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Abstract

Dynamical systems with interacting agents are universal in nature, commonly
modeled by a graph of relationships between their constituents. Recently, various
works have been presented to tackle the problem of inferring those relationships
from the system trajectories via deep neural networks, but most of the studies
assume binary or discrete types of interactions for simplicity. In the real world, the
interaction kernels often involve continuous interaction strengths, which cannot
be accurately approximated by discrete relations. In this work, we propose the
relational attentive inference network (RAIN) to infer continuously weighted inter-
action graphs without any ground-truth interaction strengths. Our model employs a
novel pairwise attention (PA) mechanism to refine the trajectory representations
and a graph transformer to extract heterogeneous interaction weights for each pair
of agents. We show that our RAIN model with the PA mechanism accurately infers
continuous interaction strengths for simulated physical systems in an unsupervised
manner. Further, RAIN with PA successfully predicts trajectories from motion
capture data with an interpretable interaction graph, demonstrating the virtue of
modeling unknown dynamics with continuous weights.

1 Introduction

Dynamical systems with interactions provide a fundamental model for a myriad of academic fields,
yet finding out the form and strength of interactions remains an open problem due to its inherent
degeneracy and complexity. Although it is crucial to identify the interaction graph of a complex
system for understanding its dynamics, disentangling individual interactions from trajectory data
without any ground-truth labels is a notoriously hard inverse problem.

There has been a long history and substantial amount of work on both inferring the network topology
and the nonlinear interactions between interacting constituents from data [3, 5, 4, 22, 10, 8], along
with the development of various measures to capture the relation between constituents (e.g., Pearson
correlations, mutual information, transfer entropy, Granger causality, and variants thereof [21]). Many
of these inferences focus on specific systems with the necessity for a model prior, such as domain
knowledge of the agent characteristics, proper basis construction, and detailed assumptions on the
system dynamics.

Recently, by phenomenal advances in machine learning, adopting a neural network as a key component
of the interaction inference has gained attention from researchers [24, 14, 26]. The key strength of
these approaches comes from the fact that a neural network enables relatively free-form modeling of
the system. One influential work in this direction, neural relational inference (NRI) [14], explicitly
infers edges by predicting the future trajectories of the given system. But previous studies for
extracting interaction graphs with neural networks [14, 25, 9] mainly focused on inferring edges with
discrete edge types, which means that they are incapable of distinguishing the edges of different
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Figure 1: Overview of system formulation and RAIN architecture. RAIN encodes each agent’s
trajectory with an LSTM encoder and applies pairwise attention (PA) to the hidden states for
constructing a pair of embeddings for each agent pair. Then the graph attentive module extracts the
interaction strength from a pair of embeddings in the form of an attention weight. The decoder module
finally predicts the future trajectories of each agent with an LSTM decoder, but here, each prediction
can only employ the weighted information from other agents. This restriction on information induces
the attention weights in the learning process to properly reflect the strengths of the connections.

interaction strengths with the same type. Considering the common occurrence of such heterogeneous
interaction strengths throughout diverse systems, the assumption of discrete edge types severely
limits the expressibility of the model.

A weighted interaction graph can be expressed in the form of a connectivity matrix, which is a
conventional adjacency matrix with continuous-valued entries that indicate the interaction strengths.
One recent study [19] tackles this problem of inferring the connectivity matrix by first training
the neural network and then additionally applying a ‘graph translator’ to extract continuous graph
properties, which needs a ground-truth label to train. Also, various attempts for continuous strength
inference from machine learning researchers [11, 12, 2] often lack verifications through the dataset
with ground-truth interaction strength. Several studies from physicists [27, 17] employed perturbation
analysis and response dynamics to infer continuous interaction strengths, and reported a good
agreement with the ground-truth strength. However, these correlation-based methods usually require
more than 105 to 107 data points for the inference, which is a feasible size for an entire dataset but
not for a single instance, and thus the direct application to experimental data is difficult.

