
Agent-based Graph Neural Networks

Karolis Martinkus
ETH Zurich

martinkus@ethz.ch

Pál András Papp
ETH Zurich

apapp@ethz.ch

Benedikt Schesch
ETH Zurich

scheschb@ethz.ch

Roger Wattenhofer
ETH Zurich

wattenhofer@ethz.ch

Abstract

We present a novel graph neural network we call AgentNet, which is designed
specifically for graph-level tasks. AgentNet is inspired by sublinear algorithms,
featuring a computational complexity that is independent of the graph size. The
architecture of AgentNet differs fundamentally from the architectures of traditional
graph neural networks. In AgentNet, some trained neural agents intelligently walk
the graph, and then collectively decide on the output. We provide an extensive the-
oretical analysis of AgentNet: We show that the agents can learn to systematically
explore their neighborhood, and that AgentNet can distinguish some structures that
are even indistinguishable by 3-WL. Moreover, AgentNet is able to separate any
two graphs which are sufficiently different in terms of subgraphs. We confirm these
theoretical results with synthetic experiments on hard-to-distinguish graphs and
real-world graph classification tasks. In both cases, we compare favorably not only
to standard GNNs but also to computationally more expensive GNN extensions.

1 Introduction

Graphs and networks are prominent tools to model various kinds of data in almost every branch
of science. Due to this, graph classification problems also have a crucial role in a wide range of
applications from biology to social science. In many of these applications, the success of algorithms
is often attributed to recognizing the presence or absence of specific substructures, e.g. atomic groups
in case of molecule and protein functions, or cliques in case of social networks [9; 70; 19; 21; 60; 5].
This suggests that some parts of the graph are “more important” than others, and hence it is an
essential aspect of any successful classification algorithm to find and focus on these parts.

In recent years, Graph Neural Networks (GNNs) have been established as one of the most prominent
tools for graph classification tasks. Traditionally, all successful GNNs are based on some variant of
the message passing framework [3; 63]. In these GNNs, all nodes in the graph exchange messages
with their neighbors for a fixed number of rounds, and then the outputs of all nodes are combined,
usually by summing them [24; 48], to make the final graph-level decision.

It is natural to wonder if all this computation is actually necessary. Furthermore, since traditional
GNNs are also known to have strong limitations in terms of expressiveness, recent works have
developed a range of more expressive GNN variants; these usually come with an even higher
computational complexity, while often still not being able to recognize some simple substructures.
This complexity makes the use of these expressive GNNs problematic even for graphs with hundreds
of nodes, and potentially impossible when we need to process graphs with thousands or even
more nodes. However, graphs of this size are common in many applications, e.g. if we consider
proteins [59; 65], large molecules [72] or social graphs [7; 5].

In light of all this, we propose to move away from traditional message-passing and approach graph-
level tasks differently. We introduce AgentNet – a novel GNN architecture specifically focused on
these tasks. AgentNet is based on a collection of trained neural agents, that intelligently walk the
graph, and then collectively classify it (see Figure 1). These agents are able to retrieve information

NeurIPS 2022 New Frontiers in Graph Learning Workshop (NeurIPS GLFrontiers 2022).

I see a triangle!

The Graph has
triangles!

1. Node Update 2. Neighborhood Agregation

3. Agent Update 4. Agent Transition

(b)(a)

(c)

(d)

I've been there 3 steps ago!

I keep seeing these nodes!

I didn't see a
triangle.

Me neither.

Figure 1: AgentNet architecture. We have many neural agents walking the graph (a). Each agent at
every step records information on the node, investigates its neighborhood, and makes a probabilistic
transition to another neighbor (b). If the agent has walked a cycle (c) or a clique (d) it can notice.

from the node they are occupying, its neighboring nodes, and other agents that occupy the same
node. This information is used to update the agent’s state and the state of the occupied node. Finally,
the agent then chooses a neighboring node to transition to, based on its own state and the state of
the neighboring nodes. As we will show later, even with a very naive policy, an agent can already
recognize cliques and cycles, which is impossible with traditional GNNs.

One of the main advantages of AgentNet is that its computational complexity only depends on the
node degree, the number of agents, and the number of steps. This means that if a specific graph
problem does not require the entire graph to be observed, then our model can often solve it using
less than n operations, where n is the number of nodes. The study of such sublinear algorithms is
a popular topic in graph mining [30; 23]; it is known that many relevant tasks can be solved in a
sublinear manner. For example, our approach can recognize if one graph has more triangles than
another, or estimate the frequency of certain substructures in the graph – in sublinear time!

AgentNet also has a strong advantage in settings where e.g. the relevant nodes for our task can be
easily recognized based on their node features. In these cases, an agent can learn to walk only along
these nodes of the graph, hence only collecting information that is relevant to the task at hand. The
amount of collected information increases linearly with the number of steps. In contrast to this, a
standard message-passing GNN always (indirectly) processes the entire multi-hop neighborhood
around each node, and hence it is often difficult to identify the useful part of the information from
this neighborhood due to oversmoothing or oversquashing effects [41; 2] caused by an exponential
increase in aggregated information with the number of steps.

2 Related work

2.1 GNN limitations

Expressiveness. Xu et al. [68] and Morris et al. [49] established the equivalence of message passing
GNNs and the first order Weisfeiler-Lehman (1-WL) test. This spurred research into more expressive
GNN architectures. Sato et al. [58] and Abboud et al. [1] proposed to use random node features for
unique node identification. As pointed out by Loukas [44], message passing GNNs with truly unique
identifiers are universal. Unfortunately, such methods generalize poorly to new graphs [54]. Vignac
et al. [64] propose propagating matrices of order equal to the graph size as messages instead of vectors
to achieve a permutation equivariant unique identification scheme. Other possible expressiveness-
improving node feature augmentations include distance encoding [40], spectral features [4; 22] or orbit
counts [10]. However, such methods require domain knowledge to choose what structural information
to encode. Pre-computing the required information can also be quite expensive [10]. An alternative to
this is directly working with higher-order graph representations [49; 47], which can directly bring

2

k-WL expressiveness at the cost of operating on k-th order graph representations. To improve this,
methods that consider only a part of the higher-order interactions have been proposed [51; 52].
Alternatively, extensions to message passing have been proposed, which involve running a GNN
on many, slightly different copies of the same graph to improve the expressiveness [54; 8; 73; 17].
Papp and Wattenhofer [53] provide a theoretical expressiveness comparison of many of these GNN
extensions. Geerts and Reutter [28] propose the use of tensor languages for theoretical analysis
of GNN expressive power. Interestingly enough, all of these expressive models focus mainly on
graph-level tasks. This suggests these are the main tasks to benefit from increased expressiveness.

Underreaching. GNNs usually use a fixed number of layers, which only allows them to aggregate
information from a few hops away. This can cause a problem called underreaching [2], when the
important information is not reached. Historically, training GNNs with more than a few layers proved
to be quite difficult due to oversmoothing [41] and oversquashing [2]. To address this, many deeper
GNN architectures have been proposed that use various normalization techniques, skip connections,
adaptive information propagation, and weight tying [38; 42; 39]. While they allow for hundreds of
layers, this normally comes at the expense of long training and evaluation times.

Scalability. As traditional GNN architectures perform computations on the neighborhood of each
node, their computational complexity depends on the number of nodes in the graph and the maximum
degree. To enable GNN processing of large graphs Hamilton et al. [32] and Chen et al. [12] propose
randomly sub-sampling neighbors every batch or every layer. To better preserve local neighborhoods
Chiang et al. [15] and Zeng et al. [71] use graph clustering, to construct small subgraphs for each
batch. Alternatively, Ding et al. [20] quantize node embeddings and use a small number of quantized
vectors to approximate messages from out-of-batch nodes. In contrast to our approach, these methods
focus on node-level tasks and might not be straightforward to extend to graph-level tasks, because
they rely on considering only a predetermined subset of nodes from a graph in a given batch.

2.2 Sublinear algorithms

Sublinear algorithms aim to decide a graph property in much less than n time, n being the number of
nodes [30]. It is possible to check if one graph has noticeably more substructures such as cliques,
cycles, or even minors than another graph in constant time [27; 26; 6]. It is also possible to estimate
counts of such substructures in sublinear time [23; 13; 7]. All of this can be achieved either by
performing random walks [13; 7] or by investigating local neighborhoods of random nodes [27; 26; 6].
We will show that AgentNet can do both, local investigations and random walks.

2.3 Random walks in GNNs

Random walks have been previously used in graph machine learning to construct node and graph
representations [56; 31; 61]. However, traditionally basic random walk strategies are used, such as
choosing between dept-first or breath-first random neighborhood traversals [31]. As an alternative,
Lee et al. [37] have proposed to instead learn a graph walking procedure using reinforcement learning.
In contrast to our work, their approach is not fully differentiable; furthermore, the node features
cannot be updated by the agents during the walk nor the collective neighborhood information is taken
into account at each step, which both are crucial for expressiveness.

3 AgentNet model

The core idea of our approach is that a graph-level prediction can be made by intelligently walking
on the graph many times in parallel. To be able to learn such intelligent graph walking strategies
through gradient descent we propose the AgentNet model (Figure 1). On a high level, each agent a
is assumed to be uniquely identifiable (have an ID) and is initially placed uniformly at random in
the graph. Upon an agent visiting a node v at time step t (including the initial placement), the model
performs four steps: node update, neighborhood aggregation, agent update, and agent transition.

First, the embedding of each node vi that has agents aj ∈ A(vi) on it is updated with information
from all of those agents using the node update function fv. To ensure that the update is expressive

3

enough, agent embeddings are processed before aggregation using a function ϕa→v:

vti = fv

vt−1
i ,

∑
at−1
j ∈A(vi)

ϕa→v(a
t−1
j)

 if |A(vi)| > 0 else vt−1
i .

Next, in the neighborhood aggregation step, current neighborhood information is incorporated into
the node state using the embeddings of neighboring nodes vj ∈ N(vi). Similarly, we apply a function
ϕN(v)→v on the neighbor embeddings beforehand, to ensure the update is expressive:

vti = fn

vti , ∑
vt
j∈N(vi)

ϕN(v)→v(v
t
j)

 if |A(vi)| > 0 else vti .

These two steps are separated so that during neighborhood aggregation a node would receive infor-
mation about the current state of the neighborhood and not its state in the previous step. The resulting
node embedding is then used to update agent embeddings so that the agents know the current state of
the neighborhood (e.g. how many neighbors of vi have been visited) and which other agents are on
the same node. With V (ai) being a mapping from agent ai to its current node:

ati = fa

(
at−1
i , vtV (ai)

)
.

Now the agent has collected all possible information at the current node it is ready to make a
transition to another node. For simplicity, we denote the potential next positions of agent ai by
N t(ai) := N(vtV (ai)

) ∪ vtV (ai)
. First, probability logits zai→vj are estimated for each vtj ∈ N t(ai).

Then this distribution is sampled to select the next agent position V (ai):

zai→vj = fp
(
ati, v

t
j

)
for vtj ∈ N t(ai),

V (ai)← GumbelSoftmax
({
zai→vj for vtj ∈ N t(ai)

})
.

As we need a categorical sample for the next node position, we use the straight-through Gumbel
softmax estimator [34; 46]. In the practical implementation, we use dot-product attention [62] to
determine the logits zai→vj used for sampling the transition. To make the final graph-level prediction,
pooling is applied on the agent embeddings, followed by a readout function. Edge features can also
be trivially incorporated into this model. For details on this and the practical implementation of the
model see Appendix C. There we also discuss other simple extensions to the model, such as providing
node count to the agents or global communication between them.

Let’s consider a Simplified AgentNet version of this model, where the agent can only decide if it
prefers transitions to explored nodes, unexplored nodes, going back to the previous node, or staying
on the current one. Such an agent can already recognize cycles. If the agent always prefers unexplored
nodes and marks every node it visits, which it can do uniquely as agents are uniquely identifiable, it
will know once it has completed a cycle (Figure 1 (c)). Similarly, if for c steps an agent always visits
a new node, and it always sees all the previously visited nodes, it has observed a c-clique (Figure 1
(d)). Naturally, this clique detection can be improved if the agent systematically visits all neighbors
of a node v, going back to v after each step, until a clique is found. This implies that even this simple
model could distinguish the Rook’s 4×4 and Shrikhande graphs, which are indistinguishable by
3-WL, but can be distinguished by detecting 4-cliques. If we have more than one agent they could
successfully run such algorithms in parallel to increase interesting substructure recognition chances.

