
Published as a conference paper at ICLR 2022

EXPLOITING CLASS ACTIVATION VALUE FOR
PARTIAL-LABEL LEARNING

Fei Zhang1,2 Lei Feng3,† Bo Han2,† Tongliang Liu4

Gang Niu5 Tao Qin6 Masashi Sugiyama5,7
1Shanghai Jiao Tong University 2Hong Kong Baptist University 3Chongqing University
4The University of Sydney 5RIKEN 6Microsoft Research Asia 7The University of Tokyo
ferenas@sjtu.edu.cn, lfeng@cqu.edu.cn, bhanml@comp.hkbu.edu.hk,
tongliang.liu@sydney.edu.au, gang.niu@riken.jp, taoqin@microsoft.com, sugi@k.u-tokyo.ac.jp

ABSTRACT

Partial-label learning (PLL) solves the multi-class classification problem, where
each training instance is assigned a set of candidate labels that include the true
label. Recent advances showed that PLL can be compatible with deep neural net-
works, which achieved state-of-the-art performance. However, most of the exist-
ing deep PLL methods focus on designing proper training objectives under various
assumptions on the collected data, which may limit their performance when the
collected data cannot satisfy the adopted assumptions. In this paper, we propose
to exploit the learned intrinsic representation of the model to identify the true label
in the training process, which does not rely on any assumptions on the collected
data. We make two key contributions. As the first contribution, we empirically
show that the class activation map (CAM), a simple technique for discriminat-
ing the learning patterns of each class in images, could surprisingly be utilized
to make accurate predictions on selecting the true label from candidate labels.
Unfortunately, as CAM is confined to image inputs with convolutional neural net-
works, we are yet unable to directly leverage CAM to address the PLL problem
with general inputs and models. Thus, as the second contribution, we propose
the class activation value (CAV), which owns similar properties of CAM, while
CAV is versatile in various types of inputs and models. Building upon CAV, we
propose a novel method named CAV Learning (CAVL) that selects the true label
by the class with the maximum CAV for model training. Extensive experiments
on various datasets demonstrate that our proposed CAVL method achieves state-
of-the-art performance.

1 INTRODUCTION

To liberate humans from exhaustive label annotation work, numerous researchers have dedicated
themselves to investigating various weakly supervised learning (WSL) (Zhou, 2017) problems,
including but not limited to noisy-label learning (Liu & Tao, 2015; Xia et al., 2020; Han et al.,
2020), semi-supervised learning (Zhu & Goldberg, 2009; Miyato et al., 2018; Luo et al., 2018), and
multiple-instance learning (Zhou et al., 2012). This paper focuses on another popular WSL problem
called partial-label learning (PLL) (Jin & Ghahramani, 2002; Cour et al., 2011), which aims to
learn a model from training examples equipped with a set of candidate labels that include the true
label. Due to the cost and difficulty of annotating every example exactly with the true label in huge
datasets, PLL has been widely applied to various tasks such as multimedia context analysis (Zeng
et al., 2013) and web mining (Luo & Orabona, 2010).

To solve the PLL problem, there are two mainstream strategies to discriminate the unknown true
label from candidate labels, including the average-based strategy (ABS) and the identification-based
strategy (IBS). ABS always treats each candidate label equally and averages the model outputs of

†Correspondence to Lei Feng (lfeng@cqu.edu.cn) and Bo Han (bhanml@comp.hkbu.edu.hk).

1

Published as a conference paper at ICLR 2022

all candidate labels for prediction (Hüllermeier & Beringer, 2006; Cour et al., 2011; Feng et al.,
2020; Yao et al., 2020; Wen et al., 2021). IBS concentrates on iteratively selecting one label from
the candidate label set as the true label to exclude the uncertainty, forming PLL into an ordinary
classification problem (Jin & Ghahramani, 2002; Liu & Dietterich, 2014; Zhang & Yu, 2015; Zhang
et al., 2016). Among these methods, only several of them (Yao et al., 2020; Wen et al., 2021) can be
compatible with deep neural networks, which achieved state-of-the-art performance.

