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ABSTRACT

Building cross-modal applications is challenging due to limited paired multi-
modal data. Recent works have shown that leveraging a pre-trained multi-modal
contrastive representation space enables cross-modal tasks to be learned from uni-
modal data. This is based on the assumption that contrastive optimization makes
embeddings from different modalities interchangeable. However, this assump-
tion is under-explored due to the poorly understood geometry of the multi-modal
contrastive space, where a modality gap exists. In our study, we provide a the-
oretical explanation of this space’s geometry and introduce a three-step method,
C3 (Connect, Collapse, Corrupt), to bridge the modality gap, enhancing the inter-
changeability of embeddings. Our C3 method significantly improves cross-modal
learning from uni-modal data, achieving state-of-the-art results on zero-shot im-
age / audio / video captioning and text-to-image generation.

1 INTRODUCTION

large 
pig

cute
cat

Modality 2 
Embedding

Modality 1 
Embedding

Cross-modal Evaluation
Uni-modal Training

f𝒳

f𝒴

g

ex

ey

x

y

̂y

ex1
ex2

ex3

ey1

ey2

ey3

ex − ey

c⊥ + ϵ
=

c⊥

cute
cat

cute
cat

small 
dog

ϵ

①
②

①
①

① ①

②
②

② ②

Figure 1: Interchangeable use of em-
beddings enables learning cross-modal
tasks with uni-modal data.

Building cross-modal applications often face a critical
challenge: the scarcity of paired multi-modal data. Large-
scale multi-modal contrastive learning has emerged as a
promising approach to address this gap. Pioneering works
like CLIP (Radford et al., 2021) and ImageBind (Girdhar
et al., 2023) offer publicly available representation spaces
learned from contrasting millions of web-based images
and texts. These spaces that align embeddings of con-
cepts across different modalities pave the way for lever-
aging abundant uni-modal data in cross-modal tasks. For
instance, instead of training an image captioning system on
image embeddings, one could train it on caption embed-
dings. Likewise, text-to-image generation models can uti-
lize image embeddings as opposed to text. During cross-
modal inference, embeddings from the other modality are
simply input into the model (Figure 1). Notably, this ap-
proach has achieved impressive results in image captioning (Li et al., 2023; Tam et al., 2023; Nukrai
et al., 2022) and text-to-image generation (Zhou et al., 2022c;a;b), eliminating the need for multi-
modal paired data.

This aforementioned process is based on the hypothesis that image embeddings and text embed-
dings can be used interchangeably in the multi-modal representation space. However, the validity
of this assumption is not well understood. Recent works reveal that the resulting geometry from
multi-modal contrastive learning is nontrivial — corresponding image and text embeddings do not
necessarily collapse to the same points in the space. Instead, there is a significant gap between
embeddings from different modalities, potentially hindering the direct interchangeable use of image
and text embeddings (Liang et al., 2022; Zhang et al., 2023). The lack of comprehension of the re-
sulting geometry from contrastive learning makes it challenging to design methods to leverage this
representation space and learn cross-modal tasks from uni-modal data.

∗Equal contribution. Project page available at https://yuhui-zh15.github.io/C3-Website/.
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Figure 2: Geometry of the multi-modal
contrastive representation space.

In this study, we conclude that the geometry of multi-
modal contrastive representation space as (Figure 2):

ex − ey = c⊥ + ϵ

where ex and ey denote the embeddings of paired inputs
from different modalities, c⊥ is a constant vector repre-
senting the modality gap, which is orthogonal to the em-
bedding span of ex and ey , and ϵ is a random vector
representing the alignment noise, which can be approx-
imated by a Gaussian distribution.

We provide a theoretical explanation of the above geometry. Specifically, the modality gap emerges
during initialization as certain dimensions of image and text embeddings remain approximately
constant in the embedding space, and the constants are distinct for images and texts due to separate
initializations. During optimization, these constant dimensions lack a gradient that pushes them to
align to the same value, leading to the preservation and orthogonality of the modality gap. Mean-
while, the alignment noise arises from the stable region produced by the contrastive loss, where
points within a certain range result in a loss near zero, causing the optimization to halt.

Based on this understanding of the geometry, we propose a simple method, C3, to improve the
interchangeability of embeddings from different modalities, thereby enabling the learning of cross-
modal tasks with uni-modal data. C3 consists of three steps:

1. Connect: Related concepts from different modalities are connected via multi-modal contrastive
learning, resulting in a shared representation space that can allow the interchangeability of em-
beddings from the different modalities. However, a modality gap and alignment noise exist.

2. Collapse: Based on its geometry, the modality gap can be closed by subtracting the embedding
mean from each modality, eliminating the most dominant distributional difference between them.

3. Corrupt: Additional noise is introduced as regularization during training to improve the perfor-
mance and robustness of learning cross-modal tasks from uni-modal data, given the alignment
noise from multi-modal contrastive learning.

We demonstrate the effectiveness and broad generalization of C3 on four tasks: image, audio, video
captioning and text-to-image generation, and achieve state-of-the-art performance on zero-shot eval-
uation settings when trained solely on uni-modal data. We also provide a detailed analysis of each
component that contributes to performance improvements. Our method sheds new light on the possi-
bility of achieving cross-modal tasks under a low-data regime, and our theoretical analysis provides
insight into understanding multi-modal contrastive learning.

Our contributions are three-fold:

1. We provide a theoretical explanation of the representation space geometry resulting from multi-
modal contrastive learning.

2. Based on this geometry, we propose a simple three-step solution to enhance the interchangeability
of embeddings from different modalities, improving cross-modal learning with uni-modal data.

3. We show the effectiveness of our method on image / audio / video captioning and text-to-image
generation, achieving state-of-the-art results.

2 LEARNING CROSS-MODAL TASKS WITH UNI-MODAL DATA

In this section, we present the general notion of a cross-modal task and how we can leverage uni-
modal data to learn such tasks.

2.1 CROSS-MODAL TASK FORMULATION

Cross-modal tasks aim to learn a model that maps inputs from one modality X (e.g., images) to
another modality Y (e.g., texts). Given a paired multi-modal dataset D = {(x, y) ∈ X × Y} (e.g.,
an image-caption dataset), the task can be achieved by minimizing the empirical risk Ld between
the predicted target ŷ = g(fX (x)) and the true target y over the dataset D, where fX : X → Rd is
an encoder that maps inputs from X to a d-dimensional representation space, and g : Rd → Y is a
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decoder that maps outputs from the encoder to Y:

min
g,fX

1

|D|
∑

(x,y)∈D

Ld(ŷ, y), ŷ = g(fX (x))

Ld measures the discrepancy between the predicted and true targets, which can be mean squared
error (MSE) for images and cross-entropy loss for texts.

2.2 ENABLING CROSS-MODAL TASKS WITH UNI-MODAL DATA

The need for a multi-modal paired dataset D to learn cross-modal tasks is suboptimal, as collecting
such datasets can be expensive and time-consuming. However, if we have a encoder fY : Y →
Rd that maps inputs from Y to the same representation space as the encoder fX , i.e., ∀x, y ∈
D, fX (x) = fY(y), we can train the cross-modal task using a uni-modal dataset D′ = {y ∈ Y}:

min
g

1

|D′|
∑
y∈D′

Ld(ŷ, y), ŷ = g(fY(y))

Note that fY should be frozen during training to maintain its embedding alignment with fX . When
evaluating in a cross-modal setting, we can replace fX with fY , thus enabling cross-modal tasks
with only uni-modal training data.

2.3 ESTABLISHING A SHARED REPRESENTATION SPACE

Recent advances in multi-modal contrastive learning has enabled for encoders that map similar in-
puts from different modalities to a shared representation space. Specifically, given a large multi-
modal dataset1, n paired inputs are randomly sampled during each iteration and the following ob-
jective is optimized (Radford et al., 2021):

min
fX ,fY

L = − 1

2n

n∑
i=1

(
log

exp(exi · eyi/τ)∑n
j=1 exp(exi

· eyj
/τ)

+ log
exp(exi · eyi/τ)∑n
j=1 exp(exj

· eyi
/τ)

)
where ex = fX (x), ey = fY(y), and τ is the temperature hyperparameter. This loss function
encourages high similarity between the embeddings of the paired image-texts relative to the similar-
ities between unpaired ones. Intuitively, after optimizing the loss, paired image and text embeddings
should collapse to the same point. However, empirical results have shown a significant gap between
paired embeddings (Liang et al., 2022), which prevents the direct interchangeable use of image
and text embeddings. In the next section, we provide a detailed analysis of the geometry of the
multi-modal contrastive representation space.