4 Theoretical analysis

We first analyze the theoretical expressiveness of the AgentNet model described above. We begin
with the case of a single agent, and then we move on to having multiple agents simultaneously. The
proofs and more detailed discussion of our theorems are available in Appendices A and B.

4.1 Expressiveness with a single agent

We first study the expressiveness of AgentNet with a single agent only. That is, assume that an agent
is placed on the graph at a specific node v. In a theoretical sense, how much is an agent in our model
able to explore and understand the region of the graph surrounding v?

4

Let us define the r-hop neighborhood of v (denoted Nr(v)) as the subgraph induced by the nodes
that are at distance at most r from v. One of the most fundamental observations is that AgentNets are
powerful enough to efficiently explore and navigate the r-hop neighborhood around the starting node
v. In particular, AgentNets can compute (and maintain) their current distance from v, recognize the
nodes that they have already visited, and also consciously select the next neighbor to visit in each
step; this already allows them to efficiently traverse all the nodes in Nr(v).

Lemma 1. An AgentNet can learn to execute a iteratively deepening depth-first search of its r-hop
neighborhood, visiting each node of Nr(v) in ℓ ≤ O(r · |Nr(v)|) steps altogether.

We note that in many practical cases, e.g. if the nodes of interest for a specific application around v
can already be identified from their node features, then AgentNets can traverse the neighborhood
even more efficiently with a depth-first search. We discuss this special case (together with the rest of
the proofs) in more detail in Appendix A.

While using these methods to traverse the neighborhood around v, an AgentNet can also identify all the
edges between any two visited nodes; intuitively speaking, this allows for a complete understanding
of the neighborhood in question. More specifically, if the transition functions of the agent are
implemented with a sufficiently expressive method (e.g. with multi-layer perceptrons), then one can
show that it is possible to develop a maximally expressive AgentNet implementation, i.e. where
each transition function is injective, similarly to GIN in a standard GNN setting [68]. Together with
Lemma 1, this provides a strong statement: it allows for an AgentNet that can distinguish any pair
of different r-hop neighborhoods around v (for any finite r and ∆, where ∆ denotes the maximal
degree in the graph).

Theorem 2. There exists an injective implementation of an AgentNet (with ℓ ≤ O(r · |Nr(v)|) steps)
which computes a different final embedding for every non-isomorphic r-hop neighborhood that can
occur around a node v.

Note that this already implies that with a sufficient number of steps, running an AgentNets from node
v can be strictly more expressive than a standard GNN from v with r layers, or as a matter of fact,
any GNN extension that is unable to distinguish every pair of non-isomorphic r-hop neighborhoods
around v. In particular, consider the Rook’s 4×4 and Shrikhande graphs, which are fundamental
examples of graphs that are challenging to distinguish even for some sophisticated GNN extensions;
an AgentNet can learn to distinguish these two graphs in as little as ℓ = 11 steps. Since the comparison
of the theoretical expressiveness of different GNN variants is a heavily studied topic, we also add
these observations as an explicit theorem.

Corollary 3. The AgentNet approach can also distinguish graphs that are not separable by standard
GNNs or even more powerful GNN extensions such as PPGN [47], GSN [10] or DropGNN [54].

Intuitively, Theorem 2 also means that AgentNets are expressive enough to learn any property that
is a deterministic function of the r-hop neighborhood around v. In particular, for any subgraph H
that is contained within distance r of one of its nodes v0, there is an AgentNet that can compute (in
O(r · |Nr(v)|) steps) the number of occurrences of H around a node v of G, i.e. the number of times
H appears as an induced subgraph of G such that node v takes the role of v0.

Lemma 4. Let H be any subgraph of radius at most r around a specific node v0. Then there exists
an AgentNet that can compute the number of occurrences of H around a specific node v of G.

For several applications, cliques and cycles are often mentioned as some of the most relevant
substructures in practice. As such, we also include more specialized lemmas that consider these two
structures in particular. In these lemmas, we say that an event happens with high probability (w.h.p) if
an agent can ensure that it happens with probability p for an arbitrarily high constant p < 1.

Lemma 5. There exists an AgentNet that can count cliques (of any size) in ℓ = 2 ·∆− 1 steps, but
there is no AgentNet that can count them w.h.p. in less steps.

Lemma 6. There exists an AgentNet that can count c-cycles in ℓ = Θ(r · |Nr(v)|) steps, but there is
no AgentNet that can count them w.h.p. in less than 2 · |Nr(v)| − ⌊ c2⌋ steps.

5

In general, these theorems will allow us to show that if a specific subgraph appears much more
frequently in some graph G1 than in another graph G2, then we can already distinguish the two
graphs with only a few agents (we formalize this in Theorem 9 for the multi-agent setting).

Note that all of our theorems so far rely on the agents recognizing the structures around their starting
point v. This is a natural approach, since in the general case, without prior knowledge of the structure
of the graph, the agents cannot make more sophisticated (global) decisions regarding the directions in
which they should move in order to e.g. find a specific structure.

However, another natural idea is to consider the case when the agents do not learn an intelligent
transition strategy at all, but instead keep selecting from their neighbors uniformly at random. We do
not study this case in detail, since the topic of such random walks in graphs has already been studied
exhaustively from a theoretical perspective. In contrast to this, the main goal of our paper is to study
agents that learn to make more sophisticated navigation decisions. In particular, a clever initialization
of the Simplified AgentNet transition function already ensures in the beginning that the movement of
the agent is more of a conscious exploration strategy than a uniform random walk.

Nonetheless, we point out that many of the known results on random walks automatically generalize
to the AgentNets setting. For example, Dasgupta et al. and Chierichetti et al. [16; 18] defined a
random walk access model where an algorithm begins from a seed vertex v and has very limited
access to the graph: it can (i) move to a uniform random neighbor, (ii) query the degree of the current
node, and (iii) query whether two already discovered nodes are adjacent. Several algorithms have
been developed and studied in this model, e.g. for counting triangles in the graph efficiently [7].
Since an AgentNet can execute all of these fundamental steps, it is also able to simulate any of the
algorithms that were developed for this model.

Theorem 7. An AgentNet can simulate any algorithm developed in the random walk access model.

4.2 Multiple agents

We now analyze the expressiveness of AgentNet with multiple agents. Note that the main motivation
for using multiple agents concurrently is that it allows for a significant amount of parallelization,
hence making the approach much more efficient in practice. Nonetheless, having multiple agents also
comes with some advantages (and drawbacks) in terms of expressive power.

We first note that adding more agents can never reduce the theoretical expressiveness of the AgentNet
framework; intuitively speaking, with unique IDs, the agents are expressive enough to disentangle
their own information (i.e. the markings they leave at specific nodes) from that of other agents.

Lemma 8. Given an upper bound b on agent IDs, there is an AgentNet implementation that always
computes the same final embedding starting from v, regardless of the actions of the remaining agents.

This shows that even if we have multiple agents, they always have the option to operate independently
from each other if desired. Together with Theorem 2, this allows us to show that if two graphs differ
significantly in the frequency of some subgraph, then they can already be distinguished by constantly
many agents. More specifically, let G1 and G2 be two graphs on n nodes, let H be a subgraph that
can be traversed in ℓ steps as discussed above, and let γH(Gi) denote the number of nodes in Gi that
are incident to at least one induced subgraph H .

Theorem 9. Let G1 and G2 be graphs such that γH(G1)− γH(G2) ≥ δ ·n for some constant δ > 0.
Then already with k ∈ O(1) agents an AgentNet can distinguish the two graphs w.h.p.

In general, Lemma 8 shows that if the number of steps ℓ is fixed, then we strictly increase the
expressiveness by adding more agents. However, another (in some sense more reasonable) approach
is to compare two AgentNet settings with the same number of total steps: that is, if we consider
an AgentNet with k distinct agents, each running for ℓ steps, then is this more expressive than an
AgentNet with a single agent that runs for k · ℓ steps?

We point out that in contrast to Lemmas 1-6 (which hold in every graph), our results for this question
always describe a specific graph construction, i.e. they state that we can embed a subgraph H in a
specific kind of graph G such that it can be recognized by a given AgentNet configuration, but not by
another one. A more detailed discussion of the theorems is available in Appendix B.

6

On the one hand, it is easy to find an example where having a single agent with k · ℓ steps is more
beneficial: if we want to recognize a very large structure, e.g. a path on more than ℓ nodes, then this
might be straightforward in a single-agent case, but not possible in the case of multiple agents.

Lemma 10. There is a subgraph H (of radius larger than ℓ) that can be recognized by a single agent
with k · ℓ steps, but not by k distinct agents running for ℓ steps each.

On the other hand, it is also easy to find an example where the multi-agent case is more powerful at
distinguishing two graphs, e.g. if this requires us to combine information from two distant parts of
the graph that are more than k · ℓ steps away from each other.

Lemma 11. There is a pair of non-isomorphic graphs (of radius larger than k · ℓ) that can be
distinguished by k distinct agents with ℓ steps each, but not by a single agent with k · ℓ steps.

However, neither of these lemmas cover the simplest (and most interesting) case when we want to
find and recognize a single substructure H of small size, i.e. that has a radius of at most ℓ.

In this case, one might first think that the single-agent setting is more powerful, because it can
essentially simulate the multi-agent case by consecutively following the path of each separate agent.
For example, if two agents a1, a2 meet at a given node v while identifying a substructure in the
multi-agent setting, then a single agent could first traverse the path of a1, then move back to v and
then traverse the path of a2 from here.

However, it turns out that this is not the case in general: one can design a construction where a
subgraph H can be efficiently explored by multiple agents, but not by a single agent. Intuitively,
the main idea of this construction is to develop a one-way tree structure that can only be efficiently
traversed in one direction; that is, in the correct direction, the next step of a specific path is always
clearly distinguishable from the node features, but when traversing it the opposite way, there are
many identical-looking neighbors in each step.

Theorem 12. There exists a subgraph H that can be recognized w.h.p. by 2 agents in ℓ steps, but it
cannot be recognized by 1 agent in c · ℓ steps (for any constant c).

Finally, we note that as an edge case, AgentNets can trivially simulate traditional message-passing
GNNs with n agents if a separate agent is placed on each node, and performs the node update and
neighborhood aggregation steps, while never transitioning to another node. However, if the problem
at hand requires such an approach, it is likely more reasonable to use a traditional GNN instead.

5 Experiments

In this section, we aim to demonstrate that AgentNet is able to recognize various subgraphs, correctly
classifies large graphs if class-defining subgraphs are common, performs comparably on real-world
tasks to other expressive models which are much more computationally expensive, and can also
successfully solve said tasks better than GIN while performing much fewer than n steps on the graph.

In all of the experiments, we parameterize all of the AgentNet update functions with 2-layer MLPs
with a skip connection from the input to the output. For details on model implementation see
Appendix C. Unless stated otherwise, to be comparable in complexity to standard GNNs (e.g. GIN)
we use the number of agents equal to the mean number of nodes n in graphs of a given dataset. For
details on the exact setup of all the experiments and the hyperparameters considered see Appendix D.

5.1 Synthetic datasets

First, to ensure that AgentNet can indeed recognize substructures in challenging scenarios we test it
on synthetic GNN expressiveness benchmarks (Table 1). There we consider three AgentNet versions.
The random walk AgentNet, where the exploration is purely random. The Simplified AgentNet, where
each agent only predicts the logits for staying on the current node, going to the previous node, or
going to any unexplored or any explored node, and finally the full AgentNet, which uses dot-product
attention for transitions. Notice that the random walk AgentNet is not able to solve the 3-WL task, as
a random walk is a comparatively limited and sample-intensive exploration strategy. The other two
AgentNet models successfully solve all tasks, which means they can detect cycles and cliques. Since

7

Model 4-CYCLES [54] CIRCULAR SKIP LINKS [14] 3-WL

GIN [68] 50.0 ±0.0 10.0 ±0.0 50.0 ±0.0
GIN with random features [58; 1] 99.7 ±0.4 95.8 ±2.1 92.4 ±1.6
SMP [64] 100.0 ±0.0 100.0 ±0.0 50.0 ±0.0
DROPGIN [54] 100.0 ±0.0 100.0 ±0.0 100.0 ±0.0
ESAN [8] 100.0 ±0.0 100.0 ±0.0 100.0 ±0.0*
1-2-3 GNN [49] 100.0 ±0.0 100.0 ±0.0 100.0 ±0.0†
PPGN [47] 100.0 ±0.0 100.0 ±0.0 50.0 ±0.0

RANDOM WALK AGENTNET 100.0 ±0.0 100.0 ±0.0 50.5 ±4.5
SIMPLIFIED AGENTNET 100.0 ±0.0 100.0 ±0.0 100.0 ±0.0
AGENTNET 100.0 ±0.0 100.0 ±0.0 100.0 ±0.0

Table 1: Evaluation on datasets unsolvable by 1-WL (GIN). Regularized 4-cycles [54] dataset tests if
a given graph has a 4 cycle, while Circular Skip Links dataset [14] asks to classify the graph by its
cycle length. 3-WL dataset contains Rook 4×4 and Shrikhande graphs which are both co-spectral
and indistinguishable by 3-WL, but the Rook graph has 4-cliques, while the Shrikhande graph does
not. We highlight the best test scores in bold. AgentNet is able to detect both cycles and cliques.
* ESAN can only solve the 3-WL dataset with the edge deletion policy, but not the other three policies.
† Interestingly enough, while 1-2-3 GNN should have a similar expressive power to the 3-WL test, it
solves this task. This is likely due to the fact that while all possible triplets are needed to simulate a
3-WL test, in practice only a subset of them is considered to reduce computational complexity [49].

the simplified exploration strategy does not account for neighboring node features, in the rest of the
experiments we will only consider the full AgentNet model.

