

000 001 002 003 004 005 K-PGD: FAST DISCRETE PROJECTED GRADIENT DE- 006 SCENT WITH K-MEANS ACCELERATION ON GPT 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ABSTRACT

Projected Gradient Descent (PGD) is a workhorse for optimization over discrete sets, but with large vocabularies the projection step becomes the runtime bottleneck. We present *K-PGD*, a k -means-accelerated variant that replaces exhaustive projection with a centroid-based shortlist followed by a restricted search. The approach provides simple per-iteration certificates that quantify approximation error and yield convergence guarantees for PGD with approximate projections. Our theory connects cluster geometry to certificate strength and gives iteration bounds under bounded accumulated error. In a GPT-2 token-substitution case study, K-PGD reduces projection cost while preserving attack success and solution quality, showing that clustering can substantially accelerate discrete PGD without compromising rigor.

1 INTRODUCTION

Projected Gradient Descent (PGD) is a cornerstone algorithm for constrained optimization, widely applied in adversarial training (Madry et al., 2019), robust optimization (Ghadimi et al., 2016), and machine learning more broadly. Its effectiveness arises from alternating between gradient descent and a projection step that enforces feasibility. While the convergence theory of PGD is well developed in convex (ber, 1997; Beck & Teboulle, 2009), nonconvex, and stochastic regimes (Schmidt et al., 2011; Davis & Drusvyatskiy, 2018), the projection step remains a computational bottleneck—especially in high-dimensional and discrete domains. This challenge is particularly acute in natural language processing. In adversarial NLP attacks (Alzantot et al., 2018; Ren et al., 2019; Zhao et al., 2018), PGD must project updates onto a discrete vocabulary embedding set with tens of thousands of tokens. Unlike continuous ℓ_p constraints, this projection reduces to a high-dimensional nearest-neighbor search, often more costly than gradient computation itself. For large language models (LLMs), exact projections can be prohibitively expensive, limiting the practicality of PGD.

We address this issue by introducing a k -means envelope acceleration scheme for PGD with discrete projections. The feasible set (e.g., vocabulary embeddings) is partitioned into clusters, each represented by a centroid and radius. These clusters serve as envelopes that bound inner products between the gradient direction and cluster members, allowing efficient screening: only clusters with competitive bounds are searched in detail. This shortlisting mechanism yields substantial runtime reductions. Our framework provides theoretical guarantees. We introduce *δ -proximal certificates*, which quantify the error of approximate projections induced by clustering. These certificates align with the inexact PGD framework (Schmidt et al., 2011), ensuring that accelerated PGD retains descent guarantees. Specifically, we show that the score gap between retained and discarded clusters defines a computable per-step error bound, yielding global convergence with an additive floor tied to clustering quality. This analysis provides, to our knowledge, the first link between k -means clustering theory (Kannan et al., 2004; Awasthi & Sheffet, 2012) and projected gradient methods.

We validate our method on adversarial attacks against GPT-style language models, where projection onto large vocabularies is the primary bottleneck. The results demonstrate that k -means acceleration yields substantial reductions in projection and attack time, while preserving attack success rates. These findings confirm that our approach makes PGD scalable to large discrete domains without sacrificing effectiveness, establishing both practical efficiency and rigorous error control. Our contributions are threefold: (1) We identify projection as the primary bottleneck of PGD in large discrete feasible sets. (2) We propose a k -means acceleration method for PGD with guaranteed cer-

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
tificates ensuring the validity of descent and convergence under inexact projections. (3) We provide theoretical guarantees and empirical validation, showing significant speedups without compromising adversarial success.

2 METHOD

We consider the constrained optimization problem

$$\min_{x \in \mathcal{C}} f(x), \quad \mathcal{C} \subset \mathbb{R}^d, \quad (1)$$

where $f : \mathbb{R}^d \rightarrow \mathbb{R}$ is the loss function, and the set \mathcal{C} encodes some structural constraints. For example, \mathcal{C} is discrete for token embeddings in a language model vocabulary, codewords in quantization, or other large discrete dictionaries. A standard approach to this problem is projected gradient descent (PGD): starting from an initial example x_0 , PGD alternates between an unconstrained gradient step in the continuous space and a projection back onto \mathcal{C} . Concretely, at iteration t , we form the intermediate (unprojected) point

$$u_t = x_t - \eta \nabla f(x_t). \quad (2)$$

and then enforce feasibility by projecting

$$x_{t+1} = \Pi_{\mathcal{C}}(u_t) := \arg \min_{z \in \mathcal{C}} \|z - u_t\|^2, \quad (3)$$

where $\|\cdot\|$ denotes the norm l_2 . The two-step procedure is demonstrated in the Figure 1.

One adversarial attack proposed by Sadrizadeh et al. (2022) on LLMs follows exactly this PGD framework, adapted to the discrete embedding space: the objective f measures classification (or generation) loss for the current input and \mathcal{C} is the set of allowable token embeddings, so the algorithm seeks a feasible perturbation of x_0 that causes misclassification while preserving discreteness. In practice, the projection step is the computational bottleneck. To project an intermediate point u_t back onto the feasible set \mathcal{C} , one must search over the entire vocabulary of size V and compute the similarity (e.g., inner product or Euclidean distance) between u_t and each candidate embedding. This requires $O(Vd)$ similarity evaluations in dimension d at every iteration. For large language models, V can be on the order of hundreds of thousands and d may range from hundreds to thousands, this cost thus renders standard PGD infeasible at scale.

