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Abstract

Temporal Knowledge Graph (TKG) forecast-001
ing aims to predict future facts based on given002
histories. Most recent graph-based models ex-003
cel at capturing structural information within004
TKGs but lack semantic comprehension abil-005
ities. Nowadays, with the surge of LLMs,006
the LLM-based TKG prediction model has007
emerged. However, the existing LLM-based008
model exhibits three shortcomings: (1) It only009
focuses on the first-order history for predic-010
tion while ignoring high-order historical infor-011
mation, resulting in the provided information012
for LLMs being extremely limited. (2) LLMs013
struggle with optimal reasoning performance014
under heavy historical information loads. (3)015
For TKG prediction, the temporal reasoning016
capability of LLM alone is limited. To address017
the first two challenges, we propose Chain-of-018
History (CoH) reasoning which explores high-019
order histories step-by-step, achieving effective020
utilization of high-order historical information021
for LLMs on TKG prediction. To address the022
third issue, we design CoH as a paly-and-plug023
module to enhance the performance of graph-024
based models for TKG prediction. Extensive025
experiments on three datasets and backbones026
demonstrate the effectiveness of CoH.027

1 Introduction028

As a carrier of facts with temporal information,029

Temporal Knowledge Graphs (TKGs) hold signifi-030

cant practical value across various applications (Xi-031

ang et al., 2022; Chen et al., 2023). Most advanced032

research on TKGs mainly focuses on predicting fu-033

ture facts occur at time tn based on given historical034

facts occur at time t with t < tn.035

Recent supervised methods (Jin et al., 2020; Li036

et al., 2021b, 2022) mainly rely on Graph Neural037

Networks (GNNs) to capture structural dependen-038

cies within TKGs, yet they all fall short in semantic039

modeling. Nowadays, with the surge of Large Lan-040

guage Models (LLMs), their temporal reasoning041
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Figure 1: An example of reasoning over TKG with
LLMs. In Figures (a) and (b), we provide LLMs with
different histories, which prompt LLMs to reason differ-
ent answers for the predicted fact.

capability on various tasks has been gradually ex- 042

plored (Jain et al., 2023; Yuan et al., 2023). Lee et 043

al. take the first attempt on TKG reasoning with 044

LLMs (Lee et al., 2023), providing LLMs with 045

histories in textual form. Despite some achieved 046

advancements, we argue there are still significant 047

issues that need to be addressed. 048

Firstly, the existing TKG prediction model with 049

LLMs only focuses on the first-order histories, ig- 050

noring important high-order historical information. 051

Taking Figure 1 as an example, LLMs aim to infer 052

“Germany will support whom at t4” with provided 053

histories. The existing model provides LLMs with 054

only first-order histories. In this case, LLMs are 055

constrained to infer wrong answers to “Denmark” 056

and “Russia” because given histories fail to encom- 057

pass the correct answer. When supplied with more 058

high-order histories, LLMs can utilize the history 059

chain “Germany→Russia→Ukraine” to reason the 060

correct answer “Ukraine” more possibly. 061

Secondly, LLMs struggle to maintain reasoning 062
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Figure 2: The performance (MRR (%)) of LLMs of two
sizes based on different history lengths on TKG pre-
diction. The provided histories contain both first- and
second-order histories. The y-axis represents the MRR
(%) value, and the x-axis denotes the total length of pro-
vided first- and second-order histories. The results are
based on the commonly used TKG dataset ICEWS14.