In the current work, we propose a neural network called Relational Attentive Inference Network
(RAIN) to address the problem of inferring weighted interaction graphs from multivariate trajectory
data in an unsupervised manner. RAIN infers the interaction strength between two agents from
previous trajectories by learning the attentive weight while simultaneously learning the unknown
dynamics of the system and thus is able to precisely predict the future trajectories. Our model employs
the attention mechanism twice: once for the construction of pairwise trajectory embedding and once
for the actual graph weight extraction. Differing from previous approaches such as the graph attention
network (GAT) [24], RAIN aims to infer the absolute interaction strength that governs the system
dynamics. By comparing the inferred interaction strengths of simulated physical systems with ground-
truth values that are not provided at the training stage, we verify that RAIN is capable of inferring
both system dynamics and weighted interaction graphs solely from multivariate data. We further
show that RAIN outperforms discrete baselines on real-world motion capture data, representing a
system in which we cannot be certain whether a continuous form of interaction strengths even exists.
In this way, we demonstrate that the rich flexibility and expressibility of the continuous modeling of
interaction strengths are crucial for the accurate prediction of the future dynamics of an unknown
empirical system.

2 Model description

Our RAIN model as shown in Fig. 1 comprises three parts trained jointly: an encoder that compresses
time series data, a graph extraction module that infers the interaction weight between every pair of
agents, and a decoder that predicts the future trajectories of each agent. Note that RAIN does not
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Figure 2: Overview of the PA mechanism, which facilitates effective interaction inference by
emphasizing the critical part of the time series. Here, two balls weakly interacted at first but showed
strong interaction at the end. The circled points at timestep 2 and 49 are emphasized as exemplary
timestep where the interaction was weak and strong, respectively. PA achieves refined trajectory
representations by comparing encoded LSTM hidden states at the same time. Due to the asymmetric
nature of the transformer architecture, the weighted hidden state for A to B and B to A can be
drastically different, which lets PA properly handle the directional asymmetry of interaction.

require a ground-truth interaction graph for training; instead, it produces an interaction graph as a
byproduct of future trajectory prediction. In the following, we formalize our model and describe each
component in detail.

2.1 Encoder and pairwise attention

The long short-term memory (LSTM) encoder is composed of a single layer of gated recurrent unit
(GRU) [6] with hidden state dimension dlstm = 128. The encoder receives Tenc steps of trajectories
x1, x2, . . . , xTenc , each consisting of R state variables of N agents, and produces corresponding Tenc
hidden states, h1,h2, . . . ,hTenc . The last hidden state hTenc could preserve the information from the
entire trajectory in theory. But we found that a naive final hidden state is insufficient to fully capture
the interaction strength in large-scale systems. In this study, we propose a pairwise attention (PA)
mechanism to effectively infer the interaction strength between two trajectories. The intuition behind
PA is straightforward: a single hidden state cannot be a suitable choice for extracting the interaction
strengths from every possible pair. Thus, we calculate the attention between same-time hidden states
to assign weights to their contribution, as depicted in Fig. 2. We use a slightly modified transformer
[23] with m = 4 heads and a head dimension of dh = dlstm/m=32 to emphasize strong interaction.
See [23] for a detailed description of the transformer architecture. Formally, the LSTM hidden states
are processed into Key(K), Query(Q), and Value(V ) matrices as follows,

hti = fLSTM(ht−1i ,xti) (1)

Xt
pair,i = fpair,X(hti) where X ∈ {K,Q, V } (2)

Xt
pair,i = Xt,1

pair,i ⊕X
t,2
pairi ⊕ . . .⊕X

t,m
pair,i, (3)

where the symbol ⊕ indicates the concatenation of the matrices at the last dimension, fLSTM is the
GRU layer, xti are the state variables of the ith agent at time t, and fpair,X is a stack of multilayer
perceptron (MLP) layers for Kpair, Qpair, and Vpair. The superscripts t and m on X indicate the time
and head number, respectively. The attention-weighted hidden state h̃ is expressed as follows,

αt,mpair,ij = softmax(Kt,m
pair,i(Q

t,m
pair,j)