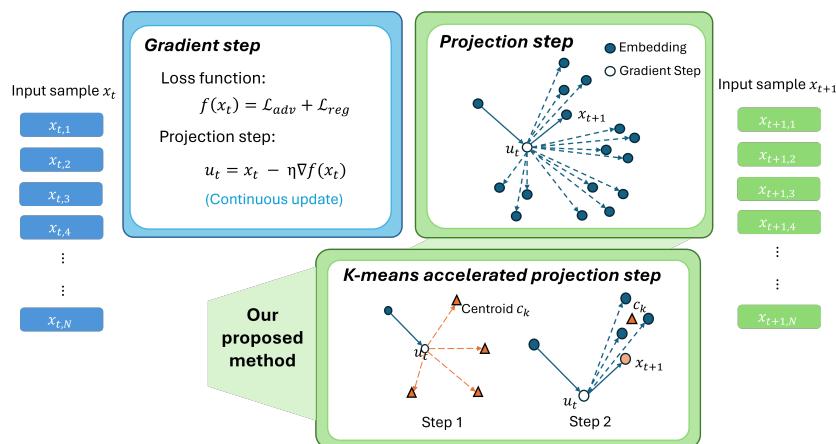


Figure 1: One iteration of projected gradient descent (PGD). **Top (standard PGD):** take a gradient step $u_t := x_t - \eta \nabla f(x_t)$, then project u_t onto the discrete embedding set to obtain x_{t+1} . **Bottom (K-means-accelerated PGD, K-PGD):** replace the full projection with a two-stage k -means procedure—(1) score cluster centroids to build a shortlist, and (2) search only the shortlisted cluster(s) to project and produce x_{t+1} . Blue circles denote embeddings; the hollow circle denotes u_t ; orange triangles denote centroids.

We aim to accelerate the projection step while preserving the effectiveness of PGD and significantly improving its efficiency. The key idea is to approximate the projection by *clustering the feasible*

108 set using spherical k -means. The method consists of two components: (1) an offline preprocessing
 109 stage that clusters that vocabulary embeddings using iterative k -means, and (2) an online projection
 110 step that leverages these clusters to accelerate PGD.
 111

112 **Algorithm 1** Iterative K-means Preprocessing (IKMP)
 113
Require: maxIter: maximum iteration number; $|\mathcal{V}|$: number of embeddings; K : number of clusters;
 114 tolerance $\epsilon > 0$
Ensure: centroids $\{c_1, \dots, c_K\}$, clusters $\{\mathcal{V}_1, \dots, \mathcal{V}_K\}$
 115 1: Initialize K centroids $\{c_k^{(0)}\}$ randomly from \mathcal{V}
 116 2: iter $\leftarrow 0$
 117 3: **while** iter $<$ maxIter **do**
 118 4: Reset all buckets $\{\mathcal{V}_k\}_{k=1}^K$ to empty
 119 5: **for** each embedding $e_i \in \mathcal{V}$ **do**
 120 6: Assign e_i to the nearest centroid by cosine similarity
 121 7: Add e_i to the corresponding bucket
 122 8: **end for**
 123 9: Update each centroid $\hat{c}_k^{(t+1)} = \frac{1}{|\mathcal{V}_k^{(t)}|} \sum_{e_i \in \mathcal{V}_k^{(t)}} e_i$
 124 10: Normalize each centroid $c_k^{(t+1)} = \frac{\hat{c}_k^{(t+1)}}{\|\hat{c}_k^{(t+1)}\|}$
 125 11: iter \leftarrow iter + 1
 126 12: **if** $\max_{1 \leq k \leq K} \|c_k^{(t+1)} - c_k^{(t)}\|_2 \leq \epsilon$ **then**
 127 13: **break**
 128 14: **end if**
 129 15: **end while**
 130 16: **return** final centroids $\{c_k\}$ and clusters $\{\mathcal{V}_k\}$

131
 132
 133
 134
 135 **Iterative K-means Preprocessing.** The preprocessing stage partitions the vocabulary embed-
 136 dings into K coherent clusters using an iterative K -means procedure (Algorithm 1). Let $\mathcal{V} =$
 137 $\{e_1, e_2, \dots, e_V\}$ denote the set of token embeddings, each normalized to unit length ($\|e_v\| = 1$).
 138 We begin by selecting K embeddings from \mathcal{V} randomly to serve as initial centroids $\{c_1^{(0)}, \dots, c_K^{(0)}\}$
 139 (Line 1). At iteration t , each embedding e_i is assigned to the nearest centroid according to cosine
 140 similarity:
 141
$$\text{assign}(e_i) = \arg \max_{1 \leq k \leq K} \langle e_i, c_k^{(t)} \rangle.$$

 142

143 All embeddings assigned to centroid $c_k^{(t)}$ form the cluster $\mathcal{V}_k^{(t)}$ (Line 4-7). Each centroid is then
 144 updated as the arithmetic mean of its assigned embeddings (Line 9):
 145

$$\hat{c}_k^{(t+1)} = \frac{1}{\|\mathcal{V}_k^{(t)}\|} \sum_{e_i \in \mathcal{V}_k^{(t)}} e_i.$$