3 MULTI-MODAL CONTRASTIVE REPRESENTATION SPACE GEOMETRY

We begin by providing the following proposition that describes the geometry of the multi-modal
contrastive representation space. These findings inform our general method of how to adapt uni-
modal data for cross-modal learning.
Proposition 1. (Multi-modal Contrastive Representation Space Geometry)
Given a paired image x and text y, the relationship between the ℓ2-normalized image embedding ex
and text embedding ey obtained from multi-modal contrastive learning can be described as:

ex − ey = c⊥ + ϵ

where c⊥ is a constant vector representing the modality gap and is orthogonal to the image and text
embedding span, i.e., ∀ex1 , ex2 , c⊥ · (ex1−ex2) = 0; ϵ ∼ N (0, σ2I) is a random Gaussian vector
representing the alignment noise.

In the following subsections, we will first explain why the modality gap c⊥ exists before and after
model optimization. Then, we will introduce the alignment noise ϵ and its relation to the temperature
parameter in contrastive loss.

1Acquiring domain-specific paired multi-modal datasets can be challenging. However, several works have
gathered large-scale noisy image-caption pairs from the web and made pre-trained encoders fX and fY avail-
able for direct use.
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3.1 MODALITY GAP

The presence of a modality gap and its orthogonality to the image and text embedding span are due
to the joint effect of initialization and optimization.

Initialization. The modality gap exists when randomly initializing multi-modal models, which
can be explained by the dimensional collapse (Jing et al., 2022) of the representation space defined
below.
Definition 1. (Dimensional Collapse of the Representation Space)
Given a d-dimensional representation space Rd, we define its effective dimension de as:

de = argmin
d′

∑d′

i=1 σi∑d
i=1 σi

≥ γ

where the σi’s are the singular values of the representation covariance matrix in decreasing order,
and γ thresholds the minimum variance explained by the de dimensions. Dimensional collapse
occurs when de ≪ d.

Figure 3: Dimensional collapse of the CLIP
representation space. Singular values obtained
from SVD reveal that the effective dimension of
the image and text representation space is much
smaller than the total number of dimensions.

To demonstrate the dimensional collapse phe-
nomenon, we took a randomly initialized CLIP
with a d = 512 representation space and fed
MS-COCO images and captions as input. We
obtained the corresponding image features and
text features and performed SVD on the im-
age feature and text feature covariance matri-
ces. The distribution of the singular values is
shown in Figure 3, where we can clearly see
that the effective dimension of both the image
and text features is small. Specifically, when
setting γ = 0.99, the effective dimension of
image embeddings is de,x = 25 and that of text
embeddings is de,y = 230. Therefore, the ef-
fective dimension of the shared representation
space de ≤ de,x + de,y = 255. The equality holds only when all the effective dimensions of the
image and text are orthogonal.

Dimensional collapse indicates that only a small number of dimensions contribute significantly to
the variance of the representation space, while the remaining dimensions can be viewed as constant.
Suppose the shared representation space has a maximum effective dimension de = 255. This indi-
cates that the image and text embeddings will remain constant in the dc = d− de = 257 ineffective
dimensions. As a result, a modality gap exists at the beginning of model optimization, as these dc
ineffective dimensions will be inherently different for images and texts, given random initialization.

To verify this, we synthesize n = 1, 000 image and text embeddings in d = 512 space. For each
image embedding, we initialize the first de,x dimensions, and for each text embedding, the de,x-th to
(de,x+de,y)-th dimensions, by randomly sampling a standard Gaussian distributionN (0, 1). All the
other dimensions are set to a constant value drawn from aN (0, 1), where the constant for the image
and text embeddings are different. Figure 4 (left) illustrates this setup by showing the variance of
each dimension. This setup mimics our findings of SVD analysis on CLIP, where we set image em-
beddings to have de,x effective dimensions and text embeddings to have de,y effective dimensions,
and assume these effective dimensions are fully orthogonal. We normalize the embeddings to unit
length before performing our analysis.

We observe a clear modality gap at the beginning: the ℓ2-distance between the mean of the image
embeddings and the mean of the text embeddings is 1.21. When we only consider the last dc
ineffective dimensions, the average distance is 0.99. More discussion is in Appendix I.

Optimization. The analysis above reveals that the modality gap exists at initialization, and we
further analyze why optimizing for the multi-modal contrastive loss fails to close the gap. The
following lemma reveals that there is no gradient in the modality gap direction, therefore the gap
and its orthogonality will be preserved.
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Figure 4: Variance of each dimension before (left) and after (right) multi-modal contrastive
optimization. Our analysis reveals that gradients will only be propagated to effective dimensions
and no gradient will be propagated to ineffective dimensions. Therefore, the effective dimensions
are aligned while ineffective dimensions remain constant after optimization.

Lemma 1. (Gradients in Contrastive Optimization) (Proof in Appendix B)
With the mild assumption of equal presence of n images and texts with p(xi) = p(yi) =

1/n, optimizing the multi-modal contrastive loss L = − 1
2n

∑n
i=1

(
log

exp(exi
·eyi

/τ)∑n
j=1 exp(exi

·eyj
/τ) +

log
exp(exi

·eyi
/τ)∑n

j=1 exp(exj
·eyi

/τ)

)
yields the following gradients:

∇exi
L = λ

n∑
j=1

αyj (eyj − eyi), ∇eyi
L = λ

n∑
j=1

αxj (exj − exi)

where λ = 1/(2nτ), αxj
= p(xj |yi) + p(yi|xj), αyj

= p(yj |xi) + p(xi|yj), p(xi|yj) =
exp(exi

·eyj
/τ)∑n

k=1 exp(exk
·eyj

/τ) , p(yi|xj) =
exp(eyi

·exj
/τ)∑n

k=1 exp(eyk
·exj

/τ) , and τ is temperature.

Lemma 1 highlights that the gradients of image embeddings during contrastive optimization are
fully determined by the text embedding span, and vice versa. Due to the dimensional collapse of
the image and text embedding span, the contrastive optimization process fails to propagate gradients
in the direction of the ineffective dimensions, resulting in gap preservation and orthogonality to
the image and text embedding span after optimization. Lemma 1 also implies that the effective
dimensionality of the joint representation space remains unchanged after optimization.

To empirically verify this, we optimize the multi-modal contrastive loss L on the n = 1, 000 pre-
viously synthesized image and text embeddings. We optimize for 200K steps with a learning rate
0.1, and CLIP’s initial temperature of τ = 0.07. We compute the variance of each dimension
pre- and post-contrastive optimization and plot the results in Figure 4 (right). From the figure, we
can see that the first de = 255 effective dimensions are aligned after optimization while the last
dc = 257 ineffective ones remain unchanged. This verifies that no gradient is propagated to the
ineffective dimensions, as the variance for these dimensions remains zero after optimization. The
modality gap becomes slightly smaller (0.82 compared to 0.99 before optimization) mainly due to
ℓ2-regularization, where changes in the effective dimensions affect changes in the ineffective ones.

In summary, due to dimensional collapse at model initialization, there are ineffective dimensions
where image and text embeddings can be viewed as different constants, resulting in a modality gap
at initialization. During optimization, these ineffective dimensions have no gradient update, and
thus, the modality gap and its orthogonality are preserved after optimization.

3.2 ALIGNMENT NOISE

In this section, we explain alignment noise after multi-modal contrastive learning. This noise re-
sults from the stable region of contrastive loss demonstrated in the following lemma, where we can
consider a single term in the loss given the symmetry of the added terms.
Lemma 2. (Stable Region Controlled by Temperature) (Proof in Appendix B)
We consider a single term in the multi-modal contrastive loss Li = − log

exp(exi
·eyi

/τ)∑n
j=1 exp(exi

·eyj
/τ) . We

define the margin r = exi ·eyi−maxj ̸=i exi ·eyj as the measure of the similarity difference between
the matched pair and the hardest negative pair. When r exceeds a threshold given below, Li falls
below a small pre-set value δ, where we assume optimization ends:

r ≥ τ log
o(τ)

exp(δ)− 1
,
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where o(τ) is a monotonically increasing function of temperature τ that satisfies 1 < o(τ) < n.
Therefore, the required margin r is monotonically increasing with τ .
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Figure 5: Stable region (green area) of contrastive
learning controlled by temperature. Within the
stable region, the loss falls below a small preset
value, indicating that optimization has ended. The
region increases as the temperature decreases.

