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Abstract

Traditional continual learning methods prioritize knowledge retention and focus primarily
on mitigating catastrophic forgetting, implicitly assuming that the data distribution of pre-
viously learned tasks remains static. This overlooks the dynamic nature of real-world data
streams, where concept drift permanently alters previously seen data and demands both
stability and rapid adaptation. We introduce a holistic framework for continual learning
under concept drift that simulates realistic scenarios by evolving task distributions. As a
baseline, we consider Full Relearning (FR), in which the model is retrained from scratch
on newly labeled samples from the drifted distribution. While effective, this approach in-
curs substantial annotation and computational overhead. To address these limitations,
we propose Adaptive Memory Realignment (AMR), a lightweight alternative that equips
rehearsal-based learners with a drift-aware adaptation mechanism. AMR selectively re-
moves outdated samples of drifted classes from the replay buffer and repopulates it with a
small number of up-to-date instances, effectively realigning memory with the new distribu-
tion. This targeted resampling matches the performance of FR while reducing the need for
labeled data and computation by orders of magnitude. To enable reproducible evaluation,
we introduce four concept drift variants of standard vision benchmarks: Fashion-MNIST-
CD, CIFAR10-CD, CIFAR100-CD, and Tiny-ImageNet-CD, where previously seen classes
reappear with shifted representations. Comprehensive experiments on these datasets using
several rehearsal-based baselines show that AMR consistently counters concept drift, main-
taining high accuracy with minimal overhead. These results position AMR as a scalable
solution that reconciles stability and plasticity in non-stationary continual learning environ-
ments. Full implementation of our framework and concept drift benchmark datasets are
available at: https://github.com/AlifAshrafee/CL-Under-Concept-Drift.

1 Introduction

In recent years, there has been a lot of progress (Masana et al., 2020; Kirkpatrick et al., 2016; Chaudhry
et al., 2018; Buzzega et al., 2020a; Arani et al., 2022; Zhuo et al., 2023) in Continual Learning (Chen & Liu,
2018) research. The key challenge in this field is to ensure that models can learn over time while retaining
information from earlier tasks and mitigating catastrophic forgetting (French, 1999) — a phenomenon where
previously learned knowledge is overwritten by new information. Despite this progress, much of the existing
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work assumes that the properties of past data remain static (Masana et al., 2020) once learned. While
simplifying the problem, such an assumption overlooks the dynamic nature of real-world data streams (Gama
et al., 2014a), where concept drift—shifts in the statistical properties of previously seen data—is a frequent
occurrence.

Initial Distribution Incremental Task Concept Drift

Old Concept

Evolved  Concept

Visual Drift

Figure 1: Visualization of concept drift in continual learning. (a) Initial Distribution: The learning process begins
with a class of kittens. (b) Incremental Task: A new task introduces adult dogs, prompting the model to form a
decision boundary that separates kittens from dogs. (c) Concept Drift: Over time, kittens evolve into adult cats,
and adult dogs are replaced by puppies. Although the class labels remain the same (cats vs. dogs), their visual
representation shifts, requiring an update in the decision boundary to maintain correct classification.

Concept drift (Widmer & Kubat, 1993) poses a unique challenge for continual learning, as it requires models
not only to retain knowledge but also to adapt to changes in previously encountered classes (see Figure 1).
In traditional continual learning, the changes in distributions of already learned classes are considered in the
Domain-Incremental scenario (van de Ven & Tolias, 2019), where no new classes are introduced over time.
On the other hand, the Class-Incremental scenario (van de Ven & Tolias, 2019; Korycki & Krawczyk, 2024)
assumes that changes in data distribution occur only by introducing completely new classes, with no shifts in
previously learned ones. However, the combination of both scenarios (Korycki & Krawczyk, 2021; Lyu et al.,
2024) is rarely addressed in the literature. Recently introduced Class-Incremental Learning with repetition
scenario (Hemati et al., 2023) assumes that past classes can reappear in the future, but with distribution
of class remaining the same. Considering changes in both past and current class distributions could lead to
development of more flexible algorithms, that could handle complexity more easily.

Among the various strategies developed for continual learning, rehearsal methods (Buzzega et al., 2020a;
Caccia et al., 2022; Zhuo et al., 2023; Arani et al., 2022) have achieved remarkable success. These methods
maintain a small memory buffer of past data samples (Chaudhry et al., 2019), which are replayed during
training to mitigate catastrophic forgetting. Korycki & Krawczyk (2021) adapted rehearsal algorithms for
continual learning under concept drift by using class centroids to determine whether past representations
should be relabeled as a new class. While their approach improves performance, it has several limitations.
First, it overlooks the widely adopted reservoir sampling algorithms (Vitter, 1985), which are now standard
in most rehearsal-based methods. Second, the assumption that past representations can be reused as new
classes conflicts with certain types of concept drift. In cases of domain shift, where class feature distributions
change, newly sampled examples may have entirely different representations. Relabeling old samples after
drift detection may not enhance classification accuracy and could unnecessarily occupy buffer memory.

Data Streams and Continual Learning - two sides of the same coin: Concept drift and evolving
data distributions expose the complementary strengths and limitations of continual learning and data-stream
mining. Although these two fields have historically developed along parallel trajectories, they address funda-
mentally intertwined aspects of learning in dynamic environments. Whereas continual learning stresses
knowledge retention, safeguarding past information against catastrophic forgetting, data-stream mining
stresses knowledge adaptation, enabling models to respond quickly and accurately to evolving data dis-
tributions and concept drift. A method that focuses solely on adaptation may achieve only locally optimal
performance by discarding valuable long-term knowledge, whereas one that clings rigidly to prior knowledge
risks retaining outdated or irrelevant information. Unifying these perspectives is therefore essential for de-
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veloping learning systems that are both resilient and adaptive. By bridging insights from both fields, we aim
to advance toward holistic approaches that can simultaneously remember and evolve.

Main contributions: To the best of our knowledge, we present the first continual-learning framework that
explicitly accounts for representation-level concept drift. Our solution couples a lightweight drift-detection
module with Adaptive Memory Realignment (AMR): a drift-aware buffer-update strategy that preserves
relevant past knowledge while rapidly adapting to evolving distributions. By addressing representation shift
directly, the framework models real-world non-stationary streams more realistically and integrates seamlessly
with existing continual-learning architectures. Our contributions are:

• A framework for continual learning under concept drift. We design a framework for continual
learning that enables the simulation of diverse concept drift scenarios across multiple benchmark
datasets and severity levels through a set of configurable parameters.

• Concept-drift-adaptive memory. We propose AMR, a buffer-update mechanism that mitigates
gradient misalignment by selectively removing outdated samples while maintaining robustness to
catastrophic forgetting.

• Efficiency in data and compute. Extensive experiments on Fashion-MNIST, CIFAR10, CI-
FAR100, and Tiny-ImageNet show that AMR recovers accuracy after drift with minimal labeled
data and low computational overhead.

Together, these contributions provide a scalable, holistic solution that reconciles stability and plasticity for
continual learning in truly non-stationary environments.

2 Related Work

Continual Learning: Efforts to address catastrophic forgetting can be broadly categorized into three
approaches (Masana et al., 2020): rehearsal methods, regularization techniques, and network expansion
strategies.

Regularization methods constrain the learning process to reduce forgetting. Kirkpatrick et al. (2016) pro-
posed a regularization approach using the Fisher Matrix to preserve key parameters from previous tasks.
Similarly, Zenke et al. (2017) introduced a per-parameter regularization technique based on quadratic loss.
Another method, presented in Li & Hoiem (2016), use predictions from a model trained on prior tasks
as a knowledge distillation-based regularizer for new tasks. Petit et al. (2023) developed a pseudo-feature
generation strategy that freezes the backbone after the initial task. In the work of Zhuang et al. (2024),
a frozen backbone is also utilized, but the authors frame Continual Learning as a Concatenated Recursive
Least Squares problem to compute weight updates through a closed-form solution.

Rehearsal methods mitigate forgetting by retrieving data from past tasks using memory buffers. Even
introducing a few learning examples from past tasks (Chaudhry et al., 2019) could limit forgetting. More
advanced rehearsal methods incorporate knowledge distillation (Buzzega et al., 2020a), asymmetrical cross-
entropy loss (Caccia et al., 2022) or gradient projection (Chaudhry et al., 2018). Some methods use data
from the buffer to reduce the recency bias in the classifier layer (Wu et al., 2019). Other methods specify
what samples should be selected for storage (Buzzega et al., 2020b; Aljundi et al., 2019) or how to effectively
retrieve samples from the buffer (Harun et al., 2024). Recently, weight interpolation between old and new
networks was proposed as a complementary mechanism to experience replay Kozal et al. (2024).

Architecture-based algorithms (Rusu et al., 2016) address catastrophic forgetting by expanding network
capacity. Typically, they mitigate forgetting by freezing parameters associated with previous tasks (Rusu
et al., 2016). However, adapting to concept drift can be challenging with such approaches, and as a result,
this category will not be the focus of our work.