146 To ensure consistency with the unit-norm embeddings, the updated centroid is projected back to the
 147 unit sphere (Line 10):
 148

$$c_k^{(t+1)} = \frac{\hat{c}_k^{(t+1)}}{\|\hat{c}_k^{(t+1)}\|}.$$

149 Normalization is crucial for two reasons. First, it guarantees the centroid-embedding comparison
 150 remain meaningful under cosine similarity; Second, it ensures that the cluster radius, defined as
 151 $R_k = \max_{e_i \in \mathcal{V}_k} \|e_i - c_k\|$, reflects purely angular deviation within the cluster rather than magnitude
 152 differences. The procedure repeats until either convergence is reached or the maximum number
 153 of iterations is met (Lines 11–13). The final set of normalized centroids $\{c_k\}$ along with their
 154 corresponding clusters $\{\mathcal{V}_k\}$ is returned (Line 16).
 155

156 This clustering step is performed once as a preprocessing stage and is amortized across all PGD
 157 iterations. By structuring the vocabulary into centroid-based groups, we enable the efficient shortlist-
 158 based projection used in K-means–Accelerated PGD (Algorithm 2).
 159

162 **Algorithm 2** K-Means–Accelerated PGD (K-PGD)
163 **Require:** objective f , step size $\eta > 0$, max iters K , centroids $\{c_k\}_{k=1}^K$, clusters $\{\mathcal{V}_k\}_{k=1}^K$, shortlist
164 size M
165 **Ensure:** final iterate x_T
166 1: initialize x_0
167 2: **for** $t = 0, 1, \dots, K - 1$ **do**
168 3: **Gradient step:** $u_t \leftarrow x_t - \eta \nabla f(x_t), \quad \tilde{u}_t \leftarrow \frac{u_t}{\|u_t\|}$
169 4: **Centroid scoring:** $s_k \leftarrow \langle \tilde{u}_t, c_k \rangle \quad \text{for } k = 1, \dots, K$
170 5: **Select top- M clusters:** $S_t \leftarrow \text{TopM}(\{s_k\}_{k=1}^K, M)$
171 6: **Restricted projection:** $x_{t+1} \leftarrow \arg \max_{e \in \cup_{j \in S_t} \mathcal{V}_j} \langle \tilde{u}_t, e \rangle$
172 7: **end for**
173 8: **return** x_{t+1}

182 **K-means-Accelerated PGD (K-PGD).** The K-PGD procedure accelerates projected gradient de-
183 scent by restricting the projection step to a shortlist of candidate clusters.

184 The algorithm begins by initializing the input example x_0 (Line 1). At each iteration t , a gradient
185 descent step is performed in the continuous embedding space:

$$186 \quad u_t = x_t - \eta \nabla f(x_t), \quad \tilde{u}_t = \frac{u_t}{\|u_t\|},$$

187 where u_t is the unconstrained update and \tilde{u}_t is normalized to lie on the unit sphere for cosine-based
188 comparisons (Line 3).

189 Next, similarity scores are computed between \tilde{u}_t and all cluster centroids $\{c_k\}_{k=1}^K$:
190

$$191 \quad s_k = \langle \tilde{u}_t, c_k \rangle, \quad k = 1, \dots, K,$$

192 providing a measure of alignment between the update direction and each cluster (Line 4). Based
193 on these scores, the algorithm selects the top- M clusters with highest similarity values, forming a
194 shortlist S_t (Line 5).

195 Finally, the projection step is restricted to the embeddings in the shortlisted clusters:

$$196 \quad x_{t+1} = \arg \max_{e \in \cup_{j \in S_t} \mathcal{V}_j} \langle \tilde{u}_t, e \rangle,$$

197 which identifies the nearest embedding only among the candidates in the selected clusters (Line 6).
198 This reduces the per-iteration cost from $O(Vd)$ to $O(Kd + (MV/K)d)$, where the first term arises
199 from centroid scoring and the second term corresponds to the restricted exact search.

200 The procedure repeats for at most K iterations or until an adversarial example is found. The final
201 iterate x_T is then returned as output (Lines 8).

202 **Complexity.** Each iteration of the accelerated method requires computing K inner products with
203 centroids, selecting the top- M , and scanning $\sum_{j \in S_t} |\mathcal{V}_j| \approx (MV/K)$ candidates. The resulting
204 complexity is $O(Kd + (MV/K)d)$ per iteration, compared to $O(Vd)$ for the standard PGD pro-
205 jection. For typical settings $M \ll K \ll V$, this yields more than an order-of-magnitude speedup
206 without harming convergence.

212 3 THEORETICAL ANALYSIS

213 In this section, we establish formal guarantees for our approximate projection framework. Section
214 3.2 develops the theoretical foundation by introducing score certificates and proving that they imply

216 Q-certificates, which control the projection error in terms of the δ -proximal condition. This provides
 217 an abstract guarantee: as long as the score gap between missed and kept candidates is bounded, the
 218 approximate projection enjoys the same convergence properties as the exact projection. Section
 219 3.3 then instantiates this guarantee by constructing deterministic certificates from spherical k -means
 220 envelopes. Here, centroids and cluster radii are used to derive computable bounds on inner products,
 221 yielding practical conditions under which the theoretical guarantees hold. Together, these results
 222 show that clustering-based shortlists not only accelerate projection steps but also admit provable
 223 robustness guarantees.

224 **3.1 GENERAL CONVERGENCE GUARANTEES UNDER δ -PROXIMAL PROJECTIONS**

225 Before we present our theoretical results, we make the following assumptions on the loss function f
 226 in equation 2 and the feasible set \mathcal{C} in the optimization equation 3.