Lemma 2 suggests that there is a stable re-
gion of the contrastive loss. This region can
be viewed as a function of temperature where
region size increases as the temperature de-
creases, with the required margin becoming
smaller. Within this stable region, the loss falls
below the small value δ, indicating that opti-
mization has ended. In the extreme case where
τ → 0+, if r ≥ 0, the loss will be less than δ
(δ → 0+ for this case). This means that given
all the yj , xi can end up within a region instead
of a fixed point, resulting in the same zero loss.
Figure 5 illustrates the stable region defined by
the margin with regard to the temperature. Therefore, there may be a mismatch between the matched
pairs in the representation space, resulting in alignment noise.

3.3 SUMMARY
Statistic Mean Std

∥d(i)∥2 0.83 0.01
cos(d(i),d(j)) 0.99 0.00
cos(d(i), r

(i)
j,k)] 0.00 0.06

E[ϵ(i)j ]k 0.00 0.00
cos(ϵ

(i)
j , ϵ

(i)
k ) 0.00 0.10

Table 1: Statistics that
reveals representation
space geometry.

In Section 3.1 and 3.2, we explain the modality gap c⊥ and alignment noise
ϵ in Proposition 1, respectively. Combining them together, we explain the
geometric relation of paired embeddings ex − ey = c⊥ + ϵ.

We verify this geometric relation using CLIP on the MS-COCO image-
caption dataset. We randomly group each 100 images into group i, and
define individual gap d

(i)
j = e

(i)
xj − e

(i)
yj , group gap d(i) = Ej [d

(i)
j ], image

difference r
(i)
j,k = e

(i)
xj − e

(i)
xk , alignment noise ϵ

(i)
j = d

(i)
j − d(i), where

j, k are image or text indices. These statistics are computed in Table 1, where the first three statistics
show that the modality gap c⊥ approximates a constant vector orthogonal to the image and text em-
bedding span, and the last two statistics show that the alignment noise ϵ can be viewed as Gaussian
noise. We provide a detailed explanation of how to interpret these statistics in Appendix C.

This geometric analysis in this section serves as the foundation of the approach we introduce in the
next section, where we develop a simple method to align the shared representation space and enable
learning cross-modal tasks with uni-modal data.

4 CONNECT, COLLAPSE, CORRUPT

Proposition 1 from Section 3 reveals the geometry of the multi-modal contrastive representation
space. Based on this, we propose three steps, connect, collapse, corrupt (C3), to align the repre-
sentation space, making it possible for embeddings from different modalities to be interchangeably
consumed by the decoder and thus enabling learning cross-modal tasks from uni-modal data.

Stage 1: Connect. This stage establishes connections between similar concepts across different
modalities. We leverage recent advances in multi-modal contrastive learning (Radford et al., 2021)
and use encoders trained with this strategy to build cross-modal models. However, a modality gap
and alignment noise exists after multi-modal contrastive learning, as shown in Proposition 1.

Stage 2: Collapse. When directly using embeddings of different modalities as input, there is a
drastic degradation in performance due to the modality gap, which causes input distributions to the
decoder to differ. To address this issue, we adopt a simple approach proposed by (Zhang et al.,
2023) that effectively removes the modality gap. Specifically, during training, in place of ex, we
feed in e′x = ex − Ex[ex] to the decoder, and during inference with another modality, in place of
ey , we feed in e′y = ey − Ey[ey]. This approach collapses the modality gap, eliminating the input
distribution mismatch between the two modalities:

e′x − e′y = (ex − ey)− (Ex[ex]− Ey[ey]) = ϵ

6



Published as a conference paper at ICLR 2024

Stage 3: Corrupt. After removing the modality gap, there is still alignment noise which can be
approximated by a N (0, σ2I). During unsupervised training, instead of directly decoding y from
e′y , we add explicit Gaussian noise to the input and decode y from e′′y = e′y + ϵ following (Nukrai
et al., 2022; Zhou et al., 2022c). By introducing this noise, the uni-modal and multi-modal train-
ing processes become similar, and the learned decoder is more robust and invariant to the small
perturbation N (0, σ2I), leading to improved performance.

Appendix Algorithm 1 summarizes the entire procedure of our proposed method, C3, that enables
learning cross-modal tasks with uni-modal data.

5 RESULTS

In this section, we verify the effectiveness of our proposed method, C3, on four tasks: image cap-
tioning, audio captioning, video captioning, and text-to-image generation. We show that our method
achieves state-of-the-art performances, generalizes to different modalities and contrastive embed-
ding spaces, and is especially useful when multi-modal data are limited.

5.1 IMAGE CAPTIONING

We use the ClipCap model (Mokady et al., 2021), pairing a frozen CLIP ViT-B/32 image en-
coder (Radford et al., 2021) with a GPT-2 decoder (Radford et al., 2019). A lightweight MLP
mapping network bridges the dimensional gap between CLIP (512-d) and GPT-2 (768-d) embed-
dings and also produces a prefix for GPT-2 caption generation. We train and evaluate on the MS-
COCO dataset (Lin et al., 2014) using the standard split (Karpathy & Fei-Fei, 2015), comprising
113K training images and 5K each for validation and testing, with each image having 5 captions.
We utilize metrics such as BLEU (Papineni et al., 2002) and ROUGE (Lin, 2004) to evaluate lexical
and semantic similarity between generated and human captions.

We first train our model for text reconstruction using the MS-COCO captions only. Following C3,
we extract the text embedding from the frozen CLIP text encoder and apply the collapse operation
(remove pre-computed mean) and corrupt operation (add Gaussian noise). After training, we eval-
uate our model in the cross-modal setting, replacing the text encoder with the CLIP image encoder
and decoding captions from image embeddings. We refer to this evaluation setting as image-free
zero-shot evaluation, as images are not seen during training. Additionally, we fine-tune the pre-
trained model on different amounts of image-caption pairs and evaluate its performance. We refer
to this evaluation setting as semi-supervised evaluation. More details can be found in Appendix E.
We show image-free zero-shot captioning results in Table 2 and semi-supervised captioning results
in Figure 6.

C3 achieves state-of-the-art image-free zero-shot captioning results. As shown in Table 2, our
proposed method, C3, outperforms previous state-of-the-art methods in image-free captioning. De-
tails of the other methods can be found in Appendix Section A. Our ablation analysis demonstrates
that both the collapse and corrupt components are crucial for improving cross-modal evaluation per-
formance, as they eliminate the differences between embeddings from different modalities. Notably,
the most competitive baseline, CapDec (Nukrai et al., 2022), can be viewed as an ablated version
of C3, but without an analysis of why the corruption works. Our proposed method, however, pro-
vides a clear explanation based on a geometric analysis of the multi-modal embedding space, and
we further improve performance by introducing a collapse step. Overall, C3 represents a potential
standard approach for future works that use a multi-modal contrastive embedding space.

C3 is particularly useful in low-data regimes. In scenarios where multi-modal data is limited,
our method remains highly effective. To demonstrate this, we fine-tuned our pre-trained model on
1%, 5%, 25%, and 100% of the MS-COCO training image-text pairs, and compared our perfor-
mance with a fully supervised baseline (ClipCap) and ablated models (see Figure 6). The results
clearly show that C3 outperforms the fully supervised baseline across all metrics, with the most sig-
nificant improvements seen in low-data regimes where multi-modal paired data are limited. Thus,
our method represents a promising solution for achieving cross-modal tasks in such scenarios.
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Method Conn. Coll. Corr. BLEU-1↑ BLEU-4↑ METEOR↑ ROUGE-L↑ CIDEr↑ SPICE↑

Baselines
ZeroCap (2022) ✗ ✗ ✗ 49.8 7.0 15.4 31.8 34.5 -
MAGIC (2022) ✗ ✗ ✗ 56.8 12.9 17.4 39.9 49.3 11.3
ESPER (2022) ✗ ✗ ✗ - 21.9 21.9 - 78.2 -
CLIPRe (2023) ✓ ✗ ✗ - 4.6 13.3 - 25.6 9.2
DeCap (2023) ✓ ✗ ✗ - 8.9 17.5 - 50.6 13.1
WS-ClipCap (2023) ✓ ✗ ✗ 50.3 9.6 15.2 37.5 33.7 8.6
WS-ClipCap-Multi (2023) ✓ ✗ ✓ 65.5 22.1 22.2 48.0 74.6 14.9
CapDec (2022) ✓ ✗ ✓ 69.2 26.4 25.1 51.8 91.8 -

