INTERNSVG: TOWARDS UNIFIED SVG TASKS WITH MULTIMODAL LARGE LANGUAGE MODELS

Anonymous authors

000

001

002003004

006

008

010 011 012

018

021

023

025

026 027

028

029

031

032

034

038

039

040

041

042

043

044

045

046 047

048

051

052

Paper under double-blind review

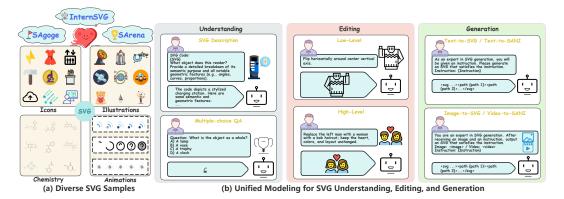


Figure 1: **Overview of our InternSVG family**. **SAgoge** provides large-scale and diverse SVG samples across multiple domains. **SArena** enables comprehensive assessment of existing MLLMs on SVG tasks. **InternSVG** supports unified modeling for SVG understanding, editing, and generation.

ABSTRACT

General SVG modeling remains challenging due to fragmented datasets, limited transferability of methods across tasks, and the difficulty of handling structural complexity. In response, we leverage the strong transfer and generalization capabilities of multimodal large language models (MLLMs) to achieve unified modeling for SVG understanding, editing, and generation. We present the InternSVG family, an integrated data-benchmark-model suite. At its core is SAgoge, the largest and most comprehensive multimodal dataset for SVG tasks, encompassing both static graphics and dynamic animations. It covers icons, long-sequence illustrations, scientific diagrams, and dynamic animations, supporting tasks of varied difficulty levels and providing deeper hierarchies with richer attributes compared to previous datasets. Based on this resource, we introduce SArena, a companion benchmark with comprehensive task definitions and standardized evaluation that aligns with the domains and difficulty spectrum covered by SAgoge. Building on these foundations, we propose InternSVG, a unified MLLM for SVG understanding, editing, and generation with SVG-specific special tokens, subword-based embedding initialization, and a two-stage training strategy that progresses from short static SVGs to long-sequence illustrations and complex animations. This unified formulation induces positive transfer and improves overall performance. Experiments on SArena and prior benchmark confirm that InternSVG achieves substantial gains and consistently outperforms leading open and proprietary counterparts.

1 Introduction

Scalable Vector Graphics (SVG) is an XML-based standard for 2D graphics that offers compact storage, fine-grained editability, and resolution-independent rendering across displays. It can function either as a stand-alone format or as an embedded component within other documents, while also supporting interactivity and animation. Additionally, it interoperates smoothly with CSS, the DOM, and JavaScript in web contexts. These properties have led to broad adoption in web design, scientific

visualization, and computer-aided design. Nevertheless, enabling machines to understand, generate, and edit SVGs remains challenging due to the methodological complexity involved, the scarcity of large-scale and high-quality training corpora, and the requirement for models that generalize across tasks rather than specializing in isolation.

Existing resources and methods face three major limitations. First, current datasets provide limited support for unified modeling of SVG tasks. Most datasets and benchmarks target a single task, such as semantic understanding in SGP-Bench (Qiu et al., 2024), instruction-based editing in SVGEditBench (Nishina & Matsui, 2024), or Text-to-SVG and Image-to-SVG generation in ColorSVG-100K (Chen & Pan, 2025), SVG-Stack (Rodriguez et al., 2025), and MMSVG (Yang et al., 2025b). This narrow scope leads to fragmented supervision and evaluation, which in turn limits transfer across understanding, editing, and generation. Second, existing datasets are limited in both scale and diversity. UniSVG (Li et al., 2025) focuses on unified SVG understanding and generation, but it contains only about 525k samples. SVGenius (Chen et al., 2025) provides a comprehensive benchmark spanning understanding, editing, and generation, while it contains only about 2,400 queries, making it suitable for evaluation rather than large-scale training. More broadly, current datasets concentrate on common static images such as icons and illustrations, while paying insufficient attention to SVGs with specific applications in professional domains. Third, existing methods commonly lack transferability and generalization. Optimization-based and differentiable rasterization pipelines scale poorly and lack semantic reasoning (Li et al., 2020; Ma et al., 2022). Although some approaches (Jain et al., 2023; Xing et al., 2024) employ diffusion models to improve visual fidelity, the resulting SVGs often suffer from limited editability and weak detail-aware control. Recently, LLM-based methods (Xing et al., 2025; Rodriguez et al., 2025; Yang et al., 2025b) have achieved significant progress in Text-to-SVG and Image-to-SVG generation, but they struggle to generalize to long sequences and complex SVG content, making it difficult to ensure generation quality. Moreover, these methods largely overlook tasks related to SVG understanding and editing.

To overcome these limitations, we propose the **InternSVG family**, an integrated data–benchmark–model suite for unified SVG modeling. Specifically, we introduce **SAgoge**, a unified multimodal dataset that jointly supports SVG understanding, editing, and generation, covering both static graphics and dynamic animations. SAgoge combines Internet-sourced and synthetic SVG data across icons, illustrations, chemical structural formulas, and animations, totaling about 16 million training samples.

Table 1: Comparison of SVG datasets and benchmarks.

Name	Understanding	Editing	Generation	Multi-Dom	#Samples
		Dataset	is		
ColorSVG-100K	X	X	✓	×	100k
SVG-Stack	X	X	/	/	2.2M
MMSVG	X	X	✓	✓	2.0M
SVGX	/	X	/	×	1.0M
UniSVG	/	X	/	×	525k
DeepSVG	X	X	/	/	100k
SAgoge (Ours)	/	/	/	/	16M
		Benchma	rks		
SGP-Bench	✓	×	×	X	4.3k
SVGEditBench	X	/	×	×	1.3k
VGBench	/	X	/	×	10.1k
SVGenius	✓	/	/	×	2.3k
SArena (Ours)	✓	✓	✓	✓	31k

Comparison of SAgoge and other datasets is shown in Table 1. To the best of our knowledge, SAgoge is the largest multimodal SVG dataset to date, with the broadest task coverage and the most comprehensive range of difficulty. It includes two understanding tasks, ten editing tasks, and four generation tasks, covering semantic understanding, icon editing and generation, long-sequence illustration generation, animation generation, and the generation of scientific diagrams. To enable rigorous and comparable assessment, we propose **SArena**, a companion benchmark that standardizes tasks and metrics for understanding, editing, and generation, with sub-benchmarks covering icons, illustrations, chemical structural formulas, and animations. Together, SAgoge and SArena provide the scale, diversity, full task coverage, and standardized measurement needed to move beyond fragmented evaluations and enable systematic investigation of general SVG modeling in a unified setting.

Building on SAgoge and the accompanying SArena for systematic evaluation, we introduce **InternSVG**, a unified MLLM for SVG understanding, editing, and generation. InternSVG augments a pretrained vision–language backbone with SVG-specific tokenization, introducing compact special tokens for tags, attributes, and coordinates to reduce sequence length while retaining geometric and hierarchical structure. These tokens are initialized with a subword-based strategy that anchors them in the pretrained embedding space, stabilizing early training and accelerating convergence. Training adopts a two-stage strategy that progresses from short static SVGs to longer illustrations and complex animations. Through extensive experiments, we demonstrate that unified modeling can effectively improve performance across understanding, editing, and generation tasks. Comprehensive evaluations further show that our InternSVG surpasses both open-source and proprietary models on

SArena and previous benchmarks. For example, on the SArena-Icon benchmark, InternSVG surpasses Claude-Sonnet-4, the strongest proprietary baseline on SVG tasks, by about 11% higher acc in understanding tasks, 34% higher PSNR in editing tasks, 56% lower FID in Text-to-SVG tasks, and 22% higher SSIM in Image-to-SVG tasks.

In summary, our contributions are below:

- (1) We construct SAgoge, the largest and most comprehensive multimodal SVG dataset to date, encompassing static graphics and animations with over 16 million training samples. To enable rigorous and comparable evaluation, we further establish SArena, a companion benchmark that standardizes tasks and metrics across SVG understanding, editing, and generation.
- (2) We propose InternSVG, a unified MLLM for SVG understanding, editing, and generation. It introduces SVG-specific tokenization with subword-initialized special tokens and adopts a two-stage training strategy to support effective cross-task generalization.
- (3) We conduct extensive experiments to demonstrate the benefits of unified modeling. The results on SArena and prior benchmarks show that our InternSVG outperforms traditional approaches as well as general-purpose open-source and proprietary models.

2 RELATED WORKS

2.1 SVG DATASETS AND BENCHMARKS

Most existing SVG datasets and benchmarks are limited in task coverage or data type and remain too small for effective model training, leading to fragmented evaluations and limited insights into generalization across tasks and complexity. SGP-Bench (Qiu et al., 2024) evaluates semantic comprehension and consistency in symbolic graphics programs. SVGEditBench (Nishina & Matsui, 2024) and its extension V2 (Nishina & Matsui, 2025) focus narrowly on instruction-based SVG editing measured by low-level syntactic metrics. On the generative side, SVG-Stack (Rodriguez et al., 2025), SVGX (Xing et al., 2025), MMSVG (Yang et al., 2025b), and ColorSVG-100K (Chen & Pan, 2025) address Text-to-SVG and Image-to-SVG generation, while VGBench Zou et al. (2024) and UniSVG (Li et al., 2025) jointly evaluate understanding and generation. DeepSVG (Carlier et al., 2020) introduces a dataset of 100K SVG icons and explores generation, interpolation, and latentspace animation of static and limited animated graphics, but lacks rich editing instructions and image-conditioned generation. SVGenius (Chen et al., 2025) introduces a comprehensive benchmark covering understanding, editing, and generation with systematic complexity levels and multidimensional metrics, but it includes only about 2,400 queries, making it sufficient for evaluation yet inadequate for training. In contrast, our SAgoge is substantially larger and more diverse, encompassing both static graphics and SVG animations. It unifies SVG understanding, editing, and generation, and with approximately 16M task samples, its scale and diversity enable robust model training and comprehensive evaluation across the full spectrum of SVG tasks, which effectively address the coverage and scalability limitations of prior datasets.

2.2 SVG Modeling Methods

Early research on SVG modeling treated vector graphics as sequences of geometric primitives and relied on specialized generative architectures trained on limited domains (Ha & Eck, 2017; Lopes et al., 2019; Frans et al., 2022; Vinker et al., 2022; Hu et al., 2024). Approaches such as DeepSVG (Carlier et al., 2020) used hierarchical VAEs with Transformer decoders to generate icons, while optimization-based methods like DiffVG (Li et al., 2020) and LIVE (Ma et al., 2022) applied differentiable rasterization to align SVG primitives with target images iteratively. Although these techniques captured low-level structure, they lacked semantic understanding, struggled with complex compositions, and were computationally costly, often producing redundant or unsimplified paths. More recent works have explored diffusion-based pipelines, such as VectorFusion (Jain et al., 2023) and SVGDreamer (Xing et al., 2024), which refine vector renderings via Text-to-Image diffusion combined with SVG constraints. These approaches improve visual fidelity but remain limited to generation and offer only restricted controllability and task diversity. The emergence of large language models (LLMs) (Achiam et al., 2023; Yang et al., 2025a; OpenAI, 2025) has shifted SVG modeling toward code-centric paradigms that leverage the textual nature of SVG. Methods such as

StarVector (Rodriguez et al., 2025), OmniSVG (Yang et al., 2025b), LLM4SVG (Xing et al., 2025), and SVGBuilder (Chen & Pan, 2025) integrate visual encoders with text decoders to generate SVGs from textual or visual inputs, achieving notable advances in Text-to-SVG and Image-to-SVG synthesis. However, these approaches are fragmented across isolated tasks, with limited mechanisms to handle the increasing complexity of SVG content. Different from prior approaches, InternSVG is a unified MLLM for SVG understanding, editing, and generation. It is capable of understanding both the semantic and structural information of SVG code, editing graphics based on user instructions, and generating SVGs from textual or visual prompts.

3 DATASET AND BENCHMARK

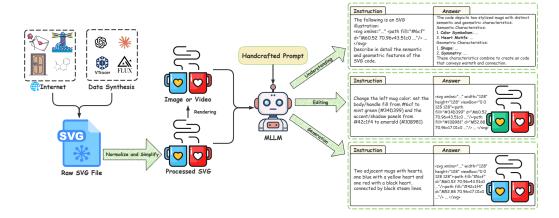


Figure 2: **Overview of the dataset construction pipeline.** Raw SVGs are gathered from the web and a custom synthesis pipeline, then normalized to a 128×128 canvas and simplified to shorten code. The rendered images or videos, processed SVG code, and handcrafted prompts are fed to an MLLM to synthesize high-quality training samples for understanding, editing, and generation.

3.1 SAGOGE DATASET

We introduce SAgoge, a large-scale and comprehensive dataset for SVG tasks with more than 16 million training samples spanning icons, illustrations, chemical structures, and animations. The construction pipeline is illustrated in Figure 2.

3.1.1 TASK DEFINITION

SAgoge is a comprehensive resource that supports unified modeling of SVG understanding, editing, and generation. We define a fine-grained task suite spanning diverse vector-graphic categories to enable consistent training and evaluation. Understanding comprises SVG description and multiple-choice question answering. Editing for icons contains ten subtasks organized by difficulty, including eight low-level operations (color editing, stroke addition, translation, scaling, rotation, flipping, transparency adjustment, and cropping) and two high-level tasks (semantic color editing and style transfer). Generation encompasses Text-to-SVG and Image-to-SVG for icons, illustrations, and chemical structures, as well as Text-to-SANI and Video-to-SANI for animations. Appendix C.3.3 presents examples of tasks in SAgoge.

3.1.2 Dataset Creation Pipeline

Data Source. SAgoge integrates Internet-sourced and synthetic SVGs. Icons and a subset of illustrations and animations are collected from public repositories such as Iconfont, SVGRepo, and OpenClipart. Chemical structures are generated by converting PubChem SDF files to SVG with the Open Babel toolkit. Due to the scarcity of open-source SVGs for illustrations and animations,

we build a dedicated data synthesis pipeline to expand coverage in these domains. Implementation details are provided in Appendix C.3 and data statistics of SAgoge are summarized in Table 24.

Normalize and Simplify. To improve training efficiency and reduce complexity, all SVGs are normalized to a 128×128 viewBox. Because collected files are often verbose and LLMs operate under limited context lengths, we further simplify the code by removing nonessential metadata, comments, and redundant declarations while preserving the core geometric primitives, semantic information, and hierarchical group structures. This normalization and simplification shorten token sequences, improve consistency, and make the corpus better suited for scalable training and evaluation.

Construction of Understanding and Generation Data. We employ distinct annotation strategies tailored to different data modalities to ensure high-quality. We first render SVGs into raster images or videos, then utilize specific MLLMs with carefully designed prompts. For understanding tasks, we feed rasterized images to MLLMs such as InternVL3 (Zhu et al., 2025) (train set) or GPT-40 (Hurst et al., 2024) (test set) to obtain fine-grained geometric and semantic descriptions. For generation tasks, icons and illustrations are annotated by providing rasterized images to an MLLM for captioning. We directly use the IUPAC names or common chemical names retrieved from PubChem as textual instructions. For animation data, each SVG animation is converted into an MP4 video and annotated by Gemini 2.0 Flash (Google DeepMind, 2024).

Construction of Editing Data. The editing dataset consists of triplets (instruction, original SVG, edited SVG) generated across three categories: simple editing, color editing, and style transfer. Simple editing operations include cropping, flipping, opacity adjustment, stroke addition, rotation, scaling, and translation. We create transformation instructions using hand-crafted templates with randomized parameters and apply edits by inserting elements such as transform or clipPath into the SVG code. Owen2.5-VL-72B (Bai et al., 2025) is used to verify the correctness of edits by comparing rendered images before and after editing and to refine the instructions. For color editing, we predefine 147 common colors and perform random color replacement at the SVG code level using regular expressions. After rasterization, an MLLM is used to generate both simple instructions and semantic-level instructions. Specifically, simple ones follow predefined templates, while semantic ones are derived by comparing visual differences before and after editing. For style transfer, we collect SVGs sharing the same category labels from datasets such as OpenMoji and ColorSVG, rasterize them, and identify similar pairs using CLIP (similarity > 0.8). We next generate captions using Qwen2.5-VL-72B and prompt an MLLM to produce an instruction conditioned on both images and their captions. Qwen2.5-VL-72B is used for train set annotation, whereas GPT-40 is adopted for the test set with subsequent human verification. Prompt templates for dataset construction are provided in Appendix C.4.1.

3.2 SARENA BENCHMARK

To enable systematic evaluation across SVG understanding, editing, and generation, we introduce SArena, a benchmark that aligns with the domains and difficulty spectrum covered by SAgoge and provides standardized tasks and metrics. SArena includes 4 sub-benchmarks, *i.e.*, icons, illustrations, chemical structures, and animation. To ensure reliability and fairness of evaluation, all SVG samples used in SArena are carefully curated through a combination of automated preprocessing and manual screening, with low-quality, corrupted, and semantically ambiguous files removed. Data statistics of SArena are shown in Appendix C.2.

3.2.1 EVALUATION METRICS

Understanding. We evaluate code-level comprehension with four-option multiple-choice QA. The model receives only the SVG code and must infer the answer from its semantics and structure, and performance is reported as accuracy.

Editing. The model edits the original SVG code to follow textual instructions. Performance is evaluated on rendered outputs using DINO score (Oquab et al., 2023), Structural Similarity Index (SSIM) (Wang et al., 2004), Learned Perceptual Image Patch Similarity (LPIPS) (Zhang et al., 2018), and Peak Signal-to-Noise Ratio (PSNR).

Text-to-SVG. The model synthesizes SVGs from textual instructions. Quality is evaluated with FID (Theis et al., 2015) and FID-CLIP (Wu et al., 2023) for distributional and semantic fidelity,

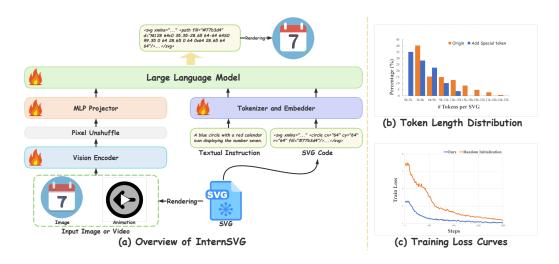


Figure 3: (a) Overall architecuture of InternSVG. (b) Distribution of the number of tokens per SVG before and after adding customized special tokens in the tokenizer. (c) Comparison of training loss curves between subword-based embedding initialization and random initialization.

CLIP-T2I (Radford et al., 2021; Hessel et al., 2021) for text–SVG alignment and CLIP-I2I for visual similarity.

Image-to-SVG. The model receives a reference image and textual instructions and generates the corresponding SVG. Evaluation mirrors the editing task and uses DINO score, SSIM, LPIPS, and PSNR to measure visual similarity between the rendered SVG and the ground-truth image.

Text-to-SANI. The model generates SVG animations from textual instructions. Evaluation uses FVD (Unterthiner et al., 2018) for distributional consistency and ViCLIP-based CLIPScores (Wang et al., 2023), with CLIP-T2V quantifying text–animation alignment and CLIP-V2V measuring visual similarity to reference videos.

Video-to-SANI. In this task the model generates SVG animations conditioned on an input video and textual instructions, enabling cross-modal animation generation. Evaluation follows the Image-to-SVG protocol and uses DINO, SSIM, LPIPS, and PSNR computed between rendered SVG frames and reference frames on sampled timestamps, with scores averaged to produce the final result.

In addition to the task-specific metrics, we also account for cases where the model generates syntactically incorrect or incomplete SVGs that cannot be rendered. Any unrenderable SVG is replaced with a pure black image or video as a penalty during metric computation, ensuring that the evaluation fairly reflects both the quality of valid outputs and the model's robustness in generation.

4 Method

4.1 Model Architecture

As illustrated in Figure 3, InternSVG follows the "ViT–MLP–LLM" paradigm (Liu et al., 2023), using InternViT-300M (Chen et al., 2024) as the vision encoder and Qwen2.5-7B (Qwen Team, 2025) as the language model. We further design SVG-specific special tokens and introduce a tailored embedding initialization strategy to incorporate SVG content effectively.

Special tokens. We design 55 tag tokens and 42 attribute tokens based on SVG grammar. Tag tokens cover core structural elements such as svg, path, and circle, as well as animation elements like animate, animateMotion, and animateTransform. Attribute tokens include common geometric attributes (e.g., viewBox, cx, cy, d) and animation-related attributes (e.g., dur, from, to, repeatCount). To represent numerical values, we add integer tokens from -128 to 128 and 100 decimal tokens from .0 to .99. This fine-grained number representation allows accurate modeling of geometry while keeping the tokenization compact. As shown in Figure 3(b), these

special tokens substantially reduce sequence length compared with the original tokenizer, improving representation efficiency and alleviating computational burden.

Embedding initialization. Instead of randomly initializing the SVG-specific special tokens, we adopt a subword-based strategy to ensure semantic coherence and stable training. Each token is decomposed into subwords using the pretrained tokenizer, and the embeddings of these subwords are averaged to form the token embedding. Formally, let a new special token t_{new} be decomposed into n subwords $\{s_1, s_2, \ldots, s_n\}$, with corresponding embeddings $\{\mathbf{e}_{s_1}, \mathbf{e}_{s_2}, \ldots, \mathbf{e}_{s_n}\}$. The initialized embedding $\mathbf{e}_{t_{\text{new}}}$ is computed as:

$$\mathbf{e}_{t_{\text{new}}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{e}_{s_i} \tag{1}$$

This strategy preserves the semantic prior from the original vocabulary and accelerates adaptation to SVG tokens. As shown in Figure 3(c), it reduces initial loss and accelerates convergence, demonstrating its effectiveness in stabilizing early training and enhancing overall efficiency.

4.2 Two-stage training strategy

The design of our two-stage training strategy is motivated by the inherent imbalance in SVG corpora. Icons are easy to collect in large quantities and have simpler structures, while illustrations are more difficult to obtain, less abundant, and usually longer and more complex. This imbalance in scale and complexity makes unified training challenging. To address this issue, we adopt a curriculum-style approach that progresses from simple to complex samples.

Initially, training is conducted only on the Icon and Chemistry datasets, which contain shorter and simpler SVGs. This stage covers SVG description, all editing tasks, and two generative tasks, namely Text-to-SVG and Image-to-SVG, and allows the model to build basic representation and generation abilities. Once the model has reached preliminary convergence, training is expanded to all datasets and tasks, including longer and more diverse SVGs. To ensure balanced learning, the Icon and Chemistry data are resampled to match the proportions of the other datasets. This progressive strategy enables the model to acquire SVG knowledge gradually and stably while reducing imbalance caused by heterogeneous dataset scales and complexities.

Table 2: Comparison of SVG understanding, editing, and generation on SArena-Icon. We use uppercase bold initials to denote submetrics with **O**verall, Color, **G**eometry, **Q**uantity, and **S**emantics.