227 **Assumption 1** (Smoothness). *The objective $f : \mathbb{R}^d \rightarrow \mathbb{R}$ is differentiable and L -smooth, i.e.,*

$$228 \quad \|\nabla f(x) - \nabla f(y)\| \leq L\|x - y\|, \quad \forall x, y \in \mathbb{R}^d.$$

229 **Assumption 2** (Feasible set). *The feasible region $\mathcal{C} \subset \mathbb{R}^d$ is nonempty. We allow \mathcal{C} to be nonconvex
 230 or even discrete (e.g., a large vocabulary in a language model).*

231 When applying the K-means acceleration, PGD returns an approximate Projection \hat{x}_{t+1} as the minimizer of $\|z - u_t\|^2$ within cluster shortlist S_t . Hereby, we introduce the notion of a δ -proximal
 232 certificate. This definition captures the idea that the approximate projection need not be exact, but
 233 should be close enough to the true projection in terms of the proximal surrogate objective.

234 **Definition 1** (δ -proximal certificate). *A point $\hat{x}_{t+1} \in \mathcal{C}$ satisfies a δ_t -proximal certificate at u_t if*

$$235 \quad \frac{1}{2\eta} \|\hat{x}_{t+1} - u_t\|^2 \leq \min_{z \in \mathcal{C}} \frac{1}{2\eta} \|z - u_t\|^2 + \delta_t. \quad (4)$$

236 Formally, the certificate quantifies how far \hat{x}_{t+1} is from the exact solution of the projection subproblem
 237 to be cleanly propagated into a convergence guarantee. Thus, the δ -prox condition allows us to
 238 bridge between approximate projection and rigorous optimization theory. Equivalently, in terms of
 239 the proximal surrogate

$$240 \quad Q(z; x_t) = f(x_t) + \langle \nabla f(x_t), z - x_t \rangle + \frac{1}{2\eta} \|z - x_t\|^2,$$

241 condition equation 4 means

$$242 \quad Q(\hat{x}_{t+1}; x_t) \leq \min_{z \in \mathcal{C}} Q(z; x_t) + \delta_t.$$

243 Once we have defined δ -proximal certificates, the next step is to understand how they affect the
 244 progress of the PGD iteration. The standard PGD analysis relies on the fact that the projection
 245 enforces a decrease in a local surrogate of the objective. With approximate projections, this decrease
 246 may not hold exactly, but we can show that a relaxed version still applies, which is formally stated
 247 in the following Lemma.

248 **Lemma 1** (Inexact PGD descent, proved in Appendix A.1). *Suppose f is L -smooth and $\eta \leq 1/L$.
 249 If \hat{x}_{t+1} satisfies a δ_t -proximal certificate at u_t , then*

$$250 \quad f(\hat{x}_{t+1}) \leq f(x_t) - \left(\frac{1}{2\eta} - \frac{L}{2} \right) \|\hat{x}_{t+1} - x_t\|^2 + \delta_t.$$

251 Lemma 1 establishes that each update decreases the function value up to a small additive term δ_t ,
 252 which directly reflects the inexactness of the projection. This lemma is the key technical stepping stone:
 253 it ensures that even though we project approximately, the algorithm still makes descent
 254 progress. Without such a result, there would be no way to propagate the approximation error into a
 255 global convergence theorem.

256 **Theorem 1** (Convergence with δ -prox certificates, proved in Appendix A.2). *Let $\bar{\delta} = \frac{1}{T} \sum_{t=0}^{T-1} \delta_t$
 257 be the average projection error. Assume f is L -smooth, $\eta \leq 1/L$, and each step satisfies equation 4.
 258 Then for all $T \geq 1$:*

270 1. **General \mathcal{C} (possibly nonconvex):**

271

$$272 \min_{0 \leq t < T} \|\hat{x}_{t+1} - x_t\|^2 \leq \frac{2\eta}{1 - \eta L} \left(\frac{f(x_0) - f^*}{T} + \bar{\delta} \right).$$

273

274 2. **Convex \mathcal{C} :** Let $G_\eta(x_t) = \frac{1}{\eta}(x_t - \Pi_{\mathcal{C}}(x_t - \eta \nabla f(x_t)))$. Then

275

276

$$277 \min_{0 \leq t < T} \|G_\eta(x_t)\|^2 \leq \frac{2(f(x_0) - f^*)}{\eta T} + \frac{2}{\eta} \bar{\delta}.$$

278

279 Finally, Theorem 1 builds on the descent lemma to show global convergence guarantees for the entire
 280 PGD trajectory. By summing the descent inequality across iterations, we can control the average
 281 stationarity gap in terms of both the iteration count T and the average projection error $\bar{\delta}$. This yields
 282 a natural trade-off: faster but less precise projections (i.e., larger $\bar{\delta}$) still give convergence, but to a
 283 neighborhood whose size is governed by $\bar{\delta}$. Exact projections correspond to $\bar{\delta} = 0$, recovering the
 284 classical PGD guarantee.

285 3.2 HOW THE k -MEANS ENVELOPE YIELDS Q-CERTIFICATES

286

287 To certify the quality of approximate projections, we need a way to reason about all atoms inside
 288 a cluster without checking them individually. The k -means *envelope* provides exactly this: each
 289 cluster \mathcal{V}_k is summarized by a centroid c_k and a radius $R_k = \max_{v \in \mathcal{V}_k} \|e_v - c_k\|$, so that every
 290 atom $e \in \mathcal{V}_k$ lies within R_k of its centroid. This construction (Figure 2) allows us to bound the
 291 inner product $\langle \tilde{u}_t, e \rangle$ with any atom e in the cluster using only the centroid and radius, instead
 292 of enumerating all elements of \mathcal{V}_k . Such bounds are crucial because they let us control the error
 293 incurred when restricting the search to a shortlist of clusters.

