficient Coarse-to-Fine Layer-wise Pruning (ECoFLaP), to efficiently
compute an adaptive pruning ratio for each layer with global importance scores (Coarse), and then
accurately remove the parameters layer by layer with local significance (Fine).

4.1 THE FRAMEWORK OF COARSE-TO-FINE LAYER-WISE PRUNING

Our focus is to prune the BLIP-like multimodal architectures, as discussed in Section 3.1. Note that
we compress the vision and language model in BLIP variants while keeping Q-Former intact because
it is sufficiently lightweight, occupying only ∼ 5% of the parameters in the whole framework. Given
the multimodal calibration data D = {xv

k, xl
k}Kk=1, a conventional layer-wise pruning method aims to
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Figure 2: Illustration of our ECoFLaP compared to global and layer-wise pruning. The boxes with
a blue, green, and black border denote the language, vision, and Q-Former modules, respectively.
The dotted red arrows show the working flow of the algorithm. The beige color indicates the pruning
of the current step (layer) is conditioned on the pruning decisions made in the preceding steps (layers),
which are marked in gray. ECoFLaP first performs the efficient coarse step to obtain the pruning
ratio for each layer by leveraging the zeroth-order gradient, and then removes the uncritical weights
in a layer-wise fashion in the fine step.

find the sparse weight Ŵi at layer i via the corresponding local objective Li:

Ŵi = argmaxS(Wi|Ŵi−1,D,Li), s.t.,
|Ŵi|
|Wi|

= pi, (1)

where S(·) is the score function to compute the importance of the weight, Ŵi is denoted as the pruned
weight from Wi, and pi% the desired sparsity at layer i. Basically, pi is the same for all layers in
layer-wise pruning methods.

In our proposed Efficient Coarse-to-Fine Layer-wise Pruning (ECoFLaP) framework, we estimate the
optimal sparsity for each layer in the vision-language model by computing the global importance
of model weights. One straightforward direction to obtain the layer sparsities is to perform global
pruning on the model for the target global sparsity p by leveraging the global loss objective L,

Ŵ = argmaxS(W|D,L), s.t.,
|Ŵ|
|W|

= p. (2)

Then, we can estimate the layer sparsity via pi = |Ŵi|/|Wi|. However, this approach requires an
expensive operation to obtain gradients for all weights in the large model and to extract the pruned
weights via argmax, consuming enormous memory and computational resources. Therefore, we
introduce an alternative numerical approach, which computes the keep ratio (1 - sparsity ratio) based
on importance scores linearly, to avoid expensive operations that can estimate the global importance
score efficiently. First, we obtain the importance score for each weight via the global objective
function, namely, s = S(W|D,L), and then convert the scores to sparsity by three steps: (1) Find the
total parameters that need to be selected based on p, (2) Normalize the scores, (3) Obtain the sparsity
for each layer based on the number of parameters to be picked and the parameters of this layer. The
example to determine the sparsity ratio for the ith layer of the model is shown below,

normalize(si, s) =
si∑

s
, (3)

pi = 1− (normalize(si, s) ·Nselect)

|Wi|
, where Nselect = (1− p) · |W|. (4)

We then inject the derived sparsity ratios back to Equation 1 to prune the model layer-wisely. We
also introduce a hyperparameter pmax to control the maximum sparsity for each layer to avoid the
layer collapse, which is discovered by previous literature (Tanaka et al., 2020) that the global pruning
approach may remove all the parameters for one layer. To incorporate this hyperparameter in the
Equation 3, we simply pre-pick the parameters for each layer to satisfy the max sparsity condition,
subtracting the Nselect with the number of pre-picked parameters, and start the algorithm. In our
experiments, we find using the same sparsity ratio for the layers in one block (such as the feed-forward
layer and attention layer in a transformer block) makes the results more robust, so we also extend the
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algorithm to determine group sparsity ratios by via group scores (aggregating all the layer scores in a
block). For the layer-wise pruning step, we utilize Wanda, which combines the input activation of the
layer with the weight magnitude as the local importance score, to remove uncritical parameters based
on the obtained layer sparsity ratios.