Ours
C1 ✓ ✗ ✗ 28.1 2.4 12.2 25.4 13.0 6.8
C2

1 ✓ ✓ ✗ 44.4 6.1 15.5 33.6 25.2 9.2
C2

2 ✓ ✗ ✓ 69.0 25.5 24.3 50.8 87.6 17.6
C3 ✓ ✓ ✓ 71.0±0.1 27.7±0.1 25.0±0.0 52.0±0.0 93.3±0.3 18.3±0.1

Table 2: Image-free image-to-text captioning results. We achieve state-of-the-art zero-shot image
captioning and our ablation shows the effectiveness of each component in our method. Baseline
results are from the original paper, where some metrics were not reported. Std with 3 runs reported.
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Figure 6: Image-to-text captioning results in the low data regime. When paired multi-modal data
are limited, our approach that leverages uni-modal data for pre-training leads to substantial improve-
ments compared to the purely supervised method (ClipCap).

Qualitative analysis of collapse and corrupt. Both the collapse and corrupt components of our
method show consistent improvements, but it is not immediately clear how they do so. To address
this, we provide qualitative results in Appendix E. We can see that after collapsing, the generated
captions are much more natural and fluent, as it removes the most significant distributional difference
between image and text embeddings. After corrupting, the model generates more accurate and
faithful text descriptions of the image. We hypothesize that adding noise makes the decoder robust
to small variations in the embedding space. Therefore when evaluating in cross-modal settings, the
alignment noise will not affect the prediction and thus reduces hallucination in the generated caption.

5.2 TEXT-TO-IMAGE GENERATION

Method Conn. Coll. Corr. FID↓ IS↑

Baselines
DALL-E (2021) ✗ ✗ ✗ 27.5 17.9
CogView (2021) ✗ ✗ ✗ 27.1 18.2
LAFITEG (2022c) ✓ ✗ ✓ 20.9 24.9

Ours
C1 ✓ ✗ ✗ 29.8 22.4
C2

1 ✓ ✓ ✗ 21.7 24.4
C2

2 ✓ ✗ ✓ 19.8 25.5
C3 ✓ ✓ ✓ 19.6 26.0

Table 3: Language-free text-to-image
generation results. Our method C3 consis-
tently outperforms the baselines.

We further apply our method, C3, to text-to-image
generation, the reverse of image captioning. We uti-
lize LAFITE (Zhou et al., 2022c), which integrates
a frozen CLIP ViT-B/32 (Radford et al., 2021) as
the text encoder and a modified StyleGAN2’s gen-
erator (Karras et al., 2020) as the trainable decoder.
We use the MS-COCO dataset (Lin et al., 2014)
with LAFITE’s official split, including 82K training
and 40K validation images, with 5 captions each.
We use the standard metrics such as FID (Fréchet
Inception Distance) (Heusel et al., 2017) and IS (In-
ception Score) (Salimans et al., 2016) to assess the
realism of generated images. Similar to the im-
age captioning setting, we first train the model for
image reconstruction using images only, and then
evaluate the model in the cross-modal setting by generating images from text. We show the
language-free zero-shot image generation results in Table 3. Similar to image captioning, we find
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Image Captioning (MS-COCO 2014) Audio Captioning (Clotho 2020) Video Captioning (MSR-VTT 2016)
BLEU-1↑ METEOR↑ ROUGE-L↑ BLEU-1↑ METEOR↑ ROUGE-L↑ BLEU-1↑ METEOR↑ ROUGE-L↑

C1 33.5 12.9 25.8 21.8 17.3 18.1 16.7 12.6 15.2
C2

1 53.8 17.4 38.6 26.7 20.0 21.4 25.1 17.8 23.1
C2

2 64.4 22.2 45.8 27.6 20.0 20.6 25.2 18.1 23.8
C3 74.0 26.6 54.0 29.5 20.1 23.0 31.4 20.0 26.9

Table 4: Generalization of C3 to other modalities, datasets, and contrastive embedding spaces.

that our method C3 consistently outperforms the baselines in terms of FID and IS. Our ablation
study further reveals that each component of C3 is useful for improving the performance. More
detailed setups and qualitative comparisons can be found in Appendix F.

5.3 GENERALIZATION TO OTHER MODALITIES AND EMBEDDING SPACES

To verify the generalization of our method to other modalities, datasets, and embedding spaces,
we further conduct experiments on zero-shot captioning from image, audio and video using
ImageBind (Girdhar et al., 2023) embeddings. We use the same settings as image captioning with
CLIP. Results are shown in Table 4. We find that C3 consistently improves baselines in all the
settings, and using ImageBind embeddings achieves further improvements in image captioning
compared to CLIP embeddings.

6 RELATED WORKS (FULL VERSION IN APPENDIX A)

Multi-modal contrastive learning and resulting geometry. Multi-modal contrastive learning
aims to bridge representations from different modalities, drawing similar concepts closer and dis-
tancing dissimilar ones (Radford et al., 2021). CLIP (Radford et al., 2021), ImageBind (Girdhar
et al., 2023), and similar models have leveraged extensive multi-modal data to construct such rep-
resentation spaces, which have been demonstrated to effectively support a range of uni-modal and
multi-modal applications (Wortsman et al., 2022; Ramesh et al., 2022; Shen et al., 2022). How-
ever, the resulting geometry in the shared representation space, particularly the “modality gap”,
where embeddings from different modalities are clearly separate in the shared representation space,
remains under-explored (Liang et al., 2022; Zhang et al., 2023). In our work, we unify the obser-
vations from Liang et al. (2022) and Zhang et al. (2023), and contribute a formal formulation and
theoretical explanation of the unique geometry resulting from multi-modal contrastive learning.

Learning cross-modal tasks with uni-modal data. Given the expense of multi-modal data col-
lection, there is a growing interest in learning cross-modal tasks using uni-modal data. Based on
the assumption that contrastive optimization makes representations from different modalities inter-
changeable, recent works have leveraged these representation spaces and shown great success in
building image captioning models with text data only (Tam et al., 2023; Li et al., 2023; Nukrai
et al., 2022) and text-to-image generation models with image data only (Zhou et al., 2022c;a;b). De-
spite these advancements, these methods have noted the intriguing “modality gap” phenomenon and
proposed different empirical methods to address this gap, such as (Tam et al., 2023)’s paraphrased
decoding, (Li et al., 2023; Zhou et al., 2022a)’s memory retrieval, (Nukrai et al., 2022; Zhou et al.,
2022c)’s noise addition, and (Zhou et al., 2022b)’s prior network. In our work, we first provide a
theoretical analysis of the multi-modal representation space geometry. Based on the geometry, we
propose a simple method that addresses the “modality gap” in a principled manner and ultimately
improves performance on cross-modal tasks and outperforms these strategies.

7 CONCLUSION

In this work, we provide a theoretical explanation of the unique geometry that arises from multi-
modal contrastive learning. Building upon this, we present a straightforward technique, C3, which
enhances the interchangeability of embeddings between modalities, enabling the creation of cross-
modal applications using only uni-modal data. We demonstrate the effectiveness of our approach on
image, audio, video captioning and text-to-image generation, achieving state-of-the-art performance
on zero-shot evaluation settings when trained solely on uni-modal data.
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OVERVIEW OF APPENDIX

In this appendix, we supplement related works and additional details of theory and experiments.

• In Appendix A, we provide detailed related works to contextualize our work in existing
works of multi-modal contrastive learning and learning cross-modal tasks with uni-modal
data.

• In Appendix B, we provide proofs of the two lemmas used in the main paper that reveal
important properties of multi-modal contrastive learning.

• In Appendix C, we employ statistical methods to validate the proposed geometric structure
on large pre-trained contrastive models.

• In Appendix D, we summarize the C3 method into an algorithm.
• In Appendix E, we provide additional experimental details and qualitative results of image

captioning.
• In Appendix F, we provide additional experimental details and qualitative results of text-

to-image generation.
• In Appendix G, we explain the importance of aligning embeddings from different modali-

ties.
• In Appendix H, we offer further discussions about the effectiveness of collapse vs corrupt.
• In Appendix I, we offer further insights into dimensional collapse and connect it to the cone

effect identified by Liang et al. (2022).