T /
√
dh) (4)

h̃mi =

Tenc∑
t=1

αt,mpair,ijV
t,m
i (5)

h̃i = h̃1
i ⊕ h̃2

i ⊕ . . .⊕ h̃mi , (6)
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Figure 3: Visualization of the trajectory predictions (upper) and retrieved connectivity matrices
(lower) for the spring-ball system. The results from left to right are from NRI(2), RAIN without
PA, RAIN with PA, and ground-truth. Here, 5 out of 10 balls are drawn for trajectory visualization,
and semi-transparent paths indicate the first 50 steps of input trajectories while solid paths denote 50
steps of predicted future trajectories.

where αt,mpair,ij is an attentive weight between agents i and j, and h̃mi is a weighted hidden state for the
mth attention head. RAIN passes h̃ to the graph extraction module.

By employing the PA mechanism, we can refine the LSTM hidden states by focusing on the specific
time of interactions, which is unique to each agent pair. We highlight that comparing the same-time
hidden states only, rather than considering the full attention as in conventional settings, significantly
reduces the time complexity of the inference while achieving the goal of the extraction of temporal
information. Also, since the transformer can handle asymmetric relationships by differentiating key
and query, PA can capture directional connections with ease.

2.2 Graph extraction module

The graph extraction module of RAIN is similar to the GAT [24]. The difference between ours and
the original GAT is that RAIN has no prior knowledge of the underlying graph and thus the αgraph
attention value should infer the presence of the edge itself as well as its strength, while GAT aims to
find the relative importance between fixed graph edges. Also, the conventional inner-product attention
of GAT is replaced with a transformer architecture in RAIN to achieve a more flexible representation.
We use attention-weighted hidden states from the PA mechanism to apply the transformer as follows,

Xgraph,i = fgraph,X(h̃i) where X ∈ {K,Q, V } (7)

αgraph,ij = σ(Kgraph,i(Qgraph,j)
T /

√
dh), (8)

where fgraph,X is a stack of MLP layers for Kgraph, Qgraph, and Vgraph. Note that instead of softmax
which normalizes the attention weight, sigmoid activation σ is used for graph attention to obtain the
absolute interaction strength. This is because our main goal is to infer the ground-truth interaction
strength, not the relative strength for a single instance. Extracted graph attention αgraph,ij becomes a
weight for the decoder module.

2.3 Decoder

The decoder shares the same GRU layer with the encoder module and the employ new value function,
Vdec,i, for the message aggregation. For agent i, RAIN concatenates attention-weighted value vectors
from other agents along with its own value vector as follows,
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Figure 4: Visualization of the trajectory predictions (upper) and retrieved connectivity matrices
(lower) for coupled Kuramoto oscillators. The results from left to right are from NRI(2), RAIN
without PA, RAIN with PA, and ground-truth. Here, 5 out of 10 oscillators are drawn for trajectory
(dφi

dt ) visualization, and semi-transparent paths indicate the first 50 steps of input trajectories while
solid paths denote 50 steps of predicted future trajectories.

hTenc+t
i = fLSTM(hTenc+t−1

i ,xTenc+t
i ) (9)

V Tenc+t
dec,i = fpair,V (hTenc+t

i ) (10)

h̃Tenc+t
dec,i =

∑
j 6=i

αgraphV
Tenc+t

dec,j ⊕ V Tenc+t
dec,i . (11)

RAIN finally produces a prediction of the state variables of the next step using a stack of MLP layers
fdec, fµ, and fσ ,

hTenc+t
dec = fdec(h̃

Tenc+t
graph,i) (12)

µTenc+t
i = fµ(hTenc+t

dec ) (13)

σTenc+t
i = fσ(hTenc+t

dec ). (14)

The outputs of fµ and fσ are r-dimensional vectors, each representing the means and variances of
the difference of state variables. RAIN samples the next state from a Gaussian distribution with fµ
and fσ and adds the values to the previous state. The decoder iterates this for Tdec steps to predict the
future states. For training, we employ negative log-likelihood (NLL) loss for a Gaussian distribution,

LNLL =

Tdec∑
t=Tenc+1

R∑
q

N∑
i

−1

2
log(2σt,qi ) +

(∆yt,qi − µ
t,q
i )2

2(σqi )
2

, (15)

where ∆yt,qi , µt,qi , and σt,qi are the true future state difference, predicted mean, and predicted variance
of the state variable q of agent i at time t, respectively.