Adaptive and plastic Continual Learning: Recent continual learning research increasingly targets adap-
tive plasticity as a first-class objective beyond mitigating forgetting, by explicitly decoupling stable and plas-
tic components in the learning dynamics and parameterization. For instance, Liang & Li (2023) proposes loss
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decoupling to separate objectives that govern new-versus-old discrimination and new class learning to better
control the stability-plasticity trade-off in task-agnostic CL. Prompt-based designs similarly split functional-
ity into modules specialized for retention and rapid acquisition. PromptFusion (Chen et al., 2024) introduces
dedicated stabilizer/booster prompts to disentangle forgetting mitigation from learning new tasks. In the
foundation-model regime, SD-LoRA (Wu et al., 2025) improves scalability by decoupling the magnitude and
direction of low-rank updates, enabling strong stability-plasticity behavior without rehearsal. Complement-
ing architectural/parameter decoupling, Self-Normalized Resets (Farias & Jozefiak, 2025) directly combats
plasticity loss by selectively resetting neurons deemed inactive, restoring the model’s ability to adapt late in
long task streams. Finally, principled combination strategies such as BECAME (Li et al., 2025) use Bayesian
formulations to derive task-adaptive model-merging coefficients, aiming to preserve prior knowledge while
maintaining learnability of new tasks, alongside theory-driven continual meta-learning approaches such as
Chen et al. (2023) that dynamically adjust update behavior under shifting environments.

Concept drift: Concept drift has been widely studied (Gama et al., 2014a) in the context of streaming data
and evolving environments (Duda et al., 2001). Most works have focused on detecting and adapting to shifts
in data distributions (Lu et al., 2018), distinguishing between sudden, incremental, and recurring drifts.
Two major approaches include (i) using drift detectors (Van Looveren et al., 2024) to signal when a model
should be updated to align with the new data distribution and (ii) employing online learners with forgetting
mechanisms (Bifet et al., 2009) to implicitly adapt to the current state of the streaming environment.
Moreover, addressing concept drift requires an understanding of its underlying causes (Krawczyk et al.,
2017), whether due to changes in feature distributions (covariate shift), class boundaries (real drift), or
latent dynamics in data streams. While most works in the concept drift domain have focused on shallow
learning models, the deep learning community has recently started to show increasing interest (Xiang et al.,
2023) in this research area.

Recent advances in concept drift and data stream mining have focused on both detection methods that
scale to high-velocity streaming data and adaptation mechanisms that enable robust model updating under
non-stationarity. One notable direction is unsupervised and representation-based drift detection, exempli-
fied by the Maximum Concept Discrepancy Drift Detector (MCD-DD) (Wan et al., 2024), which leverages
contrastive embeddings to detect drift without reliance on labels, outperforming classical statistical tests in
high-dimensional streams. Complementary to this, Greco et al. (2025) introduced DriftLens, an unsuper-
vised framework designed for real-time characterization of concept drift from deep feature representations,
addressing limitations of existing methods in accuracy and real-time execution. Neighbor-Searching Dis-
crepancy Drift Detection Scheme (Gu et al., 2024) isolates real concept drift by measuring classification
boundary shifts between samples, a key step toward minimizing false alarms from virtual drift. On the deep
learning front, DNN+AE-DD (Hu et al., 2025a) is a hybrid autoencoder and deep neural network approach
that combines representation learning with reconstruction-based drift signals, demonstrating superior de-
tection accuracy on synthetic and real-world streams compared to shallow methods. Transfer learning and
multi-source strategies have also emerged, such as MARLINE (Du et al., 2025), which uses multi-source
mapping to transfer knowledge in non-stationary environments and improve data stream prediction under
drift. Lite-RVFL (Hu et al., 2025b) is a random vector functional-link network that adapts to concept drift
without explicit detection or retraining, emphasizing recent data through exponential weighting. Harshit &
Mounvik (2025) also integrated transformers with autoencoder reconstruction and multiple drift metrics to
enhance early detection sensitivity and robustness.

Concept drift in Continual Learning: First discussion of concept drift in Continual Learning scenarios
was carried out in Cossu et al. (2021) where authors suggested that excessive focus on Class-Incremental
learning is too restrictive, as past classes could repeat over time in natural environments. In Korycki &
Krawczyk (2021), an experience replay-based method with enhanced memory management for concept drift
was introduced. It used class centroids to determine whether past samples should be relabeled. However,
this approach oversimplifies concept drift by reducing the problem to two meta-labels (like vs. dislike),
failing to capture the complexities of concept drift adaptation in multi-class large-scale datasets. Moreover,
the authors define concept drift solely as a shift in class labels over time, overlooking the possibility of drift
occurring through changes in data representations. This assumption does not align with many real-world
continual learning scenarios where labels remain unchanged while data representations evolve. In Casado
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et al. (2021), a novel method for federated learning was introduced that considers the possibility of concept
drift, but does not explicitly measure robustness to its occurrence. In Gomez-Villa et al. (2024), the authors
raise concerns about semantic drift, which causes the prototypes of learned classes to shift in feature space
as new classes are introduced. Although their proposed learnable drift compensation mitigates this shift, it
does not address the possibility of recurring classes or how to compensate for drift if previously seen classes
reappear with altered representations.

Concept drift vs test-time adaptation: Recently, test-time adaptation (TTA) has attracted increasing
attention from the Continual Learning community (Hong et al., 2023; Ni et al., 2025). It is important to
highlight that While both concept drift and TTA address distributional shifts, they represent fundamentally
distinct challenges in Continual Learning. Concept drift refers to the gradual or abrupt change in the
underlying data distribution over time, necessitating continual model updates to remove outdated knowledge
and update the stored past task information. In contrast, test-time adaptation focuses on rapid, often
unsupervised adjustments to distribution shifts encountered during inference (Zhu et al., 2024). Crucially,
concept drift emphasizes long-term updates of the past knowledge stored in the model, whereas test-time
adaptation operates in a single-task setting and prioritizes immediate robustness.

Critical gap in Continual Learning Literature: Existing continual learning algorithms suffer from a
vital limitation: they either ignore the recurrence of classes with altered representations or reduce concept
drift to label-level changes, failing to capture the evolving shifts common in real-world data streams. In
dynamic environments such as ecological monitoring or autonomous driving, previously seen classes can
reappear under varying noise, lighting, or weather conditions, leading to representation-level drift. Our work
addresses this underexplored problem by explicitly modeling concept drift changes in image representations
of recurring classes.

3 Proposed Framework

3.1 Toward a Holistic Continual-Learning Paradigm

In continual learning settings, it is often assumed that once a class or task has been learned, it remains
stationary over time. However, real-world environments often violate this assumption, as previously acquired
knowledge may become outdated as concept drift alters the underlying distribution. Even tasks that appear
stationary may shift over time because of lighting changes, seasonal effects, sensor noise, or other unforeseen
factors. Consequently, a continual-learning system must not only accommodate new classes or tasks but
also detect and adapt to distributional changes in classes it has already encountered. If left unaddressed,
such drift renders stored representations invalid or misleading. Contemporary continual-learning methods,
which focus primarily on retention, struggle in these situations and fail to adjust their predictions or internal
representations to match new realities. A truly holistic and adaptive continual-learning framework must
therefore revisit and revise prior knowledge whenever drift is detected, preserving relevance and accuracy
for both old and new information.

3.2 Problem Formulation

In the context of continual learning, we formalize our problem as a sequence of tasks T = {T1, T2, . . . , TN}
arriving over time. Each task Ti is associated with a set of classes Ci = {ci

1, ci
2, . . . , ci

mi
}, where mi denotes

the number of classes in task Ti. The goal is to train a model fθ : X → Y, parameterized by θ, where
the data distribution D evolves over time. The model is trained incrementally on task-specific datasets
Di = {(x, y) | x ∈ X , y ∈ Yi}, where Yi ⊆ Y corresponds to the labels associated with Ci. After observing
task Ti, the model is expected to perform well on all previously seen tasks {T1, T2, . . . , Ti}.

Unlike standard class-incremental learning (CIL), where previously seen class distributions are assumed
static, our setting accounts for evolving class semantics due to non-stationary environments. In other words,
we extend the standard CIL setting where previously encountered classes may reappear with shifted distri-
butions, a phenomenon known as concept drift (Gama et al., 2014b; Widmer & Kubat, 1996). Specifically,
for any class c ∈ Cj from a previous task Tj (j < i), let Dj(c) denote the distribution of class c in task Tj ,
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and Di(c) the corresponding distribution in task Ti. Concept drift occurs when the class reappears in a later
task with a new domain representation (Shin et al., 2017), indicating a distribution shift:

Di(c) ̸= Dj(c), for some c ∈ Cj ∩ Ci,

Given the demonstrated effectiveness of rehearsal-based continual learning methods, our proposed framework
leverages memory-based strategies to address concept drift. Rehearsal methods maintain a bounded episodic
memory bufferM of fixed capacity |M|. For each class c, letMc ⊂M denote the subset of memory allocated
to class c. The training objective at task Ti is formulated as an empirical risk over the current task data and
the memory buffer:

L(θ) = E(x,y)∼Dcurrent [ℓ(fθ(x), y)] + E(x,y)∼M[ℓ(fθ(x), y)],
where ℓ denotes the loss function (cross-entropy), Dcurrent = Di is the data for the current task.