Most of the existing PLL methods aim at designing proper training objectives under various assump-
tions on the collected data. For example, the consistent methods proposed by Feng et al. (2020) are
based on a specific data generation assumption. The derivation of the PRODEN method (Lv et al.,
2020) stems from the assumption that the true label achieves the minimal loss among the candidate
labels. Yan & Guo (2021) proposed the MGPLL method based on the assumption of non-random
label noise. Although these methods have achieved generally great empirical performance, their
performance could be degraded when the collected data cannot meet the adopted assumptions.

In this paper, we aim to investigate a novel PLL method by exploiting the learned intrinsic repre-
sentation of the model to identify the ground truth in the training process without relying on any
assumptions on the collected data. We focus on the class activation map (CAM) (Zhou et al., 2016),
which is a prevailing tool for visualizing the representation information of convolutional neural net-
work (CNN)-based models and could be easily obtained by the weighted linear sum of the feature
maps. As CAM is able to discriminate the learning patterns of each class for the model, we conjec-
ture that CAM could be used to guide the model to spot the true label. To verify this assumption,
we conducted a pilot experiment on CIFAR-10 (Krizhevsky et al., 2009), where the candidate label
sets were generated in two different ways. As shown in Figure 1 (please refer to Section 2.2), it
is surprising to find that CAM can potentially help the model recognize the true labels, and such
capacity of CAM synchronously changes with the classifier performance during the whole training
phase. Based on the experimental results, it can be conjectured that such intrinsic representations
can be useful to distinguish the true label from candidate labels for PLL.

Motivated by the above observations, we naturally consider leveraging CAM to solve the PLL prob-
lem. However, CAM was only proposed for addressing image datasets with using deep models built
on CNN, revealing two limitations on its application. Firstly, CAM cannot be adopted to the classi-
fier based on shallow models such as the linear model and multilayer perceptron (MLP). Secondly,
CAM is unable to deal with any inputs other than the image. To overcome these shortcomings, we
for the first time propose a simple but effective tool—the class activation value (CAV) to capture the
learned representation information in a more general way, which is essentially the weighted output
of the classifier. Experimental results in Figure 2 and Appendix B.7 also shows that our CAV works
similarly as CAM during the training phase.

Building upon CAV, we propose a simple yet effective PLL method called CAV Learning (CAVL)
that guides the model to differentiate the true label from the candidate set during the training pro-
cess. Specifically, we first train the model by treating all candidate labels equally and obtain CAVs of
given training examples, and then regard the class with the maximum CAV as the true label for each
instance during the training process. In this way, CAVL transforms PLL into supervised learning,
thereby making the model reliable to recognize the true label with learned representation informa-
tion by CAV. Extensive experiments on benchmark-simulated and real-world datasets show that our
proposed CAVL method achieves state-of-the-art performance.

2 DISCOVERING CLASS ACTIVATION MAP FOR PARTIAL-LABEL LEARNING

In this section, we provide a detailed discussion about our motivation and empirically show that the
class activation map could be helpful for addressing PLL.

2.1 CLASS ACTIVATION MAP

The class activation map (CAM) (Zhou et al., 2016) is a popular and elementary mechanism in
computer vision to represent the discriminative part of an input image captured by the classifier to
identify each class. In other words, CAM manifests the learning patterns of the classifier, denoted
as f , to the specific class in the image. Let us denote an input image as x ∈ Rd=c×h×w (with c
channels, height h and width w) and CAM of x ∈ Rd=c×h×w as m ∈ Rk×h×w where k is the

2

Published as a conference paper at ICLR 2022

(a) ResNet + USS (b) DenseNet + FPS
Methods in (a) are implemented by ResNet with using USS to generate the candidate set. Methods in (b) are
conducted by DenseNet with the candidate label sets produced by FPS. For three lines representing accuracy
performance, the results drawn by the blue dashed line and red line (“CAM” line) are obtained by using the
“CAM label” selection strategy, namely training the model with regarding the class with the most number of
activated seeds in its CAM as the true label. Specifically, the red line depicts the training accuracy measured
by selecting the CAM with the maximum activated seeds from the candidate set as the true label, and the
blue line simply depicts the test accuracy of the classifier. The yellow dashed line (“IM” line) depicts the test
accuracy of the classifier trained by IM. The paired circle indicates the similar accuracy fluctuation between
the classifier and CAM, which shows the dynamic attribute. The double arrow marks the performance gap
between “CAM” label selection strategy and IM, which represents the power attribute.