Model		Und	erstai	nding			Edi	iting				Text-to-SV	G			Im	age-to-SV	'G	
Model	0	C	G	Q	S	DINO ↑	$\textbf{SSIM} \uparrow$	$\mathbf{LPIPS}\downarrow$	$\mathbf{PSNR}\uparrow$	FID ↓	FID-C ↓	CLIP-T2I ↑	CLIP-I2I ↑	Tokens	DINO ↑	$\textbf{SSIM} \uparrow$	$\mathbf{LPIPS}\downarrow$	$\mathbf{PSNR}\uparrow$	Tokens
									Tradit	ional SV	G method	is							
IconShop	-	-	-	-	-	-	-	-	-	32.288	17.919	20.894	70.922	1.5k	-	-	-	-	-
VectorFusion	-	-	-	-	-	-	-	-	-	16.594	17.394	22.992	70.308	33k	-	-	-	-	-
SVGDreamer	-	-	-	-	-	-	-	-	-	26.612	33.312	20.329	69.975	132k	-	-	-	-	-
DiffVG	-	_	-	-	-	-	-	-	-	-	-	-	-	-	0.869	0.927	0.097	23.614	17k
LIVE	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.973	0.986	0.024	35.419	18k
VTracer	-	_	-	-	-	-	-	-	-	-	-	-	-	-	0.966	0.875	0.054	21.748	4.4k
									Larg	e langua	ge models								
Qwen2.5-VL-7B	52.8	69.3	50.4	34.9	56.4	0.909	0.728	0.192	25.402	24.781	15.454	21.538	71.384	249	0.781	0.506	0.378	6.534	281
InternVL3-8B	59.5	79.1	59.3	38.2	61.3	0.921	0.761	0.170	29.615	23.061	14.303	21.897	71.450	269	0.812	0.557	0.361	7.220	256
Llama-4-Maverick	64.7	87.5	62.0	47.2	62.3	0.966	0.870	0.109	46.944	14.931	6.526	23.570	75.816	265	0.863	0.596	0.329	8.027	255
Qwen2.5-VL-72B	63.4	82.4	65.1	44.6	61.6	0.961	0.849	0.124	41.006	15.948	9.875	22.946	73.681	275	0.837	0.584	0.346	7.834	372
InternVL3-78B	65.3	86.4	71.0	48.8	54.9	0.958	0.848	0.116	40.533	17.580	10.596	22.805	73.123	252	0.850	0.584	0.339	7.802	234
GPT-4o	71.0	88.2	78.5	47.5	69.6	0.968	0.887	0.088	55.255	15.178	6.763	24.617	77.742	246	0.874	0.616	0.316	8.435	231
Gemini-2.5-Flash	73.0	90.1	81.9	53.0	67.2	0.942	0.815	0.113	54.200	16.720	5.208	24.658	78.218	451	0.876	0.587	0.316	8.324	533
Claude-Sonnet-4	77.1	91.5	82.4	53.8	80.6	0.979	0.915	0.071	57.595	15.840	4.291	25.421	80.579	444	0.915	0.665	0.276	9.855	541
StarVector 8B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.871	0.623	0.206	13.595	951
LLM4SVG 7B	-	-	-	-	_	-	-	-	-	21.939	8.611	19.458	70.726	705	0.748	0.472	0.409	5.375	485
OmniSVG 3B	-	-	-	-	-	-	-	-	-	28.292	11.318	21.679	74.831	1.7k	0.894	0.756	0.186	12.669	2.4k
InternSVG 8B	85.1	93.0	85.8	61.9	99.7	0.989	0.952	0.036	77.331	8.715	1.876	23.916	80.911	1.0k	0.949	0.811	0.127	18.226	1.3k
	+8.0	+1.5	+2.8	+8.1	+19.1	+0.010	+0.037	+0.035	+19.736	+6.216	+2.415	-1.505	+0.332		+0.034	+0.055	+0.059	+4.631	

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

InternSVG builds on a pretrained InternVL3-8B model and adopts a two-stage training strategy. In stage one, we train on the Icon and Chemistry datasets that contain shorter and simpler SVGs. Icon provides 1.0M samples for understanding, 1.0M for editing, and 5.6M for generation, and Chemistry provides 2.0M generation samples. In stage two, we expand to all domains and tasks, using 350K

Table 3: Comparison of SVG generation results on SArena-Illustration.

			Text-to-SVC	;			In	nage-to-SV	G	
Model	FID ↓	FID-C \downarrow	CLIP-T2I ↑	CLIP-I2I ↑	Tokens	DINO ↑	SSIM \uparrow	LPIPS ↓	$\mathbf{PSNR}\uparrow$	Tokens
			Tr	aditional SVG	methods	1				
VectorFusion	28.198	15.661	22.638	71.220	33k	_	_	_	_	_
SVGDreamer	32.410	23.427	21.026	69.775	132k	_	_	_	_	_
DiffVG	-	_	_	_	_	0.870	0.886	0.138	21.605	17k
LIVE	-	_	_	_	_	0.963	0.948	0.078	29.055	18k
VTracer	-	-	_	_	_	0.965	0.879	0.093	21.754	10k
			I	arge language	e models					
Qwen2.5-VL-7B	37.903	28.455	18.069	61.928	756	0.739	0.513	0.413	7.732	1.2k
InternVL3-8B	36.736	25.682	18.493	61.964	493	0.772	0.569	0.397	8.542	716
Llama-4-Maverick	30.835	14.831	21.872	67.366	551	0.839	0.644	0.340	10.469	608
Qwen2.5-VL-72B	29.521	18.407	20.923	65.349	527	0.808	0.628	0.363	9.900	886
InternVL3-78B	30.457	19.195	20.577	64.826	454	0.830	0.638	0.348	9.985	514
GPT-40	28.124	14.150	23.637	70.696	473	0.850	0.663	0.327	10.723	484
Gemini-2.5-Flash	28.865	8.894	24.800	74.796	1.2k	0.829	0.516	0.359	9.091	1.8k
Claude-Sonnet-4	27.294	7.640	23.094	74.525	1.0k	0.901	0.670	0.305	11.731	1.3k
LLM4SVG 7B	48.704	29.568	15.468	62.933	1.2k	0.713	0.494	0.413	6.221	476
OmniSVG 3B	42.756	22.885	16.861	64.815	4.5k	0.797	0.656	0.330	10.433	6.7k
InternSVG 8B	22.397	5.141	21.116	74.662	8.1k	0.924	0.716	0.188	14.644	7.7k
	+4.897	+2.499	-3.684	-0.134		+0.023	+0.046	+0.117	+2.913	

Table 4: Comparison of SVG generation results on SArena-Chemistry and SArena-Animation.

Model	Cher	mistry: Tex	t-to-SVG	Ch	emistry: I	mage-to-S	VG	Ar	nimation: Text-	to-SANI	An	imation: \	Video-to-SA	NI
Model	FID ↓	FID-C \downarrow	CLIP-I2I ↑	DINO ↑	SSIM \uparrow	LPIPS \downarrow	$PSNR \uparrow$	FVD ↓	CLIP-T2V ↑	CLIP-V2V ↑	DINO ↑	SSIM \uparrow	LPIPS \downarrow	PSNR ↑
Qwen2.5-VL-7B	56.248	73.698	51.814	0.769	0.468	0.274	7.501	214.379	19.118	50.649	0.787	0.716	0.273	11.758
InternVL3-8B	33.613	61.675	56.856	0.865	0.783	0.203	13.840	310.066	17.017	43.856	0.780	0.612	0.286	9.883
Llama-4-Maverick	26.844	31.924	69.643	0.908	0.798	0.173	14.977	141.470	22.304	67.615	0.841	0.754	0.246	12.858
Qwen2.5-VL-72B	32.307	44.540	63.931	0.846	0.647	0.215	12.106	151.682	20.376	59.454	0.834	0.721	0.261	11.931
InternVL3-78B	29.216	40.080	65.969	0.911	0.813	0.177	15.375	169.159	20.263	60.896	0.828	0.704	0.264	11.336
GPT-40	24.505	19.297	76.599	0.920	0.791	0.174	14.673	155.393	22.808	70.608	0.860	0.743	0.250	12.260
Gemini-2.5-Flash	27.708	21.777	75.897	0.934	0.817	0.155	15.539	151.983	22.239	66.554	0.847	0.701	0.257	12.015
Claude-Sonnet-4	21.252	15.240	78.308	0.957	0.871	0.132	17.554	169.484	24.070	74.179	0.867	0.760	0.240	13.189
StarVector 8B	-	-	-	0.977	0.841	0.147	17.419	-	-	-	-	-	-	_
InternSVG 8B	9.974	0.877	93.931	0.994	0.873	0.138	17.722	99.474	22.572	73.162	0.876	0.754	0.237	14.168
	+11.278	+14.363	+15.623	+0.017	+0.002	-0.006	+0.178	+41.996	-1.498	-1.017	+0.009	-0.006	+0.003	+0.979

understanding, 500K editing, and 1.1M generation samples from Icon, 1.0M generation samples from Illustration, 1.0M from Chemistry, and 120K from Animation. Optimization uses AdamW with a learning rate of 2×10^{-4} in stage one and 1×10^{-4} in stage two, running on 96 NVIDIA A800 GPUs with a per-device batch size of 1.

5.2 QUANTITATIVE EVALUATIONS

To validate the effectiveness of our SAgoge dataset and InternSVG, we evaluate multiple models on the SArena benchmark. The evaluation covers open-source MLLMs, proprietary systems, traditional SVG generation methods, and LLM-based approaches, including LLM4SVG (Xing et al., 2025), StarVector (Rodriguez et al., 2025), and OmniSVG (Yang et al., 2025b). The complete list of evaluated models with their parameter scales is given in Appendix B.1.

As shown in Table 2, we systematically evaluate various models on SArena-Icon across understanding, editing, and generation tasks. Our InternSVG outperforms the second-best model by 8 points in Overall accuracy. In editing, InternSVG achieves the best scores across DINO, SSIM, LPIPS, and PSNR, yielding higher visual fidelity and geometric consistency. For Text-to-SVG, it achieves the best FID, FID-C, and CLIP-I2I among all methods, while its CLIP-T2I is comparable to that of Claude-Sonnet-4. In Image-to-SVG, optimization-based methods remain strong on similarity, yet InternSVG achieves comparable visual similarity while producing much more compact code at about 1.3k tokens per SVG, roughly one fourteenth of LIVE's token count, and it unifies understanding, editing, and generation within a single model.

As shown in Table 3, on SArena-Illustration, our method achieves the best FID and FID-C in Text-to-SVG, with CLIPScores comparable to Gemini-2.5-Flash, the best-performing proprietary system, and outperforms both general MLLMs and LLM-based methods in Image-to-SVG. On SArena-

Figure 4: Visualization of SVG samples generated by InternSVG.

Chemistry, where common or IUPAC names are used as prompts, existing MLLMs perform poorly on Text-to-SVG due to limited training on scientific graphics, while InternSVG achieves the best results on both tasks with a large margin in Text-to-SVG (Table 4). On SArena-Animation, InternSVG follows a protocol of sampling 8 frames from video input and surpasses all open-source MLLMs, reaching performance close to proprietary models on both Text-to-SANI and Video-to-SANI. Complete evaluation results are provided in Appendix B.2.

To fully validate the effectiveness of SAgoge and InternSVG, we further evaluated the performance of InternSVG on established benchmarks, including SGP-Bench (Qiu et al., 2024), SVG-Stack (Rodriguez et al., 2025), and UniSVG (Li et al., 2025). Notably, InternSVG achieves the best score on SGP-Bench, surpassing proprietary models like Claude-Sonnet-4, and dominates UniSVG with a Final Score of 0.826. On SVG-Stack, InternSVG achieves superior Dino, LPIPS, and MSE scores with comparable SSIM, using only 1.2k tokens compared to StarVector's 3.7k–5.3k. The results demonstrate that the SAgoge dataset and InternSVG framework provide significant improvements across diverse SVG tasks, proving their efficacy extends well beyond the specific data distribution of SArena. Additional results are reported in Appendix B.3, B.4, and B.5.

5.3 QUALITATIVE VISUALIZATION

Figure 4 presents qualitative examples of SVGs generated by InternSVG. The results show that our InternSVG can produce diverse and visually appealing graphics with clear structures and semantically rich content. More qualitative visualization results of InternSVG and comparisons with other models can be found in Appendix B.10.

5.4 ABLATION STUDIES

Table 5: Ablation results on Generation (G), Understanding (U), and Editing (E) under different task combinations.

Tasks	U		Te	ext-to-SVG			Image-	to-SVG			Edi	iting	
lasks	Overall	FID ↓	FID-C \downarrow	CLIP-T2I↑	CLIP-I2I ↑	DINO ↑	SSIM \uparrow	$\mathbf{LPIPS}\downarrow$	$\mathbf{PSNR}\uparrow$	DINO ↑	SSIM \uparrow	LPIPS \downarrow	PSNR ↑
G	-	15.548	7.848	21.073	73.016	0.807	0.547	0.387	6.860	-	-	-	-
U	62.9	_	-	-	-	-	-	-	-	-	-	-	-
E	-	-	-	-	-	-	-	-	-	0.943	0.811	0.125	42.131
G+U	75.1	12.881	6.750	21.070	73.310	0.813	0.563	0.382	7.042	-	-	-	-
G+E	-	13.842	6.810	21.099	73.279	0.808	0.553	0.383	6.897	0.969	0.881	0.090	49.503
G+U+E	75.4	12.387	6.611	21.198	73.630	0.814	0.568	0.379	7.095	0.977	0.906	0.075	54.618

Benefits of Unified SVG Modeling. To validate the effectiveness of unified SVG modeling in improving model performance, we sample 100K SVGs from the Icon dataset and construct a multitask training set. The set includes 100K samples for multiple-choice QA and 100K samples for SVG description in the understanding task, 100K samples for semantic color editing in the editing task, and 100K samples each for text-to-SVG and image-to-SVG in the generation task. As shown in Table 5, we compare single-task, two-task, and three-task training configurations. The results show that multi-task joint training leads to consistent performance improvements and achieves the best results across the evaluation metrics of all tasks. Overall, three-task joint training yields significant

gains in most metrics, which confirms that unified SVG modeling facilitates cross-task knowledge transfer, enables the learning of richer structural and semantic representations, and improves the generalization ability of the model.

Table 6: Ablation results on the effects of the two-stage training strategy.

Strategy		Illustrati	ion: Text-to-S	VG	Illu	stration:	Image-to-S	SVG	An	imation: Text-	to-SANI	Ani	mation: \	Video-to-S	ANI
Strategy	FID ↓	$\textbf{FID-C}\downarrow$	CLIP-T2I↑	CLIP-I2I ↑	DINO ↑	$\mathbf{SSIM} \uparrow$	$\textbf{LPIPS} \downarrow$	$PSNR\uparrow$	FVD↓	CLIP-T2V \uparrow	CLIP-V2V \uparrow	DINO ↑	$\mathbf{SSIM} \uparrow$	LPIPS \downarrow	PSNR ↑
One-stage	68.644	25.671	19.217	66.400	0.830	0.503	0.278	10.345	101.433	22.291	69.993	0.867	0.735	0.245	13.420
Two-stage	22.397	5.141	21.116	74.662	0.924	0.716	0.188	14.644	99.474	22.572	73.162	0.876	0.754	0.237	14.168

Comparison of One-stage and Two-stage Training. To verify the effectiveness of the two-stage training strategy, we merge the data from both stages into a single-stage training scheme as a baseline. As demonstrated in Table 6, the two-stage model achieves substantial advantages on both illustration and animation generation. Especially for the long-sequenced illustration generation task, the two-stage training strategy exhibits remarkable improvements, with FID-C reduced from 25.67 to 5.14 and DINO increased from 0.830 to 0.924. More comparisons can be found in Appendix B.8.

Benefits of SVG-specific special tokens and subword-based embedding initialization. To assess the contribution of these two components, we sampled 50% of the icon, illustration, and chemistry training data used in stage 2 and trained three model variants: Model Raw (no special tokens), Model T (special tokens with random initialization), and Model T+E (special tokens with subword-based initialization). As shown in Table 7, Model T+E consistently delivers the best performance across both benchmarks, demonstrating that combining special tokens with subword-based embedding initialization provides the largest overall gains. Furthermore, models that incorporate special tokens (Model T and Model T+E) exhibit substantially higher success rates on illustration generation, which involves longer SVG sequences. This trend aligns with the token-compression effect shown in Figure 3(b): introducing SVG-specific tokens reduces sequence length, stabilizes training, and ultimately improves task reliability.

Table 7: Ablation studies on the effects of SVG-specific special tokens and subword-based embedding initialization. SR denotes Success Rate.

Model	U			Text-to	-SVG			Iı	nage-to-S	VG	
Model	Overall	SR	$\mathbf{FID}\downarrow$	FID-C \downarrow	CLIP-T2I↑	CLIP-I2I ↑	SR	DINO ↑	SSIM ↑	LPIPS \downarrow	PSNR ↑
					SAre	na-Icon					
Raw	79.3	92.90%	15.788	5.112	22.767	76.884	84.30%	0.809	0.493	0.381	6.571
T	79.7	97.62%	11.922	4.578	23.275	77.374	89.59%	0.919	0.741	0.166	14.342
T + E	80.8	98.42%	11.599	4.500	23.348	77.541	95.64%	0.937	0.795	0.139	15.837
					SArena-	Illustration					
Raw	_	57.22%	68.301	26.108	18.870	66.222	50.08%	0.735	0.331	0.412	6.053
T	_	69.02%	53.080	22.358	19.174	66.469	57.37%	0.807	0.448	0.307	9.424
T + E	-	78.81%	42.817	17.438	19.194	67.379	75.31%	0.862	0.578	0.257	11.810

6 CONCLUSIONS

In this work, we introduce the InternSVG family, a unified data-benchmark-model suite for scalable vector graphics. It integrates the large-scale and diverse SAgoge, the comprehensive benchmark SArena, and the unified MLLM InternSVG. SAgoge encompasses a broad spectrum of SVG tasks with varied difficulty levels, ranging from static icons and scientific diagrams to long-sequence illustrations and dynamic animations. SArena provides a standardized evaluation framework that assesses both mainstream MLLMs and traditional SVG generation approaches, enabling consistent comparison across tasks and domains. Through extensive experiments, we demonstrate that this unified formulation enhances SVG understanding, editing, and generation, yielding consistent improvements across domains and tasks. Our study highlights the importance of unified SVG modeling, and we hope it can serve as an insight for future research on vector-graphic reasoning and multimodal intelligence.

REPRODUCIBILITY STATEMENT

All the results presented in this paper can be reproduced with the resources provided. We describe the model architecture and training settings in Section 4 and Section 5. The implementation of SVG-specific tokens is provided in Appendix A. Details of the dataset, including construction and preprocessing, are provided in Section 3.1, Appendix C.3, and Appendix C.4.

ETHICS STATEMENT

Our work does not involve any sensitive personal data. All dataset elements were collected from open-source websites and publicly available sources, and we have taken care to exclude any content that could be discriminatory or violate copyright terms. We do not anticipate any adverse societal impact from our methods or datasets.

REFERENCES

- Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.
- Anthropic. The claude 3 model family: Opus, sonnet, haiku. https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf, 2024.
- Anthropic. Introducing claude 4: Claude sonnet 4 and claude opus 4. https://www.anthropic.com/news/claude-4,2025.
- Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang, Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan, Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng, Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report. *arXiv* preprint arXiv:2502.13923, 2025.
- Alexandre Carlier, Martin Danelljan, Alexandre Alahi, and Radu Timofte. Deepsvg: A hierarchical generative network for vector graphics animation. *Advances in Neural Information Processing Systems*, 33:16351–16361, 2020.
- Siqi Chen, Xinyu Dong, Haolei Xu, Xingyu Wu, Fei Tang, Hang Zhang, Yuchen Yan, Linjuan Wu, Wenqi Zhang, Guiyang Hou, et al. Svgenius: Benchmarking llms in svg understanding, editing and generation. *arXiv preprint arXiv:2506.03139*, 2025.
- Zehao Chen and Rong Pan. Svgbuilder: Component-based colored svg generation with text-guided autoregressive transformers. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pp. 2358–2366, 2025.
- Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Erfei Cui, Jinguo Zhu, Shenglong Ye, Hao Tian, Zhaoyang Liu, et al. Expanding performance boundaries of open-source multimodal models with model, data, and test-time scaling. *arXiv preprint arXiv:2412.05271*, 2024.
- Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the frontier with advanced reasoning, multimodality, long context, and next generation agentic capabilities. *arXiv preprint arXiv:2507.06261*, 2025.
- Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models. *arXiv preprint arXiv:2407.21783*, 2024.
- Kevin Frans, Lisa Soros, and Olaf Witkowski. Clipdraw: Exploring text-to-drawing synthesis through language-image encoders. *Advances in Neural Information Processing Systems*, 35: 5207–5218, 2022.

- Google DeepMind. Introducing gemini 2.0: our new ai model for the agentic era. https://blog.google/technology/google-deepmind/google-gemini-ai-update-december-2024/, 2024.
 - David Ha and Douglas Eck. A neural representation of sketch drawings. *arXiv preprint* arXiv:1704.03477, 2017.
 - Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. Clipscore: A reference-free evaluation metric for image captioning. *arXiv preprint arXiv:2104.08718*, 2021.
 - Wenyi Hong, Wenmeng Yu, Xiaotao Gu, Guo Wang, Guobing Gan, Haomiao Tang, Jiale Cheng, Ji Qi, Junhui Ji, Lihang Pan, et al. Glm-4.1 v-thinking: Towards versatile multimodal reasoning with scalable reinforcement learning. *arXiv* preprint arXiv:2507.01006, 2025.
 - Teng Hu, Ran Yi, Baihong Qian, Jiangning Zhang, Paul L Rosin, and Yu-Kun Lai. Supersvg: Superpixel-based scalable vector graphics synthesis. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 24892–24901, 2024.
 - Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint arXiv:2410.21276*, 2024.
 - Ajay Jain, Amber Xie, and Pieter Abbeel. Vectorfusion: Text-to-svg by abstracting pixel-based diffusion models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 1911–1920, 2023.
 - Jinke Li, Jiarui Yu, Chenxing Wei, Hande Dong, Qiang Lin, Liangjing Yang, Zhicai Wang, and Yanbin Hao. Unisvg: A unified dataset for vector graphic understanding and generation with multimodal large language models. *arXiv* preprint arXiv:2508.07766, 2025.
 - Tzu-Mao Li, Michal Lukáč, Gharbi Michaël, and Jonathan Ragan-Kelley. Differentiable vector graphics rasterization for editing and learning. *ACM Trans. Graph. (Proc. SIGGRAPH Asia)*, 39 (6):193:1–193:15, 2020.
 - Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *Advances in neural information processing systems*, 36:34892–34916, 2023.
 - Raphael Gontijo Lopes, David Ha, Douglas Eck, and Jonathon Shlens. A learned representation for scalable vector graphics. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 7930–7939, 2019.
 - Xu Ma, Yuqian Zhou, Xingqian Xu, Bin Sun, Valerii Filev, Nikita Orlov, Yun Fu, and Humphrey Shi. Towards layer-wise image vectorization. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 16314–16323, 2022.
 - Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. *Journal of machine learning research*, 9(Nov):2579–2605, 2008.
 - Meta AI. Llama 4 maverick 17b-128e (model card). https://huggingface.co/meta-llama/Llama-4-Maverick-17B-128E, 2025a. Released Apr 5, 2025; MoE with 17B activated / 400B total; native multimodality; knowledge cutoff Aug 2024.
 - Meta AI. Llama 4 scout 17b-16e (model card). https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E, 2025b. Model release date: Apr 5, 2025; MoE 17B active / 109B total; 10M context.
- Kunato Nishina and Yusuke Matsui. Svgeditbench: A benchmark dataset for quantitative assessment
 of llm's svg editing capabilities. In *Proceedings of the IEEE/CVF Conference on Computer Vision* and Pattern Recognition, pp. 8142–8147, 2024.
 - Kunato Nishina and Yusuke Matsui. Svgeditbench v2: A benchmark for instruction-based svg editing. arXiv preprint arXiv:2502.19453, 2025.