3.3 Concept Drift Detection

Our framework assumes a dynamic test-then-train paradigm, similar to that proposed in Bifet et al. (2010)
and Sun et al. (2020), which ensures that adaptation occurs reactively in response to observable changes in the
environment. Specifically, we monitor the test-time distribution of previously seen classes as they reappear.
This distribution is compared against a reference distribution, which captures the historical statistics of class
c. Only if a distributional shift is detected at test time do we proceed to adapt the model to the updated
distribution Di(c). This setting mirrors a data stream scenario with a dynamic and monitored test stream
(Agrahari & Singh, 2022), enabling early detection and timely response to distributional shifts.

We incorporate an uncertainty-based drift detection mechanism using the two-sample Kolmogorov–Smirnov
(KS) (Massey Jr, 1951) test. Let fθ : X → RK denote a fixed pre-trained backbone that outputs class logits
for input x ∈ X , where K = |Y| is the total number of classes. The uncertainty associated with each input
is quantified using predictive entropy computed from the softmax of the logits. Specifically, we define the
uncertainty function as:

U(x) = H(softmax(fθ(x))) = −
K∑

k=1
pk(x) log pk(x),

where pk(x) is the softmax probability for class k. To detect concept drift for recurring classes, we compare
uncertainty distributions from two sources:

• The reference distribution Uref, computed using uncertainty values from class-specific samples stored
in the memory buffer Mc from previous tasks.

• The test distribution Utest, computed from uncertainty values of incoming samples for the same class
c in the current test task.

We compute the Kolmogorov–Smirnov statistic:

DKS = sup
u
|FUref(u)− FUtest(u)| ,

where FU (u) denotes the empirical cumulative distribution function (ECDF) of uncertainty values. A concept
drift event is flagged when:

DKS > δ,

where δ is a fixed threshold that governs the sensitivity of the drift detector.

3.4 Adaptive Memory Realignment (AMR) for Drift Adaptation

Once concept drift is detected for a class c, our adaptation mechanism, Adaptive Memory Realignment
(AMR), updates the memory buffer to reflect the new distribution. Let the memory buffer be denoted as
M = {(xj , yj)}|M|

j=1, and define the index set for class c as:

Ic = {j ∈ {1, . . . , |M|} | yj = c}
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The adaptation process consists of the following steps:

• Detect Drift: Based on the KS statistic, identify the set of drifted classes Cdrift ⊆ Ci for the current
task Ti.

• Flush: For each class c ∈ Cdrift, remove outdated samples of class c from the buffer by setting
M[j] = ∅ for all j ∈ Ic.

• Resample: Repopulate the freed memory slots with updated instances drawn from the new distri-
bution Di(c). For each j ∈ Ic, sample a new instance xnew

j ∼ Di(c), and set M[j] = (xnew
j , c).

Algorithm 1 Concept-Drift Adaptive Memory Realignment
1: Input: Task stream T = {T1, . . . , TN}, model fθ, memory buffer M, drift significance threshold δ
2: Output: Updated model fθ

3: Initialize: θ ← random init, M← ∅, Ypast ← ∅
4: for Ti ∈ T do
5: Receive data Di = {(x, y) | y ∈ Yi}
6: for c ∈ Yi ∩ Ypast do
7: Uref ← {U(x) | (x, y) ∈M, y = c}
8: Utest ← {U(x) | (x, y) ∈ Di, y = c}
9: DKS ← supu |FUref(u)− FUtest(u)|

10: if DKS > δ then ▷ Drift detected
11: Ic ← {j ∈ {1, . . . , |M|} | yj = c}
12: for j ∈ Ic do
13: Sample xnew

j ∼ Di(c)
14: M[j]← (xnew

j , c)
15: end for
16: end if
17: end for
18: Train fθ on Di ∪M with loss:

L(θ) = EDi
[ℓ(fθ(x), y)] + EM[ℓ(fθ(x), y)]

19: M← ReservoirSampling(M,Di)
20: Ypast ← Ypast ∪ Yi

21: end for
22: return θ

This targeted realignment ensures that the memory buffer reflects the most recent distribution Di(c) for each
drifted class c ∈ Cdrift, mitigating negative transfer from outdated samples and promoting alignment with
the most recent evolving distribution. Figure 2 illustrates the working principles of the proposed algorithm.

3.5 Theoretical Analysis

3.5.1 Gradient Misalignment Analysis

We now analyze why maintaining outdated representations in the memory buffer impedes learning. Consider
the gradient of the loss function L(θ) during rehearsal training:

∇θL(θ) = E(x,y)∼Dcurrent [∇θℓ(fθ(x), y)]︸ ︷︷ ︸
Current task gradient

+ E(x,y)∼M[∇θℓ(fθ(x), y)]︸ ︷︷ ︸
Rehearsal gradient

When concept drift occurs, the memory buffer contains samples from the old distribution Dj(c) for a drifted
class c, while current data follows Di(c).
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Figure 2: Flow of our proposed Concept-Drift Adaptive Memory Realignment method for continual learning under
concept drift. The approach integrates an uncertainty-based drift detection module with adaptive memory manage-
ment to selectively retain and update buffer samples in the presence of recurring classes exhibiting distributional
shifts.

Theorem 1: For a drifted class c with sufficiently different distributions Dj(c) and Di(c), the expected
gradients from these distributions exhibit interference, leading to misaligned parameter updates.

Proof: Let Gold = E(x,y)∼Dj(c)[∇θℓ(fθ(x), y)] and Gnew = E(x,y)∼Di(c)[∇θℓ(fθ(x), y)] denote the expected
gradients from the old and new distributions, respectively. The cosine similarity between these gradients
quantifies their alignment:

sim(Gold, Gnew) = Gold ·Gnew

∥Gold∥ · ∥Gnew∥

Under significant drift, this similarity decreases and can become negative. The effective gradient during
training becomes:

Geffective = Gnew + (1− α) ·Gold + α ·Gnew

where α represents the fraction of updated samples of class c in the memory buffer. When α = 0 (no buffer
update), Geffective = Gnew + Gold, which can deviate significantly from the optimal direction Gnew when
sim(Gold, Gnew) is low. To quantify this deviation, we define the gradient alignment efficiency:

ηalign = Geffective ·Gnew

||Geffective|| · ∥Gnew∥

For non-drifted classes, ηalign ≈ 1, indicating efficient learning. For drifted classes with outdated represen-
tations in the buffer, ηalign < 1 and potentially ηalign ≪ 1 under severe sudden drift, as it occurs in our
problem setting, resulting in inefficient learning. □
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To tackle this gradient misalignment, we need a better sampling strategy than reservoir sampling. This is
because the probability of reservoir sampling effectively replacing the outdated samples from the memory
buffer is negligibly small, as we will see in the next section.

3.5.2 Limitations of Conventional Reservoir Sampling

We now demonstrate why conventional reservoir sampling is suboptimal for handling concept drift compared
to our targeted replacement strategy.

Theorem 2: With standard reservoir sampling, the probability of effectively replacing all outdated samples
of drifted classes reaches zero as the number of classes increases.

Proof: For a memory buffer of size |M| containing K classes with approximately equal representation, each
class occupies approximately |Mc| ≈ |M|

K memory slots. For a drifted class c with nc new samples, the
probability that a specific old sample in the buffer is replaced under reservoir sampling is:

P (replaced) = 1−
nc∏

j=1

(
1− 1
|M|

)
≈ 1− exp

(
− nc

|M|

)

For nc ≪ |M|, which is typical in continual learning, this approximates to:

P (replaced) ≈ nc

|M|

The expected number of replaced samples from class c is:

E[replaced samples from c] = |Mc| · P (replaced) ≈ |M|
K
· nc

|M|
= nc

K

This implies that with nc new samples and K classes, standard reservoir sampling only replaces approximately
nc

K outdated samples—far fewer than the |M|
K samples typically allocated to each class. The probability of

replacing all outdated samples of class c is:

P (replace all) =

(|M|−|Mc|
nc−|Mc|

)(|M|
nc

) · 1nc≥|Mc|

For practical values of |M|, K, and nc, this probability becomes vanishingly small as the decay is combina-
torial. □

3.5.3 Optimality of Targeted Memory Realignment

In this section, we discuss why targeted buffer resampling provides the optimal gradient alignment when
sudden drift occurs.

Theorem 3: Targeted replacement of memory samples for drifted classes (α = 1) maximizes gradient
alignment efficiency, achieving performance comparable to training on the entire sample size of the drifted
distribution.

Proof: With complete targeted replacement, the effective gradient becomes:

Geffective = Gnew + 0 ·Gold + 1 ·Gnew = 2 ·Gnew

This preserves the optimal gradient update direction while only scaling the magnitude, resulting in ηalign = 1.
Thus, our adaptation strategy ensures that gradient updates follow the same trajectory as they would if
training from scratch on the new distribution. □

This also ensures retention of knowledge of non-drifted classes through the memory buffer as the non-drifted
concepts remain intact in the memory without the risk of potentially being replaced by random sampling.
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3.5.4 Gradient Alignment with AMR

This section provides further justification on how the gradient alignment efficiency increases with AMR.