3 Experiments

We demonstrate the capability of RAIN by performing inference tasks with various model systems
ranging from simulated physical systems to real motion capture data from a walking human. All of
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Table 1: Total Pearson correlation (ρtot) and the sample Pearson correlation (ρsample) between retrieved
interaction weights and true interaction weights for simulations with 5 and 10 interacting objects.

Model Spring Kuramoto

Corr. ρtot ρsample ρtot ρsample

5 objects
Corr. (Path) 0.2917 0.2944 0.0243 -0.1206
Corr. (LSTM) 0.0979 0.0952 -0.1369 -0.0751
NRI(2) 0.8482 0.8660 0.0027 -0.0048
NRI(4) 0.9250 0.9214 0.0230 0.0192
RAIN 0.8411 0.8770 0.5213 0.4987
RAIN + PA 0.9400 0.9568 0.8731 0.8925

10 objects
Corr. (Path) 0.2654 0.2732 0.1047 0.0682
Corr. (LSTM) 0.1196 0.1096 0.0024 -0.0012
NRI(2) 0.8602 0.8593 0.0393 0.0413
NRI(4) 0.8921 0.8966 0.0438 0.0454
RAIN 0.7787 0.8164 0.4560 0.4683
RAIN + PA 0.9117 0.9221 0.8265 0.8411

the models and baselines are implemented with PyTorch and optimized with Adam [13]. Data and
models are available at github.com/nokpil/RAIN. See the Supplementary Materials for details on the
data generation, model architectures, and training details.

3.1 Physical simulations

We simulated the trajectories of two physical systems: a spring-ball system and phase-coupled
Kuramoto oscillators [16]. Unlike previous studies [14, 25] in which every interaction strength
w in the system is discrete and constant (commonly w = 1), we consider a more general setting
where interaction strengths are drawn from a continuum and are thus heterogeneous. Assuming
that two agents i and j are interacting, the interaction strength for each system would be a spring
constant kij for a spring-ball system and a coupling weight wij for a Kuramoto model. Although
our model can handle asymmetric interaction strength—thanks to the asymmetric nature of the
transformer—we take the symmetric form of connectivity matrix kij = kji for the simulated systems.
For the spring-ball and Kuramoto systems, we first select the edges between n nodes with probability
p (excluding self-connections) to construct an interaction graph, and then assign a randomly sampled
interaction strength to each edge from a uniform distribution U [0, 1] while expressing non-assigned
edges with zero interaction strength. We generate 10k training samples and 2k validation samples
for all simulated tasks. The state variables consisting of trajectories are x, y, vx, vy (positions and
velocities) for the spring-ball system. For the Kuramoto oscillators, a concatenated vector of dφ

dt ,
sinφ, and intrinsic frequency ω are used to construct the trajectories, where φ is the phase of an
oscillator.

For evaluation, we measure how accurately the model predicts future trajectories by mean squared
error (MSE) and how well the model retrieves the original connectivity matrix by two forms of
Pearson correlation. We first gather every retrieved interaction strength a and corresponding true
interaction strength k from all 2k validation samples and calculate the correlation in total (ρtot).
Secondly, we independently calculate the correlation for each validation sample and take the average
of the 2k samples (ρsample). One may interpret ρtot as the overall performance of the model, while
ρsample indicates the expected correlation for a single instance at a test time. We excluded diagonal
trivial zeroes (due to no self-loop interaction) while calculating correlation, so the reported value is
strictly lower compared to the case where every value in the connectivity matrix is used. Correlations
from the baseline models with discrete edge types are obtained by assigning continuous weights to
each edge type according to every possible permutation and choosing the best one. More precisely,
we assign n weights of 0, 1

n−1 ,
2

n−1 , . . . , 1 to n edge types with n! different assignments and report
the highest correlation.
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Figure 5: (A) Ground-truth connectivity matrix of the given multilayer network with a single inter-
layer link. Inferred interaction weights from (B) RAIN with PA and (C) NRI(2) are shown. (D)
Trajectory predictions (10 steps) for ball 3. The inset depicts a diagram of the given multilayer
networks, where the inter-layer link is highlighted with the red dotted line.