4.2 ZEROTH-ORDER GLOBAL INFORMATION

(a) Zeroth-order Gradient (b) Forward-forward Algorithm

Figure 3: Illustration of (a) the zeroth-order gradi-
ent in weight space, and (b) the forward-forward
algorithm.

In the previous section, we introduce our coarse-
to-fine pruning framework to determine the prun-
ing ratios for layer-wise pruning. Note that our
goal is to prune models with billions of param-
eters, so we again focus on the one-shot setting
in this step without any iterative refinement. To
this end, our first attempt is to use the first-order
backward gradient with weight magnitude (Le-
Cun et al., 1989), |W| · |▽WL(W,D)|, as the
global importance score, and the performance
improvement demonstrates the effectiveness of
our framework (Please see Table 1 and Figure 4). However, even though the first-order backward
gradient is still tractable for most models. like less than 5B parameters, 7B LLaMA (Touvron et al.,
2023) requires more than 40GB even with float16 weight type and batch size being one.

To further reduce the cost of computing gradients, we instead compute the zeroth-order approximated
gradient by replacing the backpropagation with the forward-forward algorithm (Hinton, 2022; Malladi
et al., 2023). We take the ith layer of a model as an example, the zeroth-order gradient of Wi can be
computed by perturbing the weight with Gaussian noises twice, that is,

∥▽Wi
L(Wi,D)∥2 = Ed∼D[Ez∼N(0,1)[|

L(Wi + ϵz, d)− L(Wi − ϵz, d)

2ϵ
|]] (5)

We hence use ∥▽WiL(Wi,D)∥2 as the importance score of Wi. Note that we do not multiply it
with the weight magnitude as solely using the approximated gradients works better empirically. The
computation of Equation 5 is extremely memory-efficient and the exact process for the ith layer is
shown in the following: (1) First, we choose a random seed and then sample a noise z (now we
use 2x of memory of “this layer”), (2) we modify the model’s weight with W + ϵz and compute
the loss change L(W + ϵz, d), (3) we then sample the same noise z as the first step (by setting
the same random seed), and we modify the model’s weight with W − ϵz, which can be done by
subtracting 2ϵz from the previous weight, and compute L(W− ϵz, d), (4) obtain the gradient norm
by (L(W + ϵz)− L(W− ϵz))/(2ϵ) (all terms are scalars). From the above process, for an N-layer
network, we only need (N+1) times of one-layer memory, which is significantly memory-efficient
than storing the whole gradients that cause 2N times of one-layer memory. This explains why our
approach uses much less memory than first-order based methods, which also need to cache input
activations. One may suspect we need to sample many noises to capture the loss of the landscape and
to estimate the gradient accurately. However, our experiments and the previous studies (Malladi et al.,
2023) show that one noise is sufficient. We describe our approach in detail in Algorithm 1.

5 EXPERIMENTAL SETUP

We report evaluation metrics and more experimental details in Appendix C.

Architectures. We use multiple uni- and multi-modal architectures for experiments: the encoder-
decoder vision of BLIP-2 (Li et al., 2023c), composed of pre-trained EVA-ViT (ViT-g/14 from
EVA-CLIP) (Sun et al., 2023b) and FlanT5 (Chung et al., 2022), is used for most experiments and
ablation studies. And, we also extend our approach to BLIP (Li et al., 2022) with ViT (Dosovitskiy
et al., 2020) and BERT (Devlin et al., 2019) backbones. In addition, we evaluate our approach solely
on unimodal vision and NLP tasks with EVA-ViT, FlanT5, and LLaMA backbones.

Evaluation Datasets. We evaluate the zero-shot ability of BLIP-2 on various datasets after pruning,
such as VQAv2, OK-VQA, and GQA for visual question answering, NoCaps for image captioning,
and Flickr30k for image-text retrieval. For BLIP, we evaluate the performance change of the BLIP
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Table 1: Comparison of existing pruning approaches with ECoFLaP on the zero-shot performance
with BLIP-2 at 0.5 sparsity. We report accuracy for visual question answering, CIDEr and SPICE
for image captioning, and TR@1 (text recall) and IR@1 (image recall) for image retrieval. We also
compute the macro average score over tasks and the GPU memory usage for each method.