Theorem 4: The gradient alignment efficiency ηalign monotonically increases with the proportion α of
updated samples in the memory buffer, with optimal alignment achieved at α = 1.

Proof: Recall that:

Geffective = Gnew + (1− α) ·Gold + α ·Gnew = (1 + α) ·Gnew + (1− α) ·Gold

The alignment efficiency is:

ηalign = Geffective ·Gnew

||Geffective|| · ∥Gnew∥

Substituting and simplifying:

ηalign = (1 + α)∥Gnew∥2 + (1− α)Gold ·Gnew

||Geffective|| · ∥Gnew∥

Taking the derivative with respect to α:

dηalign

dα
= ∥Gnew∥2 −Gold ·Gnew

||Geffective|| · ∥Gnew∥
· d

dα

(
||Geffective||
∥Gnew∥

)−1

Under the condition that sim(Gold, Gnew) < 1, which holds under significant sudden drift, we have:

∥Gnew∥2 −Gold ·Gnew > 0

and
d

dα

(
||Geffective||
∥Gnew∥

)−1
> 0

Therefore, dηalign
dα > 0, proving that the alignment efficiency increases monotonically with α, reaching its

maximum at α = 1 (complete replacement). □

3.5.5 Conclusion

Our mathematical analysis demonstrates that the proposed memory adaptation strategy effectively addresses
concept drift in class-incremental learning by:

• Eliminating misaligned gradient interference from outdated representations

• Overcoming the limitations of conventional reservoir sampling

• Maximizing gradient alignment efficiency through targeted buffer updates

We validate our claims through targeted experiments in Section 5.1.

4 Experimental Setup

Datasets: We use standard benchmarks from the continual learning literature and adapt them to incorporate
concept drift:

• Split Fashion-MNIST (Xiao et al., 2017): Comprises 70,000 grayscale images of size 28×28 (60,000
for training and 10,000 for testing) across 10 classes. The dataset is split into 5 tasks, each containing
2 classes.
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• Split CIFAR10 and Split CIFAR100 (Krizhevsky, 2012): Both datasets consist of 50,000 train-
ing and 10,000 test images of size 32×32. CIFAR10 is divided into 5 tasks with 2 classes per task,
while CIFAR100 is divided into 10 tasks with 10 classes per task.

• Split Tiny-ImageNet (Le & Yang, 2015): A subset of ImageNet (Russakovsky et al., 2015) con-
taining 100,000 training and 10,000 test images of size 64×64 across 200 classes. It is split into 10
tasks, each with 20 classes.

To induce concept drift, we apply various image transformations (Hendrycks & Dietterich, 2019) at several
severity levels. As detailed in Appendix A, the highest-severity permutation provides the most pronounced
distribution shift and is therefore used in all experiments.

In standard class-incremental (CIL) benchmarks, tasks contain disjoint class sets. Our framework reintro-
duces previously seen classes together with new ones when drift occurs. We denote these drift-augmented
variants with the suffix “-CD” (for Concept Drift). To ensure a broad evaluation, we test both single and
multi-drift scenarios over short and long task streams:

• Short streams (5 tasks): S-FMNIST-CD and S-CIFAR10-CD, each with 1 and 2 drift occurrences.

• Long streams (10 tasks): S-CIFAR100-CD and S-Tiny-ImageNet-CD, each with 2 and 4 drift
occurrences.

Additionally, we evaluate AMR on the CLEAR-10 dataset (Lin et al., 2021) to assess performance under
natural temporal drift. These real-world drift experiments are detailed in Appendix B.

Experience replay methods: We base our experimental evaluation around the popular rehearsal methods:

• Experience Replay (ER) (Chaudhry et al., 2019): Vanilla experience replay that revisits a subset of
past samples to consolidate past knowledge while learning from new data,

• Experience Replay with Asymmetric Cross Entropy (ER-ACE) (Caccia et al., 2022): Experience
replay with asymmetrical loss to reduce representation overlap of new and old classes,

• Dark Experience Replay++ (DER++) (Buzzega et al., 2020a): Experience replay with knowledge
distillation from past tasks,

• Strong Experience Replay (SER) (Zhuo et al., 2023): Experience replay utilizing prediction con-
sistency between new model mimicking future experience on current training data and old model
distilling past knowledge from the memory buffer,

• Complementary Learning System-based Experience Replay (CLS-ER) (Arani et al., 2022): Experi-
ence replay with dual memories: short-term and long-term that acquire new knowledge by aligning
decision boundaries with semantic memories.

Hyperparameter and Implementation Details: Our incremental learning framework with concept drift
was implemented on top of the Mammoth library (Buzzega et al., 2020a). All experiments use a ResNet-18
backbone trained from scratch (no pre-training) with the Stochastic Gradient Descent (SGD) optimizer.
We conduct additional experiments with ResNet-152 and ViT-S backbones in Appendix C to verify that
AMR achieves similar drift recovery with larger and more modern architectures. The results confirm that
AMR’s effectiveness is architecture-independent, justifying our use of ResNet-18 for computational efficiency
throughout the main experiments. Rehearsal methods utilize reservoir sampling (Vitter, 1985) for buffer
management. Algorithm and dataset-specific hyperparameters are adopted from the optimal values reported
by the original papers wherever possible and are detailed in Appendix D.

We omit standard augmentations during training and rehearsal, as they modify image representations and
adversely affect the drift detector’s performance. The drift detector relies on original image representations
as a stable reference to identify image representation changes over time. For drift detection, we employ
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Van Looveren et al. (2024)’s uncertainty-based detector, which uses a pre-trained ResNet-18 model with
ImageNet1k weights. Statistical tests for drift detection are conducted at a significance level of 0.05.

Metrics: We evaluate all the methods using the following two standard metrics used in the literature:

• FinalAverageAccuracy(FAA) : The Final Average Accuracy measures the model’s overall perfor-
mance on all seen tasks after training on the entire task stream. Let Ai,j represent the accuracy on
task j after training on task i. For a task stream with N tasks, the FAA is computed as:

FAA = 1
N

N∑
j=1

AN,j ,

where AN,j is the accuracy on task j after training on the final task N . Higher values of FAA
indicate better overall retention and performance across tasks.

• Forgetting(F ) : Forgetting quantifies the loss in performance on a task due to learning subsequent
tasks. For a task j, the forgetting score is the difference between the accuracy immediately after
learning task j and its accuracy after the entire task stream:

Fj = max
k≥j

Ak,j −AN,j ,

where maxk≥j Ak,j is the highest accuracy on task j during training and AN,j is the final accuracy
on task j. The overall forgetting metric is the average forgetting across all tasks:

F = 1
N − 1

N−1∑
j=1

Fj .

Lower forgetting scores indicate better retention of previously learned tasks.

5 Experiments

5.1 Empirical Validation of Theoretical Claims

To validate the theoretical claims made in section 3.5, we conduct empirical experiments comparing three
adaptation strategies under concept drift:

• Vanilla: Baseline for a particular rehearsal method without any drift adaptation mechanism.

• AMR (Adaptive Memory Realignment): Our proposed approach that selectively replaces outdated
samples in the memory buffer with new instances of drifted classes, without requiring additional
data for retraining.

• Full Relearning (FR): A drift response that retrains the model using a full set of labeled samples
from the drifted class distribution.

For each strategy, we evaluate:

• Number of labeled samples required for drift adaptation,

• Computational resource consumption in relative runtime and GFLOPs,

• Final average class-incremental accuracy after adaptation to concept drift.

These experiments are conducted on CIFAR10-CD and CIFAR100-CD datasets under different memory
buffer capacities (|M| = 500 and 5000).
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We first verify Theorem 1, which predicts gradient misalignment when a previously learned class undergoes
concept drift. Our hypothesis states that if the distribution of a learned class shifts in a later task, the
gradients computed from its new features will diverge from those based on the old features stored in the
replay buffer. To illustrate this shift, we visualize the feature distributions of the two classes from task 1
of CIFAR10 as training progresses through five tasks. Because past training data are unavailable during
class-incremental learning, we plot the test samples of task 1 after each subsequent task is learned. We use
Uniform Manifold Approximation and Projection (UMAP) (McInnes & Healy, 2018) to project the high-
dimensional features onto a 2D space for visualization. UMAP is a non-linear dimensionality reduction
technique that preserves the local and global structure of the feature manifold, making it well-suited for
tracking evolving feature distributions across tasks. Figure 3a shows that in the absence of drift, the two
classes remain linearly separable. In contrast, Figure 3b depicts the scenario in which concept drift occurs
at task 3. In this case, the model can no longer produce linearly separable features for the two classes using
its stale buffer, leading to overlapping representations. Without adaptation, such overlap yields sub-optimal
gradient updates and a drop in accuracy on the drifted classes, which supports our claim in Theorem 1.

Figure 4 highlights the computational efficiency trends of AMR in terms of both relative sample requirement
(4a), runtime (4b), and FLOPs (4c). While FR requires forward-backward passes on a large number of labeled
examples, AMR limits adaptation to small, targeted memory realignments. This validates Theorem 3, which
showed that full replacement of drifted samples restores optimal gradient alignment without the cost of full-
scale retraining.