294 **Envelope (centroid+radius) bounds.** For any $e \in \mathcal{V}_k$ we have

295

$$296 \langle \tilde{u}_t, e \rangle = \langle \tilde{u}_t, c_k \rangle + \langle \tilde{u}_t, e - c_k \rangle \in [\langle \tilde{u}_t, c_k \rangle - \|e - c_k\|, \langle \tilde{u}_t, c_k \rangle + \|e - c_k\|] \subseteq [\langle \tilde{u}_t, c_k \rangle - R_k, \langle \tilde{u}_t, c_k \rangle + R_k].$$

297 (5)

298 Hence the *best missed score* and the *best kept score* obey

299

$$U_{\text{miss}} := \max_{k \notin S_t} \max_{e \in \mathcal{V}_k} \langle \tilde{u}_t, e \rangle \leq \max_{k \notin S_t} (\langle \tilde{u}_t, c_k \rangle + R_k), \quad (6)$$

300

301

$$L_{\text{keep}} := \max_{j \in S_t} \max_{e \in \mathcal{V}_j} \langle \tilde{u}_t, e \rangle \geq \max_{j \in S_t} (\langle \tilde{u}_t, c_j \rangle - R_j). \quad (7)$$

302

303 Define the *score certificate*

304

$$305 \varepsilon_t^{\text{cert}} := [U_{\text{miss}} - L_{\text{keep}}]_+ = \max \left\{ \max_{k \notin S_t} (\langle \tilde{u}_t, c_k \rangle + R_k) - \max_{j \in S_t} (\langle \tilde{u}_t, c_j \rangle - R_j), 0 \right\}. \quad (8)$$

306

307 **Lemma 2** (Envelope \Rightarrow score gap certificate, proved in Appendix A.1). Let $e^* \in \arg \max_{e \in \mathcal{C}} \langle \tilde{u}_t, e \rangle$
 308 and let \hat{e}_t be the best element found inside the shortlist. Then

309

$$\langle \tilde{u}_t, e^* \rangle - \langle \tilde{u}_t, \hat{e}_t \rangle \leq \varepsilon_t^{\text{cert}}.$$

310

311 Lemma 2 ensures that the best missed atom cannot outperform the best kept atom by more than
 312 $\varepsilon_t^{\text{cert}}$. This turns per-cluster envelope bounds into a global guarantee on the quality of the shortlist.
 313 The next step is to show that such a score gap directly controls the δ -prox error in the projection
 314 subproblem.

315 **Theorem 2** (Score certificate \Rightarrow Q-certificate, proved in Appendix A.3). Assume $\|e\| = 1$ for all
 316 $e \in \mathcal{C}$. Let $e^* \in \arg \max_{e \in \mathcal{C}} \langle \tilde{u}_t, e \rangle$ (equivalently the exact projection of u_t onto \mathcal{C}), and let \hat{e}_t be
 317 the shortlist maximizer. Then the approximate projection $\hat{x}_{t+1} := \hat{e}_t$ satisfies the δ -prox condition
 318 equation 4 with

319

$$320 \delta_t = \frac{\|u_t\|}{\eta} \varepsilon_t^{\text{cert}}. \quad (9)$$

321

322 Theorem 2 upgrades the score gap guarantee into a full Q-certificate: if the shortlist preserves near-
 323 optimality in terms of inner products, then the resulting approximate projection enjoys a bounded
 324 δ -prox error. This step bridges local cluster-based control to the global convergence analysis in the
 325 next section.

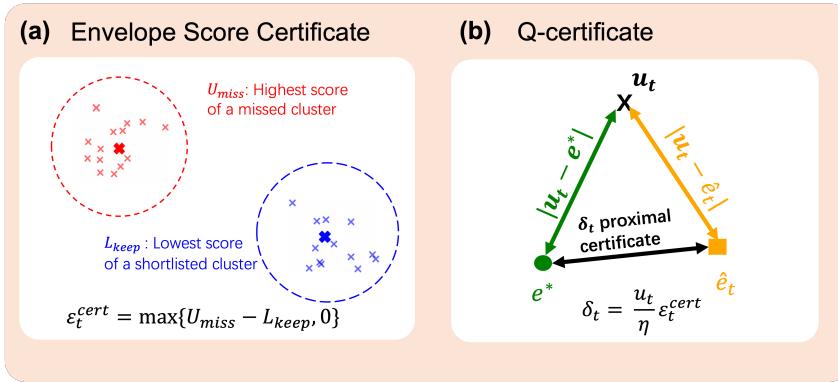


Figure 2: (a) The score gap is the difference between the best possible score from a missed cluster and the best guaranteed score from a kept cluster. (b) The exact projection e^* (green) and approximate projection \hat{e}_t (orange) yield different distances to the gradient step u_t (black). Then the score certificate implies the Q-certificate, where the inner product gap between e^* and \hat{e}_t is bounded by $\varepsilon_t^{\text{cert}}$.

3.3 CONVERGENCE TIME WITH ACCUMULATED CERTIFICATE ERROR

We now establish convergence guarantees for our method under accumulated certificate error. The results show that approximate projections guided by certificates achieve the same asymptotic rate as exact PGD, up to an additive error floor.