Secondly, to test if AgentNet is indeed able to separate two graphs when the defining substructure is
prevalent in the graph we perform the ablation in Figure 2a. We see, that indeed when there are many
defining subgraphs AgentNet can successfully differentiate between the graphs.

0 200 400 600 800 1000
Graph Size

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Constant fraction
of subgraphs
Constant number
of subgraphs

(a)

(b)

(c)

2 4 8 16 32 64 128 256 512
Number of agents

32

16

8

4

2

Nu
m

be
r o

f s
te

ps

75 78 79 80 79 79 79 79 78

72 76 79 79 79 79 79 79 78

69 74 77 78 79 79 79 80 80

66 71 76 78 79 79 79 79 79

66 69 75 78 79 79 79 79 80

(d)

Figure 2: AgentNet sublinearity studies. First, we create a synthetic dataset with a variable density
of the subgraphs of interest (a). The dataset contains ladder graphs (b) and ladder graphs with some
cells replaced by crosses (c). The task is to differentiate the two graphs. We always use k = 16
agents, ℓ = 16 steps, and gradually increase the ladder graph size from 16 nodes to 1024 nodes. We
either preserve the crossed-cell density of 0.5 (blue line) or we always have only two crossed cells
in the ladder graph, independent of its size (red line). If the subgraph of interest is common in the
graph (blue line) AgentNet successfully learns to differentiate the graphs, even when k · ℓ < n (gray
line). Secondly, to test how this transfers to real-world tasks we test AgentNet on a large protein DD
dataset using a different number of agents and steps (d). Grey-bordered cells mark configurations
that perform fewer node visits than GIN (k · ℓ < 4 · n) and black-bordered cells mark configurations
that perform less than n node visits (k · ℓ < n). GIN achieved 77% accuracy on this task. AgentNet
outperforms it, even when using just n

8 node visits and matches GIN while using only n
16 node visits.

5.2 Real-world graph classification datasets

To verify that this novel architecture works well on real-world graph classification datasets, following
Papp et al. [54] we use three bioinformatics datasets (MUTAG, PTC, PROTEINS) and two social
network datasets (IMDB-BINARY and IMDB-MULTI) [69]. As graphs in these datasets only have
10s of nodes per graph on average, we also include one large-graph protein dataset (DD) [21] and

8

Model Complexity MUTAG PTC PROTEINS IMDB-B IMDB-M DD RDT-B

GIN [68] O(n · ℓ) 89.4 ±5.6 64.6 ±7.0 76.2 ±2.8 75.1 ±5.1 52.3 ±2.8 76.9 ±3.7 92.4 ±2.5

DropGIN [54] O(r · n · ℓ) 90.4 ±7.0 66.3 ±8.6 76.3 ±6.1 75.7 ±4.2 51.4 ±2.8 76.4 ±3.4 89.9 ±1.7
ESAN [8]* O(r · n · ℓ) 91.1 ±7.0 69.2 ±6.5 77.1 ±4.6 77.1 ±2.6 53.5 ±3.4 81.2 ±2.3 93.3 ±1.3
1-2-3 GNN [49]† O(n4 · ℓ) 88.8 ±7.0 64.0 ±6.0 76.8 ±3.7 73.6 ±2.2 51.1 ±3.8 OOM OOM
PPGN [47]* O(n3 · ℓ) 90.6 ±8.7 66.2 ±6.5 77.2 ±4.7 73 ±5.8 50.5 ±3.6 OOM OOM

1-AGENTNET O(ℓ) 89.4 ±10.9 66.6 ±7.6 75.1 ±3.4 74.9 ±3.9 52.3 ±3.9 67.4 ±3.0 77.9 ±3.0
AGENTNET O(k · ℓ) 93.6 ±8.6 67.4 ±5.9 76.7 ±3.2 75.2 ±4.6 52.2 ±3.8 80.1 ±2.7 94.2 ±1.2
Rank 1st 2nd 4th 3rd 3rd 2nd 1st

Table 2: Graph classification accuracy (%). DropGIN and ESAN models use r ≈ O(n) versions
of each graph, which makes them of quadratic complexity in practice. We set k ≈ n for AgentNet
models to have a comparable setting to GIN. We also compare to a 1-AgentNet, which uses only one
agent and cannot visit the whole graph. * We report the best result achieved by any of the different
model versions. PPGN has 3 different versions and ESAN has 8 different versions. † Originally
1-2-3 GNN used a slightly different evaluation setup. We re-trained it to follow the same experimental
setup as the other baselines [68] (see Appendix D). All other results come from the respective papers.

one large-graph social dataset (REDDIT-BINARY) [69]. In these datasets, graphs have hundreds of
nodes on average and the largest graphs have thousands of nodes (Appendix E). We compare our
model to GIN, which has maximal 1-WL expressive power achievable by a standard message-passing
GNN [68], and more expressive GNN architectures, which do not require pre-computed features
[54; 8; 49; 47]. As you can see in Table 2 our novel approach usually outperforms at least half of the
more expressive baselines. Even the model that uses just a single agent matches the performance of
GIN, even though in this case the agent cannot visit the whole graph, as for these experiments we
only consider ℓ ∈ {8, 16} (Appendix D) and using only one agent reduces expressiveness. Naturally,
1-AgnetNet performance deteriorates on the large graphs, while AgentNet does very well. The
higher-order methods cannot even train on these large graphs on a 24GB GPU. To train the ESAN
and DropGIN models on them we have to only use 5% of the usual n different versions of the same
graph [8]. For DropGIN, this results in a loss of accuracy. While ESAN performs well in this scenario,
it requires lengthy pre-processing and over 120GB of main memory to load the pre-processed dataset
(original datasets are < 150MB), which can become prohibitive if we need to test even larger graphs.

OGB-MolHIV

Model Validation Test

GIN [68] 82.32 ±0.90 75.58 ±1.40
GIN + virtual node [68] 84.79 ±0.68 77.07 ±1.49
ESAN [8]* 84.28 ±0.90 78.00 ±1.42

AGENTNET 84.77 ±0.92 78.33 ±0.69

Table 3: Test and validation ROC-AUC (%)
on the OGB-MolHIV dataset with edge fea-
tures. *Best result achieved by any version.

To test in how AgentNet performance depends on the
number of agents and steps in large real-world graphs
we perform an ablation on the DD dataset (Figure 2d).
We see that many configurations perform well, even
when just a fraction of the graph is explored. We also
observe that unlike with traditional GNNs [41; 38],
using more steps (layers) does not cause a noticeable
decrease in performance. Especially when fewer than
n agents are used (n ≈ 284). This can indicate higher
robustness to oversquashing and oversmoothing.

The previous datasets do not use edge features. As as mentioned in Section 3, this is a straightforward
extension (Appendix C). We test this extension on the OGB-MolHIV molecule classification dataset,
which uses edge features [33]. In Table 3 we can see that AgentNet performs well in this scenario
and outperforms even the best ESAN model.

6 Conclusion

In this work, we presented a novel AgentNet architecture for graph-level tasks. We provide an
extensive theoretical analysis, which shows that this architecture is able to distinguish various
substructures that are impossible to distinguish with traditional GNNs. We show that AgentNet also
brings improvements to real-world datasets. Furthermore, if features necessary to determine the graph
class are frequent in the graph, AgentNet allows for classification in sublinear or even a constant
number of rounds. To our knowledge, this is the first fully differentiable GNN computational model
capable of graph classification which inherently has this feature, without requiring explicit graph
sparsification – it learns which substructures are worth exploring on its own.

9

References
[1] R. Abboud, İ. İ. Ceylan, M. Grohe, and T. Lukasiewicz. The surprising power of graph neural

networks with random node initialization. pages 2112–2118, 2021.

[2] U. Alon and E. Yahav. On the bottleneck of graph neural networks and its practical implications.
In International Conference on Learning Representations, 2021.

[3] P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V. Zambaldi, M. Malinowski,
A. Tacchetti, D. Raposo, A. Santoro, R. Faulkner, et al. Relational inductive biases, deep
learning, and graph networks. arXiv preprint arXiv:1806.01261, 2018.

[4] D. Beaini, S. Passaro, V. Létourneau, W. Hamilton, G. Corso, and P. Liò. Directional graph
networks. In International Conference on Machine Learning, pages 748–758. PMLR, 2021.

[5] L. Becchetti, P. Boldi, C. Castillo, and A. Gionis. Efficient semi-streaming algorithms for local
triangle counting in massive graphs. In Proceedings of the 14th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 16–24, 2008.

[6] I. Benjamini, O. Schramm, and A. Shapira. Every minor-closed property of sparse graphs is
testable. Advances in mathematics, 223(6):2200–2218, 2010.

[7] S. K. Bera and C. Seshadhri. How to count triangles, without seeing the whole graph. In
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pages 306–316, 2020.

[8] B. Bevilacqua, F. Frasca, D. Lim, B. Srinivasan, C. Cai, G. Balamurugan, M. M. Bronstein,
and H. Maron. Equivariant subgraph aggregation networks. In International Conference on
Learning Representations, 2022.

[9] C. Borgelt and M. R. Berthold. Mining molecular fragments: Finding relevant substructures of
molecules. In 2002 IEEE International Conference on Data Mining, 2002. Proceedings., pages
51–58. IEEE, 2002.

[10] G. Bouritsas, F. Frasca, S. P. Zafeiriou, and M. Bronstein. Improving graph neural network
expressivity via subgraph isomorphism counting. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2022.

[11] S. Brody, U. Alon, and E. Yahav. How attentive are graph attention networks? In International
Conference on Learning Representations, 2022.

[12] J. Chen, T. Ma, and C. Xiao. FastGCN: Fast learning with graph convolutional networks via
importance sampling. In International Conference on Learning Representations, 2018.

[13] X. Chen, Y. Li, P. Wang, and J. C. Lui. A general framework for estimating graphlet statistics
via random walk. Proceedings of the VLDB Endowment, 10(3):253–264, 2016.

[14] Z. Chen, L. Chen, S. Villar, and J. Bruna. On the equivalence between graph isomorphism
testing and function approximation with gnns. Advances in neural information processing
systems, 2019.

[15] W.-L. Chiang, X. Liu, S. Si, Y. Li, S. Bengio, and C.-J. Hsieh. Cluster-gcn: An efficient
algorithm for training deep and large graph convolutional networks. In Proceedings of the
25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pages
257–266, 2019.

[16] F. Chiericetti, A. Dasgupta, R. Kumar, S. Lattanzi, and T. Sarlós. On sampling nodes in a
network. In Proceedings of the 25th International Conference on World Wide Web, WWW ’16,
page 471–481, 2016.

[17] L. Cotta, C. Morris, and B. Ribeiro. Reconstruction for powerful graph representations. Ad-
vances in Neural Information Processing Systems, 34, 2021.

[18] A. Dasgupta, R. Kumar, and T. Sarlos. On estimating the average degree. In Proceedings of the
23rd International Conference on World Wide Web, WWW ’14, page 795–806, 2014.

10

[19] A. K. Debnath, R. L. Lopez de Compadre, G. Debnath, A. J. Shusterman, and C. Hansch.
Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro compounds.
correlation with molecular orbital energies and hydrophobicity. Journal of medicinal chemistry,
34(2):786–797, 1991.