Figure 1: Comparison of accuracy performance of two different label selection strategies.

number of classes. We note thatm could be generated by training a specific classification model fc,
which normally comprises of an encoder function e : X → Rcf×h×w for feature map extraction, a
Global Average-Pooling layer gap : Rcf×h×w → Rcf×1, and a linear layer with weight θ ∈ Rk×Cf ,
where cf is the number of channels in the feature maps. Therefore, CAM of x related to the j-th
class could be obtained by

mj =
∑Cf

i=1
(θj)ie

i(x), j ∈ {1, . . . , k}, (1)

where θj ∈ R1×Cf is the corresponding linear weight related to the j-th object. CAM is a weighted
linear sum of feature maps and the linear weights. The weakness of CAM is the limited applications,
since not all classification network architectures follow the model fc mentioned above. To improve
its generalization for any CNN-based model f , Gradient-weighted CAM (Grad-CAM) (Selvaraju
et al., 2017) was proposed to implement such an internal representation by reasonably leveraging
class-specific gradient information. Concretely, let us denote by gj ∈ Rd=c×h×w the Grad-CAM of
x related to the j-th object, and gj could be expressed as

gj =
1

h× w
∑cf

z=1

∑h

m=1

∑w

n=1

∂f j(x)

∂ez(x)m,n
ez(x). (2)

Intuitively, the derivative of logit f(x) with respect to feature map e(x) is used as the weights for
calculating g. Note that both Grad-CAM and CAM are generated by weighted sums of the feature
maps, and Grad-CAM is equivalent to CAM when f follows the same architecture as fc. Based on
Grad-CAM, Grad-CAM++ (Chattopadhay et al., 2018) aims to provide better visual explanations of
CNN and occurrences of multiple foreground objects. Thanks to such a simple technique, numer-
ous problems in computer vision such as interpretation (Xu et al., 2019a) and weakly supervised
semantic segmentation (Wei et al., 2016) have achieved marvelous progress. In this paper, we aim
to extract and improve the useful knowledge from CAM to address the PLL problem, leading the
classifier to identify the ground truth.

2.2 PILOT EXPERIMENT ON CAM

Generally, Grad-CAM or CAM is treated as the internal representation of f . We believe that such
a mechanism could guide f to differentiate the true label from the candidate set because it is con-
structed by taking advantage of internal elements in f . To validate our conjecture, we conducted
a pilot experiment by adopting two different label selection methods. The first one is the intuitive

3

Published as a conference paper at ICLR 2022

method (IM), which simply regards all the labels from the candidate sets as the true labels with using
cross entropy loss. The second one is the “CAM label” selection strategy, which discriminates the
true label from the candidate label set by using CAM. During each training epoch, we calculated
the number of the foreground seeds of CAM from each candidate label set. Specifically, to calculate
the number of foreground seeds of mj , we counted the elements with positive values in mj . Note
that each x could possess k CAMs and the true label is always in the candidate set. Thus we se-
lected the label from the candidate set, whose CAM owns most foreground seeds as the true label.
The label candidate label sets were generated by two different approaches:(I) Uniformly Sampling
Strategy (USS). Uniformly sampling the candidate label set for each training instance from all the
possible candidate label sets (Feng et al., 2020). (II) Flipping Probability Strategy (FPS). By setting
a flipping probability q to any false label, the false label could be selected as a candidate label with
a probability q (Feng & An, 2019a; Yan & Guo, 2020; Lv et al., 2020; Wen et al., 2021). Here
the detailed training settings of the experiments are similar to the experiment part (please refer to
Section 4.1.1 for details). ResNet (He et al., 2016) and DenseNet (Huang et al., 2017) were chosen
as the backbones to train a classifier on CIFAR-10 (Krizhevsky et al., 2009).