As shown in Figure 5, AMR closely matches the accuracy improvements of FR for both single and multiple
drift occurrences but achieves this with a substantially reduced sample requirement. This supports Theorem
4, which predicts increasing gradient alignment with targeted memory updates, leading to efficient drift
recovery. As a result, AMR enables efficient adaptation to concept drift without the need for extensive
retraining, offering a resource-efficient solution for real-world continual learning scenarios where drift is
prevalent.
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(b) Concept drift at task 3

Figure 3: Evolution of the task-1 feature space (two classes) across five tasks on CIFAR-10. Without drift (top) the
classes remain linearly separable; with drift introduced at task 3 (bottom) the features collapse.
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Figure 4: Comparison of computational cost and accuracy for different drift adaptation strategies. AMR achieves
near-equivalent accuracy to FR with significantly lower sample requirement, relative time and GFLOP consumption.
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Figure 5: Comparison of class-incremental accuracy across different experience replay methods and varying number
of drifts using No Adaptation, AMR, and Full Relearning strategies. AMR consistently achieves comparable accuracy
to FR while using significantly fewer labeled samples.

5.2 Experimental Results

We conducted a series of experiments on Fashion-MNIST-CD, CIFAR10-CD, CIFAR100-CD, and Tiny-
ImageNet-CD to evaluate the effectiveness of our proposed method under concept drift. The experiments
varied buffer sizes (|M| = 500 and 5000) and included both single and multiple drift scenarios. An overview
of the experimental outcomes is provided in Tables 1, 2, 3 and 4.

Figures 6, 7, 8, and 9 present the results on shorter task streams from Tables 1 and 2 on Fashion-MNIST-CD
and CIFAR10-CD under one and two drift events. Across all settings, both the AMR and FR strategies
consistently restore model performance following drift(s). These results confirm that the proposed AMR
strategy can match the performance of FR. Interestingly, we observe that larger buffers exacerbate the
impact of concept drift. We hypothesize that smaller buffers, due to stronger forgetting, reduce reliance
on outdated representations, forcing the model to adapt more aggressively to new data. In contrast, larger
buffers retain older samples longer, potentially hindering adaptation by reinforcing outdated features. This
observation reveals an intriguing insight that while larger buffers improve performance in static continual
learning settings, they may require adaptive mechanisms like AMR to remain effective under drift.

To further evaluate generalization, we test our approach on CIFAR-100-CD and Tiny-ImageNet-
CD—benchmarks with longer task streams and larger class spaces (Tables 3 and 4). We simulate two
and four drift events, each of which changes the representations of all previously seen classes. Figures 10,
11, and 12 show that, while FR consistently restores full performance, AMR achieves comparable accuracy
and reliably outperforms the No-Adaptation baseline.

On large datasets such as Tiny-ImageNet-CD, forgetting is so pronounced that a small buffer cannot support
meaningful recovery. Table 3 confirms that a 500-sample buffer suffices for CIFAR-100-CD. However, from
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Table 1: Final Average Accuracy (FAA[↑]) and Forgetting (F[↓]) for Split-Fashion-MNIST-CD (3-run average).

Vanilla = Baseline without Drift Adaptation, FR = Full Relearning, AMR = Adaptive Memory Realignment
S-FMNIST-CD

M Method Adaptation No Drift 1 Drift 2 Drifts
FAA↑±std (F↓) FAA↑±std (F↓) FAA↑±std (F↓)

500

ER
Vanilla 74.35±1.27 (22.86) 63.01±0.66 (36.69) 54.61±0.86 (55.03)

FR - 84.26±0.49 (18.27) 82.23±0.19 (20.50)
AMR - 86.30±0.86 (15.88) 78.80±0.34 (24.79)

ER-ACE
Vanilla 82.77±0.14 (8.32) 73.00±1.67 (20.71) 63.13±1.20 (31.75)

FR - 87.83±0.16 (1.40) 89.65±0.50 (5.49)
AMR - 88.67±0.93 (6.01) 85.11±0.35 (12.80)

DER++
Vanilla 81.92±0.07 (14.07) 69.69±0.87 (27.07) 60.13±1.37 (40.40)

FR - 89.13±0.42 (7.93) 74.39±0.41 (26.78)
AMR - 88.28±0.90 (10.27) 79.86±0.15 (18.93)

SER
Vanilla 81.38±0.47 (13.19) 70.32±0.99 (26.39) 63.18±1.43 (34.82)

FR - 86.86±0.15 (7.38) 89.37±0.27 (3.40)
AMR - 89.39±0.15 (6.04) 80.25±0.60 (16.68)

CLS-ER
Vanilla 79.98±0.72 (18.82) 68.13±1.64 (33.45) 57.34±1.40 (46.85)

FR - 76.52±0.29 (24.44) 85.82±0.18 (12.93)
AMR - 76.37±0.61 (25.30) 79.11±0.63 (21.28)

5000

ER
Vanilla 80.62±0.97 (17.55) 62.51±1.20 (40.55) 58.79±0.32 (48.08)

FR - 85.11±1.17 (10.24) 90.76±0.45 (7.89)
AMR - 84.51±0.64 (14.19) 92.48±0.12 (6.80)

ER-ACE
Vanilla 87.14±0.27 (3.58) 74.89±0.65 (18.04) 58.51±1.09 (39.78)

FR - 89.23±0.73 (0.84) 90.40±0.57 (4.44)
AMR - 93.39±0.18 (2.75) 93.17±0.11 (4.25)

DER++
Vanilla 87.99±0.13 (5.88) 74.27±1.16 (23.23) 62.65±1.16 (37.55)

FR - 90.70±0.61 (4.83) 91.23±0.07 (1.44)
AMR - 91.82±0.28 (5.73) 87.72±0.77 (10.98)

SER
Vanilla 87.50±0.22 (3.78) 72.86±0.57 (22.27) 66.19±1.14 (30.83)

FR - 89.08±0.43 (1.14) 90.66±0.24 (3.54)
AMR - 91.39±0.79 (6.13) 91.51±0.23 (4.98)

CLS-ER
Vanilla 78.17±1.63 (22.24) 59.91±1.13 (43.87) 59.80±1.48 (44.19)

FR - 87.37±0.13 (10.93) 85.48±0.95 (11.34)
AMR - 87.44±0.45 (11.92) 80.49±0.44 (20.93)

Table 2: Final Average Accuracy (FAA[↑]) and Forgetting (F[↓]) for Split-CIFAR10-CD (3-run average).

Vanilla = Baseline without Drift Adaptation, FR = Full Relearning, AMR = Adaptive Memory Realignment
S-CIFAR10-CD

M Method Adaptation No Drift 1 Drift 2 Drifts
FAA↑±std (F↓) FAA↑±std (F↓) FAA↑±std (F↓)

500

ER
Vanilla 34.37±0.50 (74.96) 32.36±0.51 (77.06) 29.32±0.31 (81.53)

FR - 56.00±0.69 (47.00) 46.88±0.80 (58.06)
AMR - 51.88±0.52 (52.44) 49.25±0.60 (55.78)

ER-ACE
Vanilla 57.32±1.10 (29.26) 37.68±0.93 (52.40) 30.76±0.77 (64.03)

FR - 60.50±0.76 (27.72) 53.90±1.24 (37.75)
AMR - 60.02±0.67 (31.63) 50.62±0.21 (44.63)

DER++
Vanilla 41.40±0.62 (63.55) 37.83±1.24 (68.14) 30.07±0.51 (78.15)

FR - 64.31±1.24 (35.21) 50.36±1.51 (51.62)
AMR - 55.13±1.60 (46.51) 55.36±0.31 (46.55)

SER
Vanilla 58.98±1.05 (29.73) 40.88±0.86 (53.20) 32.54±0.70 (63.96)

FR - 68.15±1.14 (22.05) 59.60±0.69 (23.66)
AMR - 62.55±0.88 (32.45) 48.68±1.45 (51.50)

CLS-ER
Vanilla 28.78±0.61 (81.80) 29.20±0.72 (81.05) 26.20±0.42 (84.63)

FR - 54.46±0.31 (49.34) 46.48±0.75 (58.90)
AMR - 54.06±0.71 (49.85) 53.41±0.84 (50.61)

5000

ER
Vanilla 66.17±0.54 (33.25) 47.56±0.22 (56.36) 36.13±0.15 (71.00)

FR - 75.27±0.41 (21.78) 63.20±0.52 (36.73)
AMR - 73.92±0.42 (24.33) 65.27±0.36 (35.24)

ER-ACE
Vanilla 68.76±0.57 (13.86) 44.62±0.44 (46.05) 32.37±0.43 (59.81)

FR - 71.07±0.45 (15.28) 61.31±0.75 (27.70)
AMR - 73.58±0.32 (15.72) 65.27±0.46 (28.43)

DER++
Vanilla 65.17±0.95 (29.63) 46.58±0.33 (52.06) 35.25±0.23 (67.99)

FR - 75.76±0.25 (19.28) 64.12±0.77 (31.77)
AMR - 70.65±1.13 (26.54) 64.24±0.62 (35.23)

SER
Vanilla 69.22±0.33 (15.20) 46.73±0.44 (43.97) 33.95±0.40 (58.70)

FR - 72.74±0.76 (12.13) 63.54±0.38 (23.94)
AMR - 72.96±0.43 (17.36) 59.05±0.68 (39.98)

CLS-ER
Vanilla 66.87±0.77 (33.13) 49.06±0.17 (55.47) 36.31±0.23 (71.57)

FR - 76.27±0.11 (21.16) 64.59±0.30 (34.99)
AMR - 77.20±0.42 (20.18) 67.58±0.40 (32.15)

Table 4, it is evident that several methods fail to recover on Tiny-ImageNet-CD with the same capacity. We
therefore recommend a buffer size of 5000 for effective drift adaptation on large-scale datasets.
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Table 3: Final Average Accuracy (FAA[↑]) and Forgetting (F[↓]) for Split-CIFAR100-CD (3-run average).