A RELATED WORKS

Multi-modal contrastive learning and resulting geometry. Multi-modal contrastive learning
aims to create a shared representation for different modalities by attracting similar while repelling
dissimilar concepts from different modalities during the optimization process (Radford et al., 2021;
Zhang et al., 2022; Xu et al., 2021; EleutherAI, 2021; Yuan et al., 2021; Girdhar et al., 2023).
Recent works such as CLIP (Radford et al., 2021) have leveraged large-scale image-text data dur-
ing pre-training, resulting in models that can build strong uni-modal and cross-modal applications.
Connecting different modalities can be advantageous given the complementarity of different modal-
ities. For example, connecting vision and language enables zero-shot categorization of visual ob-
jects (Radford et al., 2021; Yuan et al., 2021), explanation of model prediction errors or internal
representations (Eyuboglu et al., 2022; Hernandez et al., 2022), diagnosis and rectification of vision
models using language by composing different concepts (Zhang et al., 2023; Vendrow et al., 2023),
and learning cross-modal tasks with uni-modal data.

However, the geometry resulting from multi-modal contrastive learning has received limited study.
Recent work (Liang et al., 2022) found that there is a clear distinction between embeddings from dif-
ferent modalities in the shared representation space, which is referred to as the modality gap. Liang
et al. (2022) correctly attributed the gap to the joint effect of model initialization and optimization.
However, they did not study the geometric property of the gap and their theory cannot explain the
geometry as well. Their theory can only show there is a distributional difference between image and
text embeddings. Subsequently, Zhang et al. (2023) studied the geometric properties of the modality
gap and found that the gap can be empirically well approximated by a constant vector orthogonal to
the image or text embedding subspace. However, this work did not provide an explanation for how
this unique geometry arises.

In our work, we unify the observations from Liang et al. (2022) and Zhang et al. (2023), and con-
tribute a formal formulation and theoretical explanation of the unique geometry resulting from multi-
modal contrastive learning. Specifically, we show two important factors of the geometry of the
multi-modal representation space: modality gap and alignment noise, where the modality gap is a
constant vector orthogonal to the image and text embedding span, and the alignment noise can be
approximated by a Gaussian distribution. The modality gap arises due to the interplay between the
dimensional collapse in model initialization and the resulting collapsed gradient during optimiza-
tion, whereas the alignment noise is due to the stable region of contrastive loss. These explana-
tions provide a deeper understanding of multi-modal contrastive learning and resulting geometry.
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Moreover, this non-trivial geometry has important implications for building applications on top of a
multi-modal representation space.

Learning cross-modal tasks with uni-modal data. Multi-modal data are less abundant and more
expensive to collect than uni-modal data, making it ideal to learn cross-modal tasks with uni-modal
data. The recent rise of multi-modal contrastive learning provides this possibility, as similar con-
cepts from different modalities establish close connections during the optimization process. Many
recent works have leveraged CLIP, which aligns images and text to achieve image-to-text captioning
with text-only data and text-to-image generation with image-only data. These methods assume and
explore how to interchangeably use image embeddings and text embeddings resulting from multi-
modal contrastive learning. They achieve better performance than prior methods that did not lever-
age a multi-modal representation space, outperforming ZeroCap (Tewel et al., 2022), MAGIC (Su
et al., 2022), and ESPER (Yu et al., 2022) on captioning, and DALL-E (Ramesh et al., 2021) and
CogView (Ding et al., 2021) on image generation. However, due to the peculiar geometry that arises
from multi-modal contrastive learning, paired image embeddings and text embeddings are not col-
lapsed to the same point, making it non-trivial to substitute one for the other. Therefore, researchers
are proposing different methods to tackle this problem.

For image-to-text captioning, WS-ClipCap (Li et al., 2023) was the first work to leverage CLIP’s
text embeddings to decode text during training, finding that training to decode a paraphrased version
of the text from the corresponding CLIP’s text embedding leads to significantly better performance
(WS-ClipCap-Multi). That is, for datasets where a single image is paired with multiple captions, it
is better to decode a caption by feeding the text embedding obtained from one of the other captions
corresponding to the same image. Despite proposing the method, WS-ClipCap failed to explain
why it works and that on a high level, this paraphrased decoding can be viewed as adding noise.
Decap (Li et al., 2023) maintains a memory of image embeddings and converts image embeddings
to text embeddings by using a weighted average of the most similar image embeddings. They
then feed the decoder with the converted embedding to decode the same text. While their method
outperforms the baseline CLIPRe, which directly retrieves the most similar captions based on image
embeddings, it underperforms WS-ClipCap-Multi, despite proposing a more complex method to
tackle the modality gap. CapDec (Nukrai et al., 2022) found that directly adding Gaussian noise to
the embedding and then feeding it into the decoder leads to comparably better performance. This
method corresponds exactly to the corrupt stage in our method. CapDec attributes its success to the
hypothesis that adding Gaussian noise closes the modality gap, however, this intuition is inaccurate.

For text-to-image generation, LAFITE (Zhou et al., 2022c) was the first work to use CLIP with
uni-modal images only. Their approach can be seen as the inverse version of CapDec, where they
add Gaussian noise to the image embedding and decode the same image. They also incorrectly
suggest that adding Gaussian noise closes the modality gap. In contrast, DALLE-2 (Ramesh et al.,
2022) uses a complex and heavily trained prior network to convert CLIP text embeddings to CLIP
image embeddings but did not provide clear evidence of why the prior network is necessary and its
effectiveness. Corgi (Zhou et al., 2022b) modifies the prior network by restricting its starting point,
resulting in improved performance.

Despite the plethora of complex tricks proposed, there is no consensus on the best approach to inter-
changeably use image and text embeddings, and none of them reveal fundamental reasons or perform
systematic ablations. Our work unifies previous approaches by first analyzing the multi-modal rep-
resentation space and how it arises. Based on the geometric relation, we provide a straightforward
method to tackle embedding interchangeability and demonstrate that our method achieves state-of-
the-art results on cross-modal tasks when only training on uni-modal data.

B THEORY PROOF

In this section, we provide proofs of the two lemmas used in the main paper that reveal important
properties of multi-modal contrastive learning.
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B.1 PROOF OF LEMMA 1

Lemma 3. (Gradients in Contrastive Optimization)
With the mild assumption of equal presence of n images and texts with p(xi) = p(yi) =

1/n, optimizing the multi-modal contrastive loss L = − 1
2n

∑n
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(
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·eyj
/τ) +

log
exp(exi

·eyi
/τ)∑n

j=1 exp(exj
·eyi

/τ)

)
yields the following gradients:

∇exi
L = λ

n∑
j=1

αyj
(eyj
− eyi

)

∇eyi
L = λ

n∑
j=1

αxj
(exj

− exi
)

where λ = 1/(2nτ), αxj = p(xj |yi) + p(yi|xj), αyj = p(yj |xi) + p(xi|yj), p(xi|yj) =
exp(exi

·eyj
/τ)∑n

k=1 exp(exk
·eyj

/τ) , p(yi|xj) =
exp(eyi

·exj
/τ)∑n

k=1 exp(eyk
·exj

/τ) , and τ is temperature.

Proof of Lemma 1. We first prove ∀k,
∑n

i=1 p(xk|yi) = 1 using Bayes’ theorem:
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), which finishes the proof.

B.2 PROOF OF LEMMA 2

Lemma 4. (Stable Region Controlled by Temperature)
We consider a single term in the multi-modal contrastive loss Li = − log

exp(exi
·eyi

/τ)∑n
j=1 exp(exi

·eyj
/τ) . We
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define the margin r = exi
·eyi
−maxj ̸=i exi

·eyj
as the measure of the similarity difference between

the matched pair and the hardest negative pair. When r exceeds a threshold given below, Li falls
below a small pre-set value δ, where we assume optimization ends:

r ≥ τ log
o(τ)

exp(δ)− 1
,

where o(τ) is a monotonically increasing function of temperature τ that satisfies 1 < o(τ) < n.
Therefore, the required margin r is monotonically increasing with τ .