Figure 1 shows the average results of 5-time trials and we can find that CAM demonstrates two
helpful features during the training phase. Firstly, it is clear that the performance of the classifier
trained by “CAM label” selection strategy is better than IM (the gap between the blue dashed line
and the yellow dashed line), which shows that CAM could potentially guide the classifier toward
the true label from the candidate set. Here we name this attribute of CAM as power. Secondly,
it is found that the accuracy of identifying true labels by CAM is synchronously changed with that
by the classifier. Several fluctuations (marked by the paired circle) of the classifier performance
(test accuracy) and CAM accuracy are similar to a large extent, resulting in continuous improve-
ment to the model itself. Here we name this observed feature of CAM as dynamic. The power
and dynamic attributes disclose the fact that CAM may show more than we thought, which is an
inspiring finding to address PLL. The power attribute motivates us to consider that the classifier
may learn more accurate true labels if it is forced to approximate the label distribution recognized
by CAM. The dynamic attribute may guarantee that such guidance would be constantly effective
during the whole training phase since CAM would synchronously be self-improved as the classifier
becomes stronger. Hence it would be reasonable and meaningful to explore such internal sign as
guidance for PLL.

3 PROPOSING CLASS ACTIVATION VALUE FOR PARTIAL-LABEL LEARNING

3.1 CLASS ACTIVATION VALUE—SIMPLE AND GENERAL REPRESENTATION

In this paper, we aim to propose a CAM-like tool as guidance for f to identify the true label from can-
didate labels. CAM or Grad-CAM is specially designed for convolutional neural network (CNN)-
based models, which mainly deals with image datasets with retaining spatial information. However,
to the best of our knowledge, most PLL methods are implemented in datasets with various forms,
including the image datasets such as MNIST (LeCun et al., 1998), and feature vectors such as Bird-
Song (Briggs et al., 2012). The networks on these datasets could be directly adapted to elementary
models such as the linear or multilayer perceptron (MLP) for f to deal with the inputting flattened-
dimension vectors. Without spatial information or CNN-based architectures, CAM-based tools are
invalid to represent the internal learning pattern. To make such a concept versatile, we aim to pro-
pose another novel CAM-like tool with simple implementation that could be adopted in a wider
range of backbones and problems. We note that the (softmax) outputs can replace the feature map
e(x) since the encoder e could be directly regarded as f . Thus, it is fundamental to formulate an
internal component for a value-based framework. For each candidate label, apart from its class out-
put, its gradient of training loss with respect to the model output can also capture the importance
degree of the candidate label to some extent. Inspired by the formulation of Grad-CAM in Eq. (2)
that regards the gradient information flow to the last convolution layer as the importance of each
neuron to the j-th class, we can intuitively derive the importance of each candidate label as follows:

vj =

∣∣∣∣∂(− log(ψj(f(x))))

∂f j(x)

∣∣∣∣ψj(f(x)) =
∣∣ψj(f(x))− 1

∣∣ψj(f(x)), (3)

where ψ : Rk → Rk is the activation function imposed on the logit vector f(x) to approximate the
class-conditional probability P (y|x), and ψ is mostly implemented by the SoftMax function. The

4

Published as a conference paper at ICLR 2022

Algorithm 1 CAVL Algorithm

Input: Model f , epoch Tmax, iteration Zmax, partial labeled training set D = {(xi, Si)}mi=1.
for t = 1, 2, ..., Tmax do

Shuffle D;
for z = 1, 2, ..., Imax do

Sample mini-batch Dz = {(xj , Sj)}uj=1 from D;
if t = 1 then

Update f by minimizing the cross entropy loss function R̂1 in Eq. (6) with treating all the
candidate labels from Sj equally;

else
Obtain the CAV v for each xj by Eq. (4);
Generate y′j for xj by selecting the maximum v from Sj by Eq. (7);
Update f by minimizing the cross entropy loss function R̂cavl in Eq. (8) with treating y′j
as the sole true label for each xj ;

end if
end for

end for
Output: f .