Method Sparsity
Method’s

Mem. Usage
(GB)

Visual Question Answering Image Captioning Image retrieval Macro
Avg.VQAv2 OK-VQA GQA NoCaps Flickr30k

Accuracy CIDEr SPICE TR@1 IR@1

Full Model 0% - 63.1 41.1 44.1 121.7 15.8 97.6 89.7 62.1

Global Magnitude Pruning 50% 8.46 0.0 0.0 0.0 0.0 0.0 0.2 0.1 0.0
Gradient-based Pruning 50% 22.4 56.9 35.3 41.7 96.8 13.5 93.0 82.4 55.4
SparseGPT 50% 9.04 57.4 36.1 40.8 108.1 14.1 96.4 86.3 57.4
Wanda 50% 8.87 57.9 35.3 42.2 106.9 14.1 95.1 84.6 57.2

ECoFLaP
+ First-order Gradient 50% 22.4 59.4 36.3 42.3 109.9 14.2 95.9 86.2 58.2
+ Zeroth-order Gradient 50% 8.93 58.4 35.6 42.9 110.2 14.3 95.5 85.8 58.0
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Figure 4: The accuracy and model sparsity trade-off for Wanda, ECoFLaP with first-order and
zeroth-order gradient on both BLIP-2 (multimodal), FlanT5 (unimodal), and EVA-ViT (unimodal).

fine-tuned on NLVR2 and COCO captions. For unimodal models, we evaluate FlanT5 on MMLU,
evaluate LLaMA 7B with WikiText, and evaluate EVA-ViT with ImageNet-1k.

Baselines. We compare ECoFLaP to several global pruning and layer-wise pruning approaches.
For Global Magnitude Pruning, we perform global pruning based on the magnitude of the weight.
Gradient-based Pruning is an iterative global pruning approach, where we use the multiplication
of the first-order gradient and the weight magnitude as the importance score and prune the model
to target sparsity in 3 iterations. SparseGPT is a layer-wise Hessian-based method. Wanda is also
a layer-wise approach utilizing the multiplication of the weight magnitude and the norm of input
activation as the local importance score. The comparison of the above pruning methods and their
importance metric can be found in Table 8. We also compare our method with UPop, which prunes
and re-trains the vision-language model simultaneously in a unified progressive pruning manner.

6 RESULTS

6.1 MAIN EXPERIMENTAL RESULTS

We demonstrate the zero-shot performance on various datasets using BLIP-2 pruned by our ECoFLaP
and baselines at a 0.5 sparsity ratio in Table 1. And we compare our approach with UPop using
BLIP backbone on NLVR2 and COCO captions under the fine-tuning and non-fine-tuning settings in
Table 3. We also provide the comparison of our approach and Wanda at various sparsities on both
multi- and uni-modal models in Figure 4. We summarize our observations as follows:

ECoFLaP consistently outperforms Global Magnitude Pruning (GMP) and Gradient-based
Pruning as shown in Table 1. GMP fails to generate meaningful results at 0.5 sparsity. In particular,
we find that GMP suffers from pruning the vision module, EVA-ViT, so the degraded visual repre-
sentation harms the multimodal model performance. Gradient-based Pruning performs significantly
better by selecting crucial weights based on gradient information of the whole model, but it requires
a larger memory than GMP due to the full pass to compute the gradients. On the other hand, com-
pared to Gradient-based Pruning, our ECoFLaP with zeroth-order gradients uses only 40% memory
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Table 2: Zero-shot evaluation on 11 classification tasks with CLIP using 0.4 of sparsity ratio. We ad-
ditionally report results using local scores to compute layer sparsity ratios. ∗FGVC, OFlowers, OPets,
and SCars stand for FGVCAircraft, OxfordFlowers, OxfordPets, and StanfordCars, respectively.

