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ABSTRACT

Projected Gradient Descent (PGD) is a workhorse for optimization over discrete
sets, but with large vocabularies the projection step becomes the runtime bottle-
neck. We present K-PGD, a k-means–accelerated variant that replaces exhaustive
projection with a centroid-based shortlist followed by a restricted search. The ap-
proach provides simple per-iteration certificates that quantify approximation error
and yield convergence guarantees for PGD with approximate projections. Our
theory connects cluster geometry to certificate strength and gives iteration bounds
under bounded accumulated error. In a GPT-2 token-substitution case study, K-
PGD reduces projection cost while preserving attack success and solution quality,
showing that clustering can substantially accelerate discrete PGD without com-
promising rigor.

1 INTRODUCTION

Projected Gradient Descent (PGD) is a cornerstone algorithm for constrained optimization, widely
applied in adversarial training (Madry et al., 2019), robust optimization (Ghadimi et al., 2016), and
machine learning more broadly. Its effectiveness arises from alternating between gradient descent
and a projection step that enforces feasibility. While the convergence theory of PGD is well devel-
oped in convex (ber, 1997; Beck & Teboulle, 2009), nonconvex, and stochastic regimes (Schmidt
et al., 2011; Davis & Drusvyatskiy, 2018), the projection step remains a computational bottle-
neck—especially in high-dimensional and discrete domains. This challenge is particularly acute
in natural language processing. In adversarial NLP attacks (Alzantot et al., 2018; Ren et al., 2019;
Zhao et al., 2018), PGD must project updates onto a discrete vocabulary embedding set with tens of
thousands of tokens. Unlike continuous ℓp constraints, this projection reduces to a high-dimensional
nearest-neighbor search, often more costly than gradient computation itself. For large language
models (LLMs), exact projections can be prohibitively expensive, limiting the practicality of PGD.

We address this issue by introducing a k-means envelope acceleration scheme for PGD with dis-
crete projections. The feasible set (e.g., vocabulary embeddings) is partitioned into clusters, each
represented by a centroid and radius. These clusters serve as envelopes that bound inner products
between the gradient direction and cluster members, allowing efficient screening: only clusters with
competitive bounds are searched in detail. This shortlisting mechanism yields substantial runtime
reductions. Our framework provides theoretical guarantees. We introduce δ-proximal certificates,
which quantify the error of approximate projections induced by clustering. These certificates align
with the inexact PGD framework (Schmidt et al., 2011), ensuring that accelerated PGD retains de-
scent guarantees. Specifically, we show that the score gap between retained and discarded clusters
defines a computable per-step error bound, yielding global convergence with an additive floor tied
to clustering quality. This analysis provides, to our knowledge, the first link between k-means clus-
tering theory (Kannan et al., 2004; Awasthi & Sheffet, 2012) and projected gradient methods.

We validate our method on adversarial attacks against GPT-style language models, where projection
onto large vocabularies is the primary bottleneck. The results demonstrate that k-means acceler-
ation yields substantial reductions in projection and attack time, while preserving attack success
rates. These findings confirm that our approach makes PGD scalable to large discrete domains with-
out sacrificing effectiveness, establishing both practical efficiency and rigorous error control. Our
contributions are threefold: (1) We identify projection as the primary bottleneck of PGD in large
discrete feasible sets. (2) We propose a k-means acceleration method for PGD with guaranteed cer-
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tificates ensuring the validity of descent and convergence under inexact projections. (3) We provide
theoretical guarantees and empirical validation, showing significant speedups without compromising
adversarial success.

2 METHOD

We consider the constrained optimization problem

min
x∈C

f(x), C ⊂ Rd, (1)

where f : Rd → R is the loss function, and the set C encodes some structural constraints. For exam-
ple. C is discrete for token embeddings in a language model vocabulary, codewords in quantization,
or other large discrete dictionaries. A standard approach to this problem is projected gradient de-
scent (PGD): starting from an initial example x0, PGD alternates between an unconstrained gradient
step in the continuous space and a projection back onto C. Concretely, at iteration t, we form the
intermediate (unprojected) point

ut = xt − η∇f(xt). (2)
and then enforce feasibility by projecting

xt+1 = ΠC(ut) := argmin
z∈C
∥z − ut∥2, (3)

where ∥ · ∥ denotes the norm l2. The two-step procedure is demonstrated in the Figure 1.