derivation process of the last inequality of Eq. (3) is provided in Appendix A. From Eq. (3), we can
observe that the importance vj of each candidate label j depends on the softmax confidence score
ψj(f(x)). However, we argue that such a calculation of vj is actually suboptimal, becauseψj(f(x))
conveys less information of model output than the logit f j(x) as ψj(f(x)) could be considered as a
condensed version of f j(x). Therefore, instead of directly adopting Eq. (3), we propose to replace
ψj(f(x)) in Eq. (3) by f j(x), and the importance of each candidate label would be calculated by
the following simple way:

vj = |f j(x)− 1|f j(x). (4)

We call the importance vj calculated by Eq. (4) as the class activation value (CAV) of the j-th class,
as it could be regarded as a value-based “CAM”. Compared with CAM, we directly treat f(x) as
the “feature map” so that v can be obtained by a weight imposed on the class output of the model.
In summary, both CAV and CAM are the weighted operation to the feature maps (or outputs in the
classifier). Differently from CAM, CAV is essentially a value so that it could be easily obtained and
applied to different backbones. Besides, our CAV could also be generated with less time complexity
since there is no need to process the weighted sum of the feature maps.

3.2 PARTIAL-LABEL LEARNING WITH CLASS ACTIVATION VALUE

In this section, we introduce how to effectively address PLL by using CAV in detail. Firstly, we give
a formal introduction to PLL. For a k-class classification problem, let X ∈ Rd be the feature (input)
space and {xi}mi=1 ∈ X be the input data, where m refers to the number of training examples. Let
Y = {1, 2, ..., k} be the label space. Let us denote C = {2Y\∅\Y} as the candidate label space
where 2Y is the power set of Y, and |C| = 2k − 2 shows that the candidate label set is not supposed
to be the empty set nor the whole label set. For each training instance xi, let yi ∈ Y be the ground
truth label and Si ∈ C be the candidate label set. We denote P (x, y) and P (x, S) as the probability
densities of fully labeled examples and partially labeled examples respectively. Based on the crucial
assumption of PLL that the candidate label set of each instance must include the correct label, we
have yi ∈ Si, i.e.,

P (yi ∈ Si|y = yi,x = xi) = 1,∀yi ∈ Y,∀Si ∈ C. (5)

PLL aims to learn a classifier f : X → Rk with training examples independently and identically
sampled from P (x, S) to make correct predictions for test examples. To the best of our knowledge,
most methods focus on designing the loss by considering all candidate labels or iteratively extracting
the true label from the theoretical aspect. Differently from them, we concentrate on how to solve
PLL by efficiently utilizing the learned representation by CAV, which could be potential and effective
guidance for helping f recognize the true label.

Note that the learned representation could be directly obtained by using CAV after firstly training f
in one epoch. For training f in the first epoch, here we directly utilize the IM strategy, i.e., treating

5

Published as a conference paper at ICLR 2022

every candidate label equally by cross entropy loss L(f(x), s), s ∈ S. Hence the empirical risk
function R̂1 for the first epoch could be defined as

R̂1(L, f) =
1

m

∑m

i=1

∑
j∈Si

L(f(xi), sj). (6)

After training f in one epoch, the CAV v of every candidate label could be gained for each x by
Eq. (4). To keep the classifier away from the negative effect by the false positive labels from the
candidate set, we use the knowledge by CAV to guide the following learning process after the first
training epoch, and the potential true label for xi is selected by

y′i = argmax
j∈Si

vji , (7)

where y′i is the selected true label from the candidate label set for xi. In this way, y′i could be
straightly treated as the ground truth so that PLL could be transferred to classical supervised learn-
ing. Finally, the risk function R̂cavl for the following epochs could be expressed as

R̂cavl(L, f) =
1

m

∑m

i=1
L(f(xi), y

′
i). (8)

As f gradually learns to approximate P (y′|x), CAV would also be updated to identify the true label.
Based on such a progressive label selection on the candidate label set, our Class Activation Value
Learning (CAVL) is supposed to progressively training an accurate model with correctly selected
labels. The pseudo-code of CAVL is given in Algorithm 1.

4 EXPERIMENTS

In this section, extensive experiments on various datasets are implemented to verify the effectiveness
and rightness of our proposed CAV and CAVL method.