performance under heavy historical information063

loads. Intuitively, we provide more comprehensive064

high-order histories for LLMs to infer. However, as065

shown in Figure 2, the performance of LLMs does066

not necessarily improve or remain stable with the067

increase in history length, instead experiencing a068

steep decline beyond a certain threshold of history069

length regardless of the model size. This indicates070

that over-complicated historical information may071

confuse LLMs (Shi et al., 2023), making LLMs072

hard to reason correct answers. Thus, exploring073

ways to offer higher-order histories for LLMs ef-074

fectively is a worthwhile investigation.075

Thirdly, relying solely on the reasoning capabil-076

ities of LLMs still remains limited on TKG pre-077

diction. Though LLMs possess unique semantic078

comprehension advantages in reasoning, they still079

struggle to achieve the same level of ability in080

capturing complex structural information as graph-081

based models. However, this unique advantage of082

LLMs precisely compensates for the shortcomings083

of graph-based models in modeling semantic in-084

formation, thereby enhancing the performance of085

graph-based models on TKG prediction.086

To address the above issues, we propose a Chain-087

of-History (CoH) reasoning method for TKG pre-088

diction. Instead of providing LLMs with all his-089

tories at once, CoH provides LLMs with high-090

order histories step-by-step. Specifically, CoH091

adopts LLMs to explore important high-order his-092

tory chains step-by-step, and reason the answers093

to the query only based on inferred history chains094

in the last step. A two-step CoH reasoning proce-095

dure is shown in Figure 3. This also can extend096

to multiple-step reasoning for complex situations. 097

LLMs can continue inferring important second- 098

order history chains in Step 2, then infer answers 099

with third-order history chains in Step 3, and so 100

on. In this way, LLMs only need to process a lim- 101

ited quantity of histories at each step, preventing 102

an overwhelming influx of complex information 103

while effectively leveraging a more comprehensive 104

set of high-order information. This approach en- 105

ables LLMs to perform more accurate reasoning 106

with higher-order information for TKG prediction. 107

Moreover, we design CoH as a play-and-plug mod- 108

ule for TKG reasoning. As shown in Figure 3, we 109

fuse the predicted results obtained by LLMs and 110

graph-based TKG models to make the final pre- 111

diction more comprehensively. To summarize, the 112

contributions of this paper can be listed as follows: 113

• We are the first to explore the necessity and 114

difficulty of providing numerous high-order 115

histories for LLMs on TKG prediction. And 116

we propose the Chain-of-History reasoning 117

method which adopts LLMs to explore the 118

history chains step-by-step. 119

• We are the first to propose enhancing the per- 120

formance of graph-based TKG models with 121

LLMs, utilizing the semantic understanding 122

advantage of LLM to compensate for the 123

shortcoming of graph-based models. 124

• We conduct extensive experiments on three 125

commonly used TKG datasets and three 126

graph-based TKG models, the results demon- 127

strate the effectiveness of CoH. 128

2 Problem Formulation 129

Temporal Knowledge Graph Prediction. Let E 130

and R represent a set of entities and relations. A 131

Temporal Knowledge Graph (TKG) G can be de- 132

fined as G = {G1,G2, · · · ,Gn}. Each Gt ∈ G con- 133

tains facts that occur at time t. Each fact is repre- 134

sented as a quadruple (s, r, o, t), in which s, o ∈ E 135

and r ∈ R. Given a query q = (sq, rq, ?, tq) or q = 136

(?, rq, oq, tq), TKG prediction task aims to predict 137

the missing object entity or subject entity with his- 138

torical KG sequence G<tq = {G1,G2, · · · ,Gtq−1}. 139

The candidate answers for q are all entities in E , 140

each candidate ei ∈ E will be estimated with a 141

score by TKG prediction models. 142

High-order History Chains in TKGs. For each 143

query q = (sq, rq, ?, tq) to be predicted, we denote 144

{(sq, r, o, t)|(sq, r, o, t) ∈ G<tq} as the first-order 145

histories of q. If (sq, r, o, t) is the first-order history 146
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Query:   Germany will support whom at �� ?

Reasoning Procedure with LLMs
Step 2

First-order histories
Germany condemn Russia at �2
Germany meeting with European Union at �2
Germany hold a visit to China at �2
Germany sign agreement with Denmark at �3 
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. . .
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Figure 3: An illustration of a two-step CoH reasoning procedure. In the first step, LLMs are provided with only
first-order histories and asked to infer the most important histories. In the second step, LLMs are provided with
second-order history chains based on the inferred first-order histories and asked to infer possible answers to the
given query. Then the answers inferred by LLMs and graph-based models are adaptively fused to make the final
prediction. Note that this only serves as a two-step reasoning example, more steps can be executed with CoH.

of q, we denote histories in the form of (o, r, o′, t)147

as a set of second-order histories of q. The higher-148

order histories of q are deduced in this way. And we149

denote [(sq, r, o, t), (o, r, o′, tj)] as a second-order150

history chain of q, which consists of a first-order151

history of q and its associated second-order history152

of q. The higher-order history chains of q can be153

deduced in this way.154

3 Chain-of-History Reasoning over155

Temporal Knowledge Graph156

For a given query q = (sq, rq, ?, tq), CoH predicts157

the answers by exploring history chains related to q158

step-by-step, then answers are fused with predicted159

results by graph-based TKG models to make the160

final prediction for q. In this section, we illustrate161

CoH shown in Figure 3 in detail. Section 3.1 ex-162

plains how to convert quadruples in TKGs into text163

formats suitable for LLMs. Section 3.2 demon-164

strates how to properly provide histories from G<tq165

for LLMs and how to instruct LLMs to reason in166

each step. Section 3.3 shows how to transform an-167

swers predicted by LLMs into scores and fuse them168

with the results from graph-based TKG models.169

3.1 History Processing170

Each fact in TKGs is presented as a quadruple171

(s, r, o, t), such as “(Germany, Sign agreement,172

Denmark, 2023-06-02)”. To make each quadru- 173

ple more linguistically comprehensible for LLMs, 174

we introduce prepositions to transform the quadru- 175

ple into a more fluent sentence. Most importantly, 176

considering the prior knowledge of LLMs, we pro- 177

cess the time “2023-06-02” in each quadruple into 178

a more abstract form like “153rd day” to prevent 179

LLMs from directly exploiting prior knowledge 180

for predictions. Consequently, we provide LLMs 181

with each quadruple in the form of “(Germany Sign 182

agreement with Denmark on the 153rd day)”. 183

3.2 Reasoning Steps 184

In a k-step reasoning procedure of CoH, LLMs are 185

instructed to explore the most significant history 186

chains related to the given query q from Step 1 to 187

Step k-1. Subsequently, LLMs reason the possible 188

answers to q in Step k with k-order history chains. 189

Step 1 to Step k-1 Reasoning. In Step 1, LLMs 190

are provided with only first-order histories of q, and 191

are instructed to reason n first-order histories that 192

mostly contribute to answering q. From Step 2 to 193

Step k-1, LLMs are provided with i-order history 194

chains in Step i (i = {2, 3, · · · , k − 1}), and are 195

instructed to infer n most significant history chains. 196

The instruction design is shown in Table 1. Within 197

this sequence of steps, the outputs of LLMs in Step 198

i-1 are the inferred (i-1)-order history chains, then 199
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Step i Instruction

Step 1 There is a given text consisting of multiple historical events in the form of “{id}:[{subject} {relation}
{object} {time}];”. And there is a query in the form of: “{subject} {relation} {whom} time}?” If you
must infer several {object} that you think may be the answer to the given query based on the given
historical events, what important historical events do you base your predictions on? Please list the top n
most important histories and output their {id}.

Step 2 to Step k-1 There is a given text consisting of multiple history chains in the form of “{id}:[{subject} {relation}
{object} {time}, {subject} {relation} {object} {time}, ...];”. And there is a query in the form of: “{subject}
{relation} {whom} time}?” If you must infer several {object} that you think may be the answer to
the given query based on the given historical events, what important history chains do you base your
predictions on? Please list the top n most important history chains and output their {id}.