Vanilla = Baseline without Drift Adaptation, FR = Full Relearning, AMR = Adaptive Memory Realignment
S-CIFAR100-CD

M Method Adaptation No Drift 2 Drifts 4 Drifts
FAA↑±std (F↓) FAA↑±std (F↓) FAA↑±std (F↓)

500

ER
Vanilla 9.74±0.18 (74.80) 9.45±0.09 (74.94) 8.70±0.07 (75.58)

FR - 12.15±0.20 (69.16) 13.71±0.28 (66.74)
AMR - 12.57±0.34 (70.55) 12.79±0.27 (69.96)

ER-ACE
Vanilla 21.95±0.35 (39.40) 12.37±0.24 (48.92) 7.05±0.35 (55.04)

FR - 18.06±0.32 (43.28) 16.24±0.46 (49.96)
AMR - 16.29±0.17 (45.09) 11.87±0.09 (51.70)

DER++
Vanilla 12.11±0.07 (69.80) 10.38±0.10 (72.03) 8.90±0.04 (74.33)

FR - 16.78±0.53 (63.39) 16.08±0.55 (63.68)
AMR - 13.57±0.28 (67.61) 12.02±0.18 (68.91)

SER
Vanilla 26.60±0.28 (42.38) 18.62±0.11 (51.06) 12.29±0.15 (58.29)

FR - 20.71±0.14 (41.83) 22.00±0.48 (42.04)
AMR - 17.73±0.71 (46.52) 13.37±0.18 (52.77)

CLS-ER
Vanilla 11.85±0.02 (73.15) 10.45±0.12 (74.87) 9.38±0.13 (76.09)

FR - 18.99±0.14 (62.31) 17.04±0.16 (64.99)
AMR - 17.11±0.10 (66.79) 14.95±0.31 (68.71)

5000

ER
Vanilla 22.89±0.20 (57.28) 15.77±0.43 (64.33) 10.96±0.14 (69.67)

FR - 24.04±0.24 (53.18) 22.05±0.26 (54.66)
AMR - 25.71±0.33 (53.43) 24.06±0.29 (55.40)

ER-ACE
Vanilla 32.44±0.45 (31.83) 16.80±0.19 (48.50) 9.80±0.14 (56.52)

FR - 27.36±0.17 (38.41) 23.33±0.50 (44.47)
AMR - 27.29±0.13 (39.81) 22.92±0.58 (46.73)

DER++
Vanilla 30.88±0.33 (36.13) 15.81±0.38 (52.48) 10.43±0.08 (58.87)

FR - 27.34±0.83 (40.33) 24.41±0.11 (44.11)
AMR - 27.71±0.15 (45.62) 22.68±0.27 (54.97)

SER
Vanilla 36.18±0.61 (14.16) 17.19±0.41 (34.61) 10.96±0.16 (42.29)

FR - 26.79±0.58 (25.56) 25.33±0.38 (28.76)
AMR - 27.40±0.24 (34.61) 20.88±0.51 (46.44)

CLS-ER
Vanilla 32.78±0.14 (43.26) 19.43±0.12 (57.74) 12.83±0.19 (64.49)

FR - 32.06±0.08 (42.17) 26.47±0.21 (48.64)
AMR - 31.47±0.31 (44.51) 26.75±0.37 (51.58)

Table 4: Final Average Accuracy (FAA[↑]) and Forgetting (F[↓]) for Split-Tiny-ImageNet-CD (3-run average).

Vanilla = Baseline without Drift Adaptation, FR = Full Relearning, AMR = Adaptive Memory Realignment
S-Tiny-ImageNet-CD

M Method Adaptation No Drift 2 Drifts 4 Drifts
FAA↑±std (F↓) FAA↑±std (F↓) FAA↑±std (F↓)

500

ER
Vanilla 6.22±0.11 (57.50) 6.25±0.15 (58.50) 6.30±0.03 (58.16)

FR - 6.64±0.15 (55.21) 6.48±0.17 (55.67)
AMR - 6.19±0.15 (57.67) 6.18±0.10 (57.17)

ER-ACE
Vanilla 10.76±0.13 (32.76) 5.00±0.18 (37.99) 2.56±0.05 (41.23)

FR - 6.00±0.37 (39.87) 5.46±0.23 (44.64)
AMR - 5.96±0.20 (38.40) 3.19±0.11 (41.38)

DER++
Vanilla 6.61±0.10 (58.85) 6.45±0.12 (58.67) 6.44±0.07 (59.03)

FR - 7.04±0.19 (48.77) 7.97±0.11 (54.27)
AMR - 6.65±0.24 (56.54) 6.20±0.08 (57.37)

SER
Vanilla 16.41±0.59 (21.69) 10.74±0.26 (27.80) 6.86±0.15 (32.29)

FR - 11.71±0.12 (26.65) 8.71±0.33 (31.77)
AMR - 7.32±0.29 (28.07) 4.73±0.22 (26.84)

CLS-ER
Vanilla 6.50±0.07 (57.30) 6.30±0.00 (57.60) 6.16±0.27 (57.21)

FR - 7.87±0.04 (53.70) 8.72±0.03 (53.56)
AMR - 7.46±0.19 (56.56) 7.30±0.08 (56.29)

5000

ER
Vanilla 9.91±0.26 (58.40) 8.30±0.06 (60.74) 7.12±0.14 (61.27)

FR - 9.69±0.05 (56.20) 9.35±0.17 (56.19)
AMR - 10.12±0.08 (57.86) 8.57±0.18 (58.20)

ER-ACE
Vanilla 16.16±0.30 (32.52) 8.60±0.09 (40.89) 5.16±0.17 (44.78)

FR - 11.71±0.04 (38.26) 9.23±0.05 (45.20)
AMR - 11.10±0.17 (41.24) 7.48±0.08 (46.96)

DER++
Vanilla 11.55±0.45 (36.43) 6.52±0.08 (42.46) 5.38±0.15 (43.10)

FR - 10.52±0.30 (39.23) 8.82±0.12 (41.06)
AMR - 9.87±0.62 (49.14) 8.04±0.17 (53.03)

SER
Vanilla 16.22±0.45 (10.87) 7.33±0.29 (20.35) 4.84±0.29 (23.95)

FR - 9.46±0.38 (20.87) 7.63±0.04 (21.91)
AMR - 10.53±0.22 (23.22) 6.84±0.26 (31.33)

CLS-ER
Vanilla 16.23±0.38 (39.80) 9.81±0.16 (46.77) 7.41±0.13 (49.77)

FR - 14.47±0.18 (42.63) 11.13±0.14 (47.10)
AMR - 14.33±0.29 (43.24) 10.78±0.30 (48.96)

Beyond accuracy, practical deployment requires minimizing both the number of labeled samples and the com-
putational cost of adaptation. To quantify these trade-offs, we compared the two approaches across three key
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Figure 6: Class-incremental accuracy on S-FashionMNIST-CD with a single drift event occurring at task 3. Results
are shown for buffer sizes 500 (top) and 5000 (bottom).
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Figure 7: Class-incremental accuracy on S-FashionMNIST-CD with drift events at tasks 2 and 4. Results are shown
for buffer sizes 500 (top) and 5000 (bottom).

metrics: time per epoch, GFLOPs, and the number of labeled samples required for adaptation. All metrics
were normalized with respect to the FR baseline, which is assigned a normalized value of 1.0 (representing the
highest cost). The performance of AMR is expressed on a 0∼1 scale, where lower values indicate better effi-
ciency relative to FR. As shown in Figure 13, AMR consistently requires fewer computational resources and
labeled samples across FashionMNIST-CD, CIFAR10-CD, CIFAR100-CD, and Tiny-ImageNet-CD datasets.
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Figure 8: Class-incremental accuracy on S-CIFAR10-CD with a single drift event occurring at task 3. Results are
shown for buffer sizes 500 (top) and 5000 (bottom).
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Figure 9: Class-incremental accuracy on S-CIFAR10-CD with drift events at tasks 2 and 4. Results are shown for
buffer sizes 500 (top) and 5000 (bottom).