- OpenAI. Gpt-5 system card. https://cdn.openai.com/gpt-5-system-card.pdf,
- Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning robust visual features without supervision. *arXiv preprint arXiv:2304.07193*, 2023.
 - Zeju Qiu, Weiyang Liu, Haiwen Feng, Zhen Liu, Tim Z Xiao, Katherine M Collins, Joshua B Tenenbaum, Adrian Weller, Michael J Black, and Bernhard Schölkopf. Can large language models understand symbolic graphics programs? *arXiv* preprint arXiv:2408.08313, 2024.
 - Qwen Team. Qwen2.5 technical report. https://arxiv.org/abs/2412.15115, 2025.
 - Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from natural language supervision. In *International conference on machine learning*, pp. 8748–8763. PmLR, 2021.
 - Juan A Rodriguez, Abhay Puri, Shubham Agarwal, Issam H Laradji, Pau Rodriguez, Sai Rajeswar, David Vazquez, Christopher Pal, and Marco Pedersoli. Starvector: Generating scalable vector graphics code from images and text. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 16175–16186, 2025.
 - StepFun Team. Step3: Cost-effective multimodal intelligence. https://stepfun.ai/research/step3, 2025.
 - Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej, Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, et al. Gemma 3 technical report. *arXiv preprint arXiv:2503.19786*, 2025a.
 - Kimi Team, Angang Du, Bohong Yin, Bowei Xing, Bowen Qu, Bowen Wang, Cheng Chen, Chenlin Zhang, Chenzhuang Du, Chu Wei, et al. Kimi-vl technical report. *arXiv preprint arXiv:2504.07491*, 2025b.
 - Kwai Keye Team, Biao Yang, Bin Wen, Changyi Liu, Chenglong Chu, Chengru Song, Chongling Rao, Chuan Yi, Da Li, Dunju Zang, et al. Kwai keye-vl technical report. *arXiv preprint arXiv:2507.01949*, 2025c.
 - Lucas Theis, Aäron van den Oord, and Matthias Bethge. A note on the evaluation of generative models. *arXiv preprint arXiv:1511.01844*, 2015.
 - Thomas Unterthiner, Sjoerd Van Steenkiste, Karol Kurach, Raphael Marinier, Marcin Michalski, and Sylvain Gelly. Towards accurate generative models of video: A new metric & challenges. arXiv preprint arXiv:1812.01717, 2018.
 - Yael Vinker, Ehsan Pajouheshgar, Jessica Y Bo, Roman Christian Bachmann, Amit Haim Bermano, Daniel Cohen-Or, Amir Zamir, and Ariel Shamir. Clipasso: Semantically-aware object sketching. *ACM Transactions on Graphics (TOG)*, 41(4):1–11, 2022.
 - Vision Cortex. Vtracer. https://www.visioncortex.org/vtracer-docs, 2023.
 - Weiyun Wang, Zhangwei Gao, Lixin Gu, Hengjun Pu, Long Cui, Xingguang Wei, Zhaoyang Liu, Linglin Jing, Shenglong Ye, Jie Shao, et al. Internvl3. 5: Advancing open-source multimodal models in versatility, reasoning, and efficiency. *arXiv preprint arXiv:2508.18265*, 2025.
 - Yi Wang, Yinan He, Yizhuo Li, Kunchang Li, Jiashuo Yu, Xin Ma, Xinyuan Chen, Yaohui Wang, Ping Luo, Ziwei Liu, Yali Wang, Limin Wang, and Yu Qiao. Internvid: A large-scale video-text dataset for multimodal understanding and generation. *arXiv preprint arXiv:2307.06942*, 2023.
 - Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment: from error visibility to structural similarity. *IEEE transactions on image processing*, 13(4):600–612, 2004.

- Chengyue Wu, Xiaokang Chen, Zhiyu Wu, Yiyang Ma, Xingchao Liu, Zizheng Pan, Wen Liu, Zhenda Xie, Xingkai Yu, Chong Ruan, et al. Janus: Decoupling visual encoding for unified multimodal understanding and generation. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 12966–12977, 2025.
- Ronghuan Wu, Wanchao Su, Kede Ma, and Jing Liao. Iconshop: Text-guided vector icon synthesis with autoregressive transformers. *ACM Transactions on Graphics (TOG)*, 42(6):1–14, 2023.
- xAI. Grok 3 Beta The Age of Reasoning Agents. https://x.ai/news/grok-3, 2025.
- Ximing Xing, Haitao Zhou, Chuang Wang, Jing Zhang, Dong Xu, and Qian Yu. Svgdreamer: Text guided svg generation with diffusion model. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 4546–4555, 2024.
- Ximing Xing, Juncheng Hu, Guotao Liang, Jing Zhang, Dong Xu, and Qian Yu. Empowering llms to understand and generate complex vector graphics. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 19487–19497, 2025.
- An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint arXiv:2505.09388*, 2025a.
- Yiying Yang, Wei Cheng, Sijin Chen, Xianfang Zeng, Fukun Yin, Jiaxu Zhang, Liao Wang, Gang Yu, Xingjun Ma, and Yu-Gang Jiang. Omnisvg: A unified scalable vector graphics generation model. *arXiv preprint arXiv:2504.06263*, 2025b.
- Aohan Zeng, Xin Lv, Qinkai Zheng, Zhenyu Hou, Bin Chen, Chengxing Xie, Cunxiang Wang, Da Yin, Hao Zeng, Jiajie Zhang, et al. Glm-4.5: Agentic, reasoning, and coding (arc) foundation models. arXiv preprint arXiv:2508.06471, 2025.
- Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable effectiveness of deep features as a perceptual metric. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 586–595, 2018.
- Jinguo Zhu, Weiyun Wang, Zhe Chen, Zhaoyang Liu, Shenglong Ye, Lixin Gu, Hao Tian, Yuchen Duan, Weijie Su, Jie Shao, et al. Internvl3: Exploring advanced training and test-time recipes for open-source multimodal models. *arXiv preprint arXiv:2504.10479*, 2025.
- Bocheng Zou, Mu Cai, Jianrui Zhang, and Yong Jae Lee. Vgbench: A comprehensive benchmark of vector graphics understanding and generation for large language models. In *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing*, pp. 3647–3659, 2024.

A IMPLEMENTATION DETAILS OF INTERNSVG

In this section, we provide the detailed implementation of the SVG-specific tokens used in InternSVG. All SVGs undergo normalization to a canonical 128×128 coordinate system. This standardization reduces spurious coordinate drift and decreases computational burden for learning absolute magnitudes, thereby mitigating coordinate hallucination and enhancing cross-task consistency.

We extend the base vocabulary with SVG-specific tokens that compress lengthy character sequences. As demonstrated in Table 8, the extended vocabulary incorporates 55 tag tokens covering structural and animation elements, including opening and closing forms such as $\langle \text{svg}, \langle /\text{svg} \rangle, \langle \text{path}, \langle \text{animate}, \text{and} \langle \text{animateTransform}.$ Additionally, we include 42 attribute tokens encompassing geometry, styling, and animation controls with embedded quotes, such as viewBox=", width=", x=", and fill=".

For compact numerical representation, we introduce 247 integer tokens spanning -128 to 128, plus 100 two-decimal and 10 one-decimal fractional tokens. This fine-grained numeric inventory enables precise geometric specification while maintaining short sequences, yielding substantial reductions in sequence length and computational requirements.

New token parameters undergo initialization, preserving the base tokenizer's semantic knowledge. Each added token's embedding equals the average of its constituent subword embeddings when segmented by the original tokenizer. This procedure applies uniformly across all token types. Following vocabulary expansion, training proceeds end-to-end without parameter freezing. The subword-derived initialization stabilizes optimization, accelerates convergence, and aligns new symbols with adjacent embedding regions, improving grammatical decoding and numerical fidelity across all tasks.

B RESULTS OF SARENA

B.1 EVALUATED MODELS

Proprietary Models. We include several leading proprietary MLLMs in our evaluation, namely GPT-4o (Hurst et al., 2024), Gemini-2.5-Flash (Comanici et al., 2025), Claude-Sonnet-3.7 (Anthropic, 2024), Claude-Sonnet-4 (Anthropic, 2025), and Grok 3 (xAI, 2025).

Open-Source Models. We further benchmark a diverse set of open-source MLLMs to provide a comprehensive comparison, including Llama-3.1-8B/70B/405B, Llama-3.2-11B/90B (Dubey et al., 2024), Llama-4-Scout (Meta AI, 2025b), Llama-4-Maverick (Meta AI, 2025a), Qwen2.5-VL-7B/32B/72B (Bai et al., 2025), Keye-VL-8B (Team et al., 2025c), GLM-4.1V-9B (Hong et al., 2025), GLM-4.5V (Zeng et al., 2025), Gemma-3-12B/27B (Team et al., 2025a), Kimi-VL-A3B (Team et al., 2025b), Step3-321B (StepFun Team, 2025), InternVL3 series (Zhu et al., 2025), and InternVL3.5 series (Wang et al., 2025).

Traditional SVG Generation Methods. We also evaluate a range of traditional SVG generation methods, including Vectorfusion (Jain et al., 2023), IconShop (Wu et al., 2023), SVGDreamer (Xing et al., 2024), DiffVG (Li et al., 2020), LIVE (Ma et al., 2022), and VTracer (Vision Cortex, 2023).

LLM-based SVG Generation Methods. To thoroughly validate the effectiveness of InternSVG, we compare it against representative LLM-based SVG generation approaches on the SArena benchmark. Specifically, we include LLM4SVG (Xing et al., 2025), StarVector (Rodriguez et al., 2025), and OmniSVG (Yang et al., 2025b), which exemplify current efforts in leveraging large language models for SVG generation.

B.2 COMPLETE EVALUATION RESULTS ON SARENA

Table 9, 10, 11, 12, 13, 14, and 15 present the complete evaluation results on the SArena benchmark across all four domains and tasks.

As shown in Tables 9, 10, and 11, InternSVG achieves substantial improvements on both Understanding and Editing tasks. For the Understanding task, our model obtains the best results across

Table 8: SVG-specific token vocabulary in InternSVG.

(a) Tag tokens

Category	Tokens
Root	<pre><svg, <="" svg="">, <defs, <="" defs="">, <use, <="" use=""> ,/></use,></defs,></svg,></pre>
Grouping	<g, <="" g=""></g,>
Shapes	<pre><path, <="" path="">, <rect, <="" rect="">, <circle, <="" circle="">, <ellipse, <="" ellipse="">, <line, <="" line="">, <polyline, <="" polyline="">, <polygon, <="" polygon=""></polygon,></polyline,></line,></ellipse,></circle,></rect,></path,></pre>
Text	<text, <="" text="">, <tspan, <="" tspan="">, <textpath, <="" textpath=""></textpath,></tspan,></text,>
Gradients	<pre><lineargradient, <="" lineargradient="">, <radialgradient, <="" radialgradient="">, <stop, <="" stop=""></stop,></radialgradient,></lineargradient,></pre>
Clipping	<clippath, <="" clippath="">, <mask, <="" mask=""></mask,></clippath,>
Filters	<pre><filter, <="" filter="">, <fegaussianblur, <="" fegaussianblur="">, <fecolormatrix, <="" fecolormatrix="">, <fecomposite, <="" fecomposite="">, <feblend, <="" feblend=""></feblend,></fecomposite,></fecolormatrix,></fegaussianblur,></filter,></pre>
Animation	<pre><animate, <="" animate="">, <animatemotion, <="" animatemotion="">, <animatetransform, <="" animatetransform=""></animatetransform,></animatemotion,></animate,></pre>

(b) Attribute tokens

Category	Tokens
Geometry	<pre>width=", height=", viewBox=", x=", y=", x1=", y1=", x2=", y2=", cx=", cy=", r=", rx=", ry=", d=", points="</pre>
Styling	<pre>fill=", stroke=", stroke-width=", stroke-linecap=", stroke-linejoin=", stroke-miterlimit=", fill-rule=", opacity="</pre>
Transform	transform="
Text	font-size=", font-family=", text-anchor="
Gradients	<pre>gradientUnits=", gradientTransform=", offset=", stop-color="</pre>
Animation	<pre>begin=", dur=", repeatCount=", from=", to=", rotate=", path="</pre>
Identifiers	id=", class=", clip-path="

Table 9: Comparison of SVG understanding and editing performance on SArena-Icon.

Model			Understan	ding				Editing		
Model	Overall	Color	Geometry	Quantity	Semantic	DINO ↑	$\textbf{SSIM} \uparrow$	$\textbf{LPIPS} \downarrow$	$\textbf{PSNR} \uparrow$	Tokens
Qwen2.5-VL-7B	52.8	69.3	50.4	34.9	56.4	0.909	0.728	0.192	25.402	1.0k
InternVL3-8B	59.5	79.1	59.3	38.2	61.3	0.921	0.761	0.170	29.615	1.2k
Gemma-3-27B	59.5	82.2	67.6	43.6	44.7	0.942	0.815	0.113	54.200	1.3k
Qwen2.5-VL-32B	65.5	82.8	65.5	47.7	66.1	0.933	0.782	0.148	37.737	1.0k
Llama-4-Scout	57.5	82.4	57.0	41.6	49.0	0.949	0.825	0.138	34.070	1.3k
Llama-4-Maverick	64.7	87.5	62.0	47.2	62.3	0.966	0.870	0.109	46.944	1.3k
Qwen2.5-VL-72B	63.4	82.4	65.1	44.6	61.6	0.961	0.849	0.124	41.006	1.2k
InternVL3-78B	65.3	86.4	71.0	48.8	54.9	0.958	0.848	0.116	40.533	1.2k
GPT-40	71.0	88.2	78.5	47.5	69.6	0.968	0.887	0.088	55.255	1.2k
Gemini-2.5-Flash	73.0	90.1	81.9	53.0	67.2	0.942	0.815	0.113	54.200	1.3k
Claude-Sonnet-4	77.1	91.5	82.4	53.8	80.6	0.979	0.915	0.071	57.595	1.3k
InternSVG 8B	85.1	93.0	85.8	61.9	99.7	0.989	0.952	0.036	77.331	1.4k

all metrics, surpassing the second-best Claude-4-Sonnet by 8 points in Overall accuracy. Especially on the Semantic subtask, the score reaches 99.7, indicating that InternSVG demonstrates strong capability in comprehending the semantics encoded in SVG code. The simple-level editing tasks primarily assess proficiency in SVG syntax, including the use of nested groups with the transform

attribute to carry out translation, rotation, and flipping operations. After training on SAgoge, our InternSVG effectively acquires these syntactic skills and achieves perfect scores in several subtasks. On the hard-level editing tasks, InternSVG attains the best performance in semantic-level color editing, consistent with the Understanding results and further confirming its strong semantic comprehension. However, in the more challenging style transfer task, the model still lags slightly behind Claude-Sonnet-4, leaving room for improvement.

Table 10: Comparison of SVG editing performance across 8 simple subtasks on SArena-Icon.

Model	L	ow-level (Color Edit	ing		Cro	pping			Flip	pping			Rot	tation	
Model	DINO ↑	SSIM ↑	LPIPS ↓	PSNR ↑	DINO ↑	SSIM ↑	LPIPS ↓	PSNR ↑	DINO ↑	SSIM ↑	LPIPS ↓	PSNR ↑	DINO ↑	SSIM ↑	LPIPS ↓	PSNR ↑
Qwen2.5-VL-7B	0.958	0.892	0.061	73.123	0.870	0.673	0.270	10.087	0.852	0.636	0.313	9.683	0.919	0.803	0.152	47.833
InternVL3-8B	0.963	0.903	0.055	75.568	0.884	0.705	0.257	10.271	0.842	0.704	0.259	23.198	0.979	0.818	0.157	48.211
InternVL3.5-8B	0.999	0.992	0.007	88.473	0.881	0.761	0.195	11.376	0.905	0.704	0.241	13.358	0.886	0.697	0.246	21.118
Gemma-3-27B	1.000	1.000	0.000	99.057	0.885	0.619	0.297	14.116	0.995	0.982	0.008	96.554	0.991	0.945	0.041	85.314
InternVL3.5-30B	0.999	0.995	0.005	91.706	0.889	0.732	0.235	10.902	0.916	0.769	0.195	23.892	0.869	0.708	0.262	18.751
Qwen2.5-VL-32B	0.967	0.914	0.044	88.400	0.903	0.657	0.306	9.062	0.919	0.807	0.154	35.634	0.986	0.959	0.024	90.586
Llama-4-Scout	0.969	0.925	0.049	87.067	0.879	0.652	0.283	9.134	0.901	0.755	0.206	21.027	0.974	0.926	0.051	80.043
Llama-4-Maverick	0.998	0.996	0.006	94.874	0.903	0.677	0.301	9.404	0.955	0.914	0.074	76.565	0.989	0.967	0.024	88.142
Qwen2.5-VL-72B	0.995	0.986	0.008	97.542	0.909	0.668	0.307	9.174	0.948	0.874	0.090	52.671	0.992	0.949	0.045	82.266
InternVL3-78B	0.995	0.987	0.008	96.985	0.909	0.682	0.299	9.599	0.936	0.833	0.129	32.765	0.994	0.974	0.017	92.534
InternVL3.5-241B	0.983	0.956	0.021	91.262	0.904	0.763	0.225	11.763	0.896	0.754	0.165	30.961	0.901	0.783	0.188	39.965
GPT-4o	0.995	0.987	0.007	98.406	0.913	0.688	0.300	9.556	0.994	0.976	0.017	87.340	0.995	0.986	0.010	94.845
Gemini-2.5-Flash	1.000	1.000	9.761	99.057	0.885	0.619	0.297	14.116	0.995	0.982	0.008	96.554	0.991	0.945	0.041	85.314
Claude-Sonnet-4	1.000	1.000	0.000	100.000	0.928	0.696	0.291	9.626	0.944	0.943	0.055	73.786	0.999	0.994	0.006	96.676
InternSVG 8B	1.000	1.000	0.000	100.000	1.000	1.000	0.000	100.000	0.996	0.987	0.005	98.672	1.000	1.000	0.000	99.692
Model		Sca	aling			Addin	g Stroke			Tran	slation			Trans	parency	
Wodel	DINO ↑	SSIM ↑	LPIPS \downarrow	$PSNR \uparrow$	DINO ↑	SSIM ↑	LPIPS ↓	PSNR ↑	DINO ↑	SSIM ↑	LPIPS \downarrow	$PSNR \uparrow$	DINO ↑	SSIM ↑	LPIPS \downarrow	PSNR ↑
Qwen2.5-VL-7B	0.902	0.653	0.262	12.466	0.917	0.728	0.180	25.767	0.908	0.634	0.295	13.257	0.966	0.889	0.073	50.893
InternVL3-8B	0.923	0.684	0.231	12.403	0.933	0.791	0.150	35.333	0.916	0.708	0.222	27.231	0.982	0.954	0.026	67.912
InternVL3.5-8B	0.932	0.710	0.234	16.638	0.936	0.721	0.162	20.350	0.917	0.660	0.276	12.508	0.989	0.967	0.024	59.713
Gemma-3-27B	0.943	0.846	0.100	67.280	0.968	0.857	0.116	40.216	0.962	0.896	0.045	82.705	0.883	0.687	0.141	63.444
InternVL3.5-30B	0.930	0.693	0.236	14.118	0.949	0.769	0.135	27.933	0.947	0.746	0.222	32.944	0.992	0.968	0.024	63.038
Qwen2.5-VL-32B	0.917	0.673	0.236	19.639	0.932	0.739	0.139	33.796	0.934	0.748	0.191	31.632	0.980	0.949	0.029	80.879
Llama-4-Scout	0.925	0.705	0.226	18.068	0.960	0.840	0.104	38.360	0.926	0.686	0.251	18.387	0.983	0.957	0.028	66.797
Llama-4-Maverick	0.927	0.776	0.194	23.361	0.970	0.886	0.073	52.249	0.956	0.741	0.226	31.710	0.996	0.991	0.006	94.987
Qwen2.5-VL-72B	0.901	0.678	0.267	11.492	0.965	0.875	0.105	44.055	0.951	0.704	0.256	18.695	0.995	0.992	0.010	72.101
InternVL3-78B	0.931	0.695	0.238	12.792	0.947	0.790	0.145	37.317	0.957	0.831	0.134	46.221	0.992	0.984	0.015	68.573
InternVL3.5-241B	0.919	0.661	0.245	11.857	0.948	0.762	0.136	27.335	0.928	0.750	0.160	25.850	0.956	0.882	0.059	64.399
GPT-4o	0.947	0.811	0.163	45.845	0.966	0.864	0.093	48.913	0.982	0.928	0.060	72.016	0.990	0.977	0.014	85.619
Gemini-2.5-Flash	0.943	0.846	0.100	67.280	0.968	0.857	0.116	40.216	0.962	0.896	0.045	82.705	0.883	0.687	0.141	63.444
Claude-Sonnet-4	0.953	0.833	0.138	50.330	0.982	0.907	0.055	51.913	0.999	0.997	0.002	87.758	0.999	1.000	0.000	97.535
InternSVG 8B	0.999	1.000	0.000	98,655	1.000	1.000	0.000	99,488	1.000	1.000	0.000	100,000	1.000	1.000	0.000	99,968

Table 11: Comparison of SVG editing performance across 2 hard subtasks on SArena-Icon.

Model	Sem	antic-leve	l Color Ed	liting		Style 7	Transfer	
Model	DINO ↑	$SSIM \uparrow$	$LPIPS\downarrow$	$PSNR \uparrow$	DINO ↑	$SSIM \uparrow$	$LPIPS\downarrow$	$PSNR \uparrow$
Qwen2.5-VL-7B	0.919	0.768	0.166	23.902	0.889	0.658	0.193	11.940
InternVL3-8B	0.903	0.728	0.184	22.071	0.917	0.728	0.158	13.457
Gemma-3-27B	0.981	0.920	0.072	53.068	0.869	0.591	0.210	12.174
Qwen2.5-VL-32B	0.926	0.769	0.158	28.290	0.910	0.723	0.162	14.283
Llama-4-Scout	0.964	0.860	0.120	27.852	0.963	0.848	0.119	15.417
Llama-4-Maverick	0.975	0.891	0.099	41.222	0.969	0.855	0.105	16.765
Qwen2.5-VL-72B	0.975	0.888	0.100	42.759	0.957	0.836	0.113	16.771
InternVL3-78B	0.955	0.857	0.105	27.033	0.912	0.705	0.175	13.429
GPT-4o	0.972	0.912	0.073	54.651	0.952	0.819	0.117	18.173
Gemini-2.5-Flash	0.981	0.920	0.072	53.068	0.869	0.591	0.210	12.174
Claude-Sonnet-4	0.991	0.944	0.050	56.741	0.976	0.867	0.097	18.374
InternSVG 8B	0.996	0.959	0.041	69.875	0.952	0.808	0.139	18.100

The complete results for both Text-to-SVG and Image-to-SVG tasks on icons and illustrations are reported in Table 12 and Table 13. InternSVG consistently outperforms prior SVG generation approaches across all major metrics. Compared with large-scale open-source models such as Llama-4-Maverick and GLM-4.5V, it achieves lower FID, FID-C, and higher CLIP-I2I scores, with only a slight gap on CLIP-T2I. For Image-to-SVG, InternSVG achieves the best performance across all metrics, highlighting its strength in visual fidelity and semantic consistency.

Table 12: Comparison of SVG generation performance on SArena-Icon (Text-to-SVG and Image-to-SVG).