3.1.1 Results

Table 1 shows the correlations between the true interaction graph and the predicted interaction
strengths from various models. Following [14], we measure the correlation between trajectory feature
vectors as Corr. (Path) and the correlation between trained LSTM feature vectors as Corr. (LSTM).
NRI(2) and NRI(4) indicate the NRI from [14] with 2 and 4 edges types, respectively. We check
the effect of PA by testing the RAIN model both with and without the PA mechanism. In Table
1, we can clearly see that RAIN with PA significantly outperforms every other model at inferring
interaction strengths. Note that the high correlations from the NRI models for the spring-ball system
can only be achieved if and only if we know the ground-truth interaction strength and choose the
best permutation. Considering the huge performance difference between RAIN without and with PA,
our model and PA mechanism are both crucial for accurate interaction strength retrieval. We show
MSE results for predicting 50 future states in Table 2, Here, again following [14], SingleLSTM runs
a single LSTM for each object separately, while JointLSTM concatenates all state vectors (thus may
handle a fixed number of agents only) and trains a single LSTM to jointly predict all future states.
See the Supplementary Materials for further analysis, including full histograms of the correlation
distributions.

Figures 3 and 4 show the results of future prediction and interaction strength inference for 10
interacting agents, where 5 trajectories are drawn for visualization. In Fig. 3, we can observe that all
models, including NRI(2), succeed in capturing the existence of interaction between agents. But it
is apparent that the NRI(2) model fails to capture the interactions with small weights, while RAIN
without PA yields in numerous false positives with spurious weights. Such weakness of each model is
reflected in relatively large prediction errors compared to RAIN with PA, especially for ball 4 (green)
and ball 5 (purple). The power of the PA mechanism becomes more evident with the Kuramoto
oscillators (Fig. 4), where only RAIN with PA succeeds in retrieving meaningful interaction weights.
To sum up, we can conclude that the PA mechanism clearly helps the refinement of hidden states and
thus yields better results with a greater correlation with the ground-truth interaction weights.

3.1.2 Impact of weak interaction

By inferring interaction with a continuous strength as RAIN does, we can capture an entire spectrum
of interactions with a single model. Particularly, we find that our model is able to detect weak
interactions that are often ignored by the discrete NRI models due to their limited capacity. In Figure
5, we emphasize the significance of the inference of weak interaction by constructing the connectivity
matrix in a form of a multilayer network [15] with 2 layers. Here, we prepare two densely connected
layers of springs where their spring constants are sampled from [0.5, 1], uniformly. Between the
two layers, we set a single inter-layer link (connecting ball 3 and ball 8) with a spring constant of
0.3, which is much smaller than the intra-layer interaction weights. Since the synchronization of
a multilayer network largely depends on the strength and structure of inter-layer coupling [18, 7],
capturing this weak but significant connection between the two layers is critical for trajectory
prediction. As Fig. 5 shows, RAIN with PA accurately captures this weak interaction, while NRI(2)
misses it and thus its predicted trajectory considerably deviates from the true one.
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Figure 6: (A) Validation MSE comparison for motion capture data. The prediction results of 50
time steps from JointLSTM, NRI(2), NRI(4), RAIN without PA, and RAIN with PA are shown. (B)
Sample predictions from NRI(2) (blue) and RAIN with PA (red) for a validation trajectory of motion
capture data with the ground-truth states (black). (C) Inferred interaction weights from NRI(2) (top)
and RAIN with PA (bottom) are shown. Here, the diagonal entries from NRI(2) are marked with −1
to distinguish them from the two edge types, 0 and 1.