One adversarial attack proposed by Sadrizadeh et al. (2022) on LLMs follows exactly this PGD
framework, adapted to the discrete embedding space: the objective f measures classification (or
generation) loss for the current input and C is the set of allowable token embeddings, so the algo-
rithm seeks a feasible perturbation of x0 that causes misclassification while preserving discreteness.
In practice, the projection step is the computational bottleneck. To project an intermediate point
ut back onto the feasible set C, one must search over the entire vocabulary of size V and compute
the similarity (e.g., inner product or Euclidean distance) between ut and each candidate embedding.
This requires O(V d) similarity evaluations in dimension d at every iteration. For large language
models, V can be on the order of hundreds of thousands and d may range from hundreds to thou-
sands, this cost thus renders standard PGD infeasible at scale.

Figure 1: One iteration of projected gradient descent (PGD). Top (standard PGD): take a gradient
step ut := xt − η∇f(xt), then project ut onto the discrete embedding set to obtain xt+1. Bottom
(K-means–accelerated PGD, K-PGD): replace the full projection with a two-stage k-means pro-
cedure—(1) score cluster centroids to build a shortlist, and (2) search only the shortlisted cluster(s)
to project and produce xt+1. Blue circles denote embeddings; the hollow circle denotes ut; orange
triangles denote centroids.

We aim to accelerate the projection step while preserving the effectiveness of PGD and significantly
improving its efficiency. The key idea is to approximate the projection by clustering the feasible
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set using spherical k-means. The method consists of two components: (1) an offline preprocessing
stage that clusters that vocabulary embeddings using iterative k-means, and (2) an online projection
step that leverages these clusters to accelerate PGD.

Algorithm 1 Iterative K-means Preprocessing (IKMP)
Require: maxIter: maximum iteration number; |V|: number of embeddings; K: number of clusters;

tolerance ϵ > 0
Ensure: centroids {c1, . . . , cK}, clusters {V1, . . . ,VK}

1: Initialize K centroids {c(0)k } randomly from V
2: iter← 0
3: while iter < maxIter do
4: Reset all buckets {Vk}Kk=1 to empty
5: for each embedding ei ∈ V do
6: Assign ei to the nearest centroid by cosine similarity
7: Add ei to the corresponding bucket
8: end for
9: Update each centroid ĉ

(t+1)
k = 1

|V(t)
k |

∑
ei∈V(t)

k

ei

10: Normalize each centroid c
(t+1)
k =

ĉ
(t+1)
k

∥ĉ(t+1)
k ∥

11: iter← iter + 1
12: if max1≤k≤K ∥c(t+1)

k − c
(t)
k ∥2 ≤ ϵ then

13: break
14: end if
15: end while
16: return final centroids {ck} and clusters {Vk}

Iterative K-means Preprocessing. The preprocessing stage partitions the vocabulary embed-
dings into K coherent clusters using an iterative K-means procedure (Algorithm 1). Let V =
{e1, e2, . . . , eV } denote the set of token embeddings, each normalized to unit length (∥ev∥ = 1).
We begin by selecting K embeddings from V randomly to serve as initial centroids {c(0)1 , . . . , c

(0)
K }

(Line 1). At iteration t, each embedding ei is assigned to the nearest centoird according to cosine
similarity:

assign(ei) = arg max
1≤k≤K

⟨ei, c(t)k ⟩.

All embeddings assigned to centroid c
(t)
k form the cluster V(t)

k (Line 4-7). Each centroid is then
updated as the arithmetic mean of its assigned embeddings (Line 9):

ĉ
(t+1)
k =

1

∥V(t)
k ∥

∑
ei∈V(t)

k

ei.

To ensure consistency with the unit-norm embeddings, the updated centroid is projected back to the
unit sphere (Line 10):

c
(t+1)
k =

ĉ
(t+1)
k

∥ĉ(t+1)
k ∥

.

Normalization is crucial for two reasons. First, it guarantees the centroid-embedding comparison
remain meaningful under cosine similarity; Second, it ensures that the cluster radius, defined as
Rk = maxei∈Vk

∥ei−ck∥, reflects purely angular deviation within the cluster rather than magnitude
differences. The procedure repeats until either convergence is reached or the maximum number
of iterations is met (Lines 11–13). The final set of normalized centroids {ck} along with their
corresponding clusters {Vk} is returned (Line 16).