Methods Caltech101 DTD EuroSAT FGVC∗ Food101 ImageNet OFlowers∗ OPets∗ SCars∗ SUN397 UCF101 Avg

Full Model 92.9 44.5 47.8 24.8 86.1 66.7 71.3 89.1 65.3 62.6 66.8 65.3

Wanda 85.1 31.2 33.5 9.0 66.0 45.6 37.2 71.3 35.0 50.8 54.7 47.2
SparseGPT 90.5 41.5 47.4 19.2 79.4 50.8 59.0 86.4 53.4 55.3 63.2 58.7

Sparsities from
Local Scores
w/ Wanda 84.0 30.1 31.5 6.6 62.9 44.5 34.2 68.1 34.1 49.5 52.9 45.3
w/ SparseGPT 88.6 37.7 43.1 17.7 76.6 42.1 50.3 83.2 46.1 48.0 60.4 54.0

ECoFLaP
w/ Wanda 87.5 37.9 43.8 16.0 72.8 53.5 57.0 80.3 46.9 58.2 62.4 56.0
w/ SparseGPT 90.0 42.4 45.4 22.5 81.2 56.5 64.1 88.3 56.8 60.2 63.4 61.0

during pruning while improving average accuracy by 2.12%, 9.88%, and 3.41%, on visual question
answering, image captioning, and image retrieval tasks, respectively.

ECoFLaP outperforms SoTA layer-wise pruning baselines since our ECoFLaP is able to exploit the
global information. Our approach with zeroth-order gradient consistently achieves better performance
against Wanda on all tasks and metrics by 1.1%, 2.3%, and 1.0%, on visual question answering,
image captioning, and image retrieval tasks, respectively, showing the effectiveness of our coarse-
to-fine framework. Furthermore, we highlight that the gap between Wanda and ECoFLaP becomes
larger when the sparsity increases to 0.6, where ECoFLaP outperforms Wanda by 9.6% on VQA
(shown in Figure 4a). Our approach also surpasses SparseGPT by 1.4% of relative improvement
on the average score. Note that our zeroth-order ECoFLaP uses on-par memory budgets compared
to layer-wise pruning methods, Wanda and SparseGPT, by avoiding expensive backpropagation
computation. Additional results on the combination of ECoFLaP and SparseGPT are in Table 9.

ECoFLaP surpasses baselines on pruning CLIP models by a significant margin. Beyond pruning
modularized VL models, ECoFLaP can also work well with joint VL models like CLIP. In Table 2,
we evaluate Wanda, SparseGPT, and our approach on CLIP by measuring the zero-shot accuracy
on 11 classification tasks before and after pruning over the sparsity 0.4, and our ECoFLaP excels
against baselines while effectively mitigating the degeneration of zero-shot accuracy through the
model pruning. In addition, we assess the impact of using global scores for computing layer sparsity
ratios by comparing it with the approach using local scores derived from layer-wise pruning methods
(namely, Wanda and SparseGPT). The result shows that the strategy of using local scores leads to
a decrease in performance compared to leveraging a uniform sparsity ratio. This observation
emphasizes the ineffectiveness of employing local scores for assessing layer importance (Please see
our motivation in Figure 1).

Table 3: Performance comparison on BLIP
at 0.5 sparsity on NLVR2 and COCO cap-
tions.

Method NLVR2 COCO cap.
val test CIDEr SPICE

Full Model 82.3 83.6 133.3 23.8

w/o fine-tuning
UPop 76.9 77.8 - -
Wanda 78.3 78.1 97.1 18.4
ECoFLaP 79.1 79.2 111.0 20.3

w/ fine-tuning
UPop 80.3 81.1 128.9 23.3
ECoFLaP 81.8 82.5 132.3 23.8

ECoFLaP outperforms the multimodal model prun-
ing baseline, UPop, in both non-fine-tuning and fine-
tuning cases as shown in Table 3. Note that UPop
requires re-training the backbone model in the pruning
phase, which is significantly expensive in memory and
computation, especially for large models. On the con-
trary, ECoFLaP finds an important subset of weights in
the model in a single shot and then fine-tunes the pruned
model. We also emphasize that our approach general-
izes to different architectures and datasets, where BLIP
uses a BERT-encoder for NLVR2 (classification) and
a BERT-decoder for COCO (image captioning).