Step k You must be able to correctly predict the {whom} of the given query from a given text consisting of
multiple historical events in the form of “{subject} {relation} {object} {time}” and the query in the form
of “{subject} {relation} {whom} {time}?” You must output several {object} that you think may be the
answer to the given query based on the given historical events. Please list all possible {object} which may
be answers to the query. Please assign each answer a serial number to represent its probability of being
the correct answer. Note that answers with a high probability of being correct should be listed first.

Table 1: Instruction design for each step in a k-step CoH reasoning procedure.

each of which is supplied with corresponding i-200

order histories to consist of i-order history chains.201

These history chains subsequently serve as input for202

the next Step i. As shown in Figure 3, “Germany203

condemn Russia at t2” is one of the outputs in Step204

1. Then it is supplied with corresponding second-205

order history “Russia has a war with Ukraine at t1”206

to consist of the second-order history chain, which207

serves as the input for Step 2. The prompt example208

for Step 1 and Step i (i = {2, 3, · · · , k − 1}) can209

refer to Appendix A.210

Step k Reasoning. In Step k, LLMs are provided211

with k-order history chains and instructed to reason212

possible answers for the given query q. The instruc-213

tion design for Step k is shown in Table 1. Espe-214

cially, we instruct LLMs to prioritize outputting215

the entity with a higher probability of being the216

correct answer. As shown in Figure 3, the output of217

Step 2 includes several possible answers to q. Each218

answer is assigned a numerical index (1,2,3,· · · ),219

with a lower index indicating a higher probability220

of the answer being correct. The prompt example221

for Step k can refer to Appendix A.222

3.3 Results Processing and Fusion223

In graph-based TKG models, each entity and re-224

lation in a quadruple are denoted with an id like225

“(30, 13, 8, 2023-06-02)” instead of “(Germany,226

Sign agreement, Denmark, 2023-06-02)”. The lack227

of semantic modeling of histories makes graph-228

based models mainly depend on structural informa-229

tion within TKGs for prediction. However, entities230

and relations inherently carry semantic information,231

which also constitutes a significant part of TKGs. 232

Considering the importance of both structural and 233

semantic information within TKGs, we propose to 234

fuse the predicted results of LLMs and graph-based 235

models to obtain more comprehensive results for 236

predicting over TKGs more accurately. 237

Firstly, for a given q, we need to obtain the score 238

of each entity ei in the LLMs’ predicted answer set 239

Aq
LLM. As we mentioned each answer predicted by 240

LLMs in Step k is assigned an index, which repre- 241

sents the probability of the answer being correct. 242

We convert the index of each answer ei ∈ Aq
LLM 243

into its corresponding score with an exponential 244

decay function as follows: 245

Sei
LLM =

1

1 + eα·idx
ei
, (1) 246

where Sei
LLM denotes the score of the entity ei ob- 247

tained with LLMs for being the answer to q, idxei 248

represents the numerical index of the answer ei in 249

the outputs of LLMs, and α is a hyper-parameter 250

to control the score disparity among answers with 251

different indexes. Note that since the outputs of 252

LLMs can not include all candidate entities in E 253

like graph-based models, we assign the score of ei 254

as 0 where ei ∈ E but ei /∈ Aq
LLM. 255

Then, we can fuse the score of each candidate 256

entity ei ∈ E obtained with LLMs and graph-based 257

models as follows: 258

Sei = w · Sei
Graph + (1− w) · Sei

LLM, (2) 259

where Sei
Graph denotes the score of ei obtained with 260

graph-based models, and w is a hyper-parameter 261
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to determine the weight of different scores. Sei262