36.11			Text-t	o-SVG			1		Image-t	to-SVG		
Model	$\mathbf{FID}\downarrow$	FID-C↓	CLIP-T2I↑	CLIP-I2I↑	SR	Tokens	DINO ↑	$\mathbf{SSIM} \uparrow$	LPIPS ↓	PSNR ↑	SR	Tokens
				Traditio	nal SVG	methods	s					
IconShop	32.288	17.919	20.894	70.922	86.51%	1.5k	_	-	-	-	-	-
VectorFusion	16.594	17.394	22.992	70.308	100.0%	33k	-	-	-	-	-	-
SVGDreamer	26.612	33.312	20.329	69.975	100.0%	132k	-	-	-	-	-	-
DiffVG	-	-	-	-	-	-	0.869	0.927	0.097	23.614	100.0%	17k
LIVE	-	-	-	_	-	-	0.973	0.986	0.024	35.419	100.0%	18k
VTracer	-	-	-	_	-	-	0.966	0.875	0.054	21.748	100.0%	4.4k
				_	language							
Llama-3.1-8B	19.428	11.247	21.863	71.859	97.54%	280	-	-	-	-	-	-
Qwen2.5-VL-7B	24.781	15.454	21.538	71.384	90.72%	249	0.781	0.506	0.378	6.534	86.35%	281
Keye-VL-8B	21.961	14.393	21.557	71.167	93.71%	227	0.801	0.531	0.368	6.939	90.95%	286
GLM-4.1V-9B	22.684	10.447	22.562	73.197	94.11%	269	0.820	0.539	0.345	7.329	84.12%	289
InternVL3-8B	23.061	14.303	21.897	71.450	93.96%	269	0.812	0.557	0.361	7.220	94.76%	256
InternVL3.5-8B	17.357	7.128	21.888	75.005	91.72%	1.0k	0.852	0.618	0.291	8.737	91.49%	692
Llama-3.2-11B	28.156	14.345	21.711	71.485	86.18%	261	0.759	0.467	0.389	5.908	81.46%	216
Gemma-3-12B	17.137	10.409	22.023	71.622	98.40%	290	0.821	0.576	0.352	7.632	95.29%	360
InternVL3-14B	18.996	13.224	22.066	71.493	98.20%	227	0.825	0.562	0.359	7.343	96.77%	216
InternVL3.5-14B	15.897	5.985	22.351	75.912	92.82%	1.0k	0.855	0.607	0.308	8.455	93.00%	832
Kimi-VL-A3B	30.807	16.996	21.439	70.536	86.18%	228	0.798	0.562	0.362	7.179	92.20%	245
InternVL3.5-20B	16.779	5.595	23.017	77.455	90.74%	802	0.908	0.706	0.196	12.747	90.25%	1.0k
Gemma-3-27B	15.145	9.303	22.526	73.277	99.37%	249	0.826	0.595	0.354	7.833	99.50%	267
InternVL3.5-30B	16.307	5.843	22.483	76.397	92.08%	961	0.883	0.653	0.270	9.636	96.37%	783
Qwen2.5-VL-32B	20.043	10.393	22.783	73.228	93.98%	317	0.836	0.562	0.357	7.503	96.92%	309
InternVL3-38B	18.014	11.042	22.795	73.077	97.21%	251	0.829	0.549	0.351	7.305	93.40%	230
InternVL3.5-38B	14.558	5.218	22.546	76.487	94.46%	1.0k 346	0.861	0.611	0.320	8.393	96.24%	1.0k
Grok-3	21.967	8.694	24.122	76.797	84.17%		-	-	-	-	-	-
Llama-3.1-70B Llama-3.1-405B	18.032 16.794	8.300 8.390	22.747 22.822	73.876 73.920	96.08% 96.87%	255 236	_	-	_	_	_	-
	24.990	8.803	23.790	75.920 76.470	82.27%	250	_	_	_	_	_	_
DeepSeek-V3 GPT-40	15.178	6.763	24.617	77.742	99.47%	246	0.874	0.616	0.316	8.435	98.02%	231
Gemini-2.5-Flash	16.720	5.208	24.658	78.218	97.34%	451	0.874	0.510	0.316	8.324	90.50%	533
Claude-Sonnet-3.7	14.383	3.499	25.294	80.786	99.15%	417	0.909	0.647	0.290	9.259	98.34%	389
Claude-Sonnet-4	15.840	4.291	25.421	80.780	99.57%	444	0.909	0.665	0.276	9.855	99.63%	541
Llama-3.2-90B	19.309	8.550	22.841	74.006	94.69%	249	0.757	0.437	0.270	5.777	67.75%	192
Llama-4-Scout	17.908	9.382	22.849	73.563	96.03%	256	0.737	0.582	0.346	7.736	97.61%	246
Llama-4-Maverick	14.931	6.526	23.570	75.816	98.12%	265	0.863	0.596	0.340	8.027	97.75%	255
GLM-4.5V	16.641	5.093	24.450	78.349	97.32%	372	0.803	0.627	0.329	8.666	98.24%	322
Step3-321B	20.061	9.706	23.053	74.184	86.73%	308	0.834	0.555	0.340	7.516	86.53%	301
Owen2.5-VL-72B	15.948	9.875	22.946	73.681	98.50%	275	0.837	0.584	0.346	7.834	99.04%	372
InternVL3-78B	17.580	10.596	22.805	73.123	98.05%	252	0.850	0.584	0.339	7.802	98.95%	234
InternVL3.5-241B	11.265	4.426	22.534	76.807	96.99%	991	0.882	0.642	0.291	9.187	98.15%	914
StarVector 8B	-	-	_	-	-	-	0.871	0.623	0.206	13.595	72.51%	951
LLM4SVG 7B	21.939	8.611	19.458	70.726	90.95%	705	0.748	0.472	0.409	5.375	95.53%	485
OmniSVG 3B	28.292	11.318	21.679	74.831	99.68%	1.7k	0.894	0.756	0.186	12.669	99.97%	2.4k
InternSVG 8B	8.715	1.876	23.916	80.911	97.24%	1.0k	0.949	0.811	0.127	18.226	94.45%	1.3k

Table 14 reports the complete evaluation results on SArena-Chemistry for both Text-to-SVG and Image-to-SVG tasks. In this benchmark, common names and IUPAC names of chemical compounds are used as instructions to guide models to generate structural formulas. The results indicate that most existing MLLMs perform poorly in Text-to-SVG generation due to their limited training exposure to scientific graphics. For example, Qwen2.5-VL-72B obtains FID scores around 32 and relatively low CLIP-I2I scores. In contrast, InternSVG achieves the lowest FID (9.974) and FID-C (0.877) and the highest CLIP-I2I (93.931), surpassing all baselines by a large margin. On Image-to-SVG, InternSVG also outperforms both open-source and proprietary models, achieving the best results across DINO (0.994), SSIM (0.873), and PSNR (17.722). These results highlight the strong capability of InternSVG in handling domain-specific scientific graphics.

For animation generation, InternSVG achieves strong performance on both Text-to-SANI and Video-to-SANI tasks according to Table 15. In the Text-to-SANI task, it attains the lowest FVD of 99.474 and ranks second on CLIP-T2V and CLIP-V2V, only slightly behind Claude-Sonnet-4. In the Video-to-SANI task, InternSVG demonstrates performance comparable to or even surpassing that

Table 13: Comparison of SVG generation performance on SArena-Illustration (Text-to-SVG and Image-to-SVG).

Model			Text-to	-SVG					Image-t	o-SVG		
Model	FID ↓	FID-C↓	CLIP-T2I↑	CLIP-I2I \uparrow	SR	Tokens	DINO ↑	$\textbf{SSIM} \uparrow$	LPIPS ↓	$\mathbf{PSNR}\uparrow$	SR	Tokens
				Traditio	nal SVG	methods	S					
VectorFusion	28.198	15.661	22.638	71.220	100.0%	33k	-	-	-	-	-	-
SVGDreamer	32.410	23.427	21.026	69.775	100.0%	132k	-	-	-	-	-	-
DiffVG	_	-	-	-	-	-	0.870	0.886	0.138	21.605	100.0%	17k
LIVE	_	-	-	-	-	-	0.963	0.948	0.078	29.055	100.0%	18k
VTracer	_	-	-	-	-	-	0.965	0.879	0.093	21.754	100.0%	10k
	•			Large	language	models	•					
Qwen2.5-VL-7B	37.903	28.455	18.069	61.928	88.81%	756	0.739	0.513	0.413	7.732	83.46%	1.2k
InternVL3-8B	36.736	25.682	18.493	61.964	91.45%	493	0.772	0.569	0.397	8.542	92.70%	716
InternVL3.5-8B	70.837	35.776	18.095	63.357	51.52%	3.6k	0.721	0.306	0.410	5.283	48.43%	2.5k
InternVL3.5-14B	65.967	34.912	18.131	63.496	51.97%	3.5k	0.722	0.296	0.414	5.130	47.53%	2.8k
Gemma-3-27B	27.838	13.766	21.486	67.255	98.80%	613	0.824	0.617	0.379	9.920	98.45%	764
InternVL3.5-30B	68.438	33.285	18.354	63.910	54.57%	3.8k	0.739	0.331	0.404	5.778	52.37%	3.0k
Qwen2.5-VL-32B	32.115	17.804	19.773	64.555	94.70%	779	0.816	0.591	0.382	9.297	95.25%	828
InternVL3.5-38B	42.172	21.556	18.221	65.511	78.21%	4.3k	0.755	0.393	0.400	6.540	64.07%	3.8k
Llama-4-Scout	35.489	18.647	20.299	64.182	91.80%	524	0.807	0.599	0.360	9.549	92.80%	574
Llama-4-Maverick	30.835	14.831	21.872	67.366	97.30%	551	0.839	0.644	0.340	10.469	98.20%	608
Qwen2.5-VL-72B	29.521	18.407	20.923	65.349	98.60%	527	0.808	0.628	0.363	9.900	98.45%	886
InternVL3-78B	30.457	19.195	20.577	64.826	97.40%	454	0.830	0.638	0.348	9.985	99.35%	514
InternVL3.5-241B	43.339	23.061	18.191	65.689	75.86%	2.9k	0.792	0.480	0.378	8.093	77.26%	3.1k
GPT-40	28.124	14.150	23.637	70.696	99.75%	473	0.850	0.663	0.327	10.723	99.35%	484
Gemini-2.5-Flash	28.865	8.894	24.800	74.796	96.50%	1.2k	0.829	0.516	0.359	9.091	77.41%	1.8k
Claude-Sonnet-4	27.294	7.640	23.094	74.525	98.85%	1.0k	0.901	0.670	0.305	11.731	99.25%	1.3k
StarVector 8B	-	-	_	-	-	-	0.650	0.070	0.447	1.990	8.050%	2.6k
LLM4SVG 7B	48.704	29.568	15.468	62.933	79.36%	1.2k	0.713	0.494	0.413	6.221	96.60%	476
OmniSVG 3B	42.756	22.885	16.861	64.815	99.75%	4.5k	0.797	0.656	0.330	10.433	100.0%	6.7k
InternSVG 8B	22.397	5.141	21.116	74.662	100.0%	8.1k	0.924	0.716	0.188	14.644	90.01%	7.7k

Table 14: Comparison of SVG generation performance on SArena-Chemistry (Text-to-SVG and Image-to-SVG).

Model			Text-to-SVG					Image-t	o-SVG		
Model	FID ↓	$\textbf{FID-C}\downarrow$	CLIP-I2I ↑	SR	Tokens	DINO ↑	$\textbf{SSIM} \uparrow$	$\textbf{LPIPS} \downarrow$	$\mathbf{PSNR} \uparrow$	SR	Tokens
Qwen2.5-VL-7B	56.248	73.698	51.814	65.60%	907	0.769	0.468	0.274	7.501	60.97%	996
InternVL3-8B	33.613	61.675	56.856	90.81%	910	0.865	0.783	0.203	13.840	96.27%	805
Gemma-3-27B	29.937	49.967	60.776	92.07%	776	0.887	0.823	0.190	14.959	98.63%	683
Qwen2.5-VL-32B	53.047	56.431	58.428	68.30%	1.2k	0.821	0.570	0.225	10.005	67.03%	900
Llama-4-Scout	33.781	46.584	62.522	87.95%	849	0.866	0.734	0.205	12.984	89.08%	624
Llama-4-Maverick	26.844	31.924	69.643	93.97%	747	0.908	0.798	0.173	14.977	93.27%	687
Qwen2.5-VL-72B	32.307	44.540	63.931	90.34%	620	0.846	0.647	0.215	12.106	76.76%	716
InternVL3-78B	29.216	40.080	65.969	92.07%	698	0.911	0.813	0.177	15.375	96.24%	545
GPT-4o	24.505	19.297	76.599	97.37%	640	0.920	0.791	0.174	14.673	92.21%	533
Gemini-2.5-Flash	27.708	21.777	75.897	92.07%	1.4k	0.934	0.817	0.155	15.539	94.44%	1.1k
Claude-Sonnet-4	21.252	15.240	78.308	97.90%	1.2k	0.957	0.871	0.132	17.554	99.37%	956
StarVector 8B	_	_	=	_	_	0.977	0.841	0.147	17.419	96.70%	1.2k
InternSVG 8B	9.974	0.877	93.931	99.93%	981	0.994	0.873	0.138	17.722	100.0%	931

of Claude-Sonnet-4. Its SSIM score is only lower by 0.006, while it achieves higher results on all other metrics.

B.3 RESULTS ON SGP-BENCH

To further validate the effectiveness of SAgoge in enhancing model capabilities for SVG modeling, we conduct comparative experiments on SGP-Bench (Qiu et al., 2024), a benchmark specifically designed to evaluate semantic and structural understanding of symbolic graphic programs (e.g., SVGs). As shown in Table 16, our InternSVG achieves an overall accuracy of 72.3%, substantially outperforming existing open-source models. In particular, it surpasses the second-best open-source MLLM, GLM-4.5V, by 6.2 percentage points. When compared with proprietary systems, InternSVG also demonstrates advantages, achieving 1.3 percentage points higher overall accuracy

Table 15: Comparison of SVG generation performance on SArena-Animation (Text-to-SANI and Video-to-SANI).

Model		Te	xt-to-SANI					Video-to	-SANI		
Model	FVD ↓	CLIP-T2V \uparrow	$\textbf{CLIP-V2V} \uparrow$	SR	Tokens	DINO ↑	$\textbf{SSIM} \uparrow$	$\textbf{LPIPS} \downarrow$	$\mathbf{PSNR} \uparrow$	SR	Tokens
Qwen2.5-VL-7B	214.379	19.118	50.649	94.25%	296	0.787	0.716	0.273	11.758	95.63%	423
InternVL3-8B	310.066	17.017	43.856	74.01%	433	0.780	0.612	0.286	9.883	82.54%	415
Gemma-3-27B	159.119	21.105	59.309	98.41%	533	0.824	0.733	0.265	12.290	98.41%	516
Qwen2.5-VL-32B	128.299	20.535	59.188	98.21%	537	0.823	0.696	0.273	11.417	96.83%	505
Llama-4-Scout	167.932	21.014	62.929	100.0%	505	0.831	0.742	0.259	12.427	99.80%	426
Llama-4-Maverick	141.470	22.304	67.615	100.0%	563	0.841	0.754	0.246	12.858	100.0%	447
Qwen2.5-VL-72B	151.682	20.376	59.454	97.62%	433	0.834	0.721	0.261	11.931	98.61%	402
InternVL3-78B	169.159	20.263	60.896	97.42%	409	0.828	0.704	0.264	11.336	97.82%	385
GPT-40	155.393	22.808	70.608	99.80%	404	0.860	0.743	0.250	12.260	99.80%	400
Gemini-2.5-Flash	151.983	22.239	66.554	93.85%	986	0.847	0.701	0.257	12.015	91.87%	917
Claude-Sonnet-4	169.484	24.070	74.179	100.0%	907	0.867	0.760	0.240	13.189	99.80%	866
InternSVG 8B	99.474	22.572	73.162	99.01%	812	0.876	0.754	0.237	14.168	97.82%	888

Table 16: Comparison of SVG understanding performance on SGP-Bench.

Model	Semantics ↑	Count ↑	Color ↑	Shape ↑	Reasoning ↑	Overall ↑
Gemma-1.1-2B	32.1	33.3	25.0	35.6	28.7	31.7
InternLM2.5-7B	27.3	31.7	59.8	51.5	28.2	42.1
Keye-VL-8B	41.4	47.5	71.4	54.9	40.6	52.2
GLM-4.1V-9B	41.6	55.6	79.1	61.5	40.0	57.1
InternVL3-8B	33.7	46.5	69.8	59.1	36.1	50.6
Gemma-3-12B	24.8	30.8	47.2	25.7	22.8	30.5
DeepSeek-Coder-V2-16B	30.9	37.9	63.7	54.8	26.8	45.1
InternVL3-14B	38.2	52.9	74.4	54.1	41.7	52.9
Kimi-VL-A3B-2506	31.1	41.5	67.0	47.4	32.4	44.9
Gemma-3-27B	36.7	51.4	76.3	62.1	39.4	54.7
Qwen2.5-VL-32B	40.0	55.7	76.3	61.2	43.9	56.5
InternVL3-38B	40.8	58.7	82.2	63.6	43.9	59.1
GPT-40	45.9	56.8	87.3	75.2	50.4	64.8
Gemini-2.5-Flash	53.8	57.8	88.1	75.6	55.5	67.6
Claude-Sonnet-4	55.9	67.6	89.5	79.0	58.9	71.5
GLM-4.5V	47.3	63.7	87.3	72.3	55.8	66.1
Qwen2.5-VL-72B	40.2	55.1	80.1	62.0	41.1	57.1
InternVL3-78B	41.0	59.1	84.0	65.2	47.0	60.3
Step3-321B-A38B	35.9	54.0	82.8	63.2	38.6	56.5
InternSVG 8B	54.6	70.7	85.5	82.4	57.5	72.3

than Claude-Sonnet-4, while also leading on the Count and Shape subtasks. The strong performance on SGP-Bench demonstrates the effectiveness of SAgoge in enhancing SVG modeling.

B.4 RESULTS ON SVG-STACK

We evaluate the performance of InternSVG on SVG-Stack (Rodriguez et al., 2025), a benchmark that focuses on the Image-to-SVG task. As shown in Table 17, InternSVG achieves the best performance on Dino, LPIPS, and MSE, while using significantly fewer output tokens compared to StarVector (1.2k vs. 3.7k–5.3k), and obtains comparable SSIM scores.

B.5 RESULTS ON UNISVG

UniSVG (Li et al., 2025) is a comprehensive benchmark designed to evaluate both SVG understanding and generation capabilities. On UniSVG, InternSVG achieves the best performance with

Table 17: Comparison of Image-to-SVG results on SVG-Stack.

Method	Dino ↑	LPIPS ↓	SSIM ↑	MSE ↓	Tokens
GPT-4V	0.852	0.317	0.711	0.195	443
StarVector 1B	0.926	0.149	0.840	0.078	3.7k
StarVector 8B	0.966	0.058	0.947	0.026	5.3k
InternSVG 8B	0.968	0.052	0.916	0.023	1.2k

a Final Score of 0.826, substantially outperforming all baselines. In particular, it attains a 0.939 ISVGEN score on the Image-to-SVG task, which shows a 0.166 improvement over the second-best method, and also obtains the highest TSVGEN score of 0.741 on the Text-to-SVG task. For the SVG understanding task, InternSVG achieves the highest accuracy of 0.625 on the Hard set, while demonstrating comparable performance on other metrics. Together with the strong results on SGP-Bench and SVG-Stack, these findings indicate that the benefits of InternSVG are not limited to SArena or any related data source. Instead, they demonstrate that the SAgoge dataset and the InternSVG framework provide robust and broadly generalizable improvements across diverse SVG understanding and generation tasks.

Table 18: Comparison of model performance on UniSVG.

					SVC	GEN					SVGUN		
Model Name	Final Score		IS	VGEN			TS	VGEN		Accı	uracy	В	lert
Model Name	Final Score	Low	-Level	High-Level	Score	Low	-Level	High-level	Score	Easy-Acc ↑	Hard-Acc↑	Bert ↑	SBert ↑
		SSIM ↑	LPIPS \downarrow	CLIP Score ↑	Score	SSIM ↑	LPIPS \downarrow	CLIP Score ↑	Score	Easy=Acc	Hard-Acc	Beit	SDCIT
LLaMA-3.2-3B	0.567	0.563	0.674	0.690	0.592	0.491	0.616	0.772	0.638	0.347	0.201	-0.291	0.455
Qwen2.5-VL-7B	0.614	0.564	0.614	0.738	0.633	0.538	0.619	0.764	0.642	0.543	0.571	0.082	0.596
GPT-4V	0.650	0.557	0.582	0.740	0.638	0.620	0.531	0.816	0.712	0.893	0.448	0.211	0.520
Claude 3.7	0.722	0.622	0.473	0.855	0.743	0.622	0.503	0.852	0.735	0.863	0.624	0.322	0.709
LLaMA-3.2-3B-SFT	0.732	0.722	0.378	0.843	0.775	0.617	0.511	0.812	0.709	0.990	0.560	0.511	0.735
Qwen2.5-VL-7B-SFT	0.752	0.725	0.368	0.836	0.773	0.621	0.479	0.853	0.740	0.983	0.604	0.574	0.827
InternSVG 8B	0.826	0.890	0.100	0.970	0.939	0.620	0.490	0.860	0.741	0.943	0.625	0.564	0.821

B.6 QUANTITATIVE EVALUATION OF SVG CODE QUALITY

Table 19: Comparison of generated SVG code quality on SArena-Icon.

Model	Path	Rect	Circle	Polygon	Line	Ellipse	Polyline	Time
GT	2.98	0.35	0.29	0.17	0.10	0.06	0.02	_
SVGDreamer	256.00	0.00	0.00	0.00	0.00	0.00	0.00	289s
VectorFusion	64.00	0.00	0.00	0.00	0.00	0.00	0.00	71s
IconShop	6.19	0.00	0.00	0.00	0.00	0.00	0.00	5.7s
LLM4SVG	2.81	0.03	0.17	0.00	0.00	0.01	0.00	9.7s
OminiSVG	4.30	0.00	0.00	0.00	0.00	0.00	0.00	12.3s
InternSVG 8B	4.48	0.25	0.20	0.17	0.07	0.02	0.01	6.9s

To complement visual metrics, we conduct a quantitative evaluation of the structural quality of generated SVG code. We utilize the SArena-Icon benchmark, which contains 6,013 real human-designed icons, to ensure that the analysis reflects the structural properties expected in real design scenarios. Inspired by the complexity metrics proposed in Svgenius (Chen et al., 2025), we measure path count via XML parsing, assess the conciseness of command structures, and compare the average inference time across models on Text-to-SVG tasks. We also measure the average counts of SVG primitives to evaluate each baseline's structural expressiveness more comprehensively.

As shown in Table 19, InternSVG demonstrates strong performance in structural expressiveness, editability, and inference efficiency. InternSVG natively supports the full set of SVG primitives, avoiding the heavy Bézier-curve approximations used by optimization-based methods such as SVG-Dreamer (Xing et al., 2024) and VectorFusion (Jain et al., 2023). This primitive-level representation has also been highlighted as essential in recent work such as StarVector (Rodriguez et al., 2025), enabling InternSVG to model diverse geometric structures more naturally and accurately. Furthermore, InternSVG produces highly concise outputs, with an average of 4.48 paths, compared with

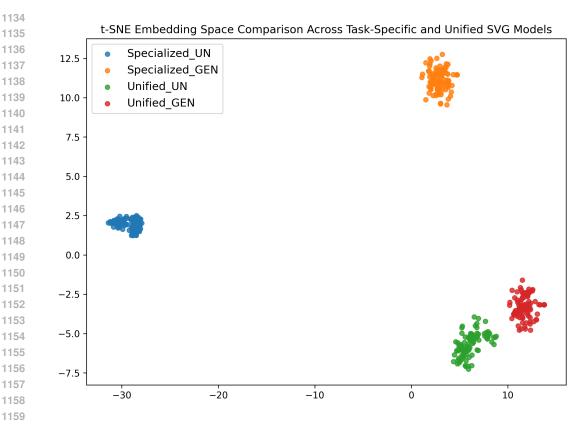


Figure 5: t-SNE visualization of model representations. Specialized models produce disjoint clusters for understanding and generation tasks, whereas the unified model yields neighboring clusters, revealing stronger cross-task representation coherence.

256.00 for SVGDreamer and 64.00 for VectorFusion, whose fragmented paths are often difficult to modify. The cleaner, semantically coherent structures generated by InternSVG align more closely with practical design workflows. In addition, optimization-based methods require tens to hundreds of seconds per sample (*e.g.*, 289 s for SVGDreamer and 71 s for VectorFusion), whereas InternSVG generates results in only 6.9 seconds on average, benefiting from its explicit structural encoding. This yields substantially faster inference without compromising structural quality.

B.7 VISUALIZATION OF CROSS-TASK REPRESENTATION ALIGNMENT

To complement the quantitative results in Table 5, we further conducted a t-SNE feature visualization experiment to explain the effects of unified modeling from the representation learning perspective. We consider the understanding-specialized model, the generation-specialized model, and the unified model used in the ablation study. We sample 100 understanding and 100 generation examples, extract their last hidden states, and project them into a 2D space by t-SNE (Maaten & Hinton, 2008). For the specialized models, understanding and generation features form two clearly separated clusters, indicating that the internal representations of the two task types are not aligned in a shared semantic space. In contrast, as depicted in Figure 5, the unified model yields two neighboring clusters. This indicates that unified modeling encourages shared and aligned representations across the two task types, forming a unified and transferable semantic space rather than two isolated representation structures.

The t-SNE analysis provides representation-level evidence for our core claim that unified modeling not only improves performance but also promotes cross-task knowledge transfer by inducing a unified and transferable embedding space. Moreover, Janus (Wu et al., 2025) in the natural-image multimodal setting similarly demonstrates that using a shared Transformer backbone for both understanding and generation can yield structurally aligned representations and performance that matches

Table 20: Comparison of one-stage and two-stage training strategy across **SArena-Icon**, **SArena-Chemistry**, **SArena-Illustration**, and **SArena-Animation**.