[20] M. Ding, K. Kong, J. Li, C. Zhu, J. Dickerson, F. Huang, and T. Goldstein. Vq-gnn: A universal
framework to scale up graph neural networks using vector quantization. Advances in Neural
Information Processing Systems, 34, 2021.

[21] P. D. Dobson and A. J. Doig. Distinguishing enzyme structures from non-enzymes without
alignments. Journal of molecular biology, 330(4):771–783, 2003.

[22] V. P. Dwivedi, A. T. Luu, T. Laurent, Y. Bengio, and X. Bresson. Graph neural networks with
learnable structural and positional representations. In International Conference on Learning
Representations, 2022.

[23] T. Eden, A. Levi, D. Ron, and C. Seshadhri. Approximately counting triangles in sublinear time.
SIAM Journal on Computing, 46(5):1603–1646, 2017.

[24] F. Errica, M. Podda, D. Bacciu, and A. Micheli. A fair comparison of graph neural networks for
graph classification. In International Conference on Learning Representations, 2020.

[25] M. Fey and J. E. Lenssen. Fast graph representation learning with PyTorch Geometric. In ICLR
Workshop on Representation Learning on Graphs and Manifolds, 2019.

[26] O. Fischer, T. Gonen, and R. Oshman. Distributed property testing for subgraph-freeness
revisited. corr, abs/1705.04033. arXiv preprint arXiv:1705.04033, 2017.

[27] P. Fraigniaud, I. Rapaport, V. Salo, and I. Todinca. Distributed testing of excluded subgraphs.
In 30th International Symposium on Distributed Computing (DISC 2016), pages 342–356.
Springer, 2016.

[28] F. Geerts and J. L. Reutter. Expressiveness and approximation properties of graph neural
networks. In International Conference on Learning Representations, 2022.

[29] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl. Neural message passing
for quantum chemistry. In International Conference on Machine Learning (ICML), Sydney,
Australia, Aug. 2017.

[30] O. Goldreich. Introduction to Property Testing. Cambridge University Press, 2017.

[31] A. Grover and J. Leskovec. node2vec: Scalable feature learning for networks. In Proceedings
of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining,
pages 855–864, 2016.

[32] W. Hamilton, Z. Ying, and J. Leskovec. Inductive representation learning on large graphs. In
Advances in neural information processing systems, 2017.

[33] W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta, and J. Leskovec. Open graph
benchmark: Datasets for machine learning on graphs. arXiv preprint arXiv:2005.00687, 2020.

[34] E. Jang, S. Gu, and B. Poole. Categorical reparameterization with gumbel-softmax. In 5th
International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017.

[35] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In 3rd International
Conference on Learning Representations, ICLR 2015, 2015.

[36] C.-H. Lee, X. Xu, and D. Y. Eun. Beyond random walk and metropolis-hastings samplers:
why you should not backtrack for unbiased graph sampling. ACM SIGMETRICS Performance
evaluation review, 40(1):319–330, 2012.

[37] J. B. Lee, R. Rossi, and X. Kong. Graph classification using structural attention. In Proceedings
of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
pages 1666–1674, 2018.

11

[38] G. Li, M. Muller, A. Thabet, and B. Ghanem. Deepgcns: Can gcns go as deep as cnns? In
Proceedings of the IEEE/CVF international conference on computer vision, pages 9267–9276,
2019.

[39] G. Li, M. Müller, B. Ghanem, and V. Koltun. Training graph neural networks with 1000 layers.
In International conference on machine learning, pages 6437–6449. PMLR, 2021.

[40] P. Li, Y. Wang, H. Wang, and J. Leskovec. Distance encoding: Design provably more powerful
neural networks for graph representation learning. Advances in Neural Information Processing
Systems, 33:4465–4478, 2020.

[41] Q. Li, Z. Han, and X.-M. Wu. Deeper insights into graph convolutional networks for semi-
supervised learning. In Thirty-Second AAAI conference on artificial intelligence, 2018.

[42] M. Liu, H. Gao, and S. Ji. Towards deeper graph neural networks. In Proceedings of the 26th
ACM SIGKDD international conference on knowledge discovery & data mining, pages 338–348,
2020.

[43] I. Loshchilov and F. Hutter. Decoupled weight decay regularization. In International Conference
on Learning Representations, 2019.

[44] A. Loukas. What graph neural networks cannot learn: depth vs width. In International
Conference on Learning Representations, 2020.

[45] A. L. Maas, A. Y. Hannun, A. Y. Ng, et al. Rectifier nonlinearities improve neural network
acoustic models. In Proceedings of the 30th International Conference on Machine Learning
(ICML), Atlanta, Georgia, USA, 2013.

[46] C. J. Maddison, A. Mnih, and Y. W. Teh. The concrete distribution: A continuous relaxation of
discrete random variables. In 5th International Conference on Learning Representations, ICLR
2017, Toulon, France, April 24-26, 2017.

[47] H. Maron, H. Ben-Hamu, H. Serviansky, and Y. Lipman. Provably powerful graph networks.
Advances in neural information processing systems, 32, 2019.

[48] D. Mesquita, A. Souza, and S. Kaski. Rethinking pooling in graph neural networks. Advances
in Neural Information Processing Systems, 33:2220–2231, 2020.

[49] C. Morris, M. Ritzert, M. Fey, W. L. Hamilton, J. E. Lenssen, G. Rattan, and M. Grohe.
Weisfeiler and leman go neural: Higher-order graph neural networks. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 33, pages 4602–4609, 2019.

[50] C. Morris, N. M. Kriege, F. Bause, K. Kersting, P. Mutzel, and M. Neumann. Tudataset: A
collection of benchmark datasets for learning with graphs. In ICML 2020 Workshop on Graph
Representation Learning and Beyond (GRL+ 2020), 2020.

[51] C. Morris, G. Rattan, and P. Mutzel. Weisfeiler and leman go sparse: Towards scalable higher-
order graph embeddings. Advances in Neural Information Processing Systems, 33:21824–21840,
2020.

[52] C. Morris, G. Rattan, S. Kiefer, and S. Ravanbakhsh. Speqnets: Sparsity-aware permutation-
equivariant graph networks. In ICLR 2022 Workshop on Geometrical and Topological Repre-
sentation Learning, 2022.

[53] P. A. Papp and R. Wattenhofer. A theoretical comparison of graph neural network extensions.
arXiv preprint arXiv:2201.12884, 2022.

[54] P. A. Papp, K. Martinkus, L. Faber, and R. Wattenhofer. DropGNN: Random dropouts increase
the expressiveness of graph neural networks. Advances in Neural Information Processing
Systems, 34, 2021.

[55] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Te-
jani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. Pytorch: An imperative style,
high-performance deep learning library. volume 32. 2019.

12

[56] B. Perozzi, R. Al-Rfou, and S. Skiena. Deepwalk: Online learning of social representations. In
Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 701–710, 2014.

[57] R. Ramakrishnan, P. O. Dral, M. Rupp, and O. A. Von Lilienfeld. Quantum chemistry structures
and properties of 134 kilo molecules. Scientific data, 1(1):1–7, 2014.

[58] R. Sato, M. Yamada, and H. Kashima. Random features strengthen graph neural networks.
In Proceedings of the 2021 SIAM International Conference on Data Mining (SDM), pages
333–341. SIAM, 2021.

[59] B.-A. Sela. Titin: some aspects of the largest protein in the body. Harefuah, 141(7):631–5,
2002.

[60] N. Shervashidze, S. Vishwanathan, T. Petri, K. Mehlhorn, and K. Borgwardt. Efficient graphlet
kernels for large graph comparison. In Artificial intelligence and statistics, pages 488–495.
PMLR, 2009.

[61] J. Toenshoff, M. Ritzert, H. Wolf, and M. Grohe. Graph learning with 1d convolutions on
random walks. arXiv preprint arXiv:2102.08786, 2021.

[62] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and
I. Polosukhin. Attention is all you need. Advances in neural information processing systems,
30, 2017.

[63] P. Veličković. Message passing all the way up. arXiv preprint arXiv:2202.11097, 2022.

[64] C. Vignac, A. Loukas, and P. Frossard. Building powerful and equivariant graph neural
networks with structural message-passing. Advances in Neural Information Processing Systems,
33:14143–14155, 2020.

[65] N. T. Wright and L. C. Meyer. Structure of giant muscle proteins. Frontiers in physiology, 4:
368, 2013.

[66] Z. Wu, B. Ramsundar, E. N. Feinberg, J. Gomes, C. Geniesse, A. S. Pappu, K. Leswing, and
V. Pande. Moleculenet: a benchmark for molecular machine learning. Chemical science, 9(2):
513–530, 2018.

[67] R. Xiong, Y. Yang, D. He, K. Zheng, S. Zheng, C. Xing, H. Zhang, Y. Lan, L. Wang, and T. Liu.
On layer normalization in the transformer architecture. In International Conference on Machine
Learning, pages 10524–10533. PMLR, 2020.

[68] K. Xu, W. Hu, J. Leskovec, and S. Jegelka. How powerful are graph neural networks? In
International Conference on Learning Representations, 2019.

[69] P. Yanardag and S. Vishwanathan. Deep graph kernels. In Proceedings of the 21th ACM
SIGKDD international conference on knowledge discovery and data mining, pages 1365–1374,
2015.

[70] Z. Ying, D. Bourgeois, J. You, M. Zitnik, and J. Leskovec. Gnnexplainer: Generating expla-
nations for graph neural networks. Advances in neural information processing systems, 32,
2019.

[71] H. Zeng, H. Zhou, A. Srivastava, R. Kannan, and V. Prasanna. Graphsaint: Graph sampling
based inductive learning method. In International Conference on Learning Representations,
2020.

[72] B. Zhang, R. Wepf, K. Fischer, M. Schmidt, S. Besse, P. Lindner, B. T. King, R. Sigel,
P. Schurtenberger, Y. Talmon, et al. The largest synthetic structure with molecular precision:
towards a molecular object. Angewandte Chemie, 123(3):763–766, 2011.

[73] L. Zhao, W. Jin, L. Akoglu, and N. Shah. From stars to subgraphs: Uplifting any gnn with local
structure awareness. In International Conference on Learning Representations, 2022.

13

A Proofs for Section 4.1

A.1 Injective implementation

The fundamental idea behind developing a maximally expressive AgentNet implementation is to
ensure that the functions learned by the agent are injective. A similar proof technique for developing
injective GNN implementations has already been applied to analyze the expressive power of standard
GNNs [68] and also some GNN extensions [54]; we refer the reader to these papers for more technical
details on this proof approach. As in the rest of these proofs, we assume that the range of the node
features is a finite set, and we also have a finite upper bound on the maximal degree ∆ of the graph.
With an induction, this already shows that after any finite number of time steps t, the range of possible
embeddings (of agents or nodes) is still finite.

The main tool we will use is the following: assume we have a finite number of embeddings
h0, ..., hj−1 ∈ R, and assume for simplicity that they are from the interval (0, 1). Then there exists a
function f : (0, 1)j → (0, 1) that is injective on its entire domain.; that is, if we have ĥ1, ..., ĥj such
that hi ̸= ĥi for at least one i ∈ {0, ..., j − 1}, then f(h0, ..., hj−1) ̸= f(ĥ0, ..., ĥj−1). One possible
way to construct such an f is as follows: we consider the binary representation of each hi, and encode
it in the bits of f(h0, ..., hj−1) at positions that are equal to i modulo j. That is, if i = z1 · j + z2 for
some 0 ≤ z2 < j, then we define the i-th bit of f(h0, ..., hj−1) (after the decimal point) to be equal
to the z1-th bit of hz2 (after the decimal point). Note that this function is indeed injective, since for
any f(h0, ..., hj−1), we can uniquely reconstruct all the values h0, ..., hj−1. Note that the numbers
are only restricted to the interval (0, 1) for the sake of simplicity; if hi > 1, then we can encode the
bits of hi by alternatingly moving in both directions from the decimal point.

As such, for any finite number of values, there exists an injective function f that combines these into
a single real embedding. Such a function f can be approximated arbitrarily closely with a multi-layer
perceptron according to the universal approximation theorem, and hence an AgentNet can also have
the theoretical expressiveness to learn any such function.

From here, the concrete design of the injective AgentNet implementation only requires the repeated
application of this idea. As a first step, we need to create an injective node update function fv for the
single agent case; for this, we encode the values vt−1

i and at−1 (and for convenience, also the value
of t) with the method above. That is, whenever we have either vt−1

i ̸= v̂t−1
i or at−1 ̸= ât−1 or t ̸= t̂,

then our update function will ensure fv(vt−1
i , at−1) ̸= fv(v̂

t̂−1
i , ât̂−1). As described above, such a

function fv exists, and hence can be learned by a sufficiently powerful AgentNet.