This clustering step is performed once as a preprocessing stage and is amortized across all PGD
iterations. By structuring the vocabulary into centroid-based groups, we enable the efficient shortlist-
based projection used in K-means–Accelerated PGD (Algorithm 2).
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Algorithm 2 K-Means–Accelerated PGD (K-PGD)
Require: objective f , step size η > 0, max iters K, centroids {ck}Kk=1, clusters {Vk}Kk=1, shortlist

size M
Ensure: final iterate xT

1: initialize x0

2: for t = 0, 1, . . . ,K − 1 do
3: Gradient step:

ut ← xt − η∇f(xt), ũt ←
ut

∥ut∥
4: Centroid scoring:

sk ← ⟨ũt, ck⟩ for k = 1, . . . ,K

5: Select top-M clusters:
St ← TopM

(
{sk}Kk=1, M

)
6: Restricted projection:

xt+1 ← arg max
e∈∪j∈StVj

⟨ũt, e⟩

7: end for
8: return xt+1

K-means-Accelerated PGD (K-PGD). The K-PGD procedure accelerates projected gradient de-
scent by restricting the projection step to a shortlist of candidate clusters.

The algorithm begins by initializing the input example x0 (Line 1). At each iteration t, a gradient
descent step is performed in the continuous embedding space:

ut = xt − η∇f(xt), ũt =
ut

∥ut∥
,

where ut is the unconstrained update and ũt is normalized to lie on the unit sphere for cosine-based
comparisons (Line 3).

Next, similarity scores are computed between ũt and all cluster centroids {ck}Kk=1:

sk = ⟨ũt, ck⟩, k = 1, . . . ,K,

providing a measure of alignment between the update direction and each cluster (Line 4). Based
on these scores, the algorithm selects the top-M clusters with highest similarity values, forming a
shortlist St (Line 5).

Finally, the projection step is restricted to the embeddings in the shortlisted clusters:

xt+1 = arg max
e∈∪j∈StVj

⟨ũt, e⟩,

which identifies the nearest embedding only among the candidates in the selected clusters (Line 6).
This reduces the per-iteration cost from O(V d) to O(Kd+ (MV/K)d), where the first term arises
from centroid scoring and the second term corresponds to the restricted exact search.

The procedure repeats for at most K iterations or until an adversarial example is found. The final
iterate xT is then returned as output (Lines 8).

Complexity. Each iteration of the accelerated method requires computing K inner products with
centroids, selecting the top-M , and scanning

∑
j∈St
|Vj | ≈ (MV/K) candidates. The resulting

complexity is O(Kd+ (MV/K)d) per iteration, compared to O(V d) for the standard PGD pro-
jection. For typical settings M ≪ K ≪ V , this yields more than an order-of-magnitude speedup
without harming convergence.

3 THEORETICAL ANALYSIS

In this section, we establish formal guarantees for our approximate projection framework. Section
3.2 develops the theoretical foundation by introducing score certificates and proving that they imply
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Q-certificates, which control the projection error in terms of the δ-proximal condition. This provides
an abstract guarantee: as long as the score gap between missed and kept candidates is bounded, the
approximate projection enjoys the same convergence properties as the exact projection. Section
3.3 then instantiates this guarantee by constructing deterministic certificates from spherical k-means
envelopes. Here, centroids and cluster radii are used to derive computable bounds on inner products,
yielding practical conditions under which the theoretical guarantees hold. Together, these results
show that clustering-based shortlists not only accelerate projection steps but also admit provable
robustness guarantees.

3.1 GENERAL CONVERGENCE GUARANTEES UNDER δ-PROXIMAL PROJECTIONS

Before we present our theoretical results, we make the following assumptions on the loss function f
in equation 2 and the feasible set C in the optimization equation 3.
Assumption 1 (Smoothness). The objective f : Rd → R is differentiable and L-smooth, i.e.,

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥, ∀x, y ∈ Rd.

Assumption 2 (Feasible set). The feasible region C ⊂ Rd is nonempty. We allow C to be nonconvex
or even discrete (e.g., a large vocabulary in a language model).