As expected, these results confirm that although effective at mitigating concept drift, the FR strategy incurs
significant overhead, as it requires full retraining on large labeled datasets following each drift event. In
contrast, AMR’s selective replacement of only outdated entries in the memory buffer avoids unnecessary
retraining and reduces the overall adaptation cost. This makes AMR not only competitive in terms of
accuracy, but also significantly more efficient in both computational and labeling costs. By operating well
below the resource demands of Full Relearning, AMR presents a practical and scalable solution for real-world
continual learning under concept drift.
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Figure 10: Class-incremental accuracy on S-CIFAR100 with drift events at tasks 4 and 7. Results are shown for
buffer sizes 500 (top) and 5000 (bottom).
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Figure 11: Class-incremental accuracy on S-CIFAR100 with drift events at tasks 3, 5, 7, and 9. Results are shown
for buffer sizes 500 (top) and 5000 (bottom).

6 Conclusion, Limitations, and Future Works

Conclusion: We propose a novel continual learning scenario in which adaptation is required not only for
newly arriving classes, but also for previously learned classes whose representations evolve over time due
to concept drift. To address this setting, we introduce a holistic framework that couples drift detection
with drift-aware memory management, allowing rehearsal-based learners to both retain stable knowledge
and rapidly revise outdated concepts. Concretely, our Adaptive Memory Realignment (AMR) mechanism
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(a) Drift events at tasks 4 and 7

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

ER
No Drift: Vanilla
4 Drifts: Vanilla
4 Drifts: FR
4 Drifts: AMR

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

ER-ACE

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70
DER++

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

SER

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70
CLS-ER

Task Trained On

Ac
cu

ra
cy

 (%
)

(b) Drift events at tasks 3, 5, 7, and 9

Figure 12: Class-incremental accuracy on S-Tiny-ImageNet-CD with 5000 buffer size.
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Figure 13: Radar plots comparing the efficiency of AMR and FR across normalized metrics: time per epoch, GFLOPs,
and labeled samples required. All values are normalized such that FR = 1.0 (maximum cost), with lower values
indicating better efficiency. AMR consistently shows lower resource requirements across all dimensions.
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selectively flushes stale buffer samples of drifted classes and repopulates those slots with a small number
of up-to-date labeled instances, thereby realigning rehearsal gradients with the current data distribution.
Across four drift-augmented vision benchmarks (Fashion-MNIST-CD, CIFAR10-CD, CIFAR100-CD, and
Tiny-ImageNet-CD) and a real temporal-drift setting (CLEAR-10), AMR consistently recovers performance
after drift while preserving accuracy on non-drifted tasks and does so with dramatically lower labeling
and computational costs than full relearning from scratch. These findings highlight that “remembering”
in continual learning is insufficient in non-stationary environments: robust agents must also detect when
stored knowledge becomes stale and selectively update it. More broadly, by providing both a reproducible
evaluation framework and strong empirical evidence for lightweight memory realignment, our work helps
bridge continual learning and data-stream mining perspectives and encourages future research on end-to-end
systems that jointly detect, diagnose, and adapt to diverse drift regimes in long-running deployments.

Limitations: Our framework currently relies on an external drift detector to trigger adaptation; thus, its
end-to-end robustness is bounded by the detector’s accuracy, calibration, and assumptions under distribution
shift. In particular, false negatives can delay adaptation, leading to prolonged performance drops, while false
positives can induce unnecessary memory realignments and additional labeling/compute overhead. More-
over, our specific instantiation (uncertainty-distribution testing against a buffer-derived reference) inherits
practical limitations: (i) the reference distribution can be noisy when the buffer is small, highly imbalanced
across classes, or already partially contaminated by earlier undetected drift; and (ii) some shifts may not
manifest as a clear change in predictive uncertainty, reducing detector sensitivity. Beyond detector depen-
dency, AMR may exhibit degraded performance in challenging drift scenarios, such as:

• Adversarial drift concealment, where an adaptive adversary smooths or masks distribution shifts
to delay detection and retain corrupted samples in the buffer.

• Gradual or mixture drift, where overlapping pre- and post-drift subdomains produce weak,
intermittent, or oscillatory detection signals, causing delayed or excessive reactions.

• Open-set recurrence / novel modalities, where previously seen classes reappear with new
internal modalities or semantically related variants; in such cases, AMR may misinterpret semantic
novelty as distributional drift (or vice versa), and naive full replacement may discard still-relevant
sub-modes.

Finally, our study focuses on rehearsal-based continual image classification; while AMR is model-agnostic
once drift is flagged, we do not claim a jointly optimized detection-adaptation pipeline, nor do we com-
prehensively evaluate extensions to non-rehearsal paradigms or other problem types, where drift signals
and memory semantics may be substantially different. We therefore view detector choice, calibration, and
supervision constraints as key practical considerations that must be tailored to the target application.

Future Works: Several research directions emerge from this work. First, hybrid detection strategies
that combine multiple drift signals (e.g., uncertainty-based tests, feature-space divergence measures, and
reconstruction errors) could improve robustness across diverse drift regimes, reducing both false positives
and false negatives. Second, semantic drift monitoring that tracks class-level feature evolution rather than
relying solely on distributional tests could better distinguish meaningful representation shifts from minor
perturbations, minimizing unnecessary memory updates. Third, exploring learned or self-tuning drift de-
tectors that adapt their sensitivity based on observed stream characteristics represents a promising avenue
for reducing manual threshold calibration. Fourth, alternative pre-training strategies such as self-supervised
temporal contrastive learning could yield detector features better suited to capturing gradual distributional
evolution compared to ImageNet-pretrained representations optimized for classification. Finally, extending
AMR to handle open-set recurrence and novel subclasses, where previously seen classes reappear with new
internal modes or semantically related but novel classes emerge, would enhance applicability to more com-
plex real-world scenarios. Collectively, these directions aim to develop more autonomous, adaptive continual
learning systems capable of robust long-term deployment in non-stationary environments.
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A Justification for Concept Drift Transformation

Figure 14 shows the effects of various transformations on recurring classes in CIFAR10, using vanilla Expe-
rience Replay (ER) with a buffer size of 5000. Specifically, during tasks 2 and 4, previously learned classes
reappear alongside new classes, with the recurring ones modified using the indicated transformations to
induce concept drift. The figure shows that certain transformations have a more pronounced impact than
others. Defocus blur and shot noise fail to produce meaningful representation shifts, even at their highest
severity levels. In contrast, Gaussian noise, rotation, and permutation significantly degrade performance,
indicating stronger representation drift.
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Figure 14: Impact of concept drifts induced by image transformations of varying severity at tasks 2 and 4 on CIFAR10

B Real-World Drift Experiments on CLEAR Dataset

To evaluate AMR’s effectiveness on natural temporal distribution shifts beyond synthetic transformations, we
conduct experiments on the CLEAR-10 dataset (Lin et al., 2021), which captures real-world visual concept
evolution from 2004 to 2014.

Experimental Setup: We construct a 5-task class-incremental scenario using CLEAR-10, excluding the
BACKGROUND class to maintain a 10-class setting. Each task introduces 2 classes drawn from temporal
buckets 1–2 (approximately 2004–2005). Since each class contains only ∼300 training samples per bucket, we
combine two consecutive buckets per class to increase sample counts. For non-drifted scenarios, training and
test sets use the same temporal buckets to maintain distribution consistency. To induce drift, we replace the
test distributions of recurring classes with samples from temporal buckets 9–10 (approximately 2012–2014),
creating natural temporal shifts spanning 8–10 years. We evaluate ER, ER-ACE, and CLS-ER with a buffer
size of |M| = 1000 under a 2-drift scenario. DER++ and SER were excluded due to memory constraints on
CLEAR-10.

Drift Detection Challenges: During implementation, we identified an important limitation of uncertainty-
based drift detection on gradual temporal shifts. Our original KS-test on predictive uncertainty (p = 0.05)
detected drift in only ∼50% of temporal shift scenarios. Relaxing the threshold to p = 0.2–0.3 yielded
marginal improvement while compromising statistical significance. To address this, we integrated the Maxi-
mum Mean Discrepancy (MMD) drift detector (Gretton et al., 2012), which operates in feature space rather
than output uncertainty space. MMD measures distribution distance in a Reproducing Kernel Hilbert Space
by comparing expected feature embeddings between source and target distributions. This feature-level com-
parison proved significantly more sensitive to subtle visual evolution across temporal buckets, achieving
near-perfect drift detection on CLEAR-10.

Results and Discussion: Figure 15 presents the results on Split-CLEAR10-CD. Unlike the synthetic drift
benchmarks in the main paper, natural temporal shifts in CLEAR-10 produce subtle distribution changes.
Vanilla adaptation shows minimal degradation between no-drift and 2-drift scenarios, indicating that 8–10
years of temporal evolution creates gentler drift than synthetic transformations such as permutation.

Table 5 shows that despite the subtle drift signal, AMR demonstrates consistent improvements on ER, achiev-
ing +7.17% FAA over Vanilla and +3.97% over FR. For CLS-ER, AMR slightly outperforms FR performance
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Figure 15: Class-incremental accuracy on Split-CLEAR10-CD with buffer size 1000. Drift events occur at tasks 2
and 4, where recurring classes are replaced with samples from temporal buckets 9-10 (2012∼2014). Natural temporal
drift produces subtler distribution shifts compared to synthetic transformations, resulting in smaller performance
gaps between adaptation strategies.