As a next step, the node essentially executes a message-passing phase around its neighborhood; this
can again be done injectively. In particular, the work of [68] describes how to design an injective
multiset function, i.e. an aggregation of neighbors that returns a different embedding for every
possible multiset of neighboring embeddings. We can once again combine this with the embedding
vti of the node as discussed above, creating an fn that is injective in vti and the multiset vtj ∈ N(vi).

In the single-agent case, we can simply select fa(at−1
i) = vti , since this already contains all the

information available to the agent at this point.

Intuitively, the injective implementation means that any decision that can be made by a deterministic
algorithm from the same information can also be executed in our setting. In particular, this also holds
for the node transition functions: in each step, we can select the transition function fp to model
almost any categorical distribution π over the closed neighborhood {v0} ∪N(v0) of the current node
v0, based on the current node state atv0 . That is, given the desired probabilities π(vj), inverting the
softmax function determines the set of required logits, and we need to define fp accordingly. Recall
that in the injective implementation, atv0 already determines both vt0 and the multiset of vtj in N(v0);
hence when defining fp(ati, v

t
j), we can indeed already determine the set of desired logits from ati

alone, and assign the appropriate value for each vtj .

For a categorical distribution π to be obtainable as a transition function this way, it needs to satisfy
two simple properties: (i) π(u) ∈ (0, 1) for any u ∈ {v0} ∪N(v0), and (ii) if u1, u2 has the same
current embedding, then π(u1) = π(u2). Furthermore, property (i) is also not strict in the sense that if
a probability of 0 is desired, then we can also select a sufficiently small transition value such that the
probability is essentially 0 after the softmax; that is, if ℓ and ∆ are both finite, then we can always set

14

π(u) small enough to ensure that the probability of executing any of these “0-probability transitions”
at any point during the entire ℓ steps is below an arbitrary constant ϵ. As such, the only real restriction
on the set of obtainable categorical distributions is that two nodes with the same embedding must
receive the same transition probabilities. Since an injective agent ensures that every visited node has a
different embedding, this only means the following restriction in practice: if v0 has multiple unvisited
neighbors with the same initial node features, then the transition probabilities to these nodes will be
identical. If any categorical distribution over the closed neighborhood satisfies this property, then
there exists an fp function corresponding to this distribution, and an agent can learn to approximate
this.

For completeness, we also introduce a technical modification to our injective agent implementation to
ensure that the range of the function fv can never accidentally coincide with any of the (finite) possible
initial values of the node features. To do this, we encode one more finite value in the representation
of fv (in every j-th bit, as before). Since there are only finitely many possible node features, we can
e.g. use the i-th of these extra bits to ensure that that fv is not equal to the i-th possible initial feature
(this approach is also known as the “diagonalization method”). This ensures that any node that is not
yet visited will have a different embedding than all the already visited nodes.

Finally, let us make some simple observations about this injective implementation that can serve as
building blocks for our more complex algorithms later. First of all, we note that each node encodes
the entire history of the agent from all of the time steps when the node was visited; in particular,
a node is aware of each time unit when it was visited by the agent. Furthermore, in each step, an
agent can uniquely determine the neighbor of the current node that it has arrived from. Also, for each
neighbor of the current node, an agent can determine whether it has already been visited or not.

A.2 Graph traversal methods

With the injective implementation discussed above, agents can already learn to intelligently traverse
the r-hop neighborhood of their starting node v in the graph. We first discuss the iterative depth-first
search approach that provides Lemma 1, and then also comment on the simpler case when a depth-first
search is sufficient.

Proof of Lemma 1. Since the agent is not aware of the size and shape of its r-hop neighborhood in
advance, it needs to execute an iteratively deepening depth-first search (IDDFS) in the neighborhood
to ensure that it discovers all nodes from Nr(v), but only these nodes. The IDDFS algorithm iterates
a depth limit d from 1 to r, and in each iteration, it executes a depth-first search from v up to depth d
only. This ensures that all the nodes at distance d from v are already identified in iteration d, but no
nodes that are farther away from v are visited. Note that we cannot achieve the same with a regular
depth-first search with depth limit r: it might happen that some parts of the search tree from node u
are discarded due to this depth limit, and we only find a shorter path to u later which shows that the
distance from v to these discarded nodes is, in fact, smaller than r.

It is easy to see that an injective AgentNet (as described above) can indeed execute such an IDDFS
algorithm; we just need to select the transition function fp appropriately. Note that the current
embedding aj of the agent already uniquely determines the current iteration d that the agent is
executing; alternatively, we can also save this current value d on separate bits when constructing the
injective functions of the agent (recall that we can encode any finite number of values with the same
approach). This also implies that the current embedding of each node u determines whether u was
already visited in iteration d or not. Besides this, the embedding of each (already visited) node u
determines the distance of u from v: in the iteratively deepening setting, this is simply the index of
the first iteration where this node was visited. Finally, when the agent is on a node u, it can determine
the predecessor of u in the depth-first search tree of the current iteration: it can consider the first time
step t when u was visited in iteration d, and the predecessor of u is the node that was visited in time
step (t−1).
Based on these observations, we can describe the transition function fp with the following few simple
rules. When the agent is at distance at most (d− 1) from v, and there are still neighbors that have not
been visited in the current iteration, then we assign a large constant value of c to these nodes in fp,
and a value of (essentially) 0 to all other nodes. When the agent is at distance d from v, or all of its
neighbors have already been visited in iteration d, then the agent moves backward: we set a value of
c for the predecessor of the current node, and a value of 0 to all other nodes. Finally, if the agent is at

15

v and all of its neighbors have been visited in iteration d already, then it begins iteration (d+ 1) and
sets the value of all neighbors to c (it selects the next neighbor uniformly at random).

Any iteration of the IDDFS traverses a depth-first search tree with at most Nr(v) nodes; each edge of
the tree is traversed at most twice, resulting in at most 2 · |Nr(v)| steps. Since the number of iterations
is r, our agent indeed needs ℓ ≤ O(r · |Nr(v)|). We note that in most practical cases, we can even
drop the factor r from this expression: e.g. when the graph region around v is a ∆-regular tree, then
we will have most nodes in Nr(v) at distance exactly r from v, and thus all iterations except for the
last one will become asymptotically irrelevant.

This iteratively deepening search method is only required because we always need to be aware of the
distance of the current node from v in order to decide whether we need to explore the graph further in
a specific direction. However, in some special cases, we can apply a much more efficient depth-first
search (DFS) traversal of the neighborhood; this removes the factor r from the required number of
steps.

One simple example of such a setting is when the connected component of the graph containing v
is very small. In particular, assume that the entire component only consists of n0 nodes; while this
might be unusual in actual applications, it is relatively frequent in the synthetic datasets that are often
used to measure the expressive power of different GNN extensions. For another example, consider
applications where the nodes that are important for our purpose have some specific features that
make them easy to distinguish from other nodes; in this case, an injective AgentNet can learn to only
consider these nodes while processing the graph (i.e. set the transition probability to all other nodes
to 0). As such, we can fictitiously remove every from the graph that does not have the appropriate
features, and if the connected component of v in the remaining graph (the “interesting part” of the
region around v) is relatively small with only n0 nodes, then we can again restrict our exploration
strategy to this subgraph.

In the cases mentioned above, the agent can traverse the entire subgraph of size n0 around v with a
depth-first search approach: it becomes unnecessary to maintain the distances from v anymore since
the agent traverses the entire connected component anyway. This is a much more efficient method in
terms of the number of steps, not requiring an extra factor r: the entire connected component around
v can be traversed in 2 · n0 − 3 steps (or in terms of the radius r of the connected component, in
2 · |Nr(v)| − 3 steps). This is because the DFS tree has n0 − 1 edges, each of these is traversed at
most twice, and the edges leading to the last discovered node are traversed only once (but for this we
can only subtract a single edge in the worst case).

We note that this bound is indeed tight, i.e. even in this DFS-based setting, we cannot explore every
neighborhood in ℓ = 2 · n0 − 4 steps. This also allows us to show that there are subgraphs H
of radius r such that no AgentNet can decide w.h.p. in 2 · n0 − 4 steps whether H occurs as an
induced substructure around v. A concrete example is shown for this in the proof of the negative
result in Lemma 5: the neighborhood of interest (that can contain a triangle) in this case consists of
n0 = 1 +∆ = 4 nodes, but it is not possible w.h.p. in 2 · n0 − 4 = 4 steps to decide whether v has
an incident triangle.

A.3 Recognizing structures

Given an agent that systematically traverses its neighborhood, we can now consider the claims of
recognizing specific substructures.

We begin with the proof of Theorem 2. We point out that in the context of graphs with node features,
we when we say that two graphs G1(V1, E1) and G2(V2, E2) are isomorphic, then besides the regular
graph-theoretic definition of having σ : V1 → V2 such that (v1, v2) ∈ E1 ⇐⇒ (σ(v1), σ(v2)) ∈ E2,
we also require that v1 and σ(v1) have identical features for all v1 ∈ V1.

Proof of Theorem 2. According to Lemma 1, there exists an AgentNet that explores every node
in the r-hop neighborhood of v; furthermore, during this traversal, the agent also becomes aware
of the features of every node in Nr(v), and all edges between pairs of nodes in Nr(v) when the
second endpoint of the edge is visited. This allows an agent to uniquely identify the entire r-hop
neighborhood around v. More specifically, if an injective agent produces the same output embedding
for two neighborhoods, then this implies that for the two traversals T1, T2, the following properties

16

must all hold: (i) the nodes visited in the t-th and t′-th steps of T1 are the same node if and only if
the nodes visited in the t-th and t′-th steps of T2 are the same node, (ii) the t-th visited nodes of T1
and T2 have the same node features, and (iii) the t-th and t′-th visited nodes of T1 are adjacent if and
only if the t-th and t′-th visited nodes of T2 are adjacent. These properties provide a clear bijection
between the nodes of the two neighborhoods, also preserving node features and edges; this implies
that the two neighborhoods are isomorphic.

This shows that an injective AgentNet always assigns a different embedding to non-isomorphic
neighborhoods. However, we also need to ensure that isomorphic neighborhoods, on the other hand,
obtain the same embedding. Indeed, with the injective AgentNet described so far, it could easily
happen that two nodes have isomorphic neighborhoods, but an agent traverses these neighborhoods
in a different order, and hence computes a different embedding in the two cases.

In order to resolve this, we only need to observe that there is a function assigning every possible
IDDFS traversal to the isomorphism class of Nr(v), and a sufficiently powerful agent can learn to
apply this function on the final embedding. More specifically, let G denote the set of all different
(non-isomorphic) graphs of radius at most r (and degree at most ∆) around v. We have already seen
that if two r-hop neighborhoods are non-isomorphic, then our injective agent always produces a
different final embedding for them. This implies that the final embedding uniquely determines the
graph induced by Nr(v), i.e. there exists a well-defined function ψ1 : R → G which assigns the
graph induced by Nr(v) to every possible final embedding generated by the agent. Finally, consider
a function ψ2 : G → R which assigns the numbers {1, . . . , |G|} to the graphs in G in arbitrary order.
Then ψ := ψ2 ◦ ψ1 is simply a function ψ : R→ R, and according to the universal approximation
theorem, it can be learnt e.g. by an MLP implementation. Applying this function ψ on the final
embedding (in the last step of the traversal) ensures that the final output of the agent describes the
isomorphism class of Nr(v), and hence two starting nodes receive the same final embedding if and
only if their r-hop neighborhoods are isomorphic.

Proof of Corollary 3. Corollary 3 follows easily from Theorem 2 and the fact that there are known
limitations to the expressiveness of each of the listed GNN extensions. In the case of a standard
GNN, two small cycles of different lengths are already a simple example of indistinguishability [68].
For the 3-WL algorithm (and hence equivalently, PPGN), the Rook 4×4 and Shrikhande graphs
are a well-known example on 16 nodes that are not distinguishable. For GSN and DropGNN, the
analysis of [53] describes an example construction that cannot be distinguished without preprocessing
structures of size Θ(∆) or removing Θ(∆) nodes. Hence for any fixed parametrization of GSN or
DropGNN (preprocessing substructures of fixed size, or removing a fixed number of nodes), there
exists a pair of neighborhoods that cannot be distinguished by GSN or DropGNN. These example
graphs have ∆+ 1 nodes, so they can still be distinguished by AgentNet in ℓ = 2 ·∆− 1 steps.