3.2 Motion capture data

Next, we test our model in inferring interactions between the joints of a walking human data from the
CMU motion database [1]. Different from the physical simulations, this real-world system does not
possess any well-known dynamics with a continuous interaction strength. Following [14] and [9], we
use the data from subject #35 with 31 joints. We split the training and validation data sets into a 4 : 1
ratio. We use the same protocol as with the physical systems: provide 50 time steps of trajectories
and let the model predict 50 unseen time steps afterward. For the motion data, we train the model to
predict the raw value of the future state instead of the difference from the current state.

Figure 6A shows the errors from each model’s prediction, where RAIN with PA achieved the lowest
MSE. An example visualization of the prediction is shown in Fig. 6B. Without dynamically re-
evaluating the interaction graph at every time step as reported in [14] and [9], our model precisely
predicts the future states from static but continuous interaction weights. Also, as shown in Fig. 6C,
our model produces a smooth and block-wise connectivity matrix which is much easier to interpret
compared to that from the discrete NRI(2). This is because there is no restriction or natural meaning
for each edge type in the discrete model, and thus the manual sparsity prior is needed to handle
the ‘no interaction’ edges if an abundance is expected. On the other hand, the attention value of
RAIN is expected to convey the strength of interaction directly. For instance, it is clear from RAIN’s
connectivity matrix that the dynamics of the feet are less correlated with the rest of the joints and also
that the spine moves along with the right leg, arm, and hand, both of which agree with the qualitative
movements of a human while walking.

4 Conclusion

In this work, we introduced RAIN, a model for inferring continuous weighted interaction graphs
from trajectory data in an unsupervised manner. With the PA mechanism that computes the attention
between same-time LSTM hidden states between agents, we can sharply refine the representation for
the interaction weight extraction. Our model successfully inferred the absolute interaction weights
from simulated physical systems and further showed great prediction performance with an empirical
system, demonstrating the advantage of continuous weight modeling in relational learning. Notably,
RAIN needs only 50 time steps of data to infer the interaction weights, and thus requires less data
by several orders of magnitude than correlation-based theoretical methods [27, 17]. Also, we found
that the refinement of the LSTM hidden state with PA is critical for meaningful performance. Since
the PA mechanism is generally applicable to a neural model where its trajectory is represented by
a recurrent neural network, one may expect an increase in performance by employing PA in other
relational models without increasing the inference time significantly. In the real world, interactions
between agents in complex systems possess a broad range of characteristics. For instance, they can
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Table 2: Mean squared error (MSE) in predicting future states for simulations with 5 and 10 interacting
objects. Underlined entries show better results than those from RAIN with PA.

Model Spring Kuramoto

Prediction steps 10 30 50 10 30 50

5 objects
Static 0.6665 1.3614 1.2340 1.0671 0.9901 1.0108
SingleLSTM 0.1969 0.5643 0.6048 0.5006 0.4957 0.5247
JointLSTM 0.0704 0.3913 0.6362 0.0391 0.1083 0.1749
NRI(2) 0.0171 0.2232 0.5263 0.0268 0.1615 0.3275
NRI(4) 0.0122 0.1395 0.3573 0.0308 0.1498 0.3050
RAIN 0.0259 0.1322 0.3113 0.0388 0.1705 0.3675
RAIN + PA 0.0084 0.0714 0.2193 0.0041 0.0645 0.2059
RAIN (true graph) 0.0062 0.0181 0.0732 0.0037 0.0068 0.0122

10 objects
Static 0.6070 1.1253 1.0779 1.0380 0.9935 0.9799
SingleLSTM 0.2028 0.4991 0.5189 0.5511 0.5138 0.5173
JointLSTM 0.1317 0.4823 0.5840 0.0953 0.2490 0.3832
NRI(2) 0.0078 0.1158 0.3169 0.0392 0.2341 0.4451
NRI(4) 0.0061 0.0866 0.2440 0.0372 0.2411 0.4385
RAIN 0.1665 0.3109 0.4996 0.0307 0.1902 0.3942
RAIN + PA 0.0069 0.0892 0.2351 0.0115 0.1586 0.4016
RAIN (true graph) 0.0059 0.0163 0.0504 0.0009 0.0063 0.0301

be either positive (excitatory or encouraging) or negative (inhibitory or suppressing), time-delayed
with heterogeneous time scales, and noisy both inherently and externally. Complex systems in nature
generally contain every aspect of these characteristics, such as neural signals in a human brain.
Reinforcing the current RAIN architecture to handle data of such complex nature with a single model
would be a promising future direction to explore.