represents the comprehensive score of the candi-263

date ei. Finally, the ranked candidate list based on264

comprehensive scores is used for predicting q.265

4 Experiments266

In this section, we conduct extensive experiments267

to evaluate and analyze CoH on three typical268

datasets and three backbones for TKG prediction.269

Details of datasets and backbones can be referred270

to Appendix B and C, respectively.271

4.1 Experimental Settings272

4.1.1 Evaluation273

For evaluation, we adopt widely used metrics MRR274

and Hits@{1, 3, 10} in experiments. Without loss275

of generality (Li et al., 2021b), we only report the276

experimental results under the raw setting. Note277

that different from (Lee et al., 2023), we fully align278

the evaluation mechanism for LLMs in TKG pre-279

diction with those used in graph-based models to280

ensure a more fair comparison. Specifically, dur-281

ing the testing phase of graph-based models, the282

test set is typically augmented by doubling its size283

through reversing (s, r, o, t) into (o, r−1, s, t), to284

assess the model’s performance more comprehen-285

sively. Correspondingly, we also evaluate LLMs286

on TKG prediction with reversed test sets.287

4.1.2 CoH Implementation Details288

In this paper, we implement CoH with two-step rea-289

soning based on an open-sourced language model290

Mixtral-8x7B (Jiang et al., 2024). In Step 1, we291

provide the LLM with 100 first-order histories and292

set n to 30, allowing the LLM to infer the most293

important 30 first-order histories from the given294

ones. In Step 2, we do not strictly limit the number295

of answers output from the LLM. For more details296

on implementation please refer to Appendix D.297

4.2 Performance Comparison298

In this section, we present a comprehensive eval-299

uation of the proposed CoH. We first evaluate the300

performance of only utilizing LLMs on TKG pre-301

diction with CoH reasoning. Then we plug CoH302

on three existing state-of-the-art graph-based TKG303

prediction models to see the potential gains it can304

yield. The results are shown in Table 2, from which305

we have the following observations.306

On the one hand, from the results of LLMs, the307

two-step CoH reasoning outperforms ICL (Lee308

et al., 2023) which solely provides LLMs with309

first-order histories under all evaluation metrics 310

on three datasets. This indicates the usefulness 311

of the higher-order histories provided step-by-step. 312

And we observe that the relative improvements of 313

CoH over the existing method are more obvious 314

on ICEWS18 than other datasets, which implies 315

that ICEWS18 may contain more and complex in- 316

formation of history chains. Despite the progress 317

achieved by CoH, the performance of only utiliz- 318

ing LLMs on TKG prediction is still pretty limited 319

compared with graph-based models. 320

On the other hand, though the temporal reason- 321

ing capability of LLMs on TKG prediction is rela- 322

tively limited, they can be flexibly used as a play- 323

and-plug module to enhance the performance of 324

graph-based models. From the results of plugging 325

CoH and the ICL-based model into existing graph- 326

based models, we can see that the two LLM-based 327

models can effectively improve their performance. 328

The gains introduced by CoH to the performance of 329

graph-based models far surpass those achieved by 330

the ICL-based model, which further demonstrates 331

the effectiveness of our proposed model. More- 332

over, we analyze the rationale behind these gains 333

may be attributed to the distinct reasoning mecha- 334

nisms of LLMs and graph-based models, each of 335

which possesses unique strengths. In this case, the 336

powerful semantic understanding ability of LLMs 337

may be capable of compensating to some extent 338

for the inherent limitations in semantic information 339

modeling of graph-based models. 340

4.3 Ablation Study 341

In this section, we conduct experiments to investi- 342

gate the effectiveness of the high-order historical 343

information, step-by-step reasoning mechanism, 344

and score ranking procedure in CoH. The results 345

are shown in Table 3. 346

Analysis of high-order historical information. 347

To verify the usefulness of the high-order historical 348

information for TKG prediction with LLMs, we 349

use the inferred first-order histories in Step 1 and 350

the second-order history chains in Step 2 to predict 351

answers, respectively. From the results of CoH 352

shown in Table 3 we can observe that, the predicted 353

results of LLMs based on the second-order history 354

chains are notably superior to the results derived 355

solely from first-order histories. This indicates the 356

usefulness of second-order histories. 357

Analysis of step-by-step reasoning mechanism. 358

Specifically, “LR” in Table 3 denotes the step of 359
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Model Type Model
ICEWS14 ICEWS18 ICEWS05-15

MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10

LLMs
ICL (Lee et al., 2023)* 31.79 22.38 37.67 47.70 21.51 14.77 26.08 40.57 35.34 25.18 43.92 56.24

CoH 34.51 24.20 39.67 51.21 23.94 16.81 28.15 42.68 37.51 27.72 47.17 59.58
∆Improve 8.56% 8.13% 5.31% 7.36% 11.30% 13.81% 7.94% 5.20% 6.14% 10.09% 7.40% 5.94%

LLMs + Graph

RE-NET 38.75 28.96 43.64 57.61 28.72 18.84 32.66 48.18 44.05 33.22 51.23 65.02
RE-NET + ICL* 39.39 29.12 44.37 58.25 29.01 18.98 33.11 48.78 45.12 33.98 52.09 66.23
RE-NET + CoH 40.43 30.34 45.78 60.42 29.77 19.96 34.14 49.59 46.37 34.99 53.13 67.71
∆Improve* 1.65% 0.56% 1.67% 1.11% 1.00% 0.73% 1.39% 1.25% 2.42% 2.29% 1.67% 1.87%
∆Improve 4.34% 4.77% 4.90% 4.87% 3.66% 5.94% 4.53% 2.93% 5.26% 5.33% 3.71% 4.14%

RE-GCN 41.33 30.61 46.66 62.31 31.08 20.44 35.39 52.06 46.89 35.5 53.33 68.4
RE-GCN + ICL* 41.84 30.84 47.27 62.97 31.31 20.65 35.79 52.61 47.87 36.16 54.24 69.43
RE-GCN + CoH 42.41 31.77 47.85 63.80 32.10 21.75 36.51 53.37 47.98 37.53 54.94 70.68

∆Improve* 1.23% 0.75% 1.31% 1.06% 0.74% 1.03% 1.13% 1.06% 2.09% 1.86% 1.71% 1.51%
∆Improve 2.61% 3.79% 2.55% 2.39% 3.28% 6.41% 3.16% 2.52% 2.32% 5.72% 3.02% 3.33%

TiRGN 42.93 32.1 48.53 63.6 31.97 20.95 36.67 53.66 48.5 36.87 55.19 70.27
TiRGN + ICL* 43.27 32.28 49.04 64.17 32.18 21.07 36.98 54.04 49.15 37.25 55.73 70.9
TiRGN + CoH 43.94 33.07 49.64 64.90 32.98 21.83 37.79 54.92 49.71 38.01 56.40 71.25
∆Improve* 0.79% 0.56% 1.05% 0.90% 0.66% 0.57% 0.85% 0.71% 1.34% 1.03% 0.98% 0.90%
∆Improve 2.35% 3.02% 2.29% 2.04% 3.16% 4.20% 3.05% 2.35% 2.49% 3.09% 2.19% 1.39%

Table 2: Performance comparison of CoH on TKG prediction on three datasets in terms of MRR (%), Hit@1 (%),
Hit@3 (%), and Hit@10 (%). All results are obtained under raw metrics. The highest performance is highlighted
in bold. And * represents the reproduced model with the same evaluation and LLM used in this paper. ∆Improve
and ∆Improve* indicate the relative improvements of CoH and the ICL-based model plugged into the graph-based
models over the original graph-based backbones in percentage, respectively.