Lemma 4 follows easily from Theorem 2.

Proof of Lemma 4. The r-hop neighborhood around v already determines the number of occurrences
of any structure H of radius at most r from v. That is, if we denote the set of all possible non-
isomorphic r-hop neighborhoods around v byN r, then there is a deterministic function fH : N r → N
that describes the number of occurrences of H for each neighborhood in N r. Theorem 2 shows that
we can learn an injective function fA : N r → R that describes the final embedding of an agent; hence
we can define the function g = fH ◦ f−1

A that assigns the appropriate number of occurrences of H to
any final embedding. This function g can also be learned according to the universal approximation
theorem, and hence an AgentNet can learn to execute this function in its last step.

We discuss these substructure-related claims for cliques and cycles explicitly, which are both important
substructures for specific applications. Note that the positive parts of the lemmas are deterministic,
i.e. given a specific number of steps, there is an agent implementation that always (with probability 1)
returns the desired number of subgraphs as its final embedding; meanwhile, the negative parts claim
that if the number of steps is small, then no agent can return the correct number w.h.p.

Proof of Lemma 5. As a special case of the IDDFS discussed before (with r = 1), an injective
AgentNet can learn to mark the starting node v, then transition to an unvisited neighbor of v in each
odd step, and then move back to v in even steps. This allows it to visit all neighbors of v in 2 ·∆− 1

17

v

v1 v2 v3

v′3

v

v1 v2 v3

v′1 v′2 v′3

Figure 3: Example graphs G1 (left) and G2 (right) for the negative result in Lemma 5.

steps, and identify the entire 1-hop neighborhood of v as discussed in Lemma 1. Since every clique
containing v is completely included in this induced subgraph, this AgentNet can compute the number
of cliques incident to v for any clique size.

On the other hand, if ℓ ≤ 2 ·∆− 2, then the agent does not have enough steps to visit every neighbor
of v; as such, it might not detect a clique if the last unvisited neighbor of v is contained in it. For
a concrete example, consider two graphs where v has degree 3 (and also ∆ = 3); in G1, we have
edges {(v, v1), (v, v2), (v, v3), (v1, v2), (v3, v′3)} , i.e. a triangle and a path of length 2 incident to v,
while in G2, we have edges {(v, v1), (v, v2), (v, v3), (v1, v′1), (v2, v′2), (v3, v′3)}, i.e. three paths of
length 2 incident to v; see Figure 3 for an illustration. Assume that all nodes begin with identical
node features.

In the first step, any agent can only move to a uniform random neighbor u of v (staying at the current
node is not a reasonable action in this setting). In either of the graphs, the agent observes the same
situation after the first step, so it must move to the other neighbor of u with a fixed probability p1,
and back to v with probability (1− p1). Note that if p1 ≥ 1

2 , and if the current node u happens to be
v3 (this has probability 1

3), then the agent cannot distinguish the two graphs in the remaining steps
(with probability at least 1

6).

If the agent returns to v in the second step, then in the remaining two steps, it gains the highest possible
amount of information by visiting another neighbor u′ of v and then moving to the other neighbor of
u′. However, once again, if u = v3 (this has probability 1

3), then the agent cannot distinguish the two
graphs from the path it has traversed. Thus (1− p1) ≥ 1

2 implies a failure probability of at least 1
6

again. This shows for any choice of p1, the agent fails to distinguish the two graphs with an arbitrarily
high constant probability (i.e. it higher than 5

6).

Proof of Lemma 6. A cycle of c nodes has radius ⌊ c2⌋, so according to Lemma 4, an AgentNet can
indeed count the number of incident cycles of length c in O(c · |N⌊ c

2 ⌋(v)|) steps.

On the other hand, if the ⌊ c2⌋-hop neighborhood of v consists only of paths of length ⌊ c2⌋ starting
from v, and we need to visit each of these paths to see if the endpoints of two paths are adjacent (thus
forming a c-cycle), then ℓ = 2 · |N⌊ c

2 ⌋(v)| − ⌊ c2⌋ − 2 steps can indeed be required: intuitively, we
need to visit each path starting from v up to a distance ⌊ c2⌋, and then return to v on each occasion
except for the last one. For a concrete example, we can consider the graphs G1,G2 from the proof of
Lemma 5 again: a triangle is a cycle for c = 3, we have 2 · |N⌊ c

2 ⌋(v)| − ⌊ c2⌋ − 2 = 2 · 4− 1− 2 = 5
in this case, and we have already seen that that no AgentNet can distinguish these graphs w.h.p. in
less than 5 steps.

We note that for a tight lower bound in this case, we would also need to incorporate a further factor
r = ⌊ c2⌋ (to account for the iterative phases of the IDDFS); however, this would require a much more
complex construction, since here intuitively we would also need to ensure that leaving out any of the
iterative phases would result in an incorrect traversal of the neighborhood.

A.4 Random walk access model

Finally, we have already outlined the proof of Theorem 7 in Section 4.1.

Proof of Theorem 7. The injective version of AgentNet can easily carry out all three fundamental
steps of the random walk access model. Moving to a uniform random neighbor in each step can be
implemented by a simple transition function fp that assigns the same value to each neighbor. Besides

18

this, the agent ensures (by encoding the time step t) that it leaves a unique node embedding at each of
the visited nodes, so an injective AgentNet can recognize any of these nodes (or in fact, any possible
subset of these nodes) in all subsequent steps. In this case, an injective AgentNet can ensure in general
that in the i-th step (for any finite i), it computes an embedding that is injective in the (i) degree of
the current node and (ii) set of previously visited nodes that are adjacent to the current node. That is,
in the injective implementation, after any number of steps, the agent is aware of the degree sequence
observed so far and the adjacency relations between all the already discovered nodes. Such an agent
is already in possession of all the information that can be queried in the random walk access model.
As such, the output of any algorithm in this model can be expressed as a deterministic function of
the final embedding of the agent, and hence due to the universal approximation theorem, an agent
can approximate this output if implemented by a sufficiently expressive method (e.g. multi-layer
perceptron).

B Proofs for Section 4.2

B.1 Simpler claims in the multi-agent setting

We now discuss the theorems on expressiveness with multiple agents. We begin with Lemma 8, which
only requires a further extension of the injective implementation provided earlier.

Proof of Lemma 8. The lemma assumes that each agent has a unique ID from 1 to some known
upper bound b (alternatively, we can also select the agent IDs from a predetermined finite set). In this
case, we can modify the injective construction described in Appendix A to ensure that the i-th agent
only uses the bits at positions i modulo b for its own encoding. This means that when summing the
embeddings of different agents in fv , we again have an injective function, even if all the agents visit
the same node at the same time. As such, any single agent can determine its final embedding based
on only its own part of the node embeddings, and disregard the embeddings of other agents.

After this proof, Theorem 9 only requires a few more steps. Note that the rest of the claims in this
section discuss the ability of AgentNets (with a specific k and ℓ) to distinguish two graphs G1 and
G2. To formalize this concept, we say that an AgentNet can distinguish G1 and G2 if it returns a
different output (in the final readout function) for the two graphs w.h.p., i.e. it returns a given value
α1 w.h.p. in case of G1, and another value α2 w.h.p.in case of G2. We say that it cannot distinguish
two graphs if this is not possible, i.e. if there is a constant upper bound on the success probability.

Proof of Theorem 9. From Lemmas 4 and 8, it follows that there exists an AgentNet implementation
such that if an agent is placed on a node v, then it computes a final embedding of 1 if v is incident to
a copy of H in G, and 0 otherwise (note that we can include it in the last transition function to also
convert the injective outputs into these more convenient 0-1 values). Consider an aggregation of the
agents that simply sums up their final embeddings; this results in a final embedding that equals to the
number of starting nodes v that were incident to a copy of H .

Let γi =
γH(Gi)

n for i ∈ {1, 2}, and γ′ = 1
2 · (γ1 − γ2). Recall that γ1 − γ′ ≥ δ

2 and γ′ − γ2 ≥ δ
2 .

The starting point of the agents is chosen uniformly at random and independently from each other;
hence if we run an AgentNet with k agents in Gi, then each of these will output 1 with probability γi
and 0 otherwise, and thus our final embedding (after aggregating the agents) will follow a binomial
distribution X with parameters k and γi. We can then use a Chernoff bound to upper bound the
probability that the sum falls below (above) γ′ · k in G1 (G2, respectively). If the value is above γ′ · k
in G1 and below γ′ · k in G2 w.h.p., then a simple classification function that compares the sum of
embeddings to this value γ′ · k can already distinguish the two graphs.

Let p denote the constant probability we require for our definition of w.h.p. Let ϵ := δ
2·γi

(for a
fixed i ∈ {1, 2}); then for the expected value EX of the binomial distribution, we have ϵ · EX =
δ

2·γi
· γi · k = δ

2 · k. According to the Chernoff bound, we have

Pr (|X − EX| ≥ ϵ · EX) ≤ 2 · e− 1
3 ·ϵ

2·EX = 2 · e−
1
3 ·

δ2

4·γi2
·γi·k

.

While this looks like a complicated expression, δ2

4·γi
2 ·γi is simply a constant in our case. This implies

that for any choice of p, there exists a high enough constant value k such that the expression on the

19

right-hand side is smaller than (1 − p). By our choice of ϵ, having |X − EX| < ϵ · EX implies
X > γ′ in G1 and X < γ′ in G2. This means that the probability of having X ≤ γ′ in G1 is at most
(1− p), and similarly, the probability of having X ≥ γ′ in G2 is at most (1− p).

We next present the proofs of Lemmas 10 and 11 that compare the single-agent and multi-agent
settings.

Proof of Lemma 10. A simple example for such a subgraph H is a path on ℓ nodes; let us assume for
simplicity that the nodes have a single feature, and the value of this feature is 0 for all nodes of the
path.

Consider a graph G1 that consists of such a path H , and n− ℓ further nodes (with feature 1) that are
all connected to the first node of the path. If n is large enough (and k is smaller, e.g. a constant), then
w.h.p. all of the agents will start on a node with feature 1. As such, in ℓ steps, neither of them is able
to reach the other end of the path.

This means that if we consider another graph G2 where the only difference is that the last node of
the path also has feature 0, then any AgentNet with k agents fails to distinguish the graphs w.h.p. In
contrast to this, a single agent with at least ℓ+ 1 steps can easily learn to walk to the other end of
the path (by simply moving to the neighbor with feature 1 in the first step, and then always to the
unmarked neighbor of feature 1), and hence distinguish the two graphs.

Note that if we want a version of this construction that has ∆ = O(1), we can simply replace the
nodes added to the beginning of the path by a complete (∆− 1)-ary tree of depth h: the root node is
the first node of the path, and every node (apart from the leaves) has (∆− 1) children. By assigning
a different feature to each level of the tree, we can ensure that wherever an agent begins in the tree,
it can learn to directly walk to the root in at most h steps (we discuss these one-way trees in detail
later). Note that we have h ≤ O(log n) in this graph. Hence if we select ℓ = h, then we can again
ensure w.h.p. that all nodes start in the tree, and hence cannot reach the end of the path after ℓ steps.
In contrast to this, with k · ℓ steps (assuming k ≥ 2), a single agent can always reach the end of the
path and hence distinguish the two graphs.

Proof of Lemma 11. Let both G1 and G2 consist of two identical connected components of equal
size; in the first component, both graphs have a node feature of 0 on all nodes, whereas, in the second
component, the node features are 0 and 1 in G1 and G2, respectively. If having multiple components
are undesired, we can also connect the two components with a path of length k · ℓ+ 1 (with node
features of, say, 2).

In the case of a single agent, the agent appears in the first part of the graph with probability (almost)
1
2 and is hence unable to distinguish the two graphs w.h.p., regardless of its actions.

However, in the case of a sufficiently high number of agents k (i.e. if 1 − 2k > p is satisfied, and
assuming that the connecting path is an asymptotically irrelevant part of the graph), at least one of
the agents begins in the second component; in this case, they can easily recognize a node with feature
1, and hence distinguish the two graphs.

B.2 Proof of Theorem 12

It remains to prove the more involved Theorem 12 regarding the comparison of the two settings. For
completeness, we first state the theorem in a more precise form:

Theorem 12 (detailed). There exists a pair of non-isomorphic graphs G1, G2 and a connected
subgraph H such that

• H appears as a subgraph in G1, but not in G2,

• there exists an AgentNet with 2 agents and ℓ steps that can distinguish the two graphs w.h.p.
by walking through the nodes of H in G1,

• there exists no AgentNet with 1 agent and c · ℓ steps (for any constant c) that can distinguish
the two graphs w.h.p.