ECoFLaP also generalizes well to unimodal tasks/architectures. In Figure 4b and Figure 4c, we
visualize the accuracy of MMLU with FlanT5 and ImageNet-1k with EVA-ViT after pruning with
various sparsity ratios (from 0.1 to 0.6). Since Wanda applies the same pruning ratio to all layers,
performance degrades with increasing sparsity (∼ 40% ↑), which is catastrophic for some layers
containing much more informative weights than others. Alternatively, the performance degradation
caused by pruning weights can be significantly mitigated by proposing adaptive layer-wise pruning
with dynamic sparsity for each layer based on estimated global weight importance. Furthermore, as
shown in Table 7, our approach shows the ability to generalize to larger LLM, where we attain 10.6%
relative improvement over Wanda when evaluated on WikiText using perplexity with LLaMA 7B.
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Table 4: The ablation on the
maximum sparsity.

BLIP-2
(p = 0.5)

Max Sparsity
0.5 0.6 0.8 1.0

VQA 57.9 58.4 57.1 51.6

Table 5: The ablation on number
of samples.

BLIP-2
(p = 0.5)

Number of Samples
16 32 64 128

VQA 58.2 58.4 58.3 58.4

Table 6: The ablation on number
of noises (total samples = 32).

BLIP-2
(p = 0.5)

Number of noises
1 4 8 32

VQA 58.4 58.1 58.0 58.1

6.2 ABLATIONS AND VISUALIZATION

We provide ablation studies of our zeroth-order ECoFLaP on maximum sparsity for each layer pM ,
the number of data |D|, and the number of perturbed noises per sample. We report the zero-shot VQA
accuracy obtained from the BLIP-T5 with 0.5 total sparsity. Note that we use the numerical method
to obtain the sparsity ratios for experiments (Please see Equation 3).

Maximum Sparsity. First, we observe that the maximum sparsity is critical as it affects the results
considerably, and the optimal value happens at 0.6, which is a conservative value given the target ratio
is 0.5. Similar to the findings discovered by Tanaka et al. (2020), the algorithm might suffer layer
collapse when the maximum sparsity is not set (pM = 1). We find it simple but effective to introduce
this hyperparameter as we would like to avoid using the iterative solution proposed by Tanaka et al.
(2020) because we are targeting the one-shot pruning. Based on the result shown in Table 4, we
simply set pM = p+ 0.1 throughout our experiments.

Number of Data and Noises. In the next ablation experiment, we focus on understanding how
many samples and noises we need to estimate the gradient with zeroth-order optimization. We first
ablate the effect of the number of data by fixing the number of noises per sample to be one, and
the result in Table 5 shows that our approach is robust to the number of samples across 16 to 128,
and we thus using 32 samples for better efficiency. Next, we explore if having a more accurate
gradient estimation by sampling more noises can improve the accuracy. In this ablation, we make
sure to forward through the model the same number of times when using different numbers of noises,
meaning that we cut the number of data to 1/n when we increase the number of noises to n. The
result in Table 6 demonstrates that using more data samples is more effective compared to sampling
more noises when the budget is fixed.

Visualization and Analysis. We also provide the visualization of the sparsity ratios obtained by
ECoFLaP (Figure 6) and the loss landscape of BLIP-2 (Figure 5) to justify the use of zeroth-order
optimization. In Figure 6, we observe that our ECoFLaP variants allocate sparsity ratios in a similar
distribution, in favor of lower sparsity ratios for the visual model and higher sparsity ratios for the
language model, and this alignment provides evidence that the zeroth-order gradient obtained by the
forward-forward algorithm can be the accurate but cheaper alternative to the first-order gradient in
importance estimation. The landscape shown in Figure 5 presents that BLIP-2 is located at a smooth
basin with a single local minimum. This loss landscape justifies the success of utilizing zeroth-order
optimization as we avoid sampling weights located in other basins that may cause an inaccurate
gradient estimation. We also present a qualitative analysis of the pruned model in Appendix E.