Model Step i
ICEWS14 ICEWS18 ICEWS05-15

MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10

CoH w/o LR
Step 1 32.31 23.18 37.92 49.15 20.97 13.88 24.83 36.52 34.5 22.24 42.01 56.18
Step 2 32.68 23.74 38.12 50.09 21.89 14.17 25.32 37.98 34.89 22.48 43.26 57.34

CoH
Step 1 33.97 23.86 39.03 49.96 22.03 15.34 26.82 40.57 36.48 24.84 46.44 58.51
Step 2 34.51 24.20 39.67 51.21 23.94 16.81 28.15 42.68 37.51 27.72 47.17 59.58

CoH w/o IS Step 2 24.57 12.31 34.75 51.09 13.8 9.14 20.57 35.67 29.61 18.55 37.64 56.87

Table 3: Ablation studies to investigate the effectiveness of the high-order historical information, step-by-step
mechanism, and score ranking procedure of CoH in terms of MRR (%), Hit@1 (%), Hit@3 (%), and Hit@10 (%).
And all results are obtained under raw metrics.

reasoning important first-order histories by LLMs360

in two-step CoH reasoning. And we implement361

“CoH w/o LR” by replacing the inferred n first-362

order histories by LLMs with n first-order histories363

in the latest timestamps. In this way, we can find364

out whether LLMs can deduce meaningful histori-365

cal information within the step-by-step reasoning366

mechanism. From the results we can see that CoH367

outperforms the one without LR under all evalua-368

tion metrics on three datasets, which illustrates the369

effectiveness of achieving the step-by-step reason-370

ing mechanism with LLMs.371

Analysis of the score ranking procedure. In372

the last step of CoH reasoning, we instruct LLMs373

to output possible answers in order based on their374

possibilities of being correct. To verify whether375

the output index of each answer is related to its376

correctness, we shuffle the index order of the an-377

swers, which is denoted as “CoH w/o IS” in Table378

3. Compared the results of CoH w/o IS with CoH,379

we can see that the shuffled index order leads to 380

a huge drop in performance. This indicates that 381

the indexes outputted by LLMs can be helpful for 382

score ranking on TKG prediction. 383

4.4 Case Study 384

In this section, we visualize the reasoning process 385

of two queries to understand the reasoning mech- 386

anism of CoH. Moreover, to further understand 387

how CoH benefits the graph-based TKG prediction 388

models, we show the difference between the results 389

predicted by CoH and those inferred by the graph- 390

based model RE-NET (Jin et al., 2020). Details of 391

the two cases are shown in Table 4. 392

From the reasoning process of the two cases, 393

we can see that LLMs possess the capability of 394

inferring important histories related to the given 395

query. And in the way of CoH reasoning, LLMs 396

can accurately infer the answers like “Thailand” 397

in the second-order history chains. Furthermore, 398
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Model Query 1: Military_(Myanmar) Express_intent_to_meet_or_negotiate to whom on the 351th day? (GT: Thailand)

CoH

[Military_(Myanmar) Fight_with_small_arms_and_light_weapons Myanmar 338]→ [Myanmar Make_a_visit to Thailand 328]
[Military_(Myanmar) Charge_with_legal_action Media_Personnel_(Myanmar) 305]→ [Media_Personnel_(Myanmar) Make_statement Detainee_(Myanmar) 302]
[Military_(Myanmar) Make_an_appeal_or_request Citizen_(Thailand) 272]→[Citizen_(Thailand) Use_violence to Thailand 271]
[Military_(Myanmar) Make_an_appeal_or_request Citizen_(Thailand) 271] →[Citizen_(Thailand) Release_person(s) Activist_(Thailand) 267]
[Military_(Myanmar) Praise_or_endorse Military_(Thailand) 185]
[Military_(Myanmar) Use_military_force to Rebel_Group_(Myanmar) 174]
· · · · · ·
[Military_(Myanmar) Use_military_force to National_Liberation_Army 62]→[National_Liberation_Army Make_statement to Guerrilla_(Colombia) 58]

Answer: 1. Thailand 2. Citizen_Thailand 3. Activist_Thailand 4. National_Liberation_Army 5. Media_Personnel_Myanmar

Graph Answer: 1. Myanmar 2. Malaysia 3. Cambodia 4. Citizen_(Thailand) 5. Thailand

Query 2: Saudi_Army Use_military_force to whom on the 3744th day? (GT: Armed_Rebel_(Yemen))

CoH

[Saudi_Army Make_an_appeal_or_request Zillur_Rahman 2581] →[Zillur_Rahman Make_empathetic_comment Citizen_(North_Korea) 2543]
[Saudi_Army Consult Zillur_Rahman 2581] → [Zillur_Rahman Make_empathetic_comment citizen_(Nerth_Kerea) 2543]
[Saudi_Army Express_intent_to_meet_or_negotiate with Thailand 2581] → [Thailand Use_military_force Military_(Cambodia) 2580]
[Saudi_Army Investigate Armed_Gang_(Saudi_Arabia) 1798] → [Armed_Gang_(Saudi_Arabia) Use_unconventional_violence Citizen_(Saudi_Arabia) 1773]
[Saudi_Army Employ_aerial_weapons Yemen 1769] → [Yemen Charge_with_legal_action Armed_Rebel_(Yemen) 1764]

Answer: 1. Military_(Cambodia) 2. Armed_Rebel_(Yemen) 3. Armed_Gang_(Saudi_Arabia) 4. Citizen_(Saudi_Arabia) 5. Citizen_(North_Korea)

Graph Answer: 1. Yemen 2. Citizen_(Saudi_Arabia) 3. Saudi_Arabian_Defence_Forces 4. Police_(Saudi_Arabia) 5. Armed_Rebel_(Yemen)

Table 4: Case studies with two queries for showing the procedure of CoH reasoning. The bold histories denote the
inferred first-order histories by LLMs in Step 1, and the histories in blue color denote corresponding second-order
histories. These two kinds of histories consist of second-order history chains for LLMs to infer answers in Step 2.
And the answers in red color represent the ground truth of the given query.