When applying the K-means acceleration, PGD returns an approximate Projection x̂t+1 as the min-
imizer of ∥z − ut∥2 within cluster shortlist St. Hereby, we introduce the notion of a δ-proximal
certificate. This definition captures the idea that the approximate projection need not be exact, but
should be close enough to the true projection in terms of the proximal surrogate objective.
Definition 1 (δ-proximal certificate). A point x̂t+1 ∈ C satisfies a δt-proximal certificate at ut if

1

2η
∥x̂t+1 − ut∥2 ≤ min

z∈C

1

2η
∥z − ut∥2 + δt. (4)

Formally, the certificate quantifies how far x̂t+1 is from the exact solution of the projection subprob-
lem to be cleanly propagated into a convergence guarantee. Thus, the δ-prox condition allows us to
bridge between approximate projection and rigorous optimization theory. Equivalently, in terms of
the proximal surrogate

Q(z;xt) = f(xt) + ⟨∇f(xt), z − xt⟩+ 1
2η∥z − xt∥2,

condition equation 4 means

Q(x̂t+1;xt) ≤ min
z∈C

Q(z;xt) + δt.

Once we have defined δ-proximal certificates, the next step is to understand how they affect the
progress of the PGD iteration. The standard PGD analysis relies on the fact that the projection
enforces a decrease in a local surrogate of the objective. With approximate projections, this decrease
may not hold exactly, but we can show that a relaxed version still applies, which is formally stated
in the following Lemma.
Lemma 1 (Inexact PGD descent, proved in Appendix A.1). Suppose f is L-smooth and η ≤ 1/L.
If x̂t+1 satisfies a δt-proximal certificate at ut, then

f(x̂t+1) ≤ f(xt)−
(

1
2η −

L
2

)
∥x̂t+1 − xt∥2 + δt.

Lemma 1 establishes that each update decreases the function value up to a small additive term δt,
which directly reflects the inexactness of the projection. This lemma is the key technical step-
ping stone: it ensures that even though we project approximately, the algorithm still makes descent
progress. Without such a result, there would be no way to propagate the approximation error into a
global convergence theorem.

Theorem 1 (Convergence with δ-prox certificates, proved in Appendix A.2). Let δ̄ = 1
T

∑T−1
t=0 δt

be the average projection error. Assume f is L-smooth, η ≤ 1/L, and each step satisfies equation 4.
Then for all T ≥ 1:
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1. General C (possibly nonconvex):

min
0≤t<T

∥x̂t+1 − xt∥2 ≤
2η

1− ηL

(
f(x0)−f⋆

T + δ̄
)
.

2. Convex C: Let Gη(xt) =
1
η (xt −ΠC(xt − η∇f(xt))). Then

min
0≤t<T

∥Gη(xt)∥2 ≤
2(f(x0)− f⋆)

ηT
+

2

η
δ̄.

Finally, Theorem 1 builds on the descent lemma to show global convergence guarantees for the entire
PGD trajectory. By summing the descent inequality across iterations, we can control the average
stationarity gap in terms of both the iteration count T and the average projection error δ̄. This yields
a natural trade-off: faster but less precise projections (i.e., larger δ̄) still give convergence, but to a
neighborhood whose size is governed by δ̄. Exact projections correspond to δ̄ = 0, recovering the
classical PGD guarantee.

3.2 HOW THE k-MEANS ENVELOPE YIELDS Q-CERTIFICATES

To certify the quality of approximate projections, we need a way to reason about all atoms inside
a cluster without checking them individually. The k-means envelope provides exactly this: each
cluster Vk is summarized by a centroid ck and a radius Rk = maxv∈Vk

∥ev − ck∥, so that every
atom e ∈ Vk lies within Rk of its centroid. This construction (Figure 2) allows us to bound the
inner product ⟨ũt, e⟩ with any atom e in the cluster using only the centroid and radius, instead
of enumerating all elements of Vk. Such bounds are crucial because they let us control the error
incurred when restricting the search to a shortlist of clusters.

Envelope (centroid+radius) bounds. For any e ∈ Vk we have

⟨ũt, e⟩ = ⟨ũt, ck⟩+⟨ũt, e−ck⟩ ∈
[
⟨ũt, ck⟩−∥e−ck∥, ⟨ũt, ck⟩+∥e−ck∥

]
⊆

[
⟨ũt, ck⟩−Rk, ⟨ũt, ck⟩+Rk

]
.