Theorem 3 (Convergence with cluster-based certificates, proved in Appendix A.4). *Suppose f is L -smooth and $\eta \leq 1/L$. At each iteration, the approximate projection is computed using the k -means shortlist with envelope bounds. Then after T iterations,*

$$\min_{0 \leq t < T} \|\hat{x}_{t+1} - x_t\|^2 \leq \frac{2\eta}{1 - \eta L} \left(\frac{f(x_0) - f^*}{T} + \bar{\delta}_T \right), \quad \bar{\delta}_T = \frac{1}{T} \sum_{t=0}^{T-1} \delta_t, \quad \delta_t = \frac{\|u_t\|}{\eta} \varepsilon_t^{\text{cert}}.$$

Theorem 3 shows that accelerated PGD converges at the same $O(1/T)$ rate as exact PGD, up to an additive error floor determined by the average certificate gap. If the certificate error vanishes ($\varepsilon_t^{\text{cert}} = 0$), we recover the standard PGD guarantee.

Theorem 4 (Convergence time with accumulated error, proved in Appendix A.5). *Assume $\eta \leq 1/L$ and let $\bar{\Delta}$ be any bound such that $\bar{\delta}_T \leq \bar{\Delta}$ for all T . If*

$$\varepsilon^2 > \frac{2\eta}{1 - \eta L} \bar{\Delta},$$

then the number of iterations required to reach accuracy ε is bounded by

$$T \geq \frac{f(x_0) - f^*}{\frac{1}{1 - \eta L} \frac{\varepsilon^2}{2\eta} - \bar{\Delta}}.$$

Theorem 4 refines Theorem 3 by quantifying the iteration complexity in terms of ε . The bound highlights the role of $\bar{\Delta}$ as a *floor of approximation*: when $\bar{\Delta}$ is small, the usual $O(1/T)$ behavior dominates, while nonzero $\bar{\Delta}$ slows progress but still ensures convergence to an ε -ball.

4 EXPERIMENTS AND RESULTS

Settings and Datasets. We evaluate both the original PGD attack and the IKMP-Accelerated PGD attack to GPT-2 model in text classification task on three widely used benchmark datasets: Yelp Reviews Datasets (2025), IMDB by Maas et al. (2011), and SNLI Bowman et al. (2015). The Yelp Review dataset contains user-generated business reviews with associated star ratings, providing rich sentiment-oriented text commonly used for sentiment classification tasks. The IMDB dataset

Algorithm	Initial K	Token Error Rate (TER)	Avg Cosine Sim (ACS)	Success Attack Rate (SAR)	Attack Time
PGD	10	0.078 \pm 0.012	0.423 \pm 0.0123	0.615 \pm 0.017	0.145 \pm 0.0337
IKMP + PGD	10	0.182 \pm 0.0097 \uparrow	0.487 \pm 0.0092 \uparrow	0.855 \pm 0.023 \uparrow	0.070 \pm 0.039 \downarrow
PGD	11	0.086 \pm 0.013	0.427 \pm 0.0135	0.620 \pm 0.021	0.705 \pm 0.0624
IKMP + PGD	11	0.184 \pm 0.0083 \uparrow	0.496 \pm 0.0101 \uparrow	0.865 \pm 0.012 \uparrow	0.110 \pm 0.031 \downarrow
PGD	12	0.115 \pm 0.008	0.432 \pm 0.00921	0.660 \pm 0.020	0.669 \pm 0.0529
IKMP + PGD	12	0.166 \pm 0.0132 \uparrow	0.495 \pm 0.0122 \uparrow	0.850 \pm 0.014 \uparrow	0.100 \pm 0.0219 \downarrow
PGD	13	0.175 \pm 0.013	0.446 \pm 0.0118	0.720 \pm 0.018	0.108 \pm 0.0428
IKMP + PGD	13	0.162 \pm 0.0082 \downarrow	0.506 \pm 0.0092 \uparrow	0.880 \pm 0.015 \uparrow	0.227 \pm 0.031 \uparrow
PGD	14	0.117 \pm 0.0074	0.441 \pm 0.0123	0.665 \pm 0.017	0.093 \pm 0.0418
IKMP + PGD	14	0.158 \pm 0.00926 \uparrow	0.515 \pm 0.0101 \uparrow	0.890 \pm 0.018 \uparrow	0.094 \pm 0.0421 \uparrow
PGD	15	0.223 \pm 0.009	0.471 \pm 0.0107	0.815 \pm 0.020	0.690 \pm 0.0547
IKMP + PGD	15	0.147 \pm 0.0083 \downarrow	0.535 \pm 0.0106 \uparrow	0.915 \pm 0.019 \uparrow	0.536 \pm 0.0322 \downarrow
PGD	16	0.219 \pm 0.005	0.473 \pm 0.0108	0.840 \pm 0.018	0.177 \pm 0.0842
IKMP + PGD	16	0.154 \pm 0.0092 \downarrow	0.538 \pm 0.0091 \uparrow	0.935 \pm 0.021 \uparrow	0.750 \pm 0.0428 \uparrow
PGD	17	0.229 \pm 0.002	0.491 \pm 0.0121	0.890 \pm 0.016	0.490 \pm 0.0391
IKMP + PGD	17	0.164 \pm 0.00831 \downarrow	0.534 \pm 0.0127 \uparrow	0.935 \pm 0.021 \uparrow	0.102 \pm 0.0391 \downarrow
PGD	18	0.213 \pm 0.003	0.506 \pm 0.0116	0.905 \pm 0.022	0.374 \pm 0.0284
IKMP + PGD	18	0.154 \pm 0.0104 \downarrow	0.540 \pm 0.0130 \uparrow	0.940 \pm 0.018 \uparrow	0.354 \pm 0.0303 \downarrow
PGD	19	0.210 \pm 0.0065	0.516 \pm 0.0130	0.910 \pm 0.009	0.260 \pm 0.0472
IKMP + PGD	19	0.155 \pm 0.0091 \downarrow	0.546 \pm 0.0116 \uparrow	0.965 \pm 0.017 \uparrow	0.562 \pm 0.045 \uparrow
PGD	20	0.189 \pm 0.0048	0.522 \pm 0.0134	0.930 \pm 0.013	1.135 \pm 0.0328
IKMP + PGD	20	0.140 \pm 0.0107 \downarrow	0.555 \pm 0.0123 \uparrow	0.965 \pm 0.012 \uparrow	1.109 \pm 0.0425 \downarrow