Datasets ICEWS14 ICEWS05-15 ICEWS18

Ratio of known facts 3.89% 5.67% 5.87%

Table 5: Known facts checking results.

comparing the answers of CoH with the graph-399

based model, we can see that CoH can infer the400

correct answer more accurately in some scenarios.401

We analyze the potential reason is that the semantic402

reasoning capability can allow LLMs to identify403

crucial historical information.404

For example, from the numerous histories in405

query 1, LLMs can more precisely infer facts406

involved with relations like “Fight with small407

arms”, “Charge with legal action”, or “Make408

an appeal” that are more likely to result in the409

occurrence of “Express intent to meet or nego-410

tiate” based on semantic comprehension. For411

query 2, understanding the semantic meaning dif-412

ferences and correlations between entity “Yemen”413

and “Armed_Rebel_(Yemen)” is a very crucial clue.414

However, the two entities are just regarded as two415

different IDs in graph-based models, and avail-416

able histories for query 2 are too limited for them417

to aggregate abundant information. In this case,418

the semantic reasoning characteristics of CoH may419

be more advantageous. Consequently, LLMs ex-420

hibit semantic comprehension capability, while the421

graph-based models possess a powerful ability to422

capture structural information. Thus, the reasoning423

capability of CoH based on LLMs may potentially424

complement the reasoning performed by graph-425

based models in certain scenarios.426

Model
ICEWS14 ICEWS18 ICEWS05-15

Hit@1 Hit@10 Hit@1 Hit@10 Hit@1 Hit@10

Anon-CoH 17.00 48.18 13.81 38.39 23.21 51.62
CoH 24.2 51.21 16.81 42.68 25.61 59.58

Table 6: Anonymization experimental results.

4.5 Analysis of Data Leakage 427

Due to the absence of publicly disclosed temporal 428

horizons for the pre-trained data of Mixtral-8x7B 429

(Jiang et al., 2024), we consider whether this LLM 430

may have covered some data within ICEWS14, 431

ICEWS18, and ICEWS05-15. To verify this prob- 432

lem, we have a conversation with Mixtral-8x7B to 433

check whether it knows about the facts within the 434

three datasets following (Shi et al., 2023). The ratio 435

of known facts in each dataset is shown in Table 436

5, which indicates that Mixtral-8x7B only knows a 437

very limited subset of facts. And the conversations 438

are presented in Appendix E. To avoid the problem 439

of data leakage, we exclude this subset of known 440

facts from the testing set for CoH reasoning. 441

4.6 Analysis on the effect of Prior Knowledge 442

within LLMs 443

In this section, we conduct experiments to inves- 444

tigate how the prior knowledge within LLMs af- 445

fects the performance of CoH on TKG prediction. 446

Specifically, we anonymize the TKG data by rep- 447

resenting each entity and relation with numerical 448

IDs. The anonymized results of CoH are presented 449

in Table 6, which is denoted as Anon-CoH. From 450

Table 6 we can see that the anonymization leads 451
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Figure 4: Performance of graph-based models plugged
with CoH under different α-values in terms of MRR (%).
The x-axis denotes different α-values, and the y-axis
shows MRR (%) values.
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Figure 5: Performance of graph-based models plugged
with CoH under different w-values in terms of MRR
(%). The x-axis denotes different w-values, and the y-
axis shows MRR (%) values.

to a certain decline in the performance of CoH,452

which indicates that the prior knowledge provides453

a certain degree of assistance for reasoning. Note454

that since the possible leakage data is filtered (Sec-455

tion 4.5), we analyze that the usefulness of prior456

knowledge is primarily attributed to certain static457

semantic knowledge.458

4.7 Sensitivity Analysis459

For converting the indexes outputted by LLM into460

corresponding scores, α determines the score gap461

for different indexes. we conduct two graph-based462

models plugged with CoH when α is in the range463

of {0.1, 0.3, 0.5, 0.7, 0.9}. The results are shown464

in Figure 4, from which we can see that variations465

in the value of α within a very narrow range have a466

minimal impact on the model’s performance.467

Moreover, w determines the score weight for468

fusing the predicted results of graph-based mod-469

els and CoH. we conduct two graph-based models470

plugged with CoH under various w-values. The471

results are shown in Figure 5, from which we can472

see that in the optimal outcomes, the results of473

CoH contribute slightly more to the final score. We474

analyze the underlying reason leading to the afore-475

mentioned observations may be related to the score476

distribution of the graph-based models.477

5 Related works 478

Temporal Knowledge Graph Forecasting with 479

Supervised Models. TKG prediction aims to 480

infer future facts based on given histories. Re- 481

cently, most supervised models (Jin et al., 2020; Li 482

et al., 2021b, 2022; Zhang et al., 2023; Liang et al., 483

2023; Zhang et al., 2023) for TKG prediction adopt 484

GNNs to capture the structural information within 485

TKGs. For further details about supervised models 486

on TKG prediction, please refer to Appendix F. 487

Temporal Knowledge Graph with Large Lan- 488

guage Models (LLMs). Recently, there are sev- 489

eral works (Han et al., 2022; Gao et al., 2023; 490

Xu et al., 2023a) have attempted to leverage Pre- 491

trained Language Models (PLMs) on TKG reason- 492

ing, which mainly input histories in textual form 493

into PLMs to obtain contextualized knowledge em- 494

beddings. Nowadays, with the surge of LLMs, 495

their reasoning capabilities on structural and tempo- 496

ral data are progressively under exploration (Jiang 497

et al., 2023; Jain et al., 2023; Yuan et al., 2023; 498

Aghzal et al., 2023; Wang and Zhao, 2023; Tan 499

et al., 2023). In the area of TKGs, Ding et al. input 500

relations in textual form into LLMs to generate cor- 501

responding descriptions, which are then introduced 502

into embed-based models as a supplement to the 503

semantic information of zero-shot relations (Ding 504

et al., 2023). And Lee et al. take the first attempt 505

on TKG prediction using LLMs, which is the most 506

closely related work to our paper. They covert TKG 507

prediction into an In-context Learning (ICL) prob- 508

lem, providing LLMs with the first-order histories 509

of the query in textual form to predict the possible 510

answers (Lee et al., 2023). 511

6 Conclusion 512

In this paper, we first analyze the shortcomings 513

and challenges of the existing LLM-based model 514

about how to effectively provide comprehensive 515

high-order historical information for LLM. Then 516

we point out that relying solely on the reasoning ca- 517

pability of LLMs is still limited for TKG prediction. 518

To resolve these issues, we propose CoH reasoning 519

which achieves effective utilization of high-order 520

histories for LLM. And we design CoH as play- 521

and-plug, serving to complement and enhance the 522

performance of graph-based models. Extensive ex- 523

perimental results demonstrate the superiority of 524

CoH, and its effectiveness in enhancing the perfor- 525

mance of graph-based models for TKG prediction. 526
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7 Limitations527