(a) Icon & Chemistry: Editing, Text-to-SVG and Image-to-SVG.

Model	1	Icon:	Editing			Icon:	Text-to-SVG			Icon: Ima	ige-to-SVO	;	Chen	nistry: Te	xt-to-SVG	Ch	emistry: l	mage-to-	SVG
Model	DINO ↑	$\mathbf{SSIM} \uparrow$	$\mathbf{LPIPS}\downarrow$	$\mathbf{PSNR}\uparrow$	FID ↓	FID-C \downarrow	CLIP-T2I ↑	CLIP-I2I↑	DINO ↑	SSIM \uparrow	$\mathbf{LPIPS}\downarrow$	$\mathbf{PSNR}\uparrow$	FID ↓	$\textbf{FID-C}\downarrow$	CLIP-I2I \uparrow	DINO ↑	SSIM \uparrow	LPIPS 1	PSNR ↑
One-stage	0.972	0.904	0.069	65.481	10.854	2.245	24.206	81.615	0.950	0.810	0.124	18.284	14.605	1.199	92.181	0.993	0.871	0.139	17.688
Two-stage	0.989	0.952	0.036	77.331	8.715	1.876	23.916	80.911	0.949	0.811	0.127	18.226	9.974	0.877	93.931	0.994	0.873	0.138	17.722

(b) **Illustration & Animation**: Illustration (Text-to-SVG / Image-to-SVG) and Animation (Text-to-SANI / Video-to-SANI).

Model		Illustrati	ion: Text-to-S	VG	Illus	tration:	Image-to-	SVG	An	imation: Text-	to-SANI	Ani	mation: V	Video-to-S	ANI
wiodei	FID ↓	$\textbf{FID-C}\downarrow$	CLIP-T2I \uparrow	CLIP-I2I \uparrow	DINO ↑	$\mathbf{SSIM} \uparrow$	$\textbf{LPIPS} \downarrow$	$\mathbf{PSNR}\uparrow$	FVD ↓	CLIP-T2V \uparrow	CLIP-V2V \uparrow	DINO ↑	$\mathbf{SSIM} \uparrow$	$\mathbf{LPIPS}\downarrow$	PSNR ↑
One-stage	68.644	25.671	19.217	66.400	0.830	0.503	0.278	10.345	101.433	22.291	69.993	0.867	0.735	0.245	13.420
Two-stage	22.397	5.141	21.116	74.662	0.924	0.716	0.188	14.644	99.474	22.572	73.162	0.876	0.754	0.237	14.168

or surpasses task-specialized models. Our findings on SVG tasks are consistent with these observations and further support the advantages of unified modeling for cross-task transfer.

B.8 TWO-STAGE VS. SINGLE-STAGE TRAINING

In this section, we provide a comprehensive analysis of the one-stage and two-stage training strategies. As shown in Table 20, for Icon generation, the one-stage model performs relatively well because Icon samples dominate the training data in the single-stage setting. Nevertheless, the two-stage model achieves comparable results and remains superior on FID, FID-C, and SSIM. For Icon editing as well as Chemistry, Illustration, and Animation generation, the two-stage model consistently outperforms the one-stage baseline. The experimental results further validate that the proposed two-stage training strategy is effective in alleviating data imbalance, and the progressive training scheme from easier to more challenging tasks leads to substantial improvements in SVG modeling performance.

B.9 Cross-Domain Generalization Analysis

To rigorously quantify the cross-domain generalization strength of InternSVG, we conducted a zero-shot cross-domain transfer experiment. Specifically, we trained a variant of InternSVG 8B only on the Icon Image-to-SVG data used in stage 2, and then directly evaluated it on the SArena-Chemistry Image-to-SVG task, without using any Chemistry data during training. The results show that this icon-only variant still achieves substantial improvements over the original InternVL3-8B across all metrics. As shown in Table 21, the DINO Score increased from 0.865 to 0.930 $(7.5\%\uparrow)$, SSIM increased from 0.783 to 0.824 $(5.2\%\uparrow)$, LPIPS decreased from 0.203 to 0.156 $(23.2\%\downarrow)$, and PSNR increased from 13.84 to 16.296 $(17.8\%\uparrow)$. The comprehensive improvements across all metrics strongly validate that our method and data possess exceptional generalization capabilities in cross-domain transfer scenarios.

Table 21: Zero-shot cross-domain transfer performance on SArena-Chemistry.

Model	DINO ↑	SSIM ↑	LPIPS ↓	PSNR ↑	SR
InternVL3-8B	0.865	0.783	0.203	13.840	96.27%
InternSVG 8B w/ icon	0.930	0.824	0.156	16.296	98.61%

B.10 ADDITIONAL QUALITATIVE VISUALIZATION

In this section, we present additional qualitative visualizations of InternSVG on SVG understanding, editing, and generation tasks. We further compare the generated SVGs with those produced by baseline methods to assess visual quality.

As illustrated in Figure 6 and 8, for the Text-to-SVG generation tasks on icons and illustrations, VectorFusion and SVGDreamer produce visually appealing results but exhibit poor instruction-following ability and often include a large number of irrelevant elements, limiting their practical

 applicability. Existing general-purpose MLLMs typically suffer from structural instability and incomplete semantic representation in SVG generation, making it difficult to balance visual quality and semantic alignment. In contrast, LLM4SVG and OmniSVG frequently fail to generate valid outputs or produce results that are entirely inconsistent with the textual description, highlighting the limited generalization ability of current LLM-based approaches for SVG generation. By comparison, InternSVG consistently generates high-quality and semantically aligned SVGs across diverse scenarios, demonstrating the advantages of its unified modeling paradigm for understanding, editing, and generation. Figure 7 and 9 compare the performance of InternSVG with other approaches on the Image-to-SVG task. The results demonstrate that InternSVG not only substantially outperforms general-purpose MLLMs and existing LLM-based SVG generation models, but also exceeds LIVE in performance while requiring significantly fewer tokens. In terms of detail preservation, InternSVG demonstrates superior capability compared with existing approaches.

As shown in Figure 10 and 11, for the generation of chemical structural formulas, existing general-purpose MLLMs generally lack relevant training data and therefore fail to produce correct chemical structures in either task. In addition, compared with StarVector, our method demonstrates superior control over fine-grained details of chemical bonds.

Figure 12 and 13 present a comparison between InternSVG and general-purpose MLLMs on SArena-Animation. Existing approaches show limited ability in handling vector animations, often struggling with visual quality and motion control. In contrast, InternSVG demonstrates superior capability, producing animations with higher fidelity and more consistent temporal dynamics.

Figure 14, 15, and 16 present visualizations of InternSVG outputs on SVG understanding and editing tasks.

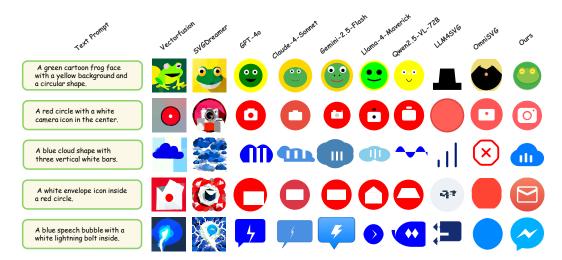


Figure 6: Qualitative comparison of Text-to-SVG performance between baselines and InternSVG on SArena-Icon. Red cross icons denote cases where the model failed to generate a valid SVG output.

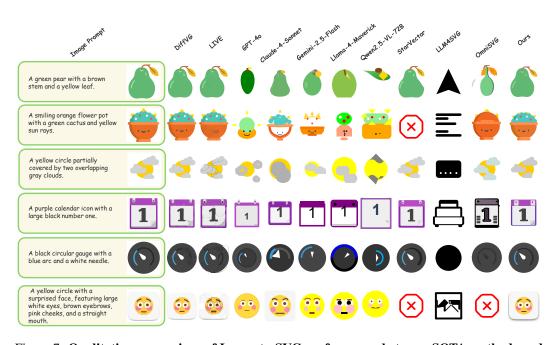


Figure 7: Qualitative comparison of Image-to-SVG performance between SOTA methods and InternSVG on SArena-Icon. Red cross icons denote cases where the model failed to generate a valid SVG output.

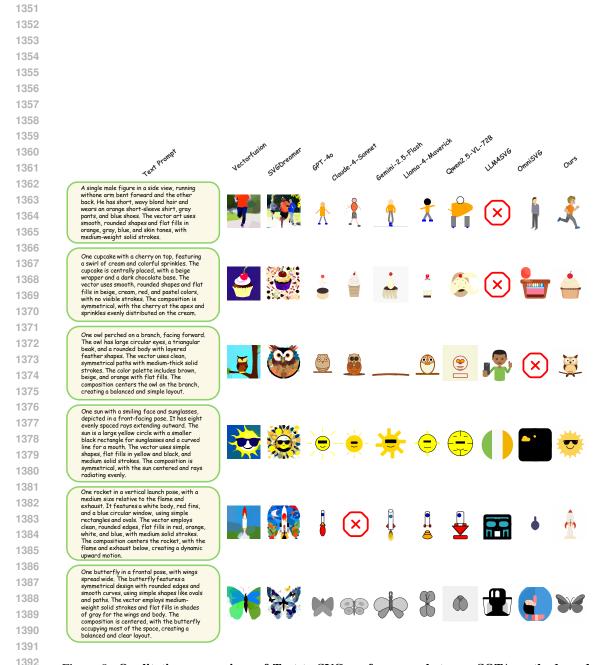


Figure 8: Qualitative comparison of Text-to-SVG performance between SOTA methods and InternSVG on SArena-Illustration. Red cross icons denote cases where the model failed to generate a valid SVG output.

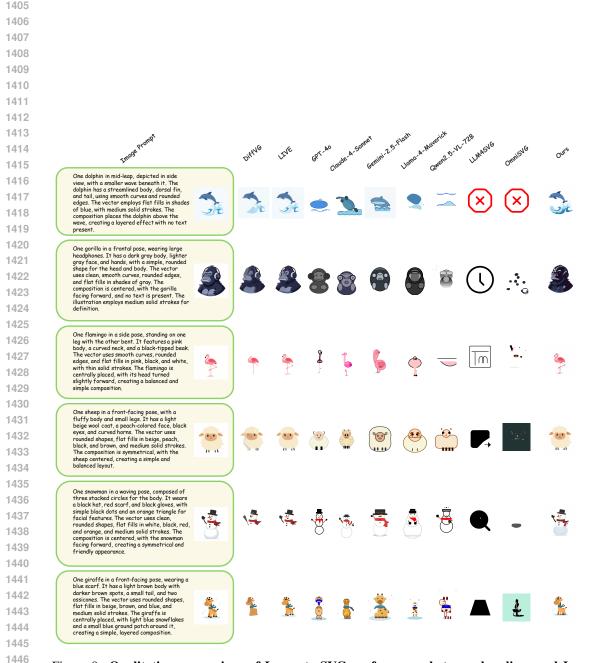


Figure 9: Qualitative comparison of Image-to-SVG performance between baselines and InternSVG on SArena-Illustration. Red cross icons denote cases where the model failed to generate a valid SVG output.

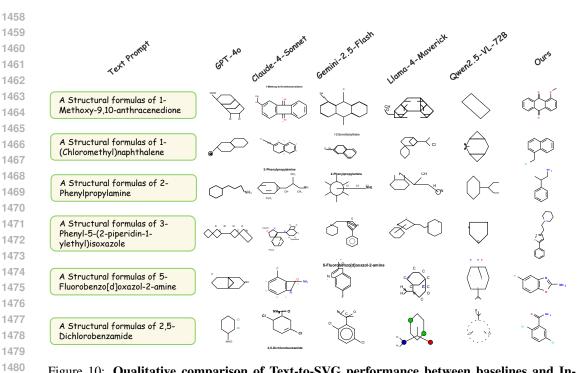


Figure 10: Qualitative comparison of Text-to-SVG performance between baselines and InternSVG on SArena-Chemistry.

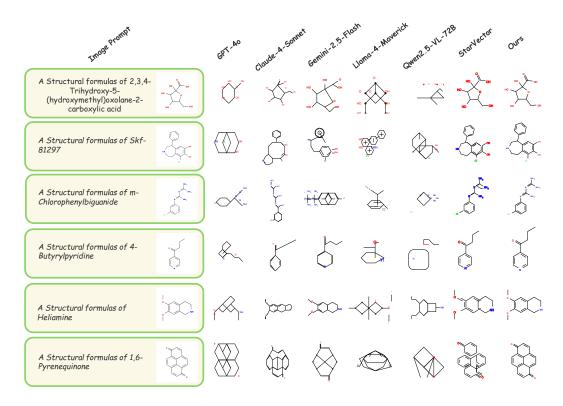


Figure 11: Qualitative comparison of Image-to-SVG performance between baselines and InternSVG on SArena-Chemistry.

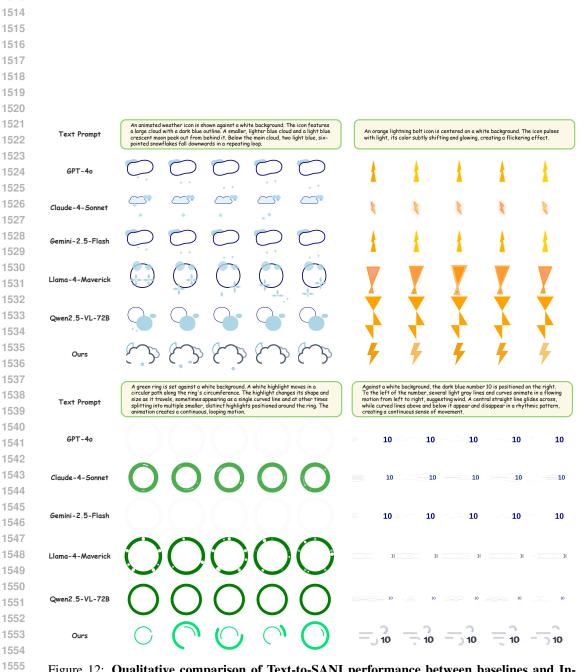


Figure 12: Qualitative comparison of Text-to-SANI performance between baselines and InternSVG on SArena-Animation.

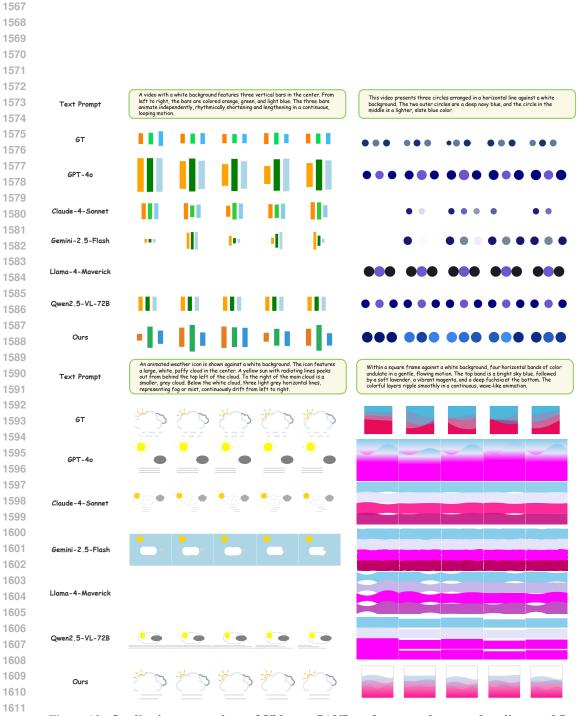


Figure 13: Qualitative comparison of Video-to-SANI performance between baselines and InternSVG on SArena-Animation.

Question The SVG source is given below: rine 3vs Sourice is given below.
svg xmlns="http://www.w3.org/2000/svg" width="128" height="128" viewBox="0 0 128 128"><path fill="#FFBDBC"
d="M82.77 65.73c-7.36 5.62-13.95.03-11.16-8.31.29-88.49-18.48-2.73 0-7.46-8.54-13.33-8.54-13.33s.39 9.37-5.45
12.6c-5.84 3.24-3.31 11.53-2.33 14.78 3.71 79.47 14.22-12.82 17.73-59 89.73-22.6 22.6 0 0 0 -.11 16.5 22.58 22.58 0 0
0.21.07 14.46h6.3c8.28 0 15.9-4.53 19.85-11.81l1.06-1.96c3.31-6.11 3.62-13.41.84-19.79z"/> Identify the main object depicted, and list its geometric shapes (e.g., rectangles, circles, lines) as well as semantic cues (e.g., what the object is, its context, implied function). Response The code depicts a sleeveless shirt with the following properties: **Geometric Properties:**
- **Shape**: The shirt has a simple, elongated shape with a rounded neckline and armholes.
- **Symmetry*: It is vertically symmetrical, with both sides mirroring each other.
- **Lines**: There are two horizontal lines across the lower part of the shirt, creating a banded appearance. **Semantic Properties:**
- **Color**: The shirt is light blue with a darker blue outline.
- **Style**: It resembles a tank top or sleeveless athletic shirt, suggesting casual or sportswear.
- **Design**: The horizontal lines may indicate a design feature or a seam. Overall, the shirt has a straightforward and functional design, typical of casual or athletic wear. Question 0 1 77.12 76V24c0-2.26-1.8-4-3.89-4-2.1 0-3.89 1.74-3.89 4v47c0 2.21-1.79 4-4 4s-4-1.79-4-4V16c0-2.26-1.8-4-3.89-Describe in detail the semantic and geometric features of the SVG code. Response The code depicts a sleeveless shirt with the following properties: **Geometric Properties:** - **Shape**: The shirt has a simple, elongated shape with a rounded neckline and armholes.
 - **Symmetry**: It is vertically symmetrical, with both sides mirroring each other.
 - **Lines**: There are two horizontal lines across the lower part of the shirt, creating a banded appearance. *Semantic Properties: - **Color**: The shirt is light blue with a darker blue outline.
 - **Style**: It resembles a tank top or sleeveless athletic shirt, suggesting casual or sportswear. - **Design**: The horizontal lines may indicate a design feature or a seam. Overall, the shirt has a straightforward and functional design, typical of casual or athletic wear.

Figure 14: Visualization of InternSVG outputs on SVG understanding.

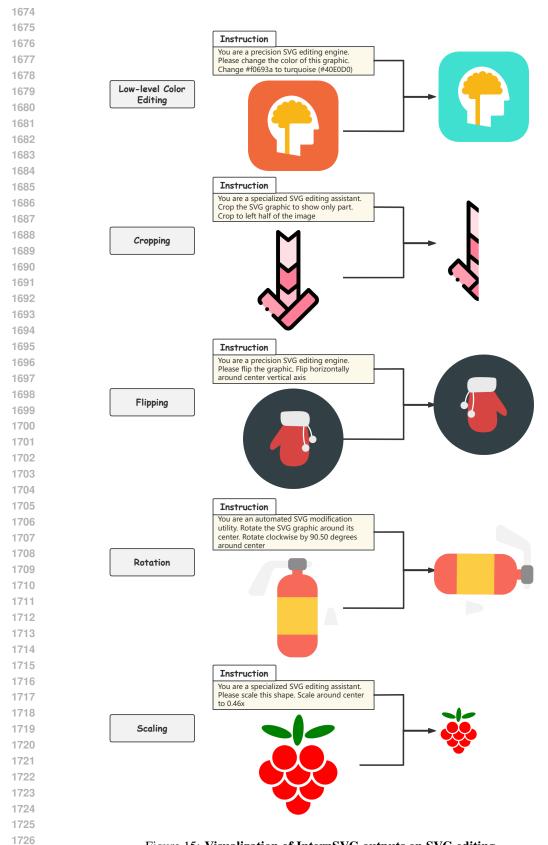


Figure 15: Visualization of InternSVG outputs on SVG editing.

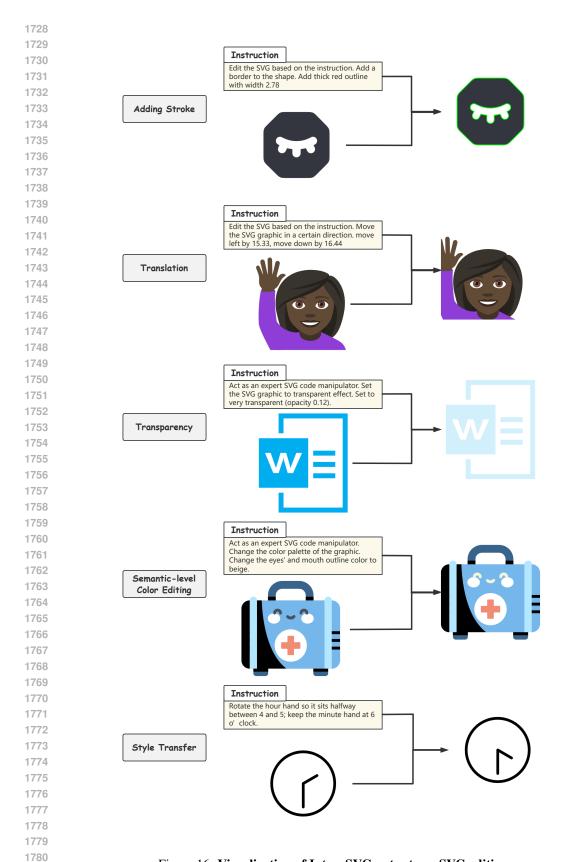
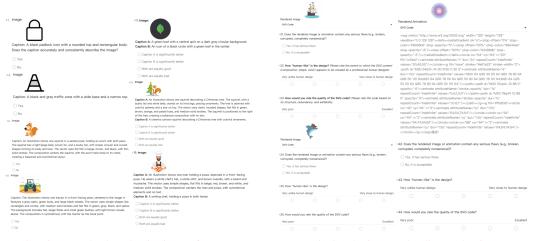
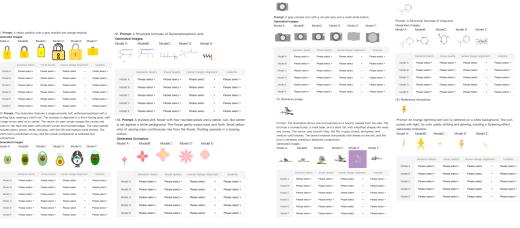



Figure 16: Visualization of InternSVG outputs on SVG editing.


B.11 USER STUDY AND EVALUATION DETAILS

We conducted a user study to comprehensively evaluate the quality of SAgoge's synthetic annotations and the practical efficacy of InternSVG's generation capabilities. A total of 42 valid responses were collected from participants with academic or professional backgrounds relevant to our study, including 14.29% researchers, 57.14% PhD students, and 28.57% UI designers. The cohort primarily came from computer-related fields and also included professional UI designers. These qualitative evaluations complement the quantitative metrics presented in the main experiments, providing further validation of data reliability and model performance.

(a) Consistency check and Pairwise Preference Test

(c) Text-to-SVG / Text-to-SANI Comparison

(d) Image-to-SVG / Video-to-SANI Comparison

Figure 17: Screenshots of user study. (a) Participants judge whether a caption matches the image, and compare two captions to decide which one better describes the content. (b) Participants rate the quality and human-likeness of synthetic SVGs. (c) & (d) Participants compare the outputs of six different models for Text-to-SVG / Text-to-SANI and Image-to-SVG / Video-to-SANI tasks.

First, we assessed the quality of our synthetic annotations to ensure they serve as reliable supervision for model training. Specifically, we sampled 100 model-generated instructions from our dataset, comprising 40 icons, 40 illustrations, and 20 animations. We designed two types of evaluation tasks for these samples (see Figure 17a): a consistency check and a pairwise preference test.

In the consistency check, participants judged whether the model-generated instruction is semantically consistent with the rendered image or video. In the pairwise preference test, participants were shown a human-authored instruction and a model-generated instruction for the same image (with

1841 1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1855

1856 1857

1866 1867 1868

1870 1871 1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883 1884

1885

1888

1889

sources blinded) and selected among "A is better", "B is better", "Both are good", or "Both are bad". As summarized in Table 22, the results show significantly high semantic consistency (95.04% overall). In the comparative assessment, participants prefer model-generated instructions in 45.43% of cases, while human-authored instructions are preferred in only 15.67% of cases, and 36.90% of samples are considered equally good. Overall, more than 82% of the samples indicate that modelgenerated annotations are comparable to human annotations in quality.