4.1 CAVL PERFORMANCE

4.1.1 BENCHMARK DATASET COMPARISONS

Datasets and backbones. We use four popular benchmark datasets to test the performance of our
CAVL, which are MNIST (LeCun et al., 1998), Fashion-MNIST (Xiao et al., 2017), Kuzushiji-
MNIST (Clanuwat et al., 2018) and CIFAR-10 (Krizhevsky et al., 2009). Note that it is necessary to
manually generate the candidate label sets since they are supposed to be used for single-classification
problems. Recall that we introduce two different candidate label generation process (please refer to
Section 2.2 for details) (Feng & An, 2019a;b; Feng et al., 2020; Lv et al., 2020; Wen et al., 2021),
i.e., USS and FPS. The former one is implemented by uniformly sampling a label set from all the
partial label space C for each instance, and the latter one sets a flipping probability q to any irrelevant
label so that it could become one item in the candidate label set with probability q. In this section
we set q ∈ {0.3, 0.5, 0.7} to represent different ambiguity degrees. For MNIST, Kuzushiji-MNIST
and Fashion-MNIST, we adopt 3-layer MLP and 5-layer LeNet as the backbones. For CIFAR-10,
we choose 34-layer ResNet (He et al., 2016) and 22-layer DenseNet (Huang et al., 2017) as the base
models.

Compared methods and training settings. We compare our CAVL with four state-of-the-art
approaches including PRODEN (Lv et al., 2020), Leveraged Weighted (LW) Loss (Wen et al.,
2021), RC and CC (Feng et al., 2020). For all methods we search the initial learning rate from
{0.0001, 0.001, 0.01, 0.05, 0.1, 0.5}, and weight decay from {10−6, 10−5, ..., 10−1}. We take a
mini-batch size of {32, 256} images and train all the methods using Adam (Kingma & Ba, 2015)
optimizer for 250 epochs. Hyper-parameters are searched to maximize the accuracy on a validation
set containing 10% of the training samples annotated by true labels. All the implemented methods
are trained on 1 RTX3090 GPU with 24 GB memory. To guarantee the fairness of comparisons,
we repeatedly conduct all experiments 5 times and record the average accuracy with the standard
deviation following the conventions in Feng et al. (2020); Lv et al. (2020); Wen et al. (2021). This
work is partially supported by Huawei MindSpore (Huawei, 2020).

Experiment results. As shown in Table 1 and 2, our CAVL shows its superiority on four benchmark
datasets with various backbones. Additionally, our CAVL outperforms nearly all state-of-the-art

6

Published as a conference paper at ICLR 2022

Table 1: Test performance of CAVL and other methods on benchmark datasets using data generation
by USS. The best results among all methods with the same backbone are marked in bold.

Dataset (Backbones) Method Accuracy

MNIST (MLP/LeNet)

CC 97.77 ± 0.12% / 98.77± 0.06%
RC 98.05 ± 0.15% / 99.03 ± 0.04%
LW 97.99 ± 0.06% / 98.74 ± 0.05%

PRODEN 97.02 ± 0.08% / 98.81 ± 0.04%

CAVL 98.06 ± 0.05% / 99.14 ± 0.03%

Kuzushiji-MNIST (MLP/LeNet)

CC 88.87 ± 0.32% / 93.83 ± 0.20%
RC 89.36 ± 0.30% / 94.01 ± 0.15%
LW 87.98 ± 0.39% / 91.52 ± 0.65%

PRODEN 88.75 ± 0.29% / 93.94 ± 0.18%

CAVL 88.45 ± 0.22% / 93.25 ± 0.21%

Fashion-MNIST (MLP/LeNet)

CC 87.90 ± 0.27% / 88.96 ± 0.14%
RC 88.40 ± 0.13% / 89.51 ± 0.11%
LW 88.16 ± 0.12% / 88.28 ± 0.33%

PRODEN 88.82 ± 0.15% / 89.23 ± 0.12%

CAVL 88.93 ± 0.16% / 89.99 ± 0.10%

CIFAR-10 (ResNet/DenseNet)

CC 75.74 ± 0.19% / 76.78 ± 0.33%
RC 77.98 ± 0.46% / 78.56 ± 0.37%
LW 76.82 ± 0.21% / 78.08 ± 0.66%

PRODEN 77.62 ± 0.34% / 78.72 ± 0.48%

CAVL 78.05 ± 0.32% / 79.10 ± 0.25%

Table 2: Test performance of CAVL and other methods on benchmark datasets using data generation
by FPS. The best results among all methods with the same backbone are marked in bold.