Proof of Lemma 2. We first prove
∑

i exp(ti/τ) ≤ o(τ) exp(maxi ti/τ), where o(τ) is a monoton-
ically increasing function of τ that satisfies 1 < o(τ) < n. Let us denote m = argmaxi ti (no tie),
we have: ∑

i

exp(ti/τ) = exp(tm/τ)(1 +
∑
i ̸=m

exp((ti − tm)/τ))

Let us denote o′(τ) = 1 +
∑

i ̸=m exp((ti − tm)/τ), since ∀i ̸= m, ti − tm < 0, we have 0 <

exp((ti − tm)/τ) < 1, so 0 <
∑

i ̸=m exp((ti − tm)/τ) < n − 1, therefore 1 < o′(τ) < n.
Moreover, exp((ti − tm)/τ) monotonically increases with τ , therefore o′(τ) is a monotonically
increasing function of τ . We can denote o(τ) = ⌈o′(τ)⌉.
Based on this, we have:

Li

= − log
exp(exi · eyi/τ)∑n
j=1 exp(exi

· eyj
/τ)

= − log
1

1 +
∑

j ̸=i exp((exi
· eyj

− exi
· eyi

)/τ)

= log(1 +
∑
j ̸=i

exp((exi · eyj − exi · eyi)/τ))

≤ log(1 + o(τ)max
j ̸=i

exp((exi
· eyj

− exi
· eyi

)/τ))

= log(1 + o(τ) exp(−r/τ))

Suppose Li ≤ log(1 + o(τ) exp(−r/τ)) ≤ δ, we have r ≥ τ log o(τ)
exp(δ)−1 , which finishes the

proof.

C EMPIRICAL VERIFICATION OF GEOMETRY

In Section 3, we established a theoretical framework for the multi-modal contrastive representation
space geometry. We prove that after contrastive learning, we have ex − ey = c⊥ + ϵ, where ex and
ey are ℓ2-normalized embeddings of a paired image x and text y, c⊥ is a constant vector represent-
ing the modality gap and is orthogonal to the image and text embedding span, and ϵ ∼ N (0, σ2I)
is a random Gaussian vector representing the alignment noise. Here we employ statistical meth-
ods to validate the proposed geometric structure on large pre-trained contrastive models. Figure 7
visualizes all the definitions introduced in this section.

To analyze the modality gap c⊥, we need to first find a way to isolate this vector, because it is
entangled with alignment noise ϵ in ex − ey . Since ϵ is Gaussian, averaging multiple instances
of ex − ey should neutralize this noise, and thus isolating c⊥. Therefore, we randomly group
every 100 image-text pairs into a group i. We define embedding difference for pair j in group i

as d
(i)
j = e

(i)
xj − e

(i)
yj . This difference includes both the modality gap and alignment noise. By

computing the expected value, d(i) = Ej [d
(i)
j ], we effectively eliminate the noise component and

leave the modality gap.

To demonstrate that the modality gap is a constant vector, we analyze its magnitude and direction
across different groups. The distribution of ∥d(i)∥2 (Figure 8 (Gap Length)) shows that the gap has
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a near constant length of 0.83, while the 0.99 mean of cos(d(i),d(j)) (Figure 8 (Gap Direction))
confirms that the gap has the same direction. These findings collectively validate that the modality
gap is a constant vector.

Next, we establish the orthogonality of the modality gap to the embedding spans. By demonstrat-
ing its orthogonality to the image embedding span, we implicitly confirm its orthogonality to the
text embedding span, given that the modality gap is a constant vector. We define the embedding
difference of image j and k as r

(i)
j,k = e

(i)
xj − e

(i)
xk . We observe the distribution of cos(d(i), r

(i)
j,k)

shown in Figure 8 (Gap Orthogonality) has zero mean with a small standard deviation 0.06, which
demonstrates the gap’s orthogonality to embedding spans.

Finally, we address the alignment noise. We define ϵ
(i)
j = d

(i)
j − d(i), which eliminates the gap

and only leaves the noise. We first demonstrate its zero-mean nature Ei,j [ϵ
(i)
j ] = 0 through the

distribution of each dimension’s mean. We see the mean of each dimension of the noise vectors is
bounded between -1e-8 and 1e-8 (Figure 8 (Noise Mean)). Furthermore, we show in Figure 8 (Noise
Direction) that the distribution of cos(ϵ(i)j , ϵ

(i)
k ) has zero mean and small standard deviation 0.10,

indicating that noise has random directions as every two noises are likely to be orthogonal. These
findings affirm that the alignment noise can be approximated by a Gaussian noise N (0, σ2I).

In summary, our empirical analyses support the proposed geometric model of the multi-modal con-
trastive representation space, with a constant modality gap vector orthogonal to embedding spans
and an alignment noise characterizable as zero-mean Gaussian.

In Figure 9, we show that our analyses above fully apply to other modalities, datasets, and contrastive
embedding spaces, such as image-caption (MS-COCO), audio-caption (Clotho), and video-caption
(MSR-VTT) on ImageBind embeddings.

Image Modality 𝒳

Text Modality 𝒴
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e(i)
xj embedding of image j in group i

e(i)
yj embedding of text j in group i

d(i)
j = e(i)

xj
− e(i)

yj embedding difference between image j and text j in group i

d(i) = 𝔼j[d(i)
j ] modality gap in group i

ϵ(i)
j = d(i)

j − d(i) alignment noise between image j and text j in group i

r(3)
1,4

r(i)
j,k = e(i)

xj
− e(i)

xk embedding difference between image j and image k in group i

Group 1 Group 2 Group 3

Figure 7: Visualization of the multi-modal contrastive representation space and various definitions
introduced in Appendix C.

Figure 8: Empirical verification of the multi-modal contrastive representation space geometry. The
modality gap approximates a constant vector, indicated by the gap length and direction distributions.
The modality gap is orthogonal to the span of embeddings from two modalities, indicated by the
gap orthogonality distributions. The alignment noise can be approximated by zero-mean Gaussian,
indicated by the noise mean and direction distributions.
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Figure 9: Generalization of Figure 8 to other modalities and multi-modal contrastive embedding
spaces, including image-caption (MS-COCO), audio-caption (Clotho), and video-caption
(MSR-VTT) on ImageBind embeddings.
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D C3 ALGORITHM

In this section, we summarize the C3 algorithm as follows:

Algorithm 1 C3 algorithm
Require: unpaired uni-modal dataset X , Y , fixed encoders fX : X 7→ Rd, fY : Y 7→ Rd obtained

from multi-modal contrastive learning, trainable decoder g : Rd 7→ Y , noise level σ
1: ēx ←

∑
x∈X

1
|X |fX (x)

2: ēy ←
∑

y∈Y
1
|Y|fY(y)

3:
4: function TRAIN(y, fY , g)
5: ey ← fY(y)
6: ϵ← N (0, σ2I)
7: ŷ ← g(ey − ēy + ϵ)
8: return L(ŷ, y)
9: end function

10:
11: function TEST(x, fX , g)
12: ex ← fX (x)
13: ŷ ← g(ex − ēx)
14: return ŷ
15: end function

E IMAGE CAPTIONING

In this section, we provide additional experimental details and qualitative results of image caption-
ing.

E.1 EXPERIMENTAL SETUP

Model. We employ the ClipCap model architecture (Mokady et al., 2021), which utilizes the CLIP
ViT-B/32 (Radford et al., 2021) as the image encoder fX , and a mapping network with a pre-trained
GPT-2 (Radford et al., 2019) as the decoder g. The mapping network is designed to handle the
difference in embedding dimensions between CLIP (512-d) and GPT-2 (768-d) and to generate a
“prefix” as input to GPT-2. It is implemented as a lightweight MLP with a single hidden layer, which
transforms the CLIP embedding into prefix embeddings for GPT-2 to generate captions. During
training, we fix the CLIP encoder to maintain the connection between image and text embeddings
and only update the decoder, which includes the mapping network and GPT-2.

Data. To train and evaluate our model, we use the MS-COCO image-caption dataset (Lin et al.,
2014). We adopt the widely-used data split (Karpathy & Fei-Fei, 2015), which consists of a training
set of approximately 113K images, and validation and test sets of 5K images each, where each image
has 5 ground truth captions.

Evaluation. We evaluate our model using various commonly-used image captioning metrics, in-
cluding BLEU (Papineni et al., 2002), METEOR (Banerjee & Lavie, 2005), ROUGE (Lin, 2004),
CIDEr (Vedantam et al., 2015), and SPICE (Anderson et al., 2016). These metrics measure the
lexical and semantic similarities between the generated captions and the ground-truth captions.