To more directly assess whether there is a noticeable gap in quality or "human-likeness" compared to real human-authored SVGs, we additionally conducted a user study on the synthesized illustration and animation data (see Figure 17b). For each participant, we randomly sampled five illustration SVGs and five animation SVGs, presenting both the SVG code and the rendered images. Participants evaluated: (i) whether the image contains any visible defects; (ii) the likelihood that the content is created by a human designer (Human-Likeness Score); and (iii) the quality and readability of the SVG code (Code Quality Score). Both scoring metrics (ii) and (iii) were evaluated on a 1-5 scale, with higher scores indicating better quality. The results, shown in Table 23, indicate that for illustrations, 96.19% of samples are judged to contain no defects, with a Human-Likeness Score of 4.20 and a Code Quality Score of 4.31. For animations, 93.81% of samples are considered defect-free, with a Human-Likeness Score of 4.07 and a Code Quality Score of 4.23. These findings demonstrate that synthesized data is generally of high quality and closely aligned with human design conventions, validating the reliability of our synthetic pipeline.

Table 22: Human evaluation results on synthetic data annotation quality (N=42, Total Samples=504).

Category	Total Samples	Semantic	Consistency	Caption	n Preference (M	odel vs. Hun	nan)
Category	Total Samples	Yes	No	Model Better	Human Better	Both Good	Both Bad
Icon	210	97.62%	2.38%	43.81%	18.10%	36.19%	1.90%
Illustration	210	92.38%	7.62%	46.67%	15.24%	35.71%	2.38%
Animation	84	95.24%	4.76%	46.43%	10.71%	41.67%	1.19%
Overall	504	95.04%	4.96%	45.43%	15.67%	36.90%	1.98%

Table 23: Human evaluation of synthetic SVG quality.

Category	Defect-Free	Defective	Human-Likeness Score	Code Quality Score
Illustration	96.19%	3.81%	4.20	4.31
Animation	93.81%	6.19%	4.07	4.23

Second, to verify whether the perceptual and semantic quality of SVGs generated by our model aligns with human preferences, we conducted a systematic human evaluation. For each participant, we randomly sampled 5 icons, 5 illustrations, 3 chemical structures, and 3 animations from the Text-to-SVG / Text-to-SANI and Image-to-SVG / Video-to-SANI evaluation results for scoring.

In each task group (see Figure 17c and Figure 17d), we presented the participants with the input text description or image, along with the SVG outputs generated by six models (GPT-4o, Gemini-2.5-Flash, Claude-Sonnet-4, Qwen2.5-VL-72B, OmniSVG, InternSVG) in randomized order. Participants rated each output on a scale of 1–5 across multiple dimensions, including Semantic Match / Visual Similarity, Visual Quality, Human Design Alignment, and Usability.

- (1) **Semantic Match / Visual Similarity:** Whether the output accurately fulfills the input description or faithfully reconstructs the image content;
- (2) Visual Quality: Whether the graphic structure is clear, concise, and stable, and whether there are obvious defects;
- (3) **Human Design Alignment:** Whether the SVG conforms to common human design intuitions (simplicity, structural clarity, compositional balance, color harmony, etc.);
- (4) Usability: Whether the generated SVG can be directly used in practical design and editing workflows.

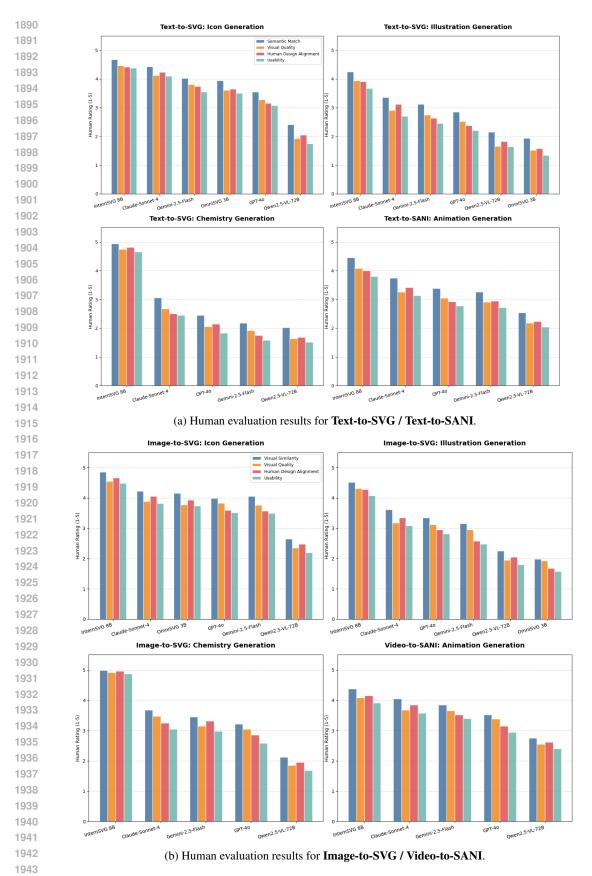


Figure 18: Human evaluation results for synthetic SVG generation tasks.

The user study results, visualized in Figure 18a and Figure 18b, demonstrate that InternSVG significantly outperforms other baseline models in both adherence to user input instructions and image reconstruction fidelity. The generated SVGs exhibit higher quality, clearer and more stable graphic structures, fewer defects, and better alignment with human design preferences and usability. Moreover, our quantitative evaluation metrics are consistent with the user study results. For example, in Image-to-SVG for icons, the user evaluation results show InternSVG (4.64), Claude-Sonnet-4 (4.00), OmniSVG-3B (3.90), Gemini-2.5-Flash (3.73), GPT-4o (3.72), and Qwen2.5-VL-72B (2.42), presenting a trend that is largely consistent with our quantitative metric results.

C DETAILS OF SAGOGE AND SARENA

C.1 STATISTICS OF SAGOGE

Table 24 presents the statistics of SAgoge in its four domains. The Icon subset contains 2.8M SVGs and 11M samples, with an average sequence length of 846 tokens, which reflects relatively simple structures. The Illustration subset is smaller in scale, with 600k SVGs and 1.6M samples, but it has much longer sequences with an average of 8.7k tokens that indicate high structural complexity. The Animation subset consists of 61K SVGs and 122K samples, and it provides dynamic elements that capture temporal changes. The Chemistry subset provides 1.7M SVGs and 3.4M samples, and its average length of 1.7k tokens shows the rich geometric and semantic details of chemical diagrams.

Table 24: **Data statistics of SAgoge.** #SVGs denotes the number of vector graphic files, #Samples refers to the number of training samples, and Avg. Tokens indicates the average token length of the SVG code.

Dataset	#SVGs	#Samples	Avg. Tokens
Icon	2.8M	11 M	846
Illustration	600K	1.6M	8673
Animation	61K	122K	847
Chemistry	1.7M	3.4M	1752

C.2 STATISTICS OF SARENA

Table 25 shows the data statistics of SArena. SArena encompasses multiple domains (Icon, Illustration, Animation, Chemistry) and a diverse set of tasks, including multiple-choice QA, editing, text-to-SVG, image-to-SVG, and video-to-SVG. Here, Avg. Tokens is the average token length of the training sample.

Table 25: Data statistics of SArena.

Benchmark	Tasks	#Samples	Avg. Tokens
Icon	Mutiple-choice QA	6012	1197
	Editing	2000	3175
ICOH	Text-to-SVG	6013	1118
	Image-to-SVG	6013	1169
Illustration	Text-to-SVG	2001	8181
mustration	Image-to-SVG	2001	8291
Animation	Text-to-SANI	504	1677
Allillation	Video-to-SANI	504	1719
Chamiatar	Text-to-SVG	3003	1010
Chemistry	Image-to-SVG	3003	1065

C.3 DATA SYNTHESIS PIPELINE

C.3.1 ILLUSTRATION DATA SYNTHESIS PIPELINE

As high-quality open-source SVG resources for illustrations are scarce, we establish a dedicated synthesis pipeline to expand our dataset. The overall process is depicted in Figure 19.

We begin by employing GPT-40 to automatically generate diverse textual prompts covering a wide range of objects, styles, and scene descriptions. These prompts are crafted to encourage the generation of vector-like visual features, ensuring compatibility with subsequent vectorization. The

Figure 19: **Illustration data synthesis pipeline.** Textual prompts generated by GPT-40 are processed by a FLUX-based model and converted to SVGs via VTracer.

prompts are then processed by a FLUX-based generative model equipped with a vector-style LoRA adapter¹. This step ensures that the rendered images are not only semantically consistent with the prompts but also stylistically aligned with the characteristics of SVG, such as simplified shapes, flat colors, and clean edges. Finally, we apply VTracer to convert the generated images into SVG format, which performs vectorization by detecting paths, curves, and fills. This automated workflow bridges the gap between raster generation and vector representation, enabling us to systematically produce a large-scale, diverse, and high-quality dataset of SVG illustrations.

C.3.2 Animation Data Synthesis Pipeline

High-quality open-source SVG animations are extremely scarce, making it infeasible to rely solely on existing resources to achieve the desired scale and diversity. To overcome this limitation, we exploit the powerful code-generation capability of Claude-Sonnet-4 to synthesize SVG animations compliant with the SMIL standard. We design generation protocols with explicit constraints, such as fixed canvas size and mandatory animation primitives, which ensure structural consistency, renderability, and suitability for large-scale training. This pipeline enables systematic expansion of the animation dataset and produces SVG animations with richer semantic content and greater geometric diversity.

¹https://huggingface.co/renderartist/simplevectorflux

C.3.3 EXAMPLES OF SAGOGE

2106

210721082109

2110

2111 2112

2113

2114

2115

2116

2117

2118 2119 2120

21212122

2123 2124

2125

2126

2127

2128

212921302131

213221332134

21352136

2137

2139

2140

2141 2142 2143

2144214521462147

2148 2149

2150

2151

215221532154

2155

2156

215721582159

<svg xmlns="http://www.w3.org/2000/svg" width="128" height="128" viewBox="0 0 128 128">cpath fill="#00B00" 0 128 128">cpath fill="#00B00" 0 128 128">cpath fill="#00B00" 0 128 128">cpath fill="#00B00" 0 10.6742.665.33 91.2 10.13 96 16 96h90.67c5.86 0 10.66-4.8 10.66-10.67741.67c5.38 0 1 10.66-4.8 10.66-10.67741.67c2.94 0 5.34-2.4 5.34-5.34m-5.34y5.67c0-2.94-2.4-5.34-5.34m-5.34y5.35-5.34m-5.35-5.34y5.3

Question: What is the shape of the main part of the object? A) Circle B) Rectangle C) Triangle D) Square

Category: Geometry

Question: What color is the handle of the magnifying glass?
A) Blue
B) Green
C) Yellow
D) Red

Category: Color

Question: How many hands does the clock have? A) One B) Two C) Three D) Four

Question: What is the object as a whole? A) A dragon logo B) A medical symbol C) The Python programming language logo D) An abstract art piece Category: Semantic

Question: What is the object as a whole? A) A lamp B) A vase C) A trophy. D) A clock Category: Semantic - svg xmlns="http://www.w3.org/2000/svg" width="128" height="128" viewBox="0.0128" 128">- svg xmlns="http://www.w3.org/2000/svg" width="128" height="128" viewBox="0.0128" 128">- svg xmlns="http://www.w3.org/2000/svg" viewBox="0.0128" 128">- svg xmlns="http://www.w3.org/2000/svg" 0.0128" 128">- svg xmlns="http://www.w3.org/2000/svg" 0.0128" 128">- svg xmlns="http://www.w3.org/2000/svg" 0.0128">- svg xmlns="http://www.w3.org/2000/svg" 0.0128">- svg xmlns="http://w3.org/2000/svg" 0.0138">- svg xmlns="http://w3.

Question: What is the primary color of the star? A) Red B) Green C) Blue D) Yellow

Category: Color

<svg xmlns="http://www.w3.org/2000/svg"
width="128" height="128" viewBox="0 0
128 128" >< g fill="none" fillrule="evenodd" >> qath fill="#07508b"
d="m104.08 71.7-9.42-9.01-29.78-27.3612.84 12.19c-1.17 1.6-1.09 3.75.24
5.2511.7.4 10.1-0.40.2 12.61 12.06c1.49 1.66
1.45 4.11-.11 5.711-34.01 32.32 15.46 14.76
46.15-4.38.43.34-33.73.55.8.84 0
12.22z"/><path fill="#e57b25" d="m2.64
56.06 9.43 8.99 29.79 27.36 12.83-12.264.15
4.15 0.10 -.24-5.2414.27.2 64.851.04-.0312.63-12.05c-1.47-1.65-1.43-4.12.125.7134.01 32.3414.8.0 2.65 43.85c-3.53
3.37-3.53 8.84 0 12.21z"/>

Question: What is the primary shape of the orange part? A) Circle B) Arrow C) Triangle D) Square

Category: Geometry

<svg xmlns="http://www.w3.org/2000/svg" width="128" height="128" fill="none" viewBox="0 0 24 24" > cg stroke="#222"><path d="M3 9.85C3 8.83 3.83 8.485 8.67.1 0 1.35-4 1.66-1.021.82-1.65c.11-22.17-33.23-42.33-5.86-83 1.45-911-01.23-01.48-01h5.02c.25 0 .37 0 4.80.15.907 1.12.4 1.45.90.6.09.12.2.23.421.82 1.65c.31.62.95 1.02 1.66 1.022.01.78 21 8.83 21 9.85v5.01c0 2 0 3-46 3.74-24.38-567-94.94-7.74.46-1.74.46-3.74.46-1.84-2.0-3 0-3.74-46-38-24-7.756-94-94C3 17.86 3 16.86 3 14.86z"/> circle cx="12" cy="13" r="35"/> c/y> c/svg>

Question: How many distinct outlines are present in the image?

A) One

B) Two
C) Three
D) Four

Category: Quantity

Figure 20: **Examples of multiple-choice QA tasks.** In this task, we only provide the SVG code, requiring the model to answer the question directly based on the semantic and structural information contained in the SVG code.

Question	2 (2000) - 1 - 1/4 - 1/200 - 1 - 1/4 -	
d="M69.76 14.38	p://www.w3.org/2000/svg* width="128" height="128" viewBox="0 0 128 128"> <path -11.52="" 0="" 0a46="" 1="" 14="" 17.3="" 17.96<="" 18="" 28="" 46="" 60v10a14="" 8a43.8="" 94-5.68a17.96="" fill="#78b9eb" td=""><td></td></path>	
0-40.24-45.62M5	8.4 18.4 0 0 1 8 0 17.96 17.96 0 0 1 13.06 11.88417.3 17.3 0 0 1 82 70a14 14 0 0 1 28 0V60a46 46 0 0 50.082 101.18834.3 9.0 0 0 48 100a4.01 4.01 0 0 0 0-4 4V5.58a12.29 12.29 1.0 0 1 0.42 12.32A12.01 12.01	
4.68 3.94 4.16 4.1	h2a4.03 4.03 0 0 0 4-4 4.01 4.01 0 0 0-4-4H58a4.03 4.03 0 0 0 -4 4.01 4.01 0 0 0 4 4h2v18a4 4 0 0 1-16 0 0 1-3.32-4.16v104a3.9 3.9 0 0 0-1.18-282"/> < path fill="#1a6fb0" d="M97.93 26.07a47.97 47.97" 1.00 0 0 1 4.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
220004016.0	1-5.29-9.54a2.08 2.08 0 0 0-3.5 01-5.29 9.55A47.99 47.99 0 0 0 16 60v10a2 2 0 0 0 4 0 12 12 0 0 1 24 0 12 10 0 1 24 0 12 10 0 1 10-14.82v82a6 6 0 0 0 0 0 12v16a2 2 0 0 1 -2.36 1.96 2.16 2.16 0 0 1 -1.64-2.18V104a6.03	
16.02 0 0 1 80 70	6 0 0 0 -6 6v5.58A13.97 13.97 0 0 0 55.97 124 14 14 0 0 0 70 110V94a6 6 0 0 0 0 -12V55.18A16.02)ab2 2 0 0 0 4 0 12 12 0 0 1 24 0 2 2 0 0 0 4 0V60a47.68 47.68 0 0 0 -14.07-33.93M64 8.12l2.2 3.95c4.4 02M32 54a15.97 15.97 0 0 0 -12 542A44.01 4.01 0 0 1 51.69 17.8a30.85 3 0.85 0 0 0-13.67	
21.92c74 5.2 1.2	2 11.68 3.22 17.26A15.87 15.87 0 0 0 32 54m34 56a10 10 0 0 1-3.4 7.51 9.88 9.88 0 0 1-7.92 2.4A10.25	
6.13A6 6 0 0 0 62	99.58V104a2 2 0 0 1 2-2 1.95 1.95 0 0 1 1.43.61A1.92 1.92 0 0 1 50 104v5.78a6.16 6.16 0 0 0 4.99 2 110V94h4zm6-22a2 2 0 0 1-2 2H58a2 2 0 0 1 0-4h12a2 2 0 0 1 2 2m-6-6h-4V54.14a14.6 14.6 0 0 1 20 0 0 0-17.33 10.05c06161231847-2:11-5.5-5.29-13.8-4.51-19.3 1.66-11.6 8.87-19.5 22.02-	7
24.15 13.15 4.65	20.36 12.55 22.02 24.15.78 5.49-24 138.451 193.9.66.17-12.31-18.47A20 20 0 0 64 50m32 0 0-9.24 2.98c2.02-5.58 3.96-12.06 3.22-17.26a30.68 30.86 0 0 0-13.73-21.96A43.97 43.97 0 0 1 108	J
59.42 15.97 15.97	0.0-3.24 £.396.2.02-5.3.5 3.90-12.00 3.22-17.20330.00 30.00 0 0 0-13.73-21.90A43.97 43.97 0 0 1 100 7 0 0 9 6 54"/> 10 0 9 6 54"/> 11 the semantic and geometric features of the SVG code.	•
Describe in detai	if the semantic and geometric reatures of the syd code.	
		Response
The umbrella in 1. **Shape and	n the code is a stylized icon with several distinct geometric and semantic features: Structure**:	
 The canopy It is divided 	y is semi-circular with a pointed top, resembling a traditional umbrella. I into three sections by curved lines, suggesting the ribs of the umbrella.	
- The handle 2. **Color**:	is a straight line with a hook at the boftom, typical of umbrella designs.	
- The canopy 3. **Lines and	y is light blue, with a darker blue outline and accents, providing contrast and depth. Symmetry**:	
- The umbrel - The lines di 4. **Stylization	llâ is symmetrical along its vertical axis. viding the canopy are evenly spaced, enhancing the symmetry. ****	
	is simplified and iconographic, focusing on essential elements to convey the concept of an umbrella.	
5. **Outline**	,	
5. **Outline**: - The entire u	umbrella, including the handle, is outlined in a darker blue, which helps define its shape clearly. combine to create a clear and recognizable representation of an umbrella in a minimalist style.	
5. **Outline**: - The entire u	umbrella, including the handle, is outlined in a darker blue, which helps define its shape clearly.	
5. **Outline**: - The entire u	umbrella, including the handle, is outlined in a darker blue, which helps define its shape clearly.	
5. **Outline**: - The entire u	umbrella, including the handle, is outlined in a darker blue, which helps define its shape clearly.	
SVG Code: - Svg Symins - "http://www.symins - "http	umbrella, including the handle, is outlined in a darker blue, which helps define its shape clearly.	
SVG Code: - Svg Symins - "http://www.symins - "http	pumbrella, including the handle, is outlined in a darker blue, which helps define its shape clearly, combine to create a clear and recognizable representation of an umbrella in a minimalist style. **p://www.w3.org/2000/svg* width="128" height="128" viewBox="0 0 128 128"> <path 0="" 06="" 1="" 124h4v84="" 15.1-8.16="" 15.1-8.16s7.56="" 15.12="" 15.12-8.16a9.03="" 3.62"="" 3.6c7.56="" 48a9="" 7.1="" 7.12="" 7.54-8.16="" 7.56="" 7.56-8.16="" 8.16="" 9.03="" 9.06="" fill="#ffc477"></path> id44" d= "M96 6v.26H32V6h6a6 6 0 0 0 0 12 0h8a6 6 0 0 0 12 0m104 58b7.3-3.94-4.44-68-92 0-92.5 1.8-17.5 5.5.996a10 10 0 0 0-20 0v11.26c-8.4.3-868 5.5-17.6 5.5-6.6 0-8.46-284-88 8 0 0 0 16 0h12v10h12v58h12a8 8 0 0 0 16 0v1.26c-8.4.3-868 5.5-17.6 5.5-6.6 0-8.46-284-88 8 0 0 16 0 0 0 1-8 9M40 18h8v8h-8zM60 18h8v8h-8zM60 82h740a1985vS8h46a8 8 0 0 0 1-8 9W340 18h8v8h-8zM64 132 76h12v16H32zM74 96v16.74c-26.02-54.02-82.02-9.2 0-9.2-5.52-18.38-5.52-28 0-54 00 1 1 2 007/> visyp> sthis render? Provide a detailed breakdown of its semantic purpose and all notable geometric	Response
SVG Code: - syg minis-"http: - The sefeatures Question SVG Code: - syg minis-"http: - "http: - "http	p://www.w3.org/2000/svg* width="128" height="128" viewBox="0 0 128 128"> <path 2000="" fill="#ffc477" height="128" http:="" svg*="" viewbox="0 0 128 128" width="128" www.w3.org="">to 0 128 128">to 0 128 128"> to 0 128 128" to 0 128 128"<!--</td--><td>Response</td></path>	Response
SVG Code: - syg minis-"http: - The sefeatures Question SVG Code: - syg minis-"http: - "http: - "http	pumbrella, including the handle, is outlined in a darker blue, which helps define its shape clearly, combine to create a clear and recognizable representation of an umbrella in a minimalist style. **p://www.w3.org/2000/svg* width="128" height="128" viewBox="0 0 128 128"> <path 0="" 06="" 1="" 124h4v84="" 15.1-8.16="" 15.1-8.16s7.56="" 15.12="" 15.12-8.16a9.03="" 3.62"="" 3.6c7.56="" 48a9="" 7.1="" 7.12="" 7.54-8.16="" 7.56="" 7.56-8.16="" 8.16="" 9.03="" 9.06="" fill="#ffc477"></path> id44" d= "M96 6v.26H32V6h6a6 6 0 0 0 0 12 0h8a6 6 0 0 0 12 0m104 58b7.3-3.94-4.44-68-92 0-92.5 1.8-17.5 5.5.996a10 10 0 0 0-20 0v11.26c-8.4.3-868 5.5-17.6 5.5-6.6 0-8.46-284-88 8 0 0 0 16 0h12v10h12v58h12a8 8 0 0 0 16 0v1.26c-8.4.3-868 5.5-17.6 5.5-6.6 0-8.46-284-88 8 0 0 16 0 0 0 1-8 9M40 18h8v8h-8zM60 18h8v8h-8zM60 82h740a1985vS8h46a8 8 0 0 0 1-8 9W340 18h8v8h-8zM64 132 76h12v16H32zM74 96v16.74c-26.02-54.02-82.02-9.2 0-9.2-5.52-18.38-5.52-28 0-54 00 1 1 2 007/> visyp> sthis render? Provide a detailed breakdown of its semantic purpose and all notable geometric	Response
SVG Code:	p://www.w3.org/2000/svg* width="128" height="128" viewBox="0 0 128 128"> <path 2000="" fill="#ffc477" height="128" http:="" svg*="" viewbox="0 0 128 128" width="128" www.w3.org="">to 0 128 128">to 0 128 128"> to 0 128 128"> to 0 128 128"> to 128 16 754-8.16 15.1-8.16 7.56 8.16 15.1-8.1</path>	Response
SVG Code: - The entire I These features Question SVG Code: - svg xmins="httd" - svat fill="#ffda" - svat	umbrella, including the handle, is outlined in a darker blue, which helps define its shape clearly, combine to create a clear and recognizable representation of an umbrella in a minimalist style. **p://www.w3.org/2000/svg* width="128" height="128" viewBox="0 0 128 128">path fill="#ffc477" https://www.w3.org/2000/svg* width="128" height="158.16" https://www.w3.org/2000/svg* width="128" height="158.16" https://www.w3.org/2000/svg* width="128" height="158.16" https://www.w3.org/2000/svg* ob 0 0 0 0 10 12 head 6 10 0 12 12 08a 6 10 0 10 12 08a 6 10 0 12 08a 6 10 0 12 0 12 08a 6 10 0 10 12	Response
SVG Code: - The entire t These features Question SVG Code: - Svg xmlns="httl - "M124 83.54V 8.16 7.56 8.16 15 - yath fill="#ffd8 1.62-5.8-4.46-12 1.2.4-4.46V58h6 1.62-5.8-4.46-12 1.2.4-4.46V58h6 1.20-16.1842M 0-8.02V96a10 11 What object doe features (e.g., and the code depict of the code depict	pumbrella, including the handle, is outlined in a darker blue, which helps define its shape clearly, combine to create a clear and recognizable representation of an umbrella in a minimalist style. **Top://www.w3.org/2000/svg* width="128" height="128" viewBox="0 0 128 128">path fill="#ffc477" 124H4V84 48a9 06 9.06 0 0 7.1 3.6c7.56 0 7.56-8.16 15.1-8.16s7.56 8.16 15.12 8.16 7.54-8.16 15.1-8.16 7.54-8.16 15.1-8.16 7.56 8.16 15.12 8.16 7.56-8.16 15.12-8.16a9.03 9.03 0 0 1 7.12 3.62"/> wid4" d= "M96 6v26H32V6h6a6 6 0 0 0 12 0 hba6 6 0 0 0 12 0 hba6 6 5.51-76 6.55-66.0-8.46-2.84-88 8 0 0 16 0 h12v10h12v58h12a8 8 0 0 0 16 0 v1.26c-84.3-868 5.5-17.6 5.5-6.60-8.46-2.84-88 8 0 0 16 0 h12v10h12v58h12a8 8 0 0 0 16 0 v1.8-8M40 18h8v8h-8zM60 18	Response
SVG Code: - The entire I These features Question SVG Code: - svg xmins="httd - "M124 83.54V 8.16 7.56 8.16 15 - 28.4 4.64V 8.16 7.56 8.16 15 - 28.4 4.64V 8.16 7.56 8.16 15 - "M124 83.54V 8.16 83.54 15 - "M124 83.54 15 - "M	pumbrella, including the handle, is outlined in a darker blue, which helps define its shape clearly, combine to create a clear and recognizable representation of an umbrella in a minimalist style. **Top://www.w3.org/2000/svg* width="128" height="128" viewBox="0 0 128 128">path fill="#ffc477" 124H4V84 48a9 06 9.06 0 0 7.1 3.6c7.56 0 7.56-8.16 15.1-8.16s7.56 8.16 15.12 8.16 7.54-8.16 15.1-8.16 7.54-8.16 15.1-8.16 7.56 8.16 15.12 8.16 7.56-8.16 15.12-8.16a9.03 9.03 0 0 1 7.12 3.62"/> wid4" d= "M96 6v26H32V6h6a6 6 0 0 0 12 0 hba6 6 0 0 0 12 0 hba6 6 5.51-76 6.55-66.0-8.46-2.84-88 8 0 0 16 0 h12v10h12v58h12a8 8 0 0 0 16 0 v1.26c-84.3-868 5.5-17.6 5.5-6.60-8.46-2.84-88 8 0 0 16 0 h12v10h12v58h12a8 8 0 0 0 16 0 v1.8-8M40 18h8v8h-8zM60 18	Response

Figure 21: Examples of SVG description tasks.