Table 1: Results of PGD and IKMP+PGD attacks for $K = 10$ to 20. The table reports token error rate (TER), average cosine similarity (ACS), success attack rate (SAR), and attack time. For each K , the IKMP+PGD entry includes an arrow indicating its trend relative to PGD at the same K (\uparrow greater, \downarrow smaller).

consists of 50,000 movie reviews labeled for binary sentiment (positive vs. negative), balanced across training and test splits, making it a standard benchmark for sentiment analysis and adversarial robustness evaluation. The Stanford Natural Language Inference (SNLI) dataset includes 570,000 human-annotated sentence pairs labeled as entailment, contradiction, or neutral, and serves as a key benchmark for natural language inference under adversarial perturbations.

We evaluate our proposed method under a range of hyperparameter and initialization settings. The initial number of clusters is denoted as 2^K . The hyperparameter α controls the step size scaling in the projected gradient updates, balancing progress along the adversarial direction with stability of the update. We evaluate $\alpha \in \{10, 8, 5, 2\}$ in all experiments. To ensure experimental robustness across domains, we run experiments on three datasets: (1) a subset of 1,000 sentences from the YELP Review corpus (sentiment domain), (2) 1,000 sentences from the AG News dataset (topic classification), and (3) 1,000 sentences from the IMDB dataset (longer-form reviews). For all datasets, we report sentence-level results with K varying from 10 to 20 in increments of 1. For every K we conduct 10 independent, randomized trials.

Evaluation metrics. We compare the proposed IKMP+PGD attack against the standard PGD attack baseline using the following metrics: (i) **Attack Time** $T = \frac{\text{Total runtime}}{\text{Number of iterations}}$. The average runtime per PGD iteration, measured in seconds and calculated as (ii) **Average Cosine Similarity** $\text{ACS} = \frac{1}{N} \sum_{i=1}^N \frac{\langle x_i, v_i \rangle}{\|x_i\| \|v_i\|}$. The average cosine similarity between the attacked embedding x_i and the clean embedding v_i . (iii) **Successful Attack Rate** $\text{SAR} = \frac{\#\{\text{successful attacks}\}}{\#\{\text{total runs}\}}$. The fraction of runs in which accelerated PGD successfully finds an adversarial example. (iv) **Token Error Rate** $\text{TER} = \frac{\#\text{Tokens changed}}{\#\text{Tokens}}$. The proportion of tokens in the original sequence that are modified by the attack, thereby measuring the overall extent of perturbation. For each metric (TER, ACS, SAR, and attack time), we highlight improvements relative to PGD. Entries with smaller TER, larger ACS, larger SAR, or reduced attack time are marked in blue.

Results. Overall, our results show that IKMP+PGD achieves consistently higher ACS, reduced TER, and improved SAR compared to standard PGD, while also reducing average attack time sig-

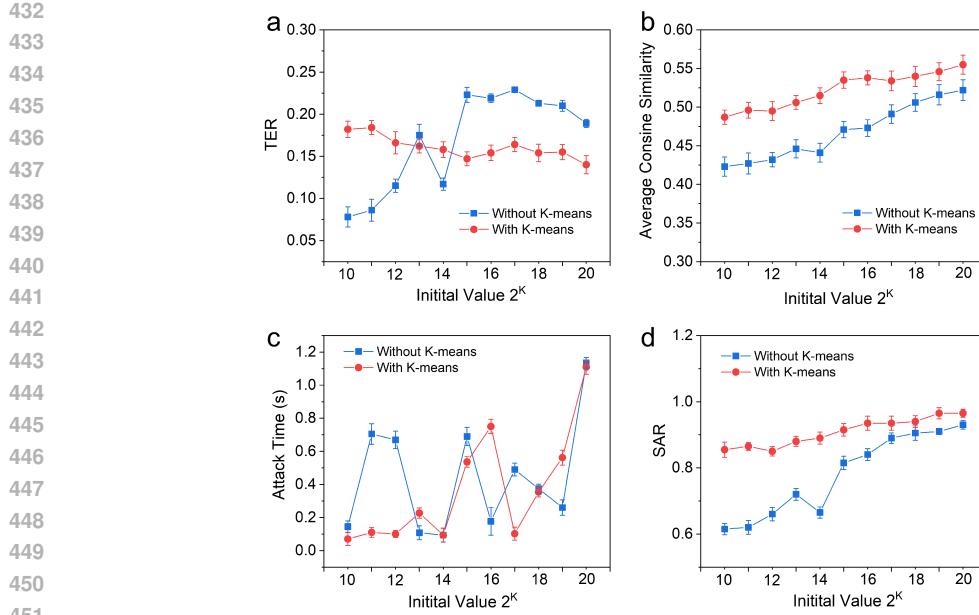


Figure 3: Evaluation of IKMP+PGD (with K-means, red) and standard PGD (without K-means, blue) across different initial values 2^K . (a) TER, (b) ACS, (c) Attack Time per sample (s), and (d) SAR. Each curve shows the mean value across runs, with error bars denoting the standard deviation.