7 CONCLUSION

This paper has investigated the challenges of pruning large-scale vision-language models due to the
dilemma between immense memory/computational overhead from global pruning and the suboptimal
model performance of layer-wise pruning. Existing global pruning methods require an expensive
backpropagation process to compute the inverse Hessian to obtain global weight importance, which
makes these approaches infeasible for current large LLMs and large LVLMs. On the other hand,
layer-wise pruning approaches are highly efficient by pruning weights based on layer-wise local
information, but often suffer from a lack of global importance, resulting in a significant performance
degeneration. To address the limitations of these pruning approaches while enjoying their merits, we
propose ECoFLaP that adaptively finds the optimal sparsity for each layer by efficiently estimating
the global weight importance, and then accurately prunes the vision-language model in a layer-wise
manner dependent on the obtained pruning ratios. We utilize the zeroth-order optimization to obtain
the gradients with forward pass only and achieve superior performance over multiple uni- and multi-
modal tasks against recent layer-wise pruning methods by a significant margin, while consuming
only around 40% of GPU memory compared to the iterative global pruning approach. We hope our
new efficient pruning can help deploy quality yet compact vision-language models.
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8 REPRODUCIBILITY STATEMENT

Our codes are based on the publicly available LAVIS (Li et al., 2023b), Wanda (Sun et al., 2023a),
MMLU (Hendrycks et al., 2021), UPop (Shi et al., 2023), and CoOp (Zhou et al., 2021). The
experimental setup and details can be found in Section 5 and Appendix C, respectively. We also have
made our code publicly available.
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Algorithm 1: Efficient Coarse-to-Fine Layer-wise Pruning
Input: weights of the vision model Wv , weights of the language model Wl, calibration dataset D, target

sparsity p, maximum sparsity per layer pmax

Output: The pruned weights Ŵ
v

and Ŵ
l

// Coarse step: determine the sparsity ratios via global information

1 s← S(Wv,Wl,D,L) ; // get the global importance score

2 p← getSparityFromScores(s,Wv,Wl, p, pmax) ; // obtain the sparsity via Equation 3

// Fine step: perform layer-wise pruning

3 Ŵ
v
, Ŵ

l
= {}, {}

// We initialize the 0th weight to be the identity matrix, depicting the fact that the

input of the first layer is the raw input.

4 Wv
0 ← I

5 for i = 1 to M do
6 Ŵ

v

i = argmaxS(Wv
i |Ŵ

v

i−1,D,Lv
i , pv

i ) ; // prune vision weights layer by layer

7 Ŵ
v
= Ŵ

v
+ {Ŵ

v

i }
8 Wl

0 ←Wv
M

9 for i = 1 to L do
10 Ŵ

l

i = argmaxS(Wl
i|Ŵ

l

i−1,D,Ll
i, pl

i) ; // prune language weights layer by layer

11 Ŵ
l
= Ŵ

v
+ {Ŵ

l

i}

12 return Ŵ
v
, Ŵ

l

Figure 5: The loss landscape of the BLIP-2
model.
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Figure 6: Sparsity ratios obtained by ECoFLaP.

A THE LOSS LANDSCAPE

We present a visualization of the loss landscape (Li et al., 2018) for BLIP-2 in Figure 5, where we
achieve this by perturbing the pre-trained BLIP-2 model 2500 times to approximate the parameter
space and using 256 samples from CC3M to compute the loss. Our visualization reveals a distinctive
corn-shaped loss landscape, which is characterized by a single basin centered around the pre-trained
weight of the BLIP-2. Moreover, the landscape is surprisingly smooth with a linear slope around the
pre-trained weight. This smooth and corn-shaped loss landscape explains why we can estimate the
gradient with zeroth-order optimization this successfully, as we avoid sampling weights situated in
other basins that could lead to inaccurate gradient estimation.