Question 34.3 1.99 15.66 2.63 31.83 1.94 47.36M93.42 103.15H34.57c-.45 5.08-1.06 10.05-1.81 14.88h62.48c-.76-4.83-1.36-9.8-1.82-14.88*/> < path fill="#e7e7e8" d="M34.78 100.68h58.44c-.18-2.18-.32-4.37-.44-6.59H35.22c-.12 2.22-.26 4.41-.44 Describe both the visual geometry (shapes, symmetry, layout) and the conceptual meaning (what it represents, symbolic features, color implications) of the resulting image. Response The code depicts a sleeveless shirt with the following properties: **Geometric Properties:** - **Shape**: The shirt has a simple, elongated shape with a rounded neckline and armholes. - **Symmetry**: It is vertically symmetrical, with both sides mirroring each other. - **Lines**: There are two horizontal lines across the lower part of the shirt, creating a banded appearance. **Semantic Properties:** - **Color**: The shirt is light blue with a darker blue outline. - **Style**: It resembles a tank top or sleeveless athletic shirt, suggesting casual or sportswear. - **Design**: The horizontal lines may indicate a design feature or a seam. Overall, the shirt has a straightforward and functional design, typical of casual or athletic wear. Question Below is the full SVG code:

svg xmlns="http://www.w3.org/2000/svg" width="128" height="128" viewBox="0 0 128 128" > cpath fill="#1865c1" d= "M32.76 118.03h62.48c-3.57-22.83-3.79-48.92-64-73.76-10.51-7.8-10.78-22.61-8.91-34.3h-6.46C77.06 18.33 70.11
22.09 64 22.09550.94 18.33 48.76 9.97h-6.45c1.86 11.69 1.6 26.5-8.91 34.3 3.15 24.84 2.92 50.93-64 73.76m63.92
2.47H31.31c-3.6 0-7.7-16-93-43-24-2.8-34-64-2.8-1 3.78-22.16 4.05-4.98.77.6-75.21-0.6-46.14-91.52-1.17 10.5-7.25
10.28-2.23 5.25-33.74-0.6-3.60.4-73.27-1.01.5.58-4.49-4.44h.89.6.59 0 1.09.41 1.21.98 1.7.8 2.38 11.14 12.5 11.14 12.5 76.2-98 1.21-9.8h.8.9a1.232 1.232 0 0 11.22 1.45c-2.03 11.39-2.25 26.49 8.25
33.74.38.26.58.71.52 1.17-3.29 25.34-3.02 52.05.76 75.21.06.36-04.72-27 1-24.27-58.43-95.43"/> 25.45.43"/< 25.45.43"/> 25.45.43"/> 25.45.43"/> 25.45.43"/> 25.45.43"/> 25.45.43"/> 25.45.43"/> 25.45.43"/> 25.45.43"/< 25.45.43"/> 25.45.43"/< 25.45.43"/> 25.45.43"/< 25. Below is the full SVG code: 1.82-14.88"/> <path fill="#e7e7e8" d="M34.78 100.68h58.44c-.18-2.18-.32-4.37-.44-6.59H35.22c-.12 2.22-.26 4.41-.44 1.62=14.06 | > Spati iiii = #erered u = Mostro Totologischet. To El 10 SE 13.7 44 05.7 15.2 16.5 2 1 Response The code depicts a sleeveless shirt with the following properties: - **Shape**: The shirt has a simple, elongated shape with a rounded neckline and armholes.
 - **Symmetry**: It is vertically symmetrical, with both sides mirroring each other. - **Lines**: There are two horizontal lines across the lower part of the shirt, creating a banded appearance. **Semantic Properties:** - **Color**: The shirt is light blue with a darker blue outline. - **Style**: It resembles a tank top or sleeveless athletic shirt, suggesting casual or sportswear. - **Design**: The horizontal lines may indicate a design feature or a seam Overall, the shirt has a straightforward and functional design, typical of casual or athletic wear.

Figure 22: Examples of SVG description tasks.

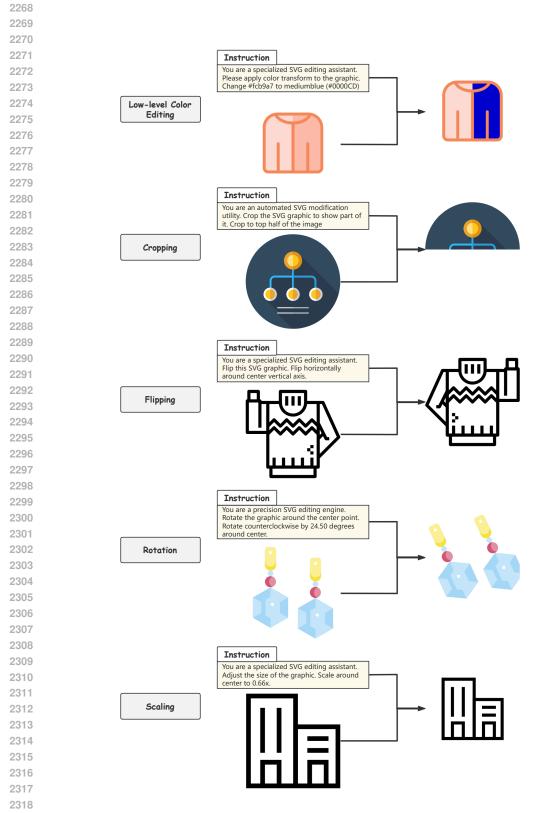


Figure 23: Examples of SVG editing tasks.

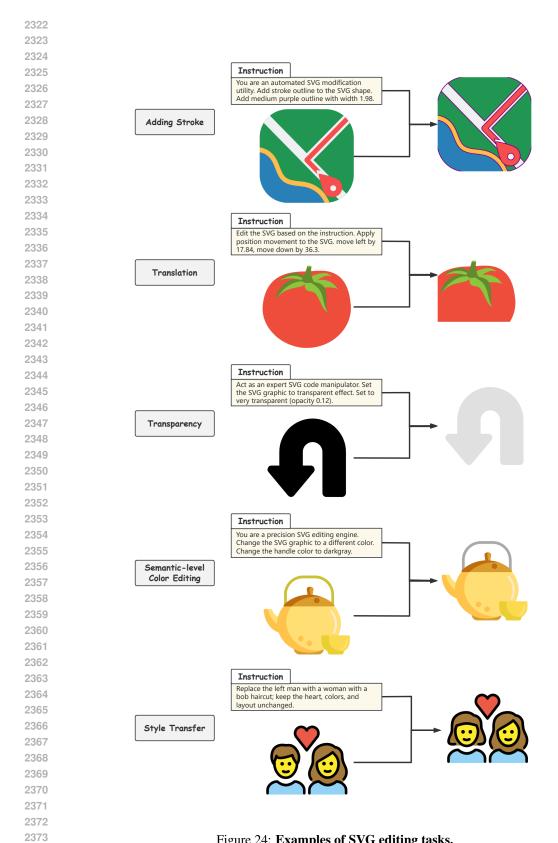


Figure 24: Examples of SVG editing tasks.

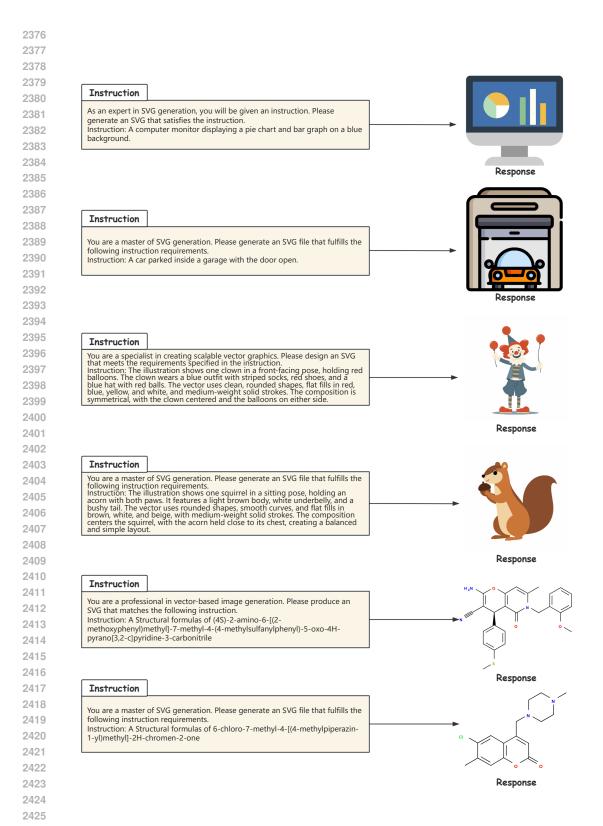


Figure 25: **Examples of Text-to-SVG tasks.** Line 1–2 show icon generation, Line 3–4 show illustration generation, and Line 5–6 show chemical structural formula generation.

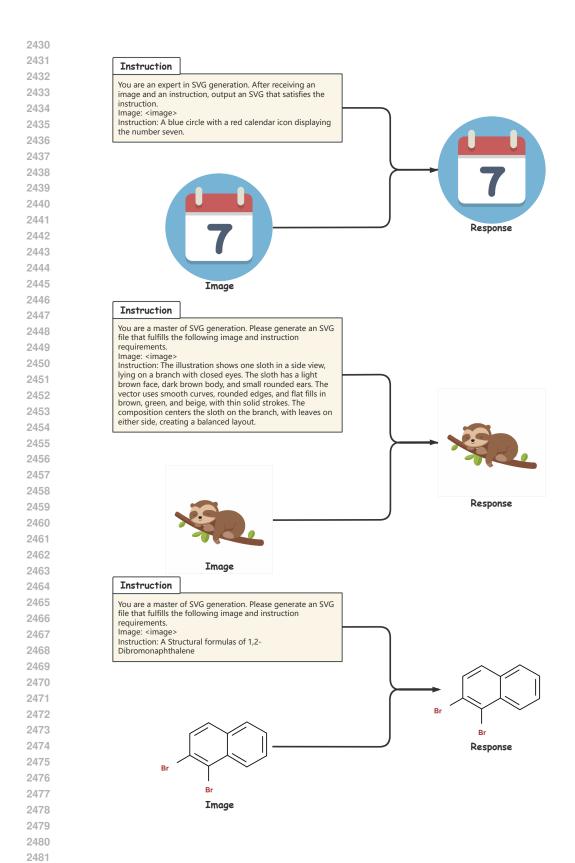


Figure 26: **Examples of Image-to-SVG tasks.** Line 1 shows icon generation, Line 2 shows illustration generation, and Line 3 shows chemical structural formula generation.

Instruction

You are an expert in SVG animation creation. Given an instruction, generate an SVG animation that follows it. Instruction: A black icon animates on a white background. The icon starts as a horizontal line with a vertical line extending down from its center, ending in a rounded tip. The rounded tip then transforms, spreading out to form a V-shaped arrowhead. The final form is a downward-pointing arrow with a horizontal line above it.

Response

Instruction

You are a skilled SVG animation designer. Based on the instruction below, produce an SVG animation that meets the requirement.

Instruction: A stylized signal icon, composed of a circle and two concentric arcs in shades of blue, is centered on a white background. The circle at the icon's base repeatedly changes color. It flashes from a dark, solid blue to a lighter, muted blue and then back again. The two arcs above it, one a medium blue and the other a very light blue, stay the same color throughout the sequence.

Response

<svg xmlns="http://www.w3.org/2000/svg" width="128" height="128" class="lds-radio" preserveAspectRatio="xMidYMid"
style="background:0 0" viewBox="0 0 128 128"><circle cx="35.84" cy="96" r="14.08" fill="#1d3f72"><animate
attributeName="fill-opacity" begin="0s" calcMode="linear" dur=".7" keyTimes="0;0.2;1" repeatCount="indefinite"
values="0;1;1"\p</circle> path fill="none" stroke="#5699d2" stroke-width="10" d="M35.84 60.16A35.84 35.84 0 0 1 71.68 96">
<animate attributeName="stroke-opacity" begin="0.069999999999999s" calcMode="linear" dur=".7" keyTimes="0;0.2;1"
repeatCount="indefinite" values="0;1;1"\p</path><path fill="none" stroke-width="10" d="M35.84 32a64 64 0
0 1 64 64"><animate attributeName="stroke-opacity" begin="0.13999999999999s" calcMode="linear" dur=".7"
keyTimes="0;0.2;1" repeatCount="indefinite" values="0;1;1"/></path></svg>

Figure 27: Examples of Text-to-SANI tasks.

Instruction

As an SVG animation expert, your task is to transform the video and instruction into a corresponding SVG animation Video: <video>

Instruction: An animated weather icon is shown against a white background. The icon depicts a bright yellow sun with pulsing rays, partially hidden by a large, fluffy white cloud. Behind the white cloud, a smaller, dark grey cloud is visible. Light blue raindrops fall from the bottom of the white cloud, disappearing as they move down the screen. The clouds and sun have a slight, gentle bobbing motion.

Video

Response

esyg xmlns="http://www.w3.org/2000/svg" width="128" height="128" viewBox="0 0 128 128"><defs><linearGradient id="d" x1="24.88" ssug xmlns="http://www.w3.org/2000/svg" width="128" height="128" viewBox="0 0 128 128" > cdefs < linearGradient id="d" x1="24.88" x2="58.15" y1="7.67" y2="65.35" gradientUnits="userSpaceOnUse"> cstop offset="0" stop-color="#377fe"/> cstop offset="1" stop-color="#deeafb"/> c/linearGradient> clinearGradient id="c" x1="13.18" x2="33.35" y1="2.4" y2="37.33" gradientUnits="userSpaceOnUse"> cstop offset="0" stop-color="#9ca3af"/> cstop offset="5" stop-color="#9ca3af"/> cstop offset="5" stop-color="#9ca3af"/> cstop offset="1" stop-color="#9ca3af"/> cstop offset="0" stop-color="#9ca3af"/> cstop offset="5" stop-color="#9ca3af"/> cstop-color="#9ca3af"/> cstop fill="none" stroke="#fbbf24" stroke-linecap="round" stroke-miterlimit="10" stroke-width="3" d="M24.5 7.85V1.5m0 46v-6.35m11.77-28.4 4.5-4.47M8.25 40.754.5-4.48m0-2.35.2-4.5-4.5m3.25 23.25.2-4.5-4.5M1.5 24.5.5h3.5m3.96.6-35" > canimateTransform additive="sum" attributeName="transform" dur="6s" repeatCount="indefinite" type="rotate" values="0.24.5.24.5;45.24.5"/> </path> </symbol > csymbol id="e" viewBox="0.0.20.3.126.1"> cspath fill="url(#c)" stroke="#848b98" stroke-miterlimit="10" d="M1.2.23.388.1.8.1.0.0.8.1 8.13.2.46"> do 0.8.1 8.13.2.46"> do 8.1 8.10.28"> do 8.1 8.1 9.28"> d <animateTransform additive="sum" attributeName="transform" dur="6s" repeatCount="indefinite" type="translate" values="-2.25 0; 2.25 0; -2.25 0"/></use><use width="350" height="222" href="#f"><animateTransform additive="sum" attributeName="transform" dur="6s" repeatCount="indefinite" type="translate" values="-4.5 0; 4.5 0; -4.5 0"/> </use><isymbol> <symbol id="k" viewBox="0 0 410.8 258"><use width="196" height="196" href="#g"/> <use width="398" height="222" href="#h" transform="translate(3.21 9)"/> </symbol> <symbol id="l" viewBox="0 0 137 25"> <pach fill="url"(#a)" stroke="#8663db" stroke-miterlimit="10" d="M3.12.12a3 3 0 1 0 3 3 3 0 0 0-3-3" opacity="0"> <animateTransform additive="sum" attributeName="transform" begin="0s; x1.end+.42s" dur=".58s" keyTimes="0; .11; .71; "type="translate" values="0"> (1.15; 0 21.5; -4.5 18.5"/> <animate attributeName="opacity" begin="0s" y1.end+.42s" dur=".58s" keyTimes="0", .14; .71; 1" values="0", 1; 1; 0"/> </pach> -7/path> <pach attributeName="transform" begin=".67s; x2.end+.42s" dur=".58s" keyTimes="0", .14; .71; 1" type="translate" values="0"> <11.5; 0 21.5; 0 18.5"/> <animate attributeName="opacity" begin=".67s; y2.end+.42s" dur=".58s" keyTimes="0", .14; .71; 1" values="0"; 1; 0"/> -<animateTransform additive="sum" attributeName="opacity" begin=".67s; y2.end+.42s" dur=".58s" keyTimes="0", .14; .71; 1" values="0"; 1; 0"/> -<animateTransform additive="sum" attributeName="transform" begin=".33s; x3.end+.42s" dur=".58s" keyTimes="0", .14; .71; 1" values="0"; 1; 0"/> -<animateTransform additive="sum" attributeName="transform" begin=".33s; x3.end+.42s" dur=".58s" keyTimes="0", .14; .71; 1" values="0"; 1; 1; 0"/> -<animateTransform additive="sum" attributeName="transform" begin=".33s; x3.end+.42s" dur=".58s" keyTimes="0", .14; .71; 1" values="0"; 1; 1; 0"/> -<animateTransform additive="sum" attributeName="transform" begin=".33s; x3.end+.42s" dur=".58s" keyTimes="0", .14; .71; 1" values="0"; 1; 1; 0"/> -<animateTrans 1; 1; 0"/></path></symbol></defs><use width="410.8" height="258" href="#k" transform="translate(14 27.25)"/><use width="137" height="25" href="#l" transform="translate(46.88 87.38)"/></syg>

Figure 28: Examples of Video-to-SANI tasks.

Instruction

You are an expert in animated vector graphics. Create an SVG animation that reflects both the video and the given instruction. Video: <video>

Instruction: A graphic animation on a white background shows a circular logo composed of six curved, crescent-like segments. The segments are arranged in a pinwheel or camera aperture style. The colors of the segments change in a repeating cycle. The pattern alternates between a color scheme of dusty rose, chartreuse green, and light turquoise, and a scheme where the turquoise segments become a pale yellow.

Response

svg xmlns="http://www.w3.org/2000/svg" width="128" height="128" class="lds-blank" preserveAspectRatio="xMidYMid" viewBox="0 0 128 128"><g ng-attr-transform="scale({{config.scale}})}" transform="rotate(33 35.994 79.206)scale(.8)"> <animateTransform attributeName="transform" dur="2" repeatCount="indefinite" times="0;1" type="rotate" values="360 64" 64;0 64 64"/> < path d="M57.23 14.02c13.11-7.64 29.67-5.91 41.05 4.03l6.19 5.48-8.21-1.59c-10.37-2.16-21.6-.14-31.4 5.47-9.79 5.62-17.14 14.41-20.45 24.49I-2.59 7.92-1.59-8.21c-3.02-14.83 3.89-29.96 17-37.59"> <animate attributeName="fill" begin="-1.5s" calcMode="linear" dur="2" keyTimes="0;0.25;0.5;0.75;1" repeatCount="indefinite" values="#d37d6a;#f7de5f;#b4b524;#b1f3f0;#d37d6a"/> </path> <path d="m41.39 78.4 7.92 2.74-5.48-6.19c-7.05-7.93-10.94-18.59-10.94-29.96 0-11.38 3.89-22.04 10.94-29.96l5.48-6.2-7.92 2.74c-14.41 4.9-24.06 18.29-24.06 33.56 0 14.84 9.65 28.38 3.02 14.84 3.89 29.96 17 37.59a35.54 35.54 0 0 0 17.72 4.76"><animate attributeName="fill" begin="-0.5s" calcMode="linear" dur="2" keyTimes="0;0.25;0.5;0.75;1" repeatCount="indefinite" values="#d37d6a;#f7de5f;#b4b524;#b1f3f0;#d37d6a"/2 </path><path d="m87.77 76.39-1.59-8.21-2.59 7.92c-3.31 10.08-10.66 18.72-20.45 24.49-9.8 5.61-21.03 7.63-31.4 5.47I-8.21-</pre> 1.59 6.19 5.48c6.62 5.76 14.98 8.78 23.33 8.78 6.05 0 12.25-1.58 17.72-4.75 13.11-7.63 20.02-22.76 17-37.59"> <animate attributeName="fill" begin="-1.5s" calcMode="linear" dur="2" keyTimes="0;0.25;0.5;0.75;1" repeatCount="indefinite" values="#d37d6a;#f7de5f;#b4b524;#b1f3f0;#d37d6a"/></path><path d="m86.61 49.6-7.92-2.74 5.48 6.19c7.05 7.93 10.94 18.59 10.94 29.96 0 11.38-3.89 22.04-10.94 29.96l-5.48 6.2 7.92-2.74c14.41-4.9 24.06-18.29 24.06-33.56 0-14.84-9.65-28.38-24.06-33.27"> <animate attributeName="fill" begin="-1s" calcMode="linear" dur="2" keyTimes="0;0.25;0.5;0.75;1 repeatCount="indefinite" values="#d37d6a;#f7de5f;#b4b524;#b1f3f0;#d37d6a"/></path><path >< path >< pat 7.64-29.67-5.91-41.05 4.031-6.2 5.47 8.21-1.58c10.37-2.16 21.61-.15 31.4 5.47 9.8 5.62 17.15 14.4 20.46 24.4912.59 7.92 1.59-8.21c3.02-14.84-3.89-29.96-17-37.59" > <animate attributeName="fill" begin="-0.5s" calcMode="linear" dur="2" keyTimes="0;0.25;0.5;0.75;1" repeatCount="indefinite" values="#d37d6a;#f7de5f;#b4b524;#b1f3f0;#d37d6a"/></path></g>

Figure 29: Examples of Video-to-SANI tasks.