(5)
Hence the best missed score and the best kept score obey

Umiss := max
k/∈St

max
e∈Vk

⟨ũt, e⟩ ≤ max
k/∈St

(
⟨ũt, ck⟩+Rk

)
, (6)

Lkeep := max
j∈St

max
e∈Vj

⟨ũt, e⟩ ≥ max
j∈St

(
⟨ũt, cj⟩ −Rj

)
. (7)

Define the score certificate

εcertt :=
[
Umiss − Lkeep

]
+
= max

{
max
k/∈St

(
⟨ũt, ck⟩+Rk

)
−max

j∈St

(
⟨ũt, cj⟩ −Rj

)
, 0

}
. (8)

Lemma 2 (Envelope⇒ score gap certificate, proved in Appendix A.1). Let e⋆ ∈ argmaxe∈C⟨ũt, e⟩
and let êt be the best element found inside the shortlist. Then

⟨ũt, e
⋆⟩ − ⟨ũt, êt⟩ ≤ εcertt .

Lemma 2 ensures that the best missed atom cannot outperform the best kept atom by more than
εcertt . This turns per-cluster envelope bounds into a global guarantee on the quality of the shortlist.
The next step is to show that such a score gap directly controls the δ-prox error in the projection
subproblem.
Theorem 2 (Score certificate ⇒ Q-certificate, proved in Appendix A.3). Assume ∥e∥ = 1 for all
e ∈ C. Let e⋆ ∈ argmaxe∈C⟨ut, e⟩ (equivalently the exact projection of ut onto C), and let êt be
the shortlist maximizer. Then the approximate projection x̂t+1 := êt satisfies the δ-prox condition
equation 4 with

δt =
∥ut∥
η

εcertt . (9)

Theorem 2 upgrades the score gap guarantee into a full Q-certificate: if the shortlist preserves near-
optimality in terms of inner products, then the resulting approximate projection enjoys a bounded
δ-prox error. This step bridges local cluster-based control to the global convergence analysis in the
next section.
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Figure 2: (a) The score gap is the difference between the best possible score from a missed cluster
and the best guaranteed score from a kept cluster. (b) The exact projection e∗ (green) and approxi-
mate projection êt (orange) yield different distances to the gradient step ut (black). Then the score
certificate implies the Q-certificate, where the inner product gap between e⋆ and êt is bounded by
εcertt .

3.3 CONVERGENCE TIME WITH ACCUMULATED CERTIFICATE ERROR

We now establish convergence guarantees for our method under accumulated certificate error. The
results show that approximate projections guided by certificates achieve the same asymptotic rate as
exact PGD, up to an additive error floor.
Theorem 3 (Convergence with cluster-based certificates, proved in Appendix A.4). Suppose f is L-
smooth and η ≤ 1/L. At each iteration, the approximate projection is computed using the k-means
shortlist with envelope bounds. Then after T iterations,

min
0≤t<T

∥x̂t+1 − xt∥2 ≤
2η

1− ηL

(
f(x0)− f⋆

T
+ δ̄T

)
, δ̄T =

1

T

T−1∑
t=0

δt, δt =
∥ut∥
η

εcert
t .

Theorem 3 shows that accelerated PGD converges at the same O(1/T ) rate as exact PGD, up to
an additive error floor determined by the average certificate gap. If the certificate error vanishes
(εcert

t = 0), we recover the standard PGD guarantee.
Theorem 4 (Convergence time with accumulated error, proved in Appendix A.5). Assume η ≤ 1/L
and let ∆̄ be any bound such that δ̄T ≤ ∆̄ for all T . If

ε2 >
2η

1− ηL
∆̄,

then the number of iterations required to reach accuracy ε is bounded by

T ≥ f(x0)− f⋆

1
1−ηL

ε2

2η − ∆̄
.

Theorem 4 refines Theorem 3 by quantifying the iteration complexity in terms of ε. The bound
highlights the role of ∆̄ as a floor of approximation: when ∆̄ is small, the usual O(1/T ) behavior
dominates, while nonzero ∆̄ slows progress but still ensures convergence to an ε-ball.