B RESULTS ON LLAMA

We further assess our approach’s performance using perplexity on the WikiText dataset with LLaMA,
a prominent open-source LLM. The results on the 7B model presented in Table 7 demonstrate that
ECoFLaP achieves a noteworthy 10.6% relative improvement compared to Wanda when operating
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Table 7: Evaluation of Wanda and ECoFLaP on LLaMA 7B at 0.6 sparsity by perplexity on WikiText.

LLaMA @ 0.6 sparsity Perplexity
Full Model 7.26
Wanda 10.68

ECoFLaP
+ first-order gradient 10.16
+ zeroth-order gradient 9.83

at 0.6 sparsity. Notably, in this experiment, we find that employing a larger ϵ value in Equation 5
substantially enhances performance. This observation suggests that the zeroth-order estimation can
benefit from exploring regions further from the target weight, a capability not inherent in gradients
obtained through backpropagation.

C EXPERIMENTAL DETAILS

Evaluation Datasets and Metrics. We evaluate the zero-shot ability of BLIP-2 on various datasets
after pruning. We use VQAv2 (Goyal et al., 2016), OK-VQA (Marino et al., 2019), and GQA (Hudson
& Manning, 2019) for visual question answering, NoCaps (Agrawal et al., 2019) for image captioning,
and Flickr30k (Plummer et al., 2015) for image-text retrieval. For BLIP, we evaluate the performance
change of the BLIP, fine-tuned on NLVR2 (Suhr et al., 2019) and COCO captions (Chen et al., 2015).
For unimodal models, we evaluate FlanT5 on 57 tasks in MMLU (Hendrycks et al., 2021), evaluate
LLaMA 7B with WikiText (Merity et al., 2016), and evaluate EVA-ViT on image classification task
with ImageNet-1k (Deng et al., 2009). We report accuracy for question-answering datasets, NLVR2,
ImageNet-1k, and tasks in MMLU. Next, we use CIDEr and SPICE to evaluate image captioning
tasks and use TR@1 (top-1 text recall) and IR@1 (top-1 image recall) for image retrieval tasks.
Lastly, we report the model’s perplexity of WikiText in evaluating the LLaMA.

Calibration Datasets. Our approach utilizes a small subset (128 samples) of a dataset as the
calibration data from CC3M (Sharma et al., 2018), ImageNet (Deng et al., 2009) and C4 (Raffel
et al., 2019) for calibrating BLIP-2, unimodal EVA-ViT, and unimodal FlanT5 (and LLaMA). We use
NLVR2 and COCO captions as the calibration data for fine-tuning the BLIP backbone.

Dataset splits. For VQAv2, OK-VQA, and GQA, we use val, test, and test-dev split, respectively.
We use the validation set for NoCaps and the test set for Flickr30k. In our BLIP experiments, we
report results on both val and test set for NLVR2, while we use the Karpathy test split (Karpathy &
Fei-Fei, 2014) for COCO captions. In our unimodal experiments, we use the publicly available test
set for MMLU, and we use the validation set for ImageNet-1k. For WikiText, we report the perplexity
on the validation set.

Datasets and Metrics for CLIP experiments. We use a diverse set of 11 image classification
datasets to evaluate the model’s ability to recognize generic and specific objects: Caltech101 (Fei-Fei
et al., 2004), DTD (Cimpoi et al., 2013), EuroSAT (Helber et al., 2017), FGVCAircraft (Maji et al.,
2013), Food101 (Bossard et al., 2014), ImageNet (Deng et al., 2009), OxfordFlowers (Nilsback &
Zisserman, 2008), OxfordPets (Parkhi et al., 2012), StanfordCars (Krause et al., 2013), SUN397 (Xiao
et al., 2010), UCF101 (Soomro et al., 2012). We report accuracy for each dataset in Table 2.

Seed. The default seed option for each codebase is used for evaluation: seed 42 for all the experiments
for BLIP-2, FlanT5, and EVA-ViT, seed 0 for the LLaMA experiment, and seed 1 for the CLIP
experiment.