Setup. We train our model for text reconstruction using the MS-COCO captions only. Following
the C3 algorithm, we extract the text embedding from the CLIP text encoder fY and apply the col-
lapse operation (removing the pre-computed mean) and corrupt operation (adding Gaussian noise).
After pre-training, we evaluate our model in the cross-modal setting. We replace the encoder with
the CLIP image encoder and decode captions from image embeddings. Since no image is seen dur-
ing pre-training, we refer to this evaluation setting as image-free zero-shot evaluation. Additionally,
we fine-tune our model on different amounts of image-caption pairs and evaluate its performance.
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We refer to this evaluation setting as semi-supervised evaluation. During both the pre-training and
fine-tuning stages, we train the model for 10 epochs with a batch size of 40, a learning rate of 2e-5,
and AdamW (Loshchilov & Hutter, 2019) optimizer with a linear warmup of 5K steps. We use early
stopping on the validation set and report the test set performance.

E.2 QUALITATIVE EXAMPLES

We provide qualitative results for image captioning in Appendix Figure 10, which helps us better
understand the improvements of each component of C3. We observe that:

• C1 generates captions that are highly repetitive and/or nonsensical.

• C2
1 and C2

2 generates captions that are more fluent, but contain some hallucinations.

• C3 generates captions that are more correct and concise with no extraneous details.

E.3 QUANTITATIVE RESULTS

Method Connect Collapse Corrupted BLEU-1 BLEU-4 METEOR ROUGE-L CIDEr SPICE

1% Fine-tuning
ClipCap - - - 64.5 21.2 21.2 47.6 71.1 14.7
C1 ✓ ✗ ✗ 66.5 22.9 22.6 48.7 78.5 15.9
C2

1 ✓ ✓ ✗ 66.8 23.0 22.6 48.7 78.5 15.9
C2

2 ✓ ✗ ✓ 71.7 28.8 25.3 52.7 96.3 18.3
C3 (Ours) ✓ ✓ ✓ 71.9 28.9 25.3 52.7 96.4 18.3

5% Fine-tuning
ClipCap - - - 70.1 26.4 24.0 51.3 89.4 17.3
C1 ✓ ✗ ✗ 70.6 27.0 24.5 51.6 91.6 17.8
C2

1 ✓ ✓ ✗ 70.7 27.1 24.6 51.7 92.1 17.9
C2

2 ✓ ✗ ✓ 72.1 29.3 25.6 53.1 98.2 18.7
C3 (Ours) ✓ ✓ ✓ 72.3 29.4 25.7 53.1 98.8 18.8

25% Fine-tuning
ClipCap - - - 73.0 30.0 26.0 53.7 101.7 19.1
C1 ✓ ✗ ✗ 73.2 30.4 26.1 53.9 102.8 19.4
C2

1 ✓ ✓ ✗ 73.1 30.2 26.1 53.8 102.4 19.3
C2

2 ✓ ✗ ✓ 73.2 30.9 26.3 54.2 103.1 19.3
C3 (Ours) ✓ ✓ ✓ 73.4 31.1 26.3 54.3 103.6 19.4

100% Fine-tuning
ClipCap - - - 74.0 31.5 26.8 54.7 106.6 19.9
C1 ✓ ✗ ✗ 74.6 32.4 27.2 55.2 109.7 20.3
C2

1 ✓ ✓ ✗ 74.6 32.3 27.1 55.2 109.2 20.1
C2

2 ✓ ✗ ✓ 74.1 32.2 27.1 55.2 108.8 20.2
C3 (Ours) ✓ ✓ ✓ 74.0 32.2 27.1 55.2 108.9 20.2

Table 5: Image-to-text captioning results in the low data regime. When paired multi-modal data
are limited, our approach that leverages uni-modal data for pre-training leads to substantial im-
provements compared to the purely supervised method (ClipCap). This is the table version used
to reproduce Figure 5 in the main paper. Results are averaged over three random seeds for 1-25%
fine-tuning to reduce the effect of randomness.

We include Appendix Table 5, which is the table version to produce Figure 5 in the main text. In this
table, we compare the fully supervised ClipCap (Mokady et al., 2021) to an ablation of components
in our method C3, and demonstrate the effectiveness of learning cross-modal tasks with uni-modal
data. Results are averaged over three random seeds for 1-25% fine-tuning to reduce the effect of
randomness.

F TEXT-TO-IMAGE GENERATION

In this section, we provide additional experimental details and qualitative results of text-to-image
generation.
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: Pangliclicliclicliclicliclicliclicliclicliclicliclicliclicliclicliclicliclicliclicliclicliclicliclicliclicliclicliclicliclicliclicli....

: Two sport skiers in a row look into a lake

: A group of people in a canoe in the water.

: A group of people on a boat in the water.

Ground truth: a number of people riding on a small boat

: A van with a red unicorn horn is driving by a van that has a photo of the photographer's grandmother's van.

: A very strange horse with a red wig is showing a van in a field of zombies.

: A horse is standing in a field with a man.

: A horse is standing in a field next to a house.

Ground truth: A woman is feeding a horse at a ranch.

: A road sign that reads \"Bus Stop, Los Angeles, California, USA\".

: A road sign that is closed while a man is walking and working.

: A street sign is shown with a red arrow.

: A street sign is shown on a road.

Ground truth: A sign saying "END ROAD WORK" is in front of a truck on a road.

: A bus stops at the entrance to a European Union bus.

: A train is parked alongside a passenger's luggage.

: A man in a suit and tie is standing next to a train.

: A man is waiting at a train station while a train passes him.

Ground truth: A man is standing in front of a passing train

: A little league player catching a ball during the game of baseball at the Baltimore Orioles.

:A kid that is hitting a ball in a baseball game that is on the field.

: A boy is getting ready to swing at a baseball.

: A boy is getting ready to hit a baseball while a catcher and umpire watch.

Ground truth: a baseball player playing catcher with an umpire behind them

: Dog sniffing the back of the black and white dog in the cobblestone.

: Dog behind a man's ear in the street.

: A street sign is shown with a red arrow.

: A dog looking at a black cat on the street.

Ground truth: A black cat is scared by a large dog.

: A red and white bus is en route to the International Space Station.

: A PERSON IS DRIVING THE SEA WAVE

: A group of people in a boat with a large white boat in the background.

: A group of people on a boat in the water.

Ground truth: A boat in the water filled with people

: A person and their luggage, resting in the courtyard of the University of Southern California, observing the
Eiffel Tower.

: A person on a bench in the midst of the street to take a walk with their library.

: A man sitting on a bench with a book.

: A man and woman sitting on a park bench.

Ground truth: A man and woman sitting on a park bench under a huge tree

Figure 10: Qualitative examples of image-to-text captioning on the MS-COCO dataset. C1 gener-
ates captions that are highly repetitive and/or nonsensical. C2

1 and C2
2 generates captions that are

more fluent, but contain some hallucinations. C3 generates captions that are more correct and con-
cise with no extraneous details.
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F.1 EXPERIMENTAL SETUP

Model. We use the LAFITE (Zhou et al., 2022c) model for image generation, which uses the
CLIP ViT-B/32 (Radford et al., 2021) as the text encoder fX , and an adapted version of the uncon-
ditional generator from StyleGAN2 (Karras et al., 2020) as the decoder g. LAFITE’s generator is
adversarially trained alongside a discriminator with an additional contrastive objective to align the
generator’s representation space to that of CLIP’s. As with image captioning, during training, we fix
the CLIP encoder to maintain the connection between image and text embeddings, and only update
the decoder, which in this case, involves updating both the generator and discriminator.

Data. Same as image-to-text captioning, we train and evaluate the model on the MS-COCO
dataset (Lin et al., 2014). We use the same pre-processed data and data split provided in the LAFITE
official code repository, comprised of 82K training images and 40K validation images with 5 cap-
tions per image.

Evaluation. We evaluate our model using the widely-used image generation metric Frechet In-
ception Distance (FID) (Heusel et al., 2017). This metric measure the realism of generated images
by computing feature similarity between those of generated images and those of ground-truth im-
ages, where the features are derived from the pre-trained Inception-v3 model (Szegedy et al., 2016).
We also report Inception Score (IS) (Salimans et al., 2016), which is similar to FID. Similarly to
LAFITE, FID/IS scores are computed based on 50K generated images, using captions that are ran-
domly sampled from the validation set.