This demonstrates that clustering-based initialization provides both efficiency and robustness gains. Detailed numerical comparisons are presented in Tables 1. The results in Figure 3 demonstrate consistent improvements when K-means clustering is integrated into PGD. In subplot (a), token error rate (TER) is substantially lower with K-means across most initial values, showing greater stability and less variance. Subplot (b) shows that average cosine similarity (ACS) is consistently higher with K-means, indicating that updates are more aligned with the clean embeddings. In subplot (c), attack time is generally reduced or comparable when using K-means, with especially noticeable improvements at lower values of K . Finally, subplot (d) illustrates that the successful attack rate (SAR) is consistently higher for K-means across all initializations, confirming the robustness advantage of clustering-based initialization. Collectively, these plots indicate that the proposed IKMP+PGD approach yields better performance, efficiency, and stability than standard PGD.

5 DISCUSSION

We proposed K-PGD, a clustering-augmented variant of projected gradient descent, which accelerates adversarial search through approximate projection while preserving convergence properties. Theoretical analysis established error accumulation bounds and introduced the Q-certificate assumption, providing conditions under which robustness guarantees hold. Empirically, evaluations on Yelp, IMDB, and SNLI demonstrated consistent reductions in Token Error Rate and improvements in Average Cosine Similarity and Success Attack Rate, confirming both the efficiency and effectiveness of the proposed framework. A limitation of our approach is that the runtime improvements are not uniform across all cluster sizes. For certain number of clusters, the overhead of managing clusters offsets the pruning benefits, leading to no reduction in attack time. This highlights the sensitivity of efficiency gains to the choice of K .

486 REFERENCES
487

488 Nonlinear programming. *Journal of the Operational Research Society*, 48(3):334–334, 1997.

489 Moustafa Alzantot, Yash Sharma, Ahmed Elgohary, Bo-Jhang Ho, Mani Srivastava, and Kai-Wei
490 Chang. Generating natural language adversarial examples, 2018. URL <https://arxiv.org/abs/1804.07998>.

491

492 Pranjal Awasthi and Or Sheffet. Improved spectral-norm bounds for clustering, 2012. URL <https://arxiv.org/abs/1206.3204>.

493

494

495 Amir Beck and Marc Teboulle. Fast gradient-based algorithms for constrained total variation image
496 denoising and deblurring problems. *IEEE transactions on image processing*, 18(11):2419–2434,
497 2009.

498

499 Samuel R Bowman, Gabor Angeli, Christopher Potts, and Christopher D Manning. A large anno-
500 tated corpus for learning natural language inference. *arXiv preprint arXiv:1508.05326*, 2015.

501 Kaggle Datasets. Yelp dataset. <https://www.kaggle.com/datasets/yelp-dataset/yelp-dataset>, 2025. Accessed: 2025-09-24.

502

503 Damek Davis and Dmitriy Drusvyatskiy. Stochastic model-based minimization of weakly convex
504 functions, 2018. URL <https://arxiv.org/abs/1803.06523>.

505

506 Saeed Ghadimi, Guanghui Lan, and Hongchao Zhang. Mini-batch stochastic approximation meth-
507 ods for nonconvex stochastic composite optimization. *Mathematical Programming*, 155(1):267–
508 305, 2016.

509

510 Ravi Kannan, Santosh Vempala, and Adrian Vetta. On clusterings: Good, bad and spectral. *Journal
511 of the ACM (JACM)*, 51(3):497–515, 2004.

512

513 Andrew Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y Ng, and Christopher Potts.
514 Learning word vectors for sentiment analysis. In *Proceedings of the 49th annual meeting of the
515 association for computational linguistics: Human language technologies*, pp. 142–150, 2011.

516

517 Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
518 Towards deep learning models resistant to adversarial attacks, 2019. URL <https://arxiv.org/abs/1706.06083>.

519

520 Shuhuai Ren, Yihe Deng, Kun He, and Wanxiang Che. Generating natural language adversarial ex-
521 amples through probability weighted word saliency. In Anna Korhonen, David Traum, and Lluís
522 Màrquez (eds.), *Proceedings of the 57th Annual Meeting of the Association for Computational
523 Linguistics*, pp. 1085–1097, Florence, Italy, July 2019. Association for Computational Linguis-
524 tics. doi: 10.18653/v1/P19-1103. URL <https://aclanthology.org/P19-1103/>.

525

526 Sahar Sadrizadeh, Ljiljana Dolamic, and Pascal Frossard. Block-sparse adversarial attack to fool
527 transformer-based text classifiers, 2022. URL <https://arxiv.org/abs/2203.05948>.

528

529 Mark Schmidt, Nicolas Le Roux, and Francis Bach. Convergence rates of inexact proximal-gradient
530 methods for convex optimization, 2011. URL <https://arxiv.org/abs/1109.2415>.

531

532 Zhengli Zhao, Dheeru Dua, and Sameer Singh. Generating natural adversarial examples, 2018. URL
533 <https://arxiv.org/abs/1710.11342>.

534

535

536

537

538

539