Hyperparameters. For the coarse step, we set pM = p+ 0.1, |D| = 32, and the number of noises
to be 1 for ECoFLaP with zeroth-order gradient. ϵ is set to 1e−3 except for LLaMA, where we find
1e−1 works better, but we almost did not tune this hyperparameter. For ECoFLaP with first-order
gradient, we use |D| = 128.

Resources. All the experiments are done with one 40GB A100 or one 48GB A6000, except for
ECoFLaP with first-order gradient on LLaMA we use 2x 48GB A6000.
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Table 8: The comparison of different methods in terms of their category and used importance measure.

Methods Global or Layer-wise Importance Measure

Global Magnitude Pruning Global ∥W∥ij
Gradient-based Pruning Global ∥W∥ij · ∥▽Wi

L∥ij
SparseGPT Layer-wise [∥W∥2/diag(XXT + λI)−1]ij
Wanda Layer-wise ∥Wij∥ · ∥Xj∥2
ECoFLaP
w/ Wanda and zeroth-order Mixed First Stage: ∥▽WiL∥ij

Second Stage: ∥Wij∥ · ∥Xj∥2

Table 9: Comparison of SparseGPT and ECoFLaP (with SparseGPT) on the zero-shot performance
with BLIP-2 at 0.6 sparsity. We report accuracy for visual question answering, CIDEr and SPICE
for image captioning, and TR@1 (text recall) and IR@1 (image recall) for image retrieval. We also
compute the macro average score over tasks and the GPU memory usage for each method.

Method Sparsity
Method’s

Mem. Usage
(GB)

Visual Question Answering Image Captioning Image retrieval Macro
Avg.VQAv2 OK-VQA GQA NoCaps Flickr30k

Accuracy CIDEr SPICE TR@1 IR@1

SparseGPT 60% 9.04 48.7 27.9 35.1 101.0 13.4 95.2 85.0 51.8

ECoFLaP
w/ SparseGPT 60% 9.05 50.4 27.9 36.3 105.3 14.0 95.3 86.1 53.1

D ECOFLAP ON SPARSEGPT

As the key contribution of our method for efficient estimation of layer-adaptive pruning rate for
layer-wise pruning is orthogonal to SparseGPT, ECoFLaP can also be combined with SparseGPT.
As shown in Table 9, EcoFLaP (w/ SparseGPT) consistently achieves superior performance over
multiple VL tasks.

Additionally, the performance improvement seems relatively smaller compared to ECoFLaP with
Wanda (i.e., original EcoFLaP). We hypothesize that this is because the reweighting mechanism in
SparseGPT is somewhat correlated to our dynamic sparsity ratios, where both of them are important
to preserve the performance in high sparsity ratios.

E QUALITATIVE COMPARISON OF THE MODEL BEFORE AND AFTER PRUNING

We conducted an analysis comparing the predictions of the Full model (before pruning) and the model
pruned by ECoFlaP (with 0.5 sparsity) on the GQA datasets, and presented three illustrative examples
in Table 10. We found one interesting observation: out of 12578 questions, the Full model correctly
answered 1219 questions that our model did not, yet our model also accurately responded to 1072
questions where the Full model failed to respond (there are 4322 questions that both models answer
correctly). This indicates that pruning does not always lead to performance degradation; in some
instances, it may even enhance model robustness for certain questions. During our review of incorrect
predictions by either our model or the Full model, we noticed that most were conceptually similar to
the ground truth. This suggests that the pruned model still retains most of the capability. Furthermore,
in some cases, such as with the ’horses running’ example, both models provided answers that might
be considered correct by many humans, even though they differ from the ground truth.
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Table 10: Qualitative examples to compare the predictions generated by the Full Model and the
ECoFLaP-pruned model. We pick three example image-question pairs from GQA datasets. We
observe the model after pruning does not always perform worse than the Full Model.

Images

Question ID 202174017 20984557 20602949

Questions What shape is the microwave the stove is below? Which kind of vehicle is parked on the street? What is the horse running across?

Ground Truth rectangular car ground

Full Model’s
Prediction square car hill

ECoFLaP-pruned
Model’s Prediction rectangular bicycle rocks
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