In this section, we discuss the limitations of our528

model. Since CoH reasoning is conducted in multi-529

step, LLMs need to be invoked multiple times, re-530

sulting in an increased complexity of the inference531

process. Moreover, we design CoH as play-and-532

plug, fusing its answers with predicted results of533

graph-based models. As this entire process does534

not involve any training, the fusion weight can only535

be controlled by the hyper-parameter w, making it536

impossible to achieve adaptive fusion which can au-537

tomatically learn the weight allocation of the scores538

obtained from CoH for different queries. Moving539

forward, how to design an adaptive fusion strat-540

egy that optimally enhances the performance of541

graph-based models with results of CoH without542

compromising efficiency is worth exploring.543
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A Prompt Examples for CoH Reasoning 728

Taking the query (Government_(Nigeria), 729

Make_an_appeal_or_request, ?, 340) as 730

an example, whose ground-truth is “Mem- 731

ber_of_the_Judiciary_(Nigeria)”. The prompts of 732

CoH reasoning are shown as follows. 733
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Prompt for Step 1

There is a given text consisting of multiple historical events in the form of “{id}:[{subject}
{relation} {object} {time}];”. And there is a query in the form of: “{subject} {relation} {whom}
time}?” If you must infer several {object} that you think may be the answer to the given query
based on the given historical events, what important historical events do you base your predictions
on? Please list the top 30 most important histories and output their {id}.

Here are the given historical events:
0:[Government_(Nigeria) Engage_in_diplomatic_cooperation with Indepen-
dent_Corrupt_Practices_Commission on the 339th day];
1:[Government_(Nigeria) Threaten Education_(Nigeria) on the 338th day];
2:[Government_(Nigeria) Criticize_or_denounce Boko_Haram on the 337th day];
3:[Government_(Nigeria) Threaten Education_(Nigeria) on the 337th day];
4:[Government_(Nigeria) Provide_aid for Citizen_(Nigeria) on the 337th day];
5:[Government_(Nigeria) Make_optimistic_comment on Citizen_(Nigeria) on the 336th day];
6:[Government_(Nigeria) Use_conventional_military_force to Boko_Haram on the 335th day];
7:[Government_(Nigeria) Make_statement to Barack_Obama on the 333rd day];
8:[Government_(Nigeria) Accuse Boko_Haram on the 332nd day];
9:[Government_(Nigeria) Express_intent_to_engage_in_diplomatic_cooperation to Citi-
zen_(Nigeria) on the 332nd day];
10:[Government_(Nigeria) Engage_in_diplomatic_cooperation with Citizen_(Nigeria) on the
331st day];
· · · · · ·

Here is the query:
Government_(Nigeria), Make_an_appeal_or_request to, whom, on the 340th day?

Please only output {id} of the historical events that your inferred answers are based on.
Note that you must only output no more than 30 {id} without any explanation. Please strictly
follow the above demands for output.

Answer:

0, 1, 2, 5, 7, 8, 9, 10, 11, 14, 17, 21, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38,
39, 45, 49, 50, 56

734

11



Prompt for Step 2

You must be able to correctly predict the {whom} of the given query from a given text consisting
of multiple historical events in the form of “{subject} {relation} {object} {time}” and the query in
the form of “{subject} {relation} {whom} {time}?” You must output several {object} that you
think may be the answer to the given query based on the given historical events. Please list all
possible {object} which may be answers to the query. Please assign each answer a serial number
to represent its probability of being the correct answer. Note that answers with a high probability
of being correct should be listed first.

Here are the given historical events:
Government_(Nigeria), Engage_in_diplomatic_cooperation with, Inde-
pendent_Corrupt_Practices_Commission, on the 339th day; Indepen-
dent_Corrupt_Practices_Commission, Arrest_or_detain_or_charge_with_legal_action to,
Citizen_(Nigeria), on the 308th day;
Government_(Nigeria), Criticize_or_denounce, Boko_Haram, on the 337th day; Boko_Haram,
Use_conventional_military_force to, Citizen_(Nigeria), on the 336th day;
Government_(Nigeria), Threaten, Education_(Nigeria), on the 337th day; Education_(Nigeria),
Make_statement to, Muslim_(Nigeria), on the 332nd day;
Government_(Nigeria), Make_optimistic_comment on, Citizen_(Nigeria), on the 336th day;
Citizen_(Nigeria), Make_an_appeal_or_request to, Member_of_the_Judiciary_(Nigeria), on the
331st day;
· · · · · ·

Here is the query:
Government_(Nigeria), Make_an_appeal_or_request to, whom, on the 340th day?

lease list all possible {object} which may be answers (one per line) without explanations.
Note that answers with high probability should be listed first.
For example:
"""
Possible answers:
1. XXX
2. XXX
3. XXX
· · · · · ·
"""
Please strictly follow the above demands for output.