(55.30% vs. 55.27%). However, on ER-ACE, FR outperforms AMR (59.33% vs. 53.00%), suggesting that
ER-ACE’s asymmetric cross-entropy loss may interact differently with MMD-triggered realignment under
subtle drift conditions.

Table 5: Final Average Accuracy (FAA[↑]) and Forgetting (F[↓]) for Split-CLEAR10-CD (3-run average).
Vanilla = Baseline without Drift Adaptation, FR = Full Relearning, AMR = Adaptive Memory Realignment

M Method Adaptation (# drifts) FAA↑±std F↓

1000

ER

Vanilla (0) 45.00±1.15 57.54
Vanilla (2) 44.33±1.25 51.92

FR (2) 47.53±0.77 52.92
AMR (2) 51.50±2.05 50.33

ER-ACE

Vanilla (0) 50.93±1.19 29.92
Vanilla (2) 49.83±1.14 28.00

FR (2) 59.33±0.98 25.92
AMR (2) 53.00±0.59 28.96

CLS-ER

Vanilla (0) 47.37±0.29 53.62
Vanilla (2) 46.47±0.74 55.12

FR (2) 55.27±3.00 38.00
AMR (2) 55.30±3.13 42.92

These results reveal important insights about the relationship between drift magnitude and adaptation
strategy effectiveness. While AMR excels at recovering from pronounced synthetic drifts, its advantages are
attenuated when drift signals are subtle and gradual. This aligns with the limitations discussed in Section 6:
gradual drift produces weak detection signals that can cause suboptimal adaptation timing. Nevertheless,
AMR remains competitive with or superior to FR across most settings while requiring substantially fewer
labeled samples, confirming its utility even in challenging real-world drift scenarios.

C Backbone Justification and Robustness Across Architectures

To validate that AMR’s effectiveness generalizes beyond ResNet-18, we conducted additional experiments
using deeper convolutional (ResNet-152) and transformer-based (ViT-S) architectures. We evaluate Ex-
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perience Replay (ER) on S-CIFAR10-CD with 2 drifts and S-CIFAR100-CD with 4 drifts under identical
conditions (permutation drift, buffer size |M| = 5000).
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Figure 16: Class-incremental accuracy using ResNet-152 and ViT-S backbones with Experience Replay (ER) and
buffer size 5000. Drift events occur at tasks 2 and 4 for CIFAR10, and tasks 3, 5, 7, and 9 for CIFAR100.

Table 6: Final Average Accuracy (FAA[↑]) and Forgetting (F[↓]) across different backbone architectures.

Dataset Backbone Adaptation (# drifts) FAA↑ F↓

S-CIFAR10-CD

ResNet-152

Vanilla (0) 56.97 41.04
Vanilla (2) 34.87 69.45

FR (2) 56.26 42.20
AMR (2) 60.23 38.30

ViT-S

Vanilla (0) 41.91 50.54
Vanilla (2) 30.04 65.21

FR (2) 53.26 37.14
AMR (2) 56.15 35.35

S-CIFAR100-CD

ResNet-152

Vanilla (0) 16.80 52.17
Vanilla (4) 9.37 60.71

FR (4) 19.28 48.98
AMR (4) 19.56 50.53

ViT-S

Vanilla (0) 17.53 45.94
Vanilla (4) 9.15 54.69

FR (4) 19.86 44.14
AMR (4) 20.37 47.48

As shown in Table 6 and Figure 16, AMR consistently outperforms both the Vanilla baseline and Full Re-
learning (FR) across both convolutional and transformer architectures. On S-CIFAR10-CD, AMR achieves
gains of +3.97% FAA over FR with ResNet-152 and +2.89% with ViT-S. The performance trends ob-
served with ResNet-18 in the main experiments are preserved across architectures, confirming that AMR is
architecture-agnostic. The choice of ResNet-18 for the main experiments was motivated by computational
efficiency, enabling comprehensive evaluation across multiple datasets, buffer sizes, and drift scenarios while
maintaining tractable training times.

D Hyperparameter Selection

Abbreviations: mb = mini-batch size, bs = batch size, regw = regularization weight, sm_uf = stable model
update frequency, pm_uf = plastic model update frequency
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Table 7: Hyperparameters for S-FMNIST-CD and S-CIFAR10-CD.

Hyperparameters

Method M S-FMNIST-CD S-CIFAR10-CD

ER 500 lr: 0.1, mb: 10, bs: 10, epochs: 1 lr: 0.1, mb: 32, bs: 32, epochs: 50
5000 lr: 0.1, mb: 10, bs: 10, epochs: 1 lr: 0.1, mb: 32, bs: 32, epochs: 50

ER-ACE 500 lr: 0.03, mb: 10, bs: 10, epochs: 1 lr: 0.03, mb: 32, bs: 32, epochs: 50
5000 lr: 0.03, mb: 10, bs: 10, epochs: 1 lr: 0.03, mb: 32, bs: 32, epochs: 50

DER++ 500 lr: 0.1, mb: 10, bs: 10, α: 0.2, β: 0.5, epochs: 1 lr: 0.03, mb: 32, bs: 32, α: 0.2, β: 0.5, epochs: 50
5000 lr: 0.1, mb: 10, bs: 10, α: 0.2, β: 0.5, epochs: 1 lr: 0.03, mb: 32, bs: 32, α: 0.1, β: 1.0, epochs: 50

SER 500 lr: 0.1, mb: 10, bs: 10, α: 0.2, β: 0.2, epochs: 1 lr: 0.03, mb: 32, bs: 32, α: 0.2, β: 0.2, epochs: 50
5000 lr: 0.1, mb: 10, bs: 10, α: 0.2, β: 0.2, epochs: 1 lr: 0.03, mb: 32, bs: 32, α: 0.2, β: 0.2, epochs: 50

CLS-ER
500 lr: 0.1, mb: 10, bs: 10, reg_w: 1.0, sm_uf : 0.9, lr: 0.1, mb: 32, bs: 32, reg_w: 0.15, sm_uf : 0.1,

smα: 0.99, pm_uf : 1.0, pmα: 0.99, epochs: 1 smα: 0.999, pm_uf : 0.9, pmα: 0.999, epochs: 50

5000 lr: 0.1, mb: 10, bs: 10, reg_w: 1.0, sm_uf : 0.8, lr: 0.1, mb: 32, bs: 32, reg_w: 0.15, sm_uf : 0.8,
smα: 0.99, pm_uf : 1.0, pmα: 0.99, epochs: 1 smα: 0.999, pm_uf : 1.0, pmα: 0.999, epochs: 50

Table 8: Hyperparameters for S-CIFAR100-CD and S-Tiny-ImageNet-CD.

Hyperparameters

Method M S-CIFAR100-CD S-Tiny-ImageNet-CD

ER 500 lr: 0.1, mb: 32, bs: 32, epochs: 50 lr: 0.03, mb: 32, bs: 32, epochs: 100
5000 lr: 0.1, mb: 32, bs: 32, epochs: 50 lr: 0.1, mb: 32, bs: 32, epochs: 100

ER-ACE 500 lr: 0.03, mb: 32, bs: 32, epochs: 50 lr: 0.03, mb: 32, bs: 32, epochs: 100
5000 lr: 0.03, mb: 32, bs: 32, epochs: 50 lr: 0.03, mb: 32, bs: 32, epochs: 100

DER++ 500 lr: 0.03, mb: 32, bs: 32, α: 0.1, β: 0.5, epochs: 50 lr: 0.03, mb: 32, bs: 32, α: 0.2, β: 0.5, epochs: 100
5000 lr: 0.03, mb: 32, bs: 32, α: 0.1, β: 0.5, epochs: 50 lr: 0.03, mb: 32, bs: 32, α: 0.1, β: 0.5, epochs: 100

SER 500 lr: 0.03, mb: 32, bs: 32, α: 0.5, β: 0.5, epochs: 50 lr: 0.03, mb: 32, bs: 32, α: 0.2, β: 1.0, epochs: 100
5000 lr: 0.03, mb: 32, bs: 32, α: 0.5, β: 0.5, epochs: 50 lr: 0.03, mb: 32, bs: 32, α: 0.2, β: 1.0, epochs: 100

CLS-ER
500 lr: 0.1, mb: 32, bs: 32, reg_w: 0.15, sm_uf : 0.1, lr: 0.05, mb: 32, bs: 32, reg_w: 0.1, sm_uf : 0.05,

smα: 0.999, pm_uf : 0.9, pmα: 0.999, epochs: 50 smα: 0.999, pm_uf : 0.08, pmα: 0.999, epochs: 100

5000 lr: 0.1, mb: 32, bs: 32, reg_w: 0.15, sm_uf : 0.8, lr: 0.05, mb: 32, bs: 32, reg_w: 0.1, sm_uf : 0.07,
smα: 0.999, pm_uf : 1.0, pmα: 0.999, epochs: 50 smα: 0.999, pm_uf : 0.08, pmα: 0.999, epochs: 100
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