20

That is, our proof here is a more surprising construction than that of Lemma 11: the whole graph has
a diameter 2 · ℓ only, and there is a specific structure H that distinguishes the two graphs, but a single
agent is unable to navigate this structure. We first present the key idea to develop such constructions,
which we call one-way trees.

Definition 13. A one-way tree is a complete (∆ − 1)-ary tree of depth h, i.e. a rooted tree where
every node (apart from the leaves) has exactly (∆− 1) children. The single node feature of every
node in the i-th level is the integer i (for i ∈ {1, ..., h}).

Note that the node degrees are still bounded by ∆ this way. The key idea of the tree is that an
AgentNet can easily lean to walk towards the root in this tree, but finding a specific leaf is not possible
without traversing a significant portion of the tree.

Lemma 14. Consider a one-way tree, select one of its leaf nodes u, and let us add an extra neighbor
(with feature (h+ 1)) to this leaf u.

• There exists an AgentNet implementation which, if placed on u initially, can reach the root
of the tree in ℓ = h steps.

• There exists no AgentNet implementation which, if placed on the root node initially, can
reach u in ℓ = 1

2 · (∆− 1)h steps with probability larger than 1
2 .

Proof. If an agent is placed at u initially, then in each step, it can easily distinguish the parent node
of its current node in the tree, since this is the only node that has a smaller feature. That is if the agent
learns to transition to the node with feature h in the first step, with feature (h− 1) in the second step,
and so on, then it can reach the root of the tree in h steps without ambiguity (i.e. with probability 1).

On the other hand, when starting from the root, the agent has no way to distinguish the different
children of the current node from each other. The agent can only proceed by visiting each of the
(∆− 1)h leaves of the tree sequentially to find the leaf which has a neighbor with feature (h+ 1). In
1
2 · (∆− 1)h steps, the agent can visit strictly less than half of the leaves, so it will only find u with
probability less than 1

2 .

With this tool, we can already move on to the proof of Theorem 12.

Proof of Theorem 12. Let b be a constant parameter (to be discussed later), and consider a node v
with feature 0. Let us consider b distinct one-way trees of depth h1 (we will call these primary trees),
and connect the root of all these trees to v. So far we do this in both of our graphs. Then in the case
of G2, let us further select one of the leaf nodes v0 in one of the primary trees, and attach the root
node of another one-way tree of depth h2 (called the secondary tree) to v0. In contrast to this, in G1,
we select an arbitrary leaf node in every primary tree, and we attach another one-way tree of depth h2
(a secondary tree) to each of these leaf nodes.

For our substructure H , let us select a path on 2 · h1 + 3 nodes, such that the node features on the
path (in order) are (1, h1, h1 − 1, ..., 2, 1, 0, 1, 2, ..., h1 − 1, h1, 1). Note that this structure appears
in G1: we start from a root node of a secondary tree, then move to the attached leaf of the primary
tree, then to the root of the primary tree, then to v, then to the root of another primary tree, then all
the way down to another leaf node that has a secondary tree attached, and finally to the root of this
secondary tree. On the other hand, H does not appear as a substructure in G2, since v0 is the only
node in the graph which has feature h1 and has a neighbor with feature 1.

We select h2 significantly larger than h1; with this, we can ensure that with arbitrarily high probability,
the agents are always placed in one of the secondary trees (even in G2, since b is only a constant).
Furthermore, note that if we have k = 2 agents, then with probability 1 − 1

b they are placed into
different secondary trees initially in G1. That is, by selecting the constant b large enough, we can
ensure that the two agents are placed into two distinct secondary trees with a probability of at least p
(i.e. w.h.p.). Finally, we select ℓ = h2 + h1.

In the case of 2 agents, the agents can learn to always move to the root of the trees as discussed in the
proof of Lemma 14: first to the root of the secondary tree, and then to the root of the primary tree.
In ℓ steps, both agents can reach v. In the case of G1, if the two agents begin in different secondary

21

trees, then they only meet at node v; in G2, they will always already meet at the root of the single
secondary tree in the graph. Since the agents can learn to check if they share their location with the
other agent in a given step, they can easily distinguish these two cases. Hence they can separate the
two graphs w.h.p.: in G1 they are correct with probability at least 1 − 1

b ≥ p, and in G2 they are
correct with probability 1.

However, a single agent is unable to do the same. It can walk to node v in ℓ steps in either of the
graphs, but from there it cannot decide if there exists another secondary tree attached to the graph
in one of the other primary trees. More specifically, according to the second part of Lemma 14, the
agent cannot find another secondary tree with probability larger than 1

2 in 1
2 · (∆ − 1)h1 steps, so

if 1
2 · (∆ − 1)h1 > c · ℓ (for any given c and ∆ ≥ 3, we can ensure this when choosing the value

of h1), then the agent only finds a copy of H with probability 1
2 at most, even in G1 where such a

subgraph exists. Hence the agent encounters this situation (not finding another secondary tree) with a
probability of at least 1

2 in both graphs. This implies that it cannot distinguish the two graphs w.h.p.:
whichever classification (G1 or G2) the agent assigns to this situation, it is wrong in one of the two
graphs with a probability of at least 1

2 .

Note that if we want an example for Theorem 12 where the two graphs have the same number of nodes
(e.g. to extend it to the case when the agents are aware of n), we need to adjust it slightly. We can define
G′

1 to consist of b independent copies of our original G1. Now both graphs contain b secondary trees.
Since h2 is significantly larger than h1, their number of nodes is essentially equal: that is, we can add
a small independent componentG+

2 to our originalG2 in order to ensure thatG′
1 andG′

2 := G2∪G+
2

have the same size (i.e. G+
2 is just an arbitrary graph on (b− 1) · (1 + b ·

∑h1−1
i=0 (∆− 1)i) nodes).

By choosing h2 much larger than h1, we can ensure that G+
2 is an asymptotically irrelevant part of

G′
2, i.e. it holds with an arbitrarily high constant probability that neither of the agents is placed within

G+
2 . Now given these graphs G′

1 and G′
2, a single agent is still unable to distinguish the two cases,

since they observe the same situation in both graphs with a probability of at least 1
2 . However, when

we have two agents, in G′
2 they meet w.h.p. only at v, whereas in G′

1, they always meet either already
at the root of the secondary tree, or not at all; hence we can distinguish the two graphs.

C Model implementation

In this section, we will discuss all aspects of the practical implementation of our model and its
possible extensions. The model is implemented using PyTorch [55] and PyTorch Geometric [25].

C.1 General notes and initialization

We use 2-layer MLPs to parameterize all of the model update functions (node update fv , neighborhood
aggregation fn, agent update fa) and the different inputs are concatenated. We use a Leaky ReLU
[45] activation function with a negative slope of 0.01. As you will see below, we use skip connections
for both node and agent embeddings. This necessitates the use of Layer Normalization (LN) for
the MLP inputs. This makes each MLP a Pre-LN residual block [67]. Both agents and nodes have
h-dimensional embedding vectors.

To ensure starting node embeddings are of the correct dimension and that their sum is injective we
first pre-process all node features with an MLP. Since for the majority of the graphs we consider we
expect the agents to observe a large fraction of the graph, we process all nodes once in parallel. To
stick to the strictly sub-linear setting the model can be modified to only process node embeddings the
first time they are observed.

As we need our agents to be uniquely identifiable, we use k randomly initialized and learnable
h-dimensional embedding vectors, which are used as the starting agent state. We initially place agents
uniformly at random on the graph.

C.2 Model steps and possible extensions

Let’s now see, how the four model steps performed upon visiting a node we described in Section 3
are implemented in practice. Note that the same functions (MLPs) are used for every agent. However,

22

because agents have different embeddings, the functions can produce different outcomes for different
agents.

Here, we will also show how the model can be extended with edge features and global communication
between the agents. In practice, we always include global agent communication. If the given dataset
does not make use of edge features, we use a simplified model where the pre-aggregation update
functions ϕN(v)→v and ϕa→v are set to identity. As MLPs are universal function approximators, pre-
vious MLP can already directly approximate ϕN(v)→v and ϕa→v , thus we do not lose expressiveness
by excluding them [68]. One could also imagine, that providing the agents with the total number of
nodes in the graph could help. If the task, for example, is to estimate the density of triangles in the
graph, by observing just a fraction of it. Such conditioning can be trivially achieved by including n as
input to every update function. However, in our experiments, we did not consider such augmentation.

Node update. As discussed earlier we use a skip connection. If we have edge features, then ϕa→v

includes both the agent state and the edge eaj it took to arrive at the current node ϕa→v

(
at−1
j , eaj

)
=

LeakyReLU
(
LinearLayer

(
LN
(
at−1
j , eaj

)))
. In this case, we use a negative slope of 0.2. If there

are no edge features ϕa→v

(
at−1
j , eaj

)
= at−1

j :

vti = vt−1
i + fv

vt−1
i ,

∑
at−1
j ∈A(vi)

ϕa→v

(
at−1
j , eaj

) if |A(vi)| > 0 else vt−1
i .

If we want to have global information between the agents, we can include mean of their embeddings
1
k

∑
aj∈A aj as another input to fv . As all of the subsequent operations make use of the current node

state vti , this global information can impact every other update function. Note that since k is fixed,
this mean is also injective.

To ensure all of these sum pooling operations do not cause value explosion and training problems but
retain their expressiveness we implement them as mean scaled by the log of summand count. This is
also true for the neighbor aggregation.

Neighborhood aggregation. In the same fashion, a skip connection is used, while ϕN(v)→v is
either identity or a linear layer followed by a non-linearity, depending on whether the graph has edge
features or not. evj→vi is used to denote an edge from node vj to node vi. This results in a GIN-like
convolution [68] with a skip connection:

vti = vti + fn

vti , ∑
vt
j∈N(vi)

ϕN(v)→v

(
vtj , evj→vi

) if |A(vi)| > 0 else vti .

Agent update. Similarly, the agent update is straightforward and can take into account the edge eai

the agent used to reach the current node if edge features are used:

ati = at−1
i + fa

(
at−1
i , vtV (ai)

, eai

)
.

Agent transition. First, let us consider the Simplified AgentNet. In this case, for each agent ai
we track which nodes vj have been explored by it x(ai, vj) ∈ [0, 1]. Every time step we decay the
values x = 0.9 · x and set the values for the current nodes V (ai) of all of the agents ai ∈ A to
x(ai, V (ai)) = 1. We can now use these exploration values x to construct the simplified transition
function fps. Using agent embedding an MLP g(ati) produces four logits [gp, gc, ge, gu] = g(ati),
respectively for the previous node, the current node, explored nodes and unexplored nodes. Then,
for each neighboring node, we determine its final logits as a weighted sum of these four values. To
check if a given node vj was the agent’s ai previous node V t−1(ai) we use an indicator variable
1vj=V t−1(ai). Another indicator variable checks if the node is the agent’s current node 1vj=V (ai).
The explored and unexplored node logits ge and gu are interpolated using the node’s exploration
value x(ai, vj):

fps
(
ati, v

t
j

)
= gp(a

t
i)·1vj=V t−1(ai)+gc(a

t
i)·1vj=V (ai)+ge(a

t
i)·x(ai, vj)+gu(ati)·(1−x(ai, vj)),

23

zai→vj = fps
(
ati, v

t
j

)
for vtj ∈ N t(ai).

To ensure efficient training in the beginning we want as many agents as possible to observe the defining
subgraphs. This requires exploration. Unfortunately, random walks are sample inefficient and require
many steps to even walk a whole simple connected component e.g. a cycle. It is known, that just
preventing the random walk from backtracking already greatly increases the sample efficiency [36].
In the same vein, we initialize the learnable bias of the g(ati) output layer such that [gp, gc, ge, gu] ≈
[0,−1, 0, 5] and the model is initially biased to focus on the yet unexplored nodes. Note that in
principle one can also restrict g(ati) to be just a set of learnable global bias parameters that do not
depend on the agent to produce an even simpler model.