5 Data availability

Simulation code and data files are available at https://github.com/nokpil/RAIN.
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(e) Did you discuss whether the data you are using/curating contains personally identifiable
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A Appendix

A.1 RAIN implementation

For RAIN, we globally adopt Mish [20] as a non-linear activation function which has a functional
form as follows.

Mish(x) = x tanh(softplus(x)) = x tanh(ln(1 + ex)) (16)

Hereafter, we denote the batch dimension as B, the number of input time step as T , the number of
agent as N , the number of state variables as S, the agent number as N . Typically, B = 128, T = 50,
S = 3(Kuramoto), 4(Spring), 6(motion), and N = 5, 10, 31(motion).

A.1.1 Encoder

Intially, the model recieves the input data with the size of B × T ×N × S at every batch. We first
encoding each state with MLP with a 2-layer MLP with hidden dimension of 64 and output dimension
of 128. The encoded state is then feeded to a sigle GRU layer with hidden dimension of 256, which
produces the LSTM hidden states with the size of B ×N × 256 for both future predictions and the
grpah extraction. For the initial hidden state, we also train a single-layer MLP with output dimension
of 256, which recieves the raw state variables (at time 0) and produces the initial hidden states for our
GRU layer.

A.1.2 Pairwise attention

For pairwise attention (PA), we use transformer [23] with 4 heads with 32 dimensions each, total of
128 dimension. Hence, the key (L), query (Q), and value (V) is calculated via a linear layer with
input dimension of 256 and output dimension of 128 (to match with the transformer dimension,
32× 4 = 128). After we perform PA by calculating the same-time attention and weighted average,
the refined hidden states goes to the graph extraction module. Since PA produces a single hidden
states for every pair of agents, we now have the output with the size of B ×N ×N × 128, at this
stage.

A.1.3 Graph extraction module

For graph extraction, we employ a 3-layer MLP with hidden dimension of 32, 16 and output dimension
of 1. This module makes the refined hidden states into the size ofB×N×N×1, which indicates the
N ×N weighted interaction graphs that our module has inferred. Note that the RAIN model without
PA uses two concatenated individual LSTM hidden states (from agent i and j) for the graph extraction,
and thus the input dimension of the graph extraction module becomes 2× (LSTM dimension) = 256
(and the same as RAIN with PA afterwards). Finally, we add diagonal mask filled with −10000
to the result and apply a sigmoid function. This effectively reduces every diagonal entries into 0
(σ(−10000) ≈ 0) and normalize the scale of the interaction strength into [0, 1].
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A.1.4 Decoder

In decoding stage, we first feed the current trajectory data to the LSTM encoder and gets the hidden
states for current time step. We then calcualte the another value function with a linear layer, Vdec,
with output dimension of 128. For a prediction of single agent, we concatenate two vectors; its own
value and weighted average of all other value, according to the weights from the graph extraction
module. Hence, the input dimension of the decoder module should be 2 × 128 = 256 (since two
value functions are concatenated).

The decoder of RAIN is consists of three MLPs: one primary 2-layer MLP with hidden and output
dimension of 256 for hidden states encoding, and two secondary 2-layer MLPs with hidden dimension
of 256 and output dimension of S. After we passes the concatenated values to the primary MLP,
we further feeds the results to two secondary MLPs for yielding means and variances of the desired
output.

A.1.5 Training details

For training, we iterate the decoder 50 times while sampling the trajectory data from generated means
and variances, and compared it with state difference to calculate NLL loss. We perform gradient
descent at each iteration step, let gradient flows through backward time and yield 50 losses in total.
We average all the NLL losses and perform backward propagation.

A.2 Baseline implementation

In the current work, we trained various baselines to compare the performance with our model. More
precisely, we trained SingleLSTM, JointLSTM, NRI(2), NRI(4), and both RAIN with and without
PA.