C.4 TEXT PROMPT TEMPLATE

2646

26472648

2649

2650

2676

2677

2678

2696

2697

2698 2699

C.4.1 TEMPLATE FOR DATASET CONSTRUCTION

We randomly sample from the following prompts to generate the SVG description data.

```
2651
       "Describe in detail the semantic or geometric features of the object
2652
          shown in the image.",
       "Detail the semantic or geometric features of the object in the image.",
2653
      "Offer a detailed description of the geometric or semantic features of
2654
          the object in the image.",
2655
      "Give a comprehensive description of the semantic or geometric properties
2656
           of the object depicted in the image.",
2657
       "Provide an in-depth description of the semantic or geometric aspects of
2658
          the object shown in the image.",
       "Explain in detail the semantic or geometric characteristics of the
2659
          object displayed in the image.",
2660
      "Could you detail the geometric or semantic features of the object in the
2661
           image?",
2662
      "I need a detailed description of the geometric or semantic attributes of
2663
           the object in the image.",
       "Please describe the semantic or geometric features of the object in the
2664
          image comprehensively.",
2665
       "Provide a thorough description of the geometric or semantic properties
2666
          of the object in this image.",
2667
      "Can you elaborate on the semantic or geometric features of the object in
2668
          the image?",
      "What are the geometric or semantic features of the object in the image
2669
          ?",
2670
      "Describe precisely the semantic or geometric characteristics of the
2671
          object shown in the image.",
2672
       "Provide a detailed analysis of the geometric or semantic features of the
           object in this image.",
2673
      "Elaborate on the semantic and geometric characteristics of the object
2674
          shown in the image."
2675
```

For another form of SVG understanding, we design multiple-choice QA tasks, which are constructed using the following prompts.

```
2679
      Given one image rendered from an SVG, write exactly four multiple-choice
2680
      Q&A items about the depicted object.
2681
      Q1-Q3: ask about visible semantic or geometric properties (e.g., color/
          shape/count/position/size/symmetry/orientation).
2682
      Q4: ask about the overall identity/meaning of the whole object.
2683
      Each item has options A-D, one unambiguous correct answer, and three
2684
      plausible distractors.
2685
      Use only information visible in the image; avoid "All/None of the above".
2686
      Output (JSON array):
2687
         {"q": "...?", "choices": {"A": "...", "B": "...", "C": "...", "D":
          "..."}, "answer": "B"},
2689
         {"q": "...?", "choices": {"A": "...", "B": "...", "C": "...", "D":
2690
          "..."}, "answer": "D"},
         {"q": "...?", "choices": {"A": "...", "B": "...", "C": "...", "D":
2691
          "..."}, "answer": "A"},
2692
         {"q": "What is the object as a whole?", "choices": {"A": "...", "B":
2693
          "...", "C": "...", "D": "..."}, "answer": "C"}
2694
2695
```

For the editing tasks, we design specific prompts for each of the 10 subtasks to construct the dataset. The following code illustrates the prompts used for color editing and style transfer tasks.

```
# color editing:
"""
```

```
2700
      You are given two images: an original image and an edited version where
2701
      certain colors have been changed.
2702
      You are also given the exact color transformation information in the
2703
       format:
       'Change color [original_hex] to [new_hex] '.
2704
2705
      Your task is to generate TWO textual editing instructions:
2706
       1. A **simple instruction** (direct color change, using hex code).
2707
      2. A **complex instruction** (semantic editing, describing what part of
          the object changed, e.g. "the left arrow color").
2708
2709
       ### Example:
2710
      Input: Change color #00abff to #D8BFD8
2711
      Output:
2712
       Change #00abff to thistle (#D8BFD8)
2713
      Change the left arrow color to thistle
2714
      Now generate the two lines of instructions for the following input:
2715
       {description}
2716
      Important: You must output exactly two lines - no explanations, no
2717
      formatting, no extra words. Only the two instructions.
2718
2719
       # Style transfer
2720
      The first image shows a {caption_before} and the second shows a different
2721
       {caption_after}. Describe how the first image should be edited to
2722
       look like the second image. Do not just say \"Change to match the
       second image/emoji, \" but specify the expected result.
2723
      Also, make the instructions as clear and as short as possible.
2724
      For example, if a plane is landing towards the runway in the first image
2725
      and taking off in the second, you could say \"Make the plane take off\".
2726
```

For other simple editing tasks, we use the following prompts.

```
2728
       # adding stroke
2729
       "Add an outline to this SVG shape.",
2730
       "Apply stroke effects to the SVG graphic.",
2731
       "Add a border to the shape.",
2732
       "Please add an outline stroke to this graphic.",
       "Add border lines to the SVG shape.",
2733
       "Give the graphic a border outline.",
2734
       "Please add stroke to the SVG element.",
2735
       "Add an outer outline to this shape.",
2736
       "Add boundary lines to the graphic.",
2737
       "Please add border effects to the SVG graphic.",
2738
       "Add outline lines to this graphic.",
       "Add stroke outline to the SVG shape.",
2739
       "Please add outer border lines to the graphic.",
2740
       "Add border stroke to this SVG.",
2741
       "Add outline border to the shape."
2742
2743
       # translation
       "Translate this SVG graphic.",
2744
       "Move the SVG graphic to a new position.",
2745
       "Please translate this graphic.",
2746
       "Move the graphic in the specified direction.",
2747
       "Please move the SVG shape.",
2748
       "Adjust the position of the graphic.",
       "Please translate this shape.",
2749
       "Move the position of the SVG element.",
2750
       "Please adjust the graphic's position.",
2751
       "Move the SVG graphic in a certain direction.",
2752
       "Please apply translation transform to the graphic.",
       "Move this SVG shape.",
2753
       "Please translate the graphic to a new position.",
```

```
2754
       "Apply position movement to the SVG.",
2755
       "Please translate this SVG element."
2756
2757
       # scaling
       "Scale this SVG graphic.",
2758
       "Adjust the size of the SVG graphic.",
2759
       "Please scale this graphic.",
2760
       "Enlarge or shrink the graphic.",
2761
       "Please scale the SVG shape.",
2762
       "Adjust the size of the graphic.",
       "Please scale this shape.",
2763
       "Apply size adjustment to the SVG element.",
2764
       "Please adjust the graphic size.",
2765
       "Scale the SVG graphic proportionally.",
2766
       "Please apply scaling transform to the graphic.",
       "Adjust the size of this SVG shape.",
2767
       "Please scale the graphic proportionally.",
2768
       "Apply size adjustment to the SVG.",
2769
      "Please scale this SVG element."
2770
2771
       # rotation
       "Rotate this SVG graphic.",
2772
       "Rotate the SVG graphic around its center.",
2773
       "Please rotate this graphic.",
2774
       "Rotate the graphic by a specified angle.",
2775
       "Please rotate the SVG shape.",
2776
       "Rotate the graphic around the center point.",
       "Please rotate this shape.",
2777
       "Apply angle adjustment to the SVG element.",
2778
       "Please rotate the graphic.",
2779
       "Rotate the SVG graphic clockwise/counterclockwise.",
2780
       "Please apply rotation transform to the graphic.",
2781
       "Rotate this SVG shape around its center.",
2782
       "Please rotate the graphic by a certain angle.",
       "Apply rotation operation to the SVG.",
2783
      "Please rotate this SVG element."
2784
2785
       # flipping
2786
      "Flip this SVG graphic.",
       "Flip the SVG graphic.",
2787
       "Please flip this graphic.",
2788
       "Flip the graphic vertically or horizontally.",
2789
       "Please flip the SVG shape.",
2790
       "Flip the direction of the graphic.",
2791
       "Please flip this shape.",
2792
       "Apply mirror flip to the SVG element.",
       "Please flip the graphic.",
2793
       "Apply mirror processing to the SVG graphic.",
2794
       "Please apply flip transform to the graphic.",
2795
       "Flip this SVG shape.",
2796
       "Please apply mirror flip to the graphic.",
       "Apply flip operation to the SVG.",
2797
       "Please flip this SVG element."
2798
2799
       # transparency
2800
       "Adjust the opacity of this SVG graphic.",
2801
       "Set the transparency of the SVG graphic.",
       "Please adjust the transparency of the graphic.",
2802
       "Set the graphic to semi-transparent.",
2803
       "Please modify the opacity of the SVG shape.",
2804
       "Adjust the opacity of the graphic.",
2805
       "Please set the transparency of this shape.",
2806
       "Apply opacity adjustment to the SVG element.",
       "Please adjust the graphic's opacity.",
2807
      "Set the SVG graphic to transparent effect.",
```

2829

2854

2855

2856

2857

2858 2859

2860

2861

```
2808
       "Please apply opacity transform to the graphic.",
2809
       "Adjust the opacity of this SVG shape.",
2810
       "Please modify the graphic's transparency.",
2811
       "Apply opacity operation to the SVG.",
       "Please adjust the opacity of this SVG element."
2812
2813
       # cropping
2814
       "Crop this SVG graphic.",
2815
       "Crop the SVG graphic to show part of it.",
2816
       "Please crop this graphic.",
       "Crop the graphic to a specific region.",
2817
       "Please crop the SVG shape.",
2818
       "Crop the graphic to half size.",
2819
       "Please crop this shape.",
       "Apply cropping to the SVG element.",
2821
       "Please crop the graphic.",
       "Crop the SVG graphic to show only part.",
2822
       "Please apply crop transform to the graphic.",
2823
       "Crop this SVG shape.",
2824
       "Please crop the graphic to specified area.",
2825
       "Apply crop operation to the SVG.",
2826
       "Please crop this SVG element."
```

For the Icon generation task, we employ the following prompt to guide GPT-40 or InternVL3-78B in producing the required instructions.

```
2830
      You are an expert in image analysis and description. You will be given an
2831
      image of a graphic object.
2832
2833
      Your task is to analyze the image and generate a **concise and precise
      caption ** that describes the semantic meaning and structural
2834
      information shown in the image.
2835
2836
      Focus on:
2837
       - Semantic meaning and object identification
2838
      - Shape and geometric structure
      - Color information
2839
      - Key visual features (e.g., symmetry, number of elements, patterns)
2840
      - Spatial relationships between elements
2841
2842
      Avoid:
2843
      - Symbolism, history, or cultural context
       - Subjective interpretations
2844
      - Lengthy explanations or unnecessary details
2845
2846
      Generate a clear, descriptive caption that captures the essential visual
2847
      and semantic information of the image.
2848
      Output format:
2849
      A concise caption such as:
2850
      - A red five-pointed star with black outline
2851
      - A blue symmetrical hexagon with white interior
2852
      - Three overlapping circles in green, blue, and red
2853
```

For the illustration generation task based on Flux-synthesized images, which often contain richer elements and backgrounds, we require MLLM to generate more detailed instructions.

```
You are an expert in vector-art image analysis and description. You will be given a vector illustration, clipart, or doodle.

Task:

Produce a **detailed, objective caption (30-80 words, 1-2 sentences)** that precisely describes the visible content and the vector graphic structure.
```

2862 2863 Must include, in a consistent order: 2864 1) Main subject(s): category, count, pose/action, relative sizes. 2865 2) Appearance details: sex, salient parts (clothing, accessories, facial/ hair features if present), simple shapes used. 2866 3) Geometry & line work: primitives (circles/rectangles/paths), curvature 2867 , corner roundness, symmetry/repetition, perspective (front/side/ 2868 isometric), stroke style (thin/medium/thick; solid/dashed; round/ 2869 square caps and joins). 2870 4) Color & fill: dominant palette names, fill types (flat/gradient/ pattern/transparent). 2871 5) Composition & layout: spatial relations (left/right/center/overlap/ 2872 occlusion), alignment, and layering depth if evident. 2873 6) Text: if there is any text in the image, transcribe visible words/ 2874 letters and note font feel (block/script/handwritten), case. 2875 Constraints: 2876 - Be factual and visual only. No symbolism, history, brand identification 2877 , or guesses about identity or emotions. 2878 - Avoid opinions and storytelling; avoid tool/author speculation. 2879 - Prefer concrete nouns, numbers, and measurable attributes. 2880 - Remember to only output 30-80 words, 2-3 sentences. - Do not wrap the output in quotation marks or triple backticks ('''). 2881 2882 Output format: 2883 e.a: 2884 - The illustration shows one woman in a side view bending forward to 2885 place an arrow onto a circular target symbol beside the large block letters "SEO." She wears a yellow short-sleeve top, purple pants, and 2886 green shoes, with shoulder-length black hair. The vector uses clean curves, rounded edges, flat fills in purple, yellow, green, and skin 2888 tones, and medium-weight solid strokes. The composition places the 2889 letters on the left, the target in the center, and the woman leaning in from the right, with light purple clouds above. 2890 - The illustration depicts a single serving of chocolate mousse in an 2891 orange cup, topped with a swirl of cream. The mousse is centrally 2892 placed on a beige plate. The vector art uses smooth, rounded shapes 2893 and flat fills in orange, brown, beige, and cream, with no visible 2894

- strokes. The composition is symmetrical, with the cup and plate aligned centrally, creating a balanced and cohesive layout. - The illustration features a single woman on the right, gesturing toward
- a key and lock. She has long dark hair and wears a yellow top with green trim and white patterns. The vector employs smooth, rounded shapes and flat fills in yellow, green, purple, and black, with medium solid strokes. The key and lock appear in speech bubbles on the left, using simple geometric forms like circles and squares, arranged asymmetrically.

C.4.2 QUESTION TEMPLATE

2895

2896

2897

2898

2899

2900

2901 2902 2903

2904 2905

2906

2907

2908

2909

2910

2911

2912

2913

2914

2915

For the SVG description task, we randomly select one from the following five prompts as the question input.

```
"{svg}\nDescribe in detail the semantic and geometric features of the SVG
code.",
"Here is an SVG code snippet:\n{svg}\nBased solely on this code, explain
what the SVG code represents and describe its semantic meaning and
geometric characteristics in detail.",
"The SVG source is given below:\n{svg}\nIdentify the main object depicted
, and list its geometric shapes (e.g., rectangles, circles, lines) as
well as semantic cues (e.g., what the object is, its context, implied
function).",
"Below is the full SVG code:\n{svg}\nDescribe both the visual geometry
(shapes, symmetry, layout) and the conceptual meaning (what it represents
```

, symbolic features, color implications) of the resulting image.", "SVG Code:\n{svg}\nWhat object does this render? Provide a detailed breakdown of its semantic purpose and all notable geometric features (e.g., angles, curves, proportions)."

For multiple-choice QA tasks, we adopt the following template as the question input.

"As an SVG specialist, you have deep knowledge of vector graphics and their properties. Given an SVG code snippet, analyze the code to answer the following multiple-choice question about the visual elements it represents. Provide only the final answer in the format 'A.', 'B.', 'C.', or 'D.' (e.g., 'A.'), without any additional explanation or text. {SVG}"

For the SVG editing task, we design a set of instruction templates that guide models to modify the original SVG code with minimal changes while preserving its structural integrity.

- strictly:
 1. Make only the minimal necessary changes to the SVG to satisfy the instruction.
- 2. Preserve the original code structure, IDs, and classes whenever possible.
- 3. Your output MUST be the complete, raw SVG code and nothing else. Do not include explanations, comments, or markdown fences (like '''svg). SVG Code: {svg}

Instruction: {instruction}",

"You are an automated SVG modification utility. Your function is to alter the given SVG code according to the instruction. Adhere to these directives: apply only the absolute minimum changes required. Do not alter existing IDs, classes, or the overall structure. The output must be the raw, modified SVG code exclusively. Suppress all explanatory text, commentary, and markdown formatting.

2948 SVG Code: {svg}
2949 Instruction: {instruction}",

- 2953 1. Implement the most efficient and minimal change possible.
 2954 2. Do not refactor or reformat the code; preserve its origin
 - 2. Do not refactor or reformat the code; preserve its original structure and attributes.
 - 3. Your entire response must be the edited SVG code and nothing more. Source SVG: $\{ \texttt{svg} \}$

Editing Instruction: {instruction}",

"Act as an expert SVG code manipulator. Your objective is to edit the following SVG to match the user's request.

- **Modification Principle:** Edit only what is necessary to fulfill the instruction.
 - **Structural Integrity: ** Maintain the original SVG's structure, including all IDs and classes.
- **Output Format:** Respond with only the final, raw SVG source code.
 No extra text, comments, or markdown.

2966 SVG Code: {svg}

2967 Instruction: {instruction}",

"As a professional SVG graphic editor, your job is to apply the requested change to the SVG code.

Core Directives:

2982

2983

2984

3011

3012

3013

```
2970
       1. Change only what the instruction requires.
2971
       2. Keep the original code's formatting and structure intact.
2972
       3. Output the full, edited SVG code.
2973
       SVG to Edit: {svg}
       User Request: {instruction}
2974
      REMINDER: Your response must not contain any text besides the SVG code
2975
       itself.",
2976
2977
       "Edit the SVG based on the instruction. Apply minimal changes, preserve
2978
       the structure, and output only the raw SVG code.
      SVG: {svg}
2979
      Instruction: {instruction}",
2980
```

For the Text-to-SVG generation task, we design multiple instruction templates for the dialogue data, as illustrated below. These templates guide the model to produce SVG code that fulfills the given instruction, thereby enhancing the diversity of dialogue formulations.

```
2985
       "You are an expert in SVG generation. After receiving an instruction,
      output an SVG that satisfies the instruction.
2986
      Instruction: {instruction}",
2987
      "You are a skilled SVG designer. Based on the instruction below, create
2988
      an SVG that fulfills the given instruction. \n Instruction: {instruction
2989
          } ",
2990
      "You are a professional in vector-based image generation. Please produce
      an SVG that matches the following instruction.
2991
      Instruction: {instruction}",
2992
      "You are an expert in SVG generation. Generate SVG code that reflects the
2993
      instruction.
2994
      Instruction: {instruction}",
2995
      "As an expert in SVG generation, you will be given an instruction. Please
      generate an SVG that satisfies the instruction.
2996
      Instruction: {instruction}",
2997
      "You are a specialist in creating scalable vector graphics. Please design
2998
      an SVG that meets the requirements specified in the instruction.
2999
      Instruction: {instruction}",
3000
      "You are an SVG development expert. Your task is to create an SVG image
      that accurately represents the given instruction.
3001
      Instruction: {instruction}",
3002
      "You are a master of SVG generation. Please generate an SVG file that
3003
      fulfills the following instruction requirements.
3004
      Instruction: {instruction}",
3005
      "You are a professional SVG graphic designer. Create an SVG that
      perfectly matches the provided instruction.
3006
      Instruction: {instruction}",
3007
       "You are an expert in vector graphics and SVG coding. Please produce an
3008
      SVG that satisfies the instruction below.
3009
      Instruction: {instruction}"
3010
```

For the Image-to-SVG generation task, we also design a set of dialogue templates. In these templates, the model receives both an input image and a textual instruction, and is required to generate SVG code that fulfills the given instruction.

```
3014
       "You are an expert in SVG generation. After receiving an image and an
3015
      instruction, output an SVG that satisfies the instruction.
3016
      Image: <image>
3017
      Instruction: {instruction}",
      "You are a skilled SVG designer. Based on the image and instruction
3018
      below, create an SVG that fulfills the given instruction.
3019
      Image: <image>
3020
      Instruction: {instruction}",
3021
       "You are a professional in vector-based image generation. Please produce
3022
      an SVG that matches the following image and instruction.
3023
      Image: <image>
      Instruction: {instruction}",
```

3046

3047

3061 3062

3063

3064

```
3024
      "You are an expert in SVG generation. Generate SVG code that reflects the
3025
      image and instruction.
3026
      Image: <image>
3027
      Instruction: {instruction}",
      "As an expert in SVG generation, you will be given an image and an
3028
      instruction. Please generate an SVG that satisfies the instruction.
3029
      Image: <image>
3030
      Instruction: {instruction}",
3031
       "You are a specialist in creating scalable vector graphics. Please design
3032
      an SVG that meets the requirements specified in the instruction.
      Image: <image>
3033
      Instruction: {instruction}",
3034
      "You are an SVG development expert. Your task is to create an SVG image
3035
      that accurately represents the given image and instruction.
3036
      Image: <image>
      Instruction: {instruction}",
       "You are a master of SVG generation. Please generate an SVG file that
3038
      fulfills the following image and instruction requirements.
3039
      Image: <image>
3040
      Instruction: {instruction}",
3041
      "You are a professional SVG graphic designer. Create an SVG that
3042
      perfectly matches the provided image and instruction.
      Image: <image>
3043
      Instruction: {instruction}",
3044
```

For the Text-to-SANI animation generation task, we design multiple dialogue templates to guide the model in generating SVG animations from textual instructions.

```
3048
      "You are an expert in SVG animation creation. Given an instruction,
      generate an SVG animation that follows it.
3049
      Instruction: {instruction}",
3050
      "You are a skilled SVG animation designer. Based on the instruction
3051
      below, produce an SVG animation that meets the requirement.
3052
      Instruction: {instruction}",
3053
      "You are a professional in vector animation. Please generate an SVG
3054
      animation according to the following instruction.
      Instruction: {instruction}",
3055
      "You are an expert in SVG animation coding. Create SVG animation code
3056
      that fulfills the instruction.
3057
      Instruction: {instruction}",
3058
      "As an expert in SVG animation, you will be given an instruction. Please
3059
      output an SVG animation that matches it.
      Instruction: {instruction}",
```

For the Video-to-SANI animation generation task, we design a diverse set of dialogue templates to enable the model to generate SVG animations conditioned on both a video input and a textual instruction.

```
3065
      "You are an expert in SVG animation creation. Given a video and an
3066
      instruction, generate an SVG animation that follows it.
      Video: <video>
3067
      Instruction: {instruction}",
3068
      "You are a skilled SVG animation designer. Based on the video and
3069
      instruction below, produce an SVG animation that meets the
3070
      requirement.
3071
      Video: <video>
3072
      Instruction: {instruction}",
      "You are a professional in vector animation. Please generate an SVG
3073
      animation according to the following video and instruction.
3074
      Video: <video>
3075
      Instruction: {instruction}",
3076
       "You are an expert in vector animation. Given the video and the
3077
      instruction, create an SVG animation that matches the request.
      Video: <video>
```

```
3078
      Instruction: {instruction}",
3079
      "You are a specialist in SVG animation design. Use the video and
3080
      instruction provided to generate an SVG animation that aligns with them.
      Video: <video>
3081
      Instruction: {instruction}",
3082
      "As a professional SVG animation designer, analyze the video and
3083
      instruction, then generate an SVG animation that fulfills the task.
3084
      Video: <video>
3085
      Instruction: {instruction}",
3086
      "You are an expert in animated vector graphics. Create an SVG animation
      that reflects both the video and the given instruction.
3087
      Video: <video>
3088
      Instruction: {instruction}",
3089
      "You are a skilled SVG animation creator. From the following video and
3090
      instruction, produce an SVG animation that conveys the intended action.
      Video: <video>
3091
      Instruction: {instruction}",
3092
      "You are a professional vector animation generator. Given the video and
3093
      instruction, output SVG animation code that implements it.
3094
      Video: <video>
3095
      Instruction: {instruction}",
3096
      "As an SVG animation expert, your task is to transform the video and
      instruction into a corresponding SVG animation.
3097
      Video: <video>
3098
      Instruction: {instruction}",
3099
```

D THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used large language models (LLMs) as assistive tools during the preparation of this work. Specifically, LLMs were employed for language polishing, LaTeX code editing, and debugging of prompts in the dataset construction process. The authors take full responsibility for the content of the paper.