Setup. We train the model for at most 750,000 steps with a batch size of 16, a learning rate of
2.5e-3, and Adam optimizer. We initialize our model with the official pre-trained weights from
LAFITE (Zhou et al., 2022c) that was trained on CC3M (Sharma et al., 2018). We report the
validation set performance with the lowest FID score.

F.2 QUALITATIVE EXAMPLES

We provide qualitative results for image generation in Figure 11, which helps us better understand
the improvements of each component of C3. We observe that:

• C1 generates the basic scene that pertains to the text description, but are less photo-realistic
in terms of contrast and color.

• C2
1 and C2

2 add more fine-grained detail despite still generating some artifacts.
• C3 generates sharper images that are more detailed with fewer artifacts.

G WHY ALIGN EMBEDDING FROM DIFFERENT MODALITIES?

If embeddings from different modalities are aligned, we can train a model on one modality and then
infer on another modality, enabling us to build cross-modal applications with only uni-modal data.
This is an emerging field that lacks principled approaches to be easily applied without requiring
more empirical tuning.

We added an experiment to explain this further. We train a text generator (image captioner) over
CLIP’s text embeddings x. During inference, we manually shift all the x to x + c to simulate the
modality gap (a constant vector orthogonal to original spans). We report the captioning performance
in terms of gap distance ∥c∥ in Table 6. We observe substantial performance drops when the gap
grows, showing the need to align embeddings.

H EFFECTIVENESS OF COLLAPSE VS CORRUPT

In Table 2, we observe that adding noise (i.e., corrupt, C2
2 ) is more effective than closing the modality

gap (i.e., collapse, C1
2 ). We hypothesize that the greater effectiveness of C2

2 is because C2
2 has two

effects: 1) injecting noise in the span to mitigate alignment noise; 2) injecting noise in the modality
gap direction to mitigate the model’s sensitivity to this gap.
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A short train traveling through a mountainous landscape

A group of cows are grazing in the grass.

Large bus transporting on a open road into a city.

A small town street with old buildings

A street scene with a double-decker bus on the road.

A herd of sheep grazing in an open field.

Ground Truth

Ground Truth

Ground Truth

Ground Truth

Ground Truth

Ground Truth

Figure 11: Qualitative examples of text-to-image generation on the MS-COCO dataset. C1 gen-
erates the basic scene that pertains to the text description, but are less photo-realistic in terms of
contrast and color. C2

1 and C2
2 add more fine-grained detail despite still generating some artifacts.

C3 generates sharper images that are more detailed with fewer artifacts.
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Gap Distance ∥c∥ ROUGE-1 ROUGE-L METEOR

0.0 85.5 81.2 83.1
0.2 76.3 71.5 73.8
0.4 55.8 50.6 52.5
0.6 40.6 35.9 36.6
0.8 30.5 26.7 26.5
1.0 24.1 21.0 20.3
1.5 16.6 14.4 13.8
2.0 13.8 12.1 11.6

Table 6: Image captioning performance when trained on embedding x and tested on x+ c. This
shows the necessity to align embeddings when training a model on one modality and then inferring
on another modality.

We have added an experiment to verify this hypothesis. When adding noise sampled from Gaus-
sian distributions, we remove its component in the modality gap direction. Specifically, given
ϵ ∼ N (0, σ2I), we compute its projection on the gap direction as ϵg = ϵ·g

∥g∥
g

∥g∥ , where g
∥g∥ is

the modality gap direction, then we remove this projection to get a new noise ϵ′ = ϵ − ϵg . We add
this new noise during training and name this experiment as C2

2 (span noise only).

From Table 7, we see that adding noise only in the span (i.e., C2
2 (span noise only)) makes its

performance much worse than adding noise to all the directions (i.e., C2
2 ), and its performance is

similar to removing the modality gap (i.e., C2
1 ). Therefore, adding noise (i.e., corrupt) actually leads

to a similar improvement to removing the modality gap (i.e., collapse). The reason for the greater
effectiveness of corrupt than collapse is that injecting Gaussian noise not only adds noise in the span
but also to the modality gap direction.

Given the substantial size of the modality gap, adding noise is not enough to fully diminish the gap.
Therefore, adding noise and removing the gap (i.e., C3) still enhance the overall performance.

Method Conn. Coll. Corr. BLEU-1↑ BLEU-4↑ METEOR↑ ROUGE-L↑ CIDEr↑ SPICE↑

C1 ✓ ✗ ✗ 28.1 2.4 12.2 25.4 13.0 6.8
C2

1 ✓ ✓ ✗ 44.4 6.1 15.5 33.6 25.2 9.2
C2

2 (span noise only) ✓ ✗ ✓ 41.2 6.2 14.9 33.6 22.8 8.3
C2

2 ✓ ✗ ✓ 69.0 25.5 24.3 50.8 87.6 17.6
C3 ✓ ✓ ✓ 71.0 27.7 25.0 52.0 93.3 18.3

Table 7: Collapse is actually as effective as corrupt. The reason for the greater effectiveness of
corrupt than collapse is that injecting Gaussian noise not only adds noise in the span but also to the
modality gap direction.

I DIMENSIONAL COLLAPSE

Echoing our main paper, the phenomenon of dimensional collapse (Jing et al., 2022) in randomly
initialized image and text encoders creates a modality gap prior to optimization that also persists after
optimization. In this section, we offer further insights into dimensional collapse and demonstrate that
1) it is an inherent characteristic of deep neural networks and 2) deeper networks experience more
pronounced dimensional collapse. Additionally, we establish a connection between dimensional
collapse and the cone effect identified by Liang et al. (2022).

I.1 REAL NETWORKS

In Figure 12, we find that the vision encoder (vision transformer) and text encoder (transformer)
of the CLIP have the dimensional collapse phenomenon at initialization. Specifically, the effective
dimension of the embeddings generated by the vision and text encoder is both much smaller than
the full dimension, which induces a modality gap. Since the gradients of multi-modal contrastive
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learning will only be propagated in the effective dimensions, the modality gap will be preserved
after optimization.

Figure 12: Dimensional collapse of the randomly initialized (left) and pre-trained (right) CLIP
representation space. Singular values obtained from SVD reveal that the effective dimension of
the image and text representation space is much smaller than the total number of dimensions.

I.2 SIMULATION

To investigate the dimensional collapse phenomenon, we initialize a simple Multi-Layer Perceptron
(MLP) with n blocks, where each block contains a linear layer and Rectified Linear Unit (ReLU)
activation. We set the dimensionality of the input space and hidden states to 512, and initialize
the weights with Xavier uniform distribution and biases to zero. We initialize N = 1000 input
embeddings, where each dimension is sampled from a standard normal distribution N (0, 1). We
feed these embeddings into the MLP and extract the features after every 5 layers. We perform
Singular Value Decomposition (SVD) on the feature covariance matrix to quantify the degree of
dimensional collapse.

As shown in Figure 13, our experiments reveal two key insights:

1. Dimensional collapse is an inherent characteristic of deep neural networks and even a sim-
ple MLP exhibits this behavior.

2. Deeper networks are more prone to dimensional collapse, resulting in a smaller effective
dimension of the feature space.

Figure 13: Simulation of dimensional collapse on a MLP (n*(ReLU(Linear))) network. The x-
coordinates of the black dots indicate the effective dimensions for the embeddings from each of the
layers, respectively, which quantifies the extent of collapse.
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I.3 CONNECTION TO CONE EFFECT

The dimensional collapse phenomenon can provide an explanation for the cone effect observed
by Liang et al. (2022). They found that the cosine similarities between any two embeddings out-
putted by a deep neural network were significantly higher than zero. Due to the dimensional col-
lapse, all embeddings share similar values in the ineffective dimensions, leading to high cosine sim-
ilarities. The stronger the dimensional collapse, the greater the number of ineffective dimensions,
and hence, a stronger cone effect. This explanation is illustrated in Figure 14, where collapsing the
z-axis of a 3D representation space induces a cone, leading to significantly higher cosine similarities
between any two embeddings.

x
y

z (Collapsed)

Figure 14: Dimensional collapse explains the cone effect of deep neural networks. When the z-axis
of a 3D representation space is collapsed, it results in a cone shape, where the cosine similarities
between any two embeddings are significantly higher than zero.
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