For the full AgentNet, we use dot-product attention fp to determine the next node, where the query
vector Q(ati) is a linear projection of the agent embedding and the key vector K(vti , v

t
j , evj→vi) is a

linear projection of the source node embedding, target node embedding, and any edge features.

fp
(
ati, v

t
j

)
=
Q(ati)

TK(vti , v
t
j , evj→vi)√

h

To still ensure that the exploration is efficient at the beginning of the training, we combine dot-product
attention with values produced by the Simplified AgentNet transition function fps. In this case, the
transition logits gp, gc, ge, and gu are just global learnable bias parameters that are independent of
the agent and are initialized the same way as before:

zai→vj = fps
(
ati, v

t
j

)
+ fp

(
ati, v

t
j

)
for vtj ∈ N t(ai).

The resulting logits zai→vj are used to sample a node from the neighborhood using straight-through
Gumbel Softmax:

V (ai)← GumbelSoftmax
({
zai→vj for vtj ∈ N t(ai)

})
.

To ensure the gradients flow through the Gumbel Softmax sampling, we interpret its output as a
sparse one-hot vector (where only the 1s are present). We use the resulting agent→ node adjacency
matrix for agent pooling in the node update step and for selecting the appropriate node in the agent
update step, thus multiplying the 1s carrying the gradients with the correct embedding vectors.

C.3 Readout

As we have stated in Section 3, agent embeddings are pooled together to make the final graph-level
decision. In practice, following Xu et al. [68] we pool agent embeddings after each agent update step
and sum the individual step predictions to make the final prediction:

otai
= ϕo

(
ati
)
,

o =
∑
t

fo

(
1

k

∑
ai∈A

otai
, max {otai

for ai ∈ A}

)
.

Here ϕo is a 2-layer MLP used to project agent embeddings before the pooling. We use both mean
and max pooling because in theory there could be two kinds of problems, respectively: problems
where agents collectively need to decide how commonplace certain features are and problems where
it is sufficient that just one agent finds a class-defining feature. As the final readout fo we use a simple
linear layer.

C.4 Time-step conditioning

Technically, the agents are able to track time themselves, as the model is injective and they act every
time step. However, to make the task easier for the model, we condition all of the update functions
(node update fv, neighborhood aggregation fn, agent update fa) and the readout function ϕo on
the current time step. We achieve this by adding the Transformer sinusoidal position (time step)
embedding [62] to the inputs of each function (MLP).

24

C.5 Possible model simplifications

We implemented the model to be as flexible as possible and to match the theoretical analysis. However,
the resulting model performs quite a few operations every step. We could simplify it at a loss of
some expressiveness. For example, node update and neighborhood aggregation steps can be merged,
but this will cause the neighborhood aggregation to see the neighbors as they were in the previous
time step. Similarly, the agent update step could be merged into this unified update step, if we are
content with producing the same delta update for every agent that is on the same node. Even the agent
transition probabilities could be incorporated in this unified step if for example we would model the
node aggregation after the GATv2 [11] convolution and would use the final attention head to produce
transition probabilities for every edge. The same transition probabilities would then be used by every
agent. Naturally, this would reduce the model’s expressiveness, but it would result in a simpler and
fully parallelized model. However, in this work, we aimed to provide an expressive, theoretically
motivated model and show that it works well in practice. We leave the investigation of various model
simplifications for future work.

D Experimental setup

For AgentNet in all of the tasks, we use AdamW optimizer [43] with a weight decay of 0.1. We set
the initial learning rate to 10−4 and decay it over the whole training to 10−11 using a cosine schedule.
We also clip the global gradient norm to 1. In all of the cases, Gumbel-Softmax temperature is set to
2
3 as this has been suggested as a robust choice when the distribution has only a few categories [46].

D.1 Synthetic datasets

Expressiveness benchmarks. To ensure all of the baseline models as well as the different AgentNet
versions have a fair shot at solving the given tasks we perform a generous grid search for all
of them. We consider batch size ∈ {50, 300} and hidden units ∈ {64, 128} and learning rate ∈
{0.001, 0.0005, 0.0001}. For AgentNet we set number of agents k = n (16 for 4-Cycles and 3-WL,
41 for Circular Skip Links) and consider ℓ ∈ {16, 64}. For other GNN architectures, we also include
ℓ ∈ {4, 8} as they tend to perform worse with high depth. On top of this for AgentNet we consider
the number of agents k ∈ {2, n} as these problems should be solvable even with few agents. In
fact, we did observe that having k = n agents can make the model convergence slower, and for
3-WL dataset results in mean accuracy of 98± 2%. We train each configuration using 10 random
seeds and report the mean and the standard deviation of the best configuration after 10 thousand
training steps. For the baseline models, we use the same training setup as for AgentNet. The baselines
themselves were chosen as the most expressive models among their class of expressive GNNs. PPGN
[47] represents the higher-order GNNs and matches 3-WL in expressive power, GIN with random
features [58; 1] represents non-equivariant node identification, SMP [64] represents the equivariant
node identification scheme, while DropGNN [54] represents the models that use many different
versions of a graph to make a prediction [54; 8; 17].

As described in Appendix C.2 the AgentNet and the Simplified AgentNet use initial attention weights
biased for exploration. We also tested these models on these synthetic benchmarks without this bias
and they still successfully solved the task. However, we kept this bias in the other experiments due to
the theoretically better sample complexity.

Subgraph density ablation. As discussed in Figure 2, we set k = 16, ℓ = 16, use 128 hidden
units and a batch size of 200 and train using 10 random seeds for 10 thousands steps. We report the
mean and the standard deviation of accuracy at the end of the training. While such a large batch
size and a large number of hidden units are not necessary for this task, we aimed to make sure these
hyperparameters are large enough to rule out any training or capacity issues in the results of this
ablation study.

D.2 Real-world graph classification datasets

TU datasets. We follow the evaluation setup by Xu et al. [68], as was done by all of the baseline
models. We perform a 10-fold cross-validation and report the mean and the standard deviation. In line
with baseline models, we train for 350 epochs, and for each of the datasets we perform a grid search

25

over the batch size ∈ {32, 128}, hidden units ∈ {32, 64, 128} and number of steps ℓ ∈ {8, 16}. We
always set the number of agents to the mean number of nodes in the graphs of the corresponding
dataset (see Table 4). As REDDIT-BINARY has some very high-degree nodes with thousands of
neighbors (Table 4) this can cause memory issues when many agents end up on the same high-degree
node at the same time and compute their transition probabilities. To avoid this, for REDDIT-BINARY
we use k = 350 agents instead of 430 and consider ℓ ∈ {4, 8}. For the DD dataset, we use the usual
setup, as it does not have such high-degree nodes. Neither of the baselines was trained on DD or
REDDIT-BINARY datasets (except ESAN on REDDIT-BINARY), thus we trained them using the
original code and hyperparameter tuning.

We also re-trained 1-2-3 GNN [49] to follow the experimental setup by Xu et al. [68]. We use the
original architecture1 including the layer counts and a similar hyperparameter search as used for our
model and by Xu et al. [68]. The search is performed over the batch size ∈ {32, 64}, the hidden unit
count ∈ {16, 32, 64, 128} and dropout ratio ∈ {0.0, 0.5}. The model is trained with Adam optimizer
[35], a learning rate of 0.001, and no weight decay as done originally [49]. We used a learning rate
decay of 50% every 50 epochs as done by Xu et al. [68]. We found this schedule to perform slightly
better than the original decay on plateau used by Morris et al. [49].

OGB. We follow the standard evaluation setup proposed by Hu et al. [33]. Similarly to the previous
graph classification tasks, we set k to mean number of nodes (n ≈ 26), considered number of steps
ℓ ∈ {8, 16}, batch size ∈ {32, 64} and hidden units ∈ {64, 128}. We train the model with 10 random
seeds for 100 epochs, select the model with the best validation ROC-AUC and report the mean and
the standard deviation. The best setup proved to be using a batch size of 64, 128 hidden units, and
ℓ = 16 steps. In general, over most of the tasks we tested, we observed that a larger batch size tends
to improve the AgentNet training and that having around 128 hidden units is a good choice, at least
with our considered range of values for the number of agents k.

E Graph statistics

In Table 4 we provide the graph statistics for all of the real-world datasets used in Section 5.2. As
you can see, most of the commonly used TU datasets [50] and OGB-MolHIV [33] have small graphs.
The two large datasets we include (DD and REDDIT-BINARY) have much larger graphs, especially
when considering the largest examples. REDDIT-BINARY also has some very high-degree nodes. To
an extent, this is also true for the smaller social-graph datasets (IMDB-BINARY and IMDB-MULTI).

MUTAG PTC PROTEINS IMDB-B IMDB-M DD RDT-B OGB-MolHIV

graphs 188 344 1113 1000 1500 1178 2000 41127
Mean # nodes 17.9 25.6 39.1 19.8 13.0 284.3 429.6 25.5
Max # nodes 28 109 620 136 89 5748 3782 222
Min # nodes 10 2 4 12 7 30 6 2
Mean deg. 2.2 2.0 3.73 9.8 10.1 5.0 2.3 2.2
Max deg. 4 4 25 135 88 19 3062 10

Table 4: Graph statistics for the real-world datasets.

F Performance on poorly aligned tasks

We want to check how our model performs in graph-level tasks it is not well aligned with. To this end,
we test our AgentNet on the molecule property regression task on the QM9 dataset [57]. Conceptually,
for this molecule property regression task, we probably want to perform message passing on each
node every time, as we likely need to learn the exact geometric structure of the molecule (position
of every node, relative to other nodes, taking charges and bonds into account). This would make
AgentNet (with randomly placed agents) not well suited for this task. However, in Table 5 we can
see that AgentNet still outperforms the non-expressive baselines (MPNN and 1-GNN) of similar
computational complexity while performing comparably to the expressive baselines (1-2-3 GNN,
PPGN, DropMPNN, and Drop-1-GNN) which have much higher computational complexity. This
means that even on unfavorable tasks it can perform sufficiently well.

1https://github.com/chrsmrrs/k-gnn

26

https://github.com/chrsmrrs/k-gnn

Property Unit MPNN [29; 66] 1-GNN [49] 1-2-3 GNN [49] PPGN [47] DropMPNN [54] Drop-1-GNN [54] AgentNet

µ Debye 0.358 0.493 0.473 0.0934 0.059 0.453 0.254
α Bohr3 0.89 0.78 0.27 0.318 0.173 0.767 0.198
ϵHOMO Hartree 0.00541 0.00321 0.00337 0.00174 0.00193 0.00306 0.00183
ϵLUMO Hartree 0.00623 0.00350 0.00351 0.0021 0.00177 0.00306 0.0016
∆ϵ Hartree 0.0066 0.0049 0.0048 0.0029 0.00282 0.0046 0.0025
⟨R2⟩ Bohr2 28.5 34.1 22.9 3.78 0.392 30.8 1.28
ZPVE Hartree 0.00216 0.00124 0.00019 0.000399 0.000112 0.000895 0.000232
U0 Hartree 2.05 2.32 0.0427 0.022 0.0409 1.80 0.145
U Hartree 2.0 2.08 0.111 0.0504 0.0536 1.86 0.146
H Hartree 2.02 2.23 0.0419 0.0294 0.0481 2.00 0.155
G Hartree 2.02 1.94 0.0469 0.24 0.0508 2.12 0.119
Cv cal/(mol K) 0.42 0.27 0.0944 0.0144 0.0596 0.259 0.0708

Table 5: Mean absolute errors on QM9 dataset [57]. The best-performing model is in bold.

For this task, we changed the neighborhood aggregation function fn to align better with the task,
by using the continuous kernel-based convolutional operator proposed by Gilmer et al. [29] for the
message pre-processing function ϕN(v)→v . This convolution is used by all of the baseline models we
consider. Similarly, to stay close to baseline models we parameterize both the final readout fo and
the ϕa→v function used for agent aggregation in the node update by 2-layer MLPs. We also use the
global information exchange between the agents, both in the node update step and in the agent update
step. Otherwise, the training procedure is the same as for the other tasks.

27

	Introduction
	Related work
	GNN limitations
	Sublinear algorithms
	Random walks in GNNs

	AgentNet model
	Theoretical analysis
	Expressiveness with a single agent
	Multiple agents

	Experiments
	Synthetic datasets
	Real-world graph classification datasets

	Conclusion
	Proofs for Section 4.1
	Injective implementation
	Graph traversal methods
	Recognizing structures
	Random walk access model

	Proofs for Section 4.2
	Simpler claims in the multi-agent setting
	Proof of Theorem 12

	Model implementation
	General notes and initialization
	Model steps and possible extensions
	Readout
	Time-step conditioning
	Possible model simplifications

	Experimental setup
	Synthetic datasets
	Real-world graph classification datasets

	Graph statistics
	Performance on poorly aligned tasks