4 EXPERIMENTS AND RESULTS

Settings and Datasets. We evaluate both the original PGD attack and the IKMP-Accelerated PGD
attack to GPT-2 model in text classification task on three widely used benchmark datasets: Yelp
Reviews Datasets (2025), IMDB by Maas et al. (2011), and SNLI Bowman et al. (2015). The
Yelp Review dataset contains user-generated business reviews with associated star ratings, providing
rich sentiment-oriented text commonly used for sentiment classification tasks. The IMDB dataset

7
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Algorithm Initial K Token Error Rate (TER) Avg Cosine Sim (ACS) Success Attack Rate (SAR) Attack Time

PGD 10 0.078 ± 0.012 0.423 ± 0.0123 0.615 ± 0.017 0.145 ± 0.0337
IKMP + PGD 10 0.182 ± 0.0097 ↑ 0.487 ± 0.0092 ↑ 0.855 ± 0.023 ↑ 0.070 ± 0.039 ↓

PGD 11 0.086 ± 0.013 0.427 ± 0.0135 0.620 ± 0.021 0.705 ± 0.0624
IKMP + PGD 11 0.184 ± 0.0083 ↑ 0.496 ± 0.0101 ↑ 0.865 ± 0.012 ↑ 0.110 ± 0.031 ↓

PGD 12 0.115 ± 0.008 0.432 ± 0.00921 0.660 ± 0.020 0.669 ± 0.0529
IKMP + PGD 12 0.166 ± 0.0132 ↑ 0.495 ± 0.0122 ↑ 0.850 ± 0.014 ↑ 0.100 ± 0.0219 ↓

PGD 13 0.175 ± 0.013 0.446 ± 0.0118 0.720 ± 0.018 0.108 ± 0.0428
IKMP + PGD 13 0.162 ± 0.0082 ↓ 0.506 ± 0.0092 ↑ 0.880 ± 0.015 ↑ 0.227 ± 0.031 ↑

PGD 14 0.117 ± 0.0074 0.441 ± 0.0123 0.665 ± 0.017 0.093 ± 0.0418
IKMP + PGD 14 0.158 ± 0.00926 ↑ 0.515 ± 0.0101 ↑ 0.890 ± 0.018 ↑ 0.094 ± 0.0421 ↑

PGD 15 0.223 ± 0.009 0.471 ± 0.0107 0.815 ± 0.020 0.690 ± 0.0547
IKMP + PGD 15 0.147 ± 0.0083 ↓ 0.535 ± 0.0106 ↑ 0.915 ± 0.019 ↑ 0.536 ± 0.0322 ↓

PGD 16 0.219 ± 0.005 0.473 ± 0.0108 0.840 ± 0.018 0.177 ± 0.0842
IKMP + PGD 16 0.154 ± 0.0092 ↓ 0.538 ± 0.0091 ↑ 0.935 ± 0.021 ↑ 0.750 ± 0.0428 ↑

PGD 17 0.229 ± 0.002 0.491 ± 0.0121 0.890 ± 0.016 0.490 ± 0.0391
IKMP + PGD 17 0.164 ± 0.00831 ↓ 0.534 ± 0.0127 ↑ 0.935 ± 0.021 ↑ 0.102 ± 0.0391 ↓

PGD 18 0.213 ± 0.003 0.506 ± 0.0116 0.905 ± 0.022 0.374 ± 0.0284
IKMP + PGD 18 0.154 ± 0.0104 ↓ 0.540 ± 0.0130 ↑ 0.940 ± 0.018 ↑ 0.354 ± 0.0303 ↓

PGD 19 0.210 ± 0.0065 0.516 ± 0.0130 0.910 ± 0.009 0.260 ± 0.0472
IKMP + PGD 19 0.155 ± 0.0091 ↓ 0.546 ± 0.0116 ↑ 0.965 ± 0.017 ↑ 0.562 ± 0.045 ↑

PGD 20 0.189 ± 0.0048 0.522 ± 0.0134 0.930 ± 0.013 1.135 ± 0.0328
IKMP + PGD 20 0.140 ± 0.0107 ↓ 0.555 ± 0.0123 ↑ 0.965 ± 0.012 ↑ 1.109 ± 0.0425 ↓

Table 1: Results of PGD and IKMP+PGD attacks for K = 10 to 20. The table reports token error
rate (TER), average cosine similarity (ACS), success attack rate (SAR), and attack time. For each
K, the IKMP+PGD entry includes an arrow indicating its trend relative to PGD at the same K(↑
greater, ↓ smaller).

consists of 50,000 movie reviews labeled for binary sentiment (positive vs. negative), balanced
across training and test splits, making it a standard benchmark for sentiment analysis and adversarial
robustness evaluation. The Stanford Natural Language Inference (SNLI) dataset includes 570,000
human-annotated sentence pairs labeled as entailment, contradiction, or neutral, and serves as a key
benchmark for natural language inference under adversarial perturbations.