The SingleLSTM model consists of a single 2-lyaer LSTM with hidden dimension of 256. Similar
to RAIN, we train the model by feeding 50 previous states and aim to predict 50 future states, but
individually. Hence, there are no information communicated between agetns. Furthermore, we
used the hidden states of the second layer of LSTM in SingleLSTM for calcualting Corr (LSTM),
by measuring the Pearson correlation between two agent’s hidden states and again maesure those
correlations to the ground-truth interaction strengths.

For the JointLSTM model, we first concatenate all states from the agents, which yields the vector
with dimension of N × S. A single LSTM is trained to recieve this concatenated vector, and produce
a single (again, concatenated) vector to predict the future states of all agents at once. This is the most
naive form of neural network that (in theory) enables the information communication between agents.
Other trainig protocols are same as RAIN.

For NRI(2) and NRI(4), we faithfully followed the original training protocol of [14], including 10
steps of burning-in process. We set the hidden state dimension as 256 and also used learning rate
scheduling as mentioned in the original paper. We did not employ dynamical graph re-evaluation,
since we wanted to compare the performance between static graphs.

A.3 Dataset details

A.3.1 Spring-ball system

Spring-ball systems are consist of N balls and connecting springs between them. The interaction
between balls are Hookean force, Fij = −kijxij where kij is a spring constant and xij is a relative
position vector between two balls. In this study, we aim to infer kij without knowing any prior
information about the dynamics.

All of the N balls are initially start with random 2D positions and velocities that is drawn from
the normal distribution N (0, 1). Here, velocities are further normalized to have a vector norm of
1. The balls are kinetically moving in a square box with sides of length 5, centered at the origin.
The collision between every object is perfectly elastic (In practice, the size of the ball is ignored
and the collision between balls never happens). We simulate each trajectory 1000 times steps with
time interval dt = 0.005, and it is further subsampled every 10 steps to construct total 100 steps of
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(A) (B)

Figure 7: Correlation analysis results from (A) spring-ball system and (B) kuramoto oscialltors with
10 agents. For each panel, the results from (top) RAIN without PA and (bottom) RAIN with PA is
shown. The left 2D histograms for each panel shows the overall correlation between the ground-truth
weight (k) and the inferred weight (a) for the entire validation dataset, while the right histograms for
each panel shows the same correlation but calculated from each validation samples independently.
The line at k = 0 is due to the relative abundance of zero interaction weight, i.e., agent pairs with no
interaction.

training data; 50 steps for input and 50 steps for validation. In the simulation, the spring constant is
drawn uniformly from [0, 1] multiplied by a constant factor 0.05 for stability.

A.3.2 Phase-coupled oscillators

For Kuramoto oscillators, each ball its intrinsic frequency wi and interacting with each other by
following differential equation:

dφi
dt

= wi +
∑
j 6=i

kij sin(φi − φj) (17)

with coupling constants kij , drawn uniformly from [0, 2]. We simulate the system by solving (17)
with fourth-order Runge-Kutta integrator with a step size dt = 0.01. Intrinsic frequency wi ∈ N and
initial phase φt=0

i is drawn uniformly from [1, 10] and [0, 2π), respectively.

A.3.3 Motion capture data

As mentioned in the main manuscript, we used the data of subject #35 from CMU motion databse
[1]. The trial number spans from 1 to 16, and 28 to 34, following [9]. We used data processing codes
from [9] to preprocess the amc files into the trainig and validation dataset. By split the data by a
length of 100 (50 input steps and 50 future steps), we got 63 sequences of train data and 23 sequences
of validation data.

A.4 Further analysis

The effect of PA mechanism is further illustrated by plotting distributions of correlations in Figure 7.
Here, left 2D histograms on each panel shows the scatter plot of true weight k and inferred weight
a among entire validation dataset and the right histogram shows the distribution of each validation
sample’s correlation. Thus, calculating correlation on left 2D histogram would yield ρtot, while
averaging the right histogram would yield ρsample.
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