Dataset (Backbones) Method q=0.3 q=0.5 q=0.7

MNIST (LeNet)

CC 98.87 ± 0.15% 98.49± 0.07% 98.17 ± 0.12%
RC 98.88 ± 0.07% 98.53± 0.11% 98.12 ± 0.05%
LW 98.53 ± 0.12% 98.68± 0.06% 97.35 ± 0.13%

PRODEN 98.72 ± 0.13% 98.62± 0.09% 98.08 ± 0.04%

CAVL 98.90 ± 0.12% 98.71± 0.04% 98.20 ± 0.11%

Kuzushiji-MNIST (LeNet)

CC 93.11 ± 0.08% 90.87 ± 0.06% 89.98 ± 0.14%
RC 93.21 ± 0.17% 91.19± 0.22% 90.15. ± 0.04%
LW 92.65 ± 0.18% 91.28± 0.16% 90.55 ± 0.17%

PRODEN 93.51 ± 0.20% 91.23± 0.17% 90.07 ± 0.08%

CAVL 93.82 ± 0.21% 91.57± 0.11% 86.05± 0.25%

Fashion-MNIST (LeNet)

CC 89.41 ± 0.17% 88.72 ± 0.06% 85.87 ± 0.25%
RC 89.53 ± 0.07% 88.84± 0.14% 85.41 ± 0.18%
LW 89.19 ± 0.08% 87.19± 0.23% 85.92 ± 0.13%

PRODEN 89.63 ± 0.05% 88.78± 0.15% 85.81 ± 0.16%

CAVL 89.77 ± 0.04% 88.92± 0.11% 86.25 ± 0.18%

CIFAR-10 (DenseNet)

CC 77.32 ± 0.14% 76.42 ± 0.13% 66.17 ± 0.25%
RC 78.14 ± 0.12% 77.42 ± 0.16% 70.21 ± 0.15%
LW 80.95 ± 0.17% 78.72 ± 0.17% 71.26 ± 0.16%

PRODEN 79.05 ± 0.11% 77.52± 0.18% 70.35 ± 0.18%

CAVL 81.58 ± 0.22% 79.69 ± 0.17% 65.86 ± 0.21%
methods using the candidate labels generated by both USS and FPS, which shows that our CAVL
does not rely on any data generation assumption. Specifically, it is worth mentioning that CAVL is
able to show competitive performance with RC, which is theoretically proved to be possess optimal
performance in data distribution generated by USS. Therefore, the results reasonably verify the
generalization and effectiveness of our CAV and CAVL.

4.1.2 REAL-WORLD DATASET COMPARISONS

Datasets and backbones. We select five real-world datasets including Lost (Cour et al., 2011),
MSRCv2 (Liu & Dietterich, 2012), BirdSong (Briggs et al., 2012), Soccer Player (Zeng et al., 2013)
and Yahoo!News (Guillaumin et al., 2010). Note that these real-world datasets have their candidate
labels. As a common practice in (Feng et al., 2020; Lv et al., 2020; Wen et al., 2021), we select

7

Published as a conference paper at ICLR 2022

Table 3: Test performance of CAVL and other methods uisng linear model on real-world datasets.
The best and second best results among all methods are marked in bold and underline.

Method Real-world datasets

Lost MSRCv2 Birdsong SoccerPlayer YahooNews

IPAL 71.16 ± 2.56% 50.64 ± 3.85% 70.32 ± 4.85% 55.42 ± 0.92% 66.43 ± 1.32%
CLPL 75.01 ± 4.39% 36.72 ± 4.61% 64.35 ± 1.28% 37.01 ± 1.02% 45.21 ± 0.82%

PLSVM 48.91± 3.33% 35.95 ± 3.96% 48.99 ± 1.98% 45.90 ± 0.98% 57.02 ± 