We evaluate our proposed method under a range of hyperparameter and initialization settings. The
initial number of clusters is denoted as 2K . The hyperparameter α controls the step size scaling in
the projected gradient updates, balancing progress along the adversarial direction with stability of the
update. We evaluate α ∈ {10, 8, 5, 2} in all experiments. To ensure experimental robustness across
domains, we run experiments on three datasets: (1) a subset of 1,000 sentences from the YELP
Review corpus (sentiment domain), (2) 1,000 sentences from the AG News dataset (topic classi-
fication), and (3) 1,000 sentences from the IMDB dataset (longer-form reviews). For all datasets,
we report sentence-level results with K varying from 10 to 20 in increments of 1. For every K we
conduct 10 independent, randomized trials.

Evaluation metrics. We compare the proposed IKMP+PGD attack against the standard PGD at-
tack baseline using the following metrics: (i) Attack Time T = Total runtime

Number of iterations . The average run-
time per PGD iteration, measured in seconds and calculated as (ii) Average Cosine Similarity
ACS = 1

N

∑N
i=1

⟨xi,vi⟩
∥xi∥∥vi∥ . The average cosine similarity between the attacked embedding xi and

the clean embedding vi. (iii) Successful Attack Rate SAR = #{successful attacks}
#{total runs} . The fraction of

runs in which accelerated PGD successfully finds an adversarial example. (iv) Token Error Rate
TER = #Tokens changed

#Tokens . The proportion of tokens in the original sequence that are modified by the
attack, thereby measuring the overall extent of perturbation. For each metric (TER, ACS, SAR, and
attack time), we highlight improvements relative to PGD. Entries with smaller TER, larger ACS,
larger SAR, or reduced attack time are marked in blue.

Results. Overall, our results show that IKMP+PGD achieves consistently higher ACS, reduced
TER, and improved SAR compared to standard PGD, while also reducing average attack time sig-
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Figure 3: Evaluation of IKMP+PGD (with K-means, red) and standard PGD (without K-means,
blue) across different initial values 2K . (a) TER, (b) ACS, (c) Attack Time per sample (s), and (d)
SAR. Each curve shows the mean value across runs, with error bars denoting the standard deviation.

nificantly. This demonstrates that clustering-based initialization provides both efficiency and ro-
bustness gains. Detailed numerical comparisons are presented in Tables 1. The results in Figure 3
demonstrate consistent improvements when K-means clustering is integrated into PGD. In subplot
(a), token error rate (TER) is substantially lower with K-means across most initial values, show-
ing greater stability and less variance. Subplot (b) shows that average cosine similarity (ACS) is
consistently higher with K-means, indicating that updates are more aligned with the clean embed-
dings. In subplot (c), attack time is generally reduced or comparable when using K-means, with
especially noticeable improvements at lower values of K. Finally, subplot (d) illustrates that the
successful attack rate (SAR) is consistently higher for K-means across all initializations, confirming
the robustness advantage of clustering-based initialization. Collectively, these plots indicate that the
proposed IKMP+PGD approach yields better performance, efficiency, and stability than standard
PGD.

5 DISCUSSION

We proposed K-PGD, a clustering-augmented variant of projected gradient descent, which accel-
erates adversarial search through approximate projection while preserving convergence properties.
Theoretical analysis established error accumulation bounds and introduced the Q-certificate assump-
tion, providing conditions under which robustness guarantees hold. Empirically, evaluations on
Yelp, IMDB, and SNLI demonstrated consistent reductions in Token Error Rate and improvements
in Average Cosine Similarity and Success Attack Rate, confirming both the efficiency and effective-
ness of the proposed framework. A limitation of our approach is that the runtime improvements are
not uniform across all cluster sizes. For certain number of clusters, the overhead of managing clus-
ters offsets the pruning benefits, leading to no reduction in attack time. This highlights the sensitivity
of efficiency gains to the choice of K.

9
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