Answer:

1. Citizen_(Nigeria)
2. Education_(Nigeria)
3. Member_of_the_Judiciary_(Nigeria) 4. Barack_Obama
5. Xi_Jinping
6. Boko_Haram
7. Head_of_Government_(Nigeria)
8. Court_Judge_(Nigeria)

735
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Datasets ICEWS14 ICEWS05-15 ICEWS18

# E 6,869 10,094 23,033
# R 230 251 256

# Train 74,845 368,868 373,018
# Valid 8,514 46,302 45,995
# Test 7,371 46,159 49,545

Time gap 24 hours 24 hours 24 hours

Table 7: The statistics of the datasets.

B Datasets736

In this paper, we utilize three representative TKG737

datasets for experimental analysis: ICEWS14738

(García-Durán et al., 2018), ICEWS18 (Jin et al.,739

2019), and ICEWS05-15 (García-Durán et al.,740

2018), all sourced from the Integrated Crisis Early741

Warning System (Boschee et al., 2015), document-742

ing events in 2014, 2018, and from 2005 to 2015,743

respectively. Detailed statistics of the three datasets744

are shown in Table 7.745

C Backbones746

Since CoH is plug-and-play, we plug it into several747

following state-of-the-art TKG reasoning models to748

evaluate the effectiveness of our proposed model.749

• RE-NET (Jin et al., 2020) deals with TKGs as750

KG sequences. RE-NET utilizes the RGCN to751

capture the structural dependencies of entities752

and relations within each KG. Then RNN is753

adopted to associate KGs with different time754

stamps for capturing the temporal dependen-755

cies of entities and relations.756

• RE-GCN (Li et al., 2021b) proposes a re-757

current evolution module based on relational758

GNNs to obtain embeddings that contain dy-759

namic information for entities and relations.760

In particular, RE-GCN designs a static mod-761

ule that utilizes the static properties of entities762

to enrich the embeddings for prediction.763

• TiRGN (Li et al., 2022) utilizes a recurrent764

graph encoder to capture local temporal de-765

pendencies, and designs a history encoder net-766

work to capture global temporal dependencies767

by collecting repeated facts in history. TiRGN768

fuses the obtained local and global temporal769

dependencies for final prediction.770

D Implementation Details771

In this study, we developed CoH using the Py-772

Torch framework (Paszke et al., 2019), integrat-773

ing functionalities from the HuggingFace’s Trans- 774

formers library (Wolf et al., 2019) and the effi- 775

cient LLM inference framework vLLM (Kwon 776

et al., 2023). All experiments were executed on 777

an NVIDIA A100 GPU with AMD EPYC 7763 778

CPU processor. Our experimental setup primar- 779

ily utilized the TheBloke/Mixtral-8x7B-Instruct- 780

v0.1-GPTQ model with a parameter size of 6.07B. 781

This model represents a quantized variant of the 782

Mixtral-8x7B MoE model, employing the GPTQ 783

technique (Frantar et al., 2022) to achieve a bal- 784

anced compromise between computational speed 785

and model performance. Regarding the generation 786

hyper-parameters, we set the Maximum tokens as 787

8000, Top-p sampling as 1, and Temperature as 0. 788

Moreover, the three graph-based TKG prediction 789

models are all implemented with the most optimal 790

hyper-parameters reported in their corresponding 791

papers. Especially, for evaluating CoH on reversed 792

testing sets like graph-based models, we manually 793

process relations in datasets into reversed ones. For 794

example, we reverse “Express intent to cooperate” 795

into “Receive intent to cooperate”, and “threaten” 796

into “be threatened”. For the score fusion module, 797

the hyper-parameter α is set to 0.3 for all datasets. 798

And the weights w of ICEWS14s, ICWES18, and 799

ICEWS05-15 are set to 0.35, 0.45, and 0.35, re- 800

spectively. 801

E Prompt Examples for Data Leakage 802

Analysis 803

To avoid the possible data leakage issue, we directly 804

ask the LLM Mixtral-8x7B regarding the facts con- 805

tained in our used datasets, to check whether it 806

knows the knowledge. And we remove all queries 807

whose answer is “Yes” from the testing set for all 808

three datasets. A few prompt examples are shown 809

as follows. 810

Prompt for Example 1

Do you know the fact that United Arab Emi-
rates reduced or broke diplomatic relations
with Qatar on 2014-12-04?

Answer No.
811
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Prompt for Example 2

Do you know the fact that Police (Egypt)
used tactics of violent repression against
Protesters (Egypt) on 2014-12-02?

Answer Yes.
812

Prompt for Example 3

Do you know the fact that Abdullah Ab-
dullah met at a ‘third’ location with Jens
Stoltenberg on 2014-12-02?

Answer: No.
813

F Related works814

Previous classic methods include GHNN (Han815

et al., 2020) and Know-Evolve (Trivedi et al.,816

2017), which model the temporal information817

within TKGs by temporal point process (TTP).818

And CyGNet (Zhu et al., 2021) proposes a copy-819

generation mechanism to explore patterns among820

repetitive histories. Recently, most supervised mod-821

els (Jin et al., 2020; Li et al., 2021b, 2022; Zhang822

et al., 2023; Liang et al., 2023; Zhang et al., 2023)823

for TKG prediction adopt GNNs to capture the824

structural information within TKGs. Based on825

these, TANGO (Han et al., 2021b) employs Neural826

Ordinary Differential Equations to build up con-827

tinuous temporal information, CENET (Xu et al.,828

2023b) adopts contrastive learning to identify im-829

portant non-historical entities, MetaTKG (Xia et al.,830

2022) explores the evolution patterns of events with831

meta-learning, and xERTE (Han et al., 2021a) pro-832

poses an explainable model by searching sub-graph833

in TKGs. Besides, some works (Sun et al., 2021;834

Li et al., 2021a) search significant paths with rein-835

forcement learning, and Tlogic (Liu et al., 2022)836

extracts paths via temporal logic rules for TKG837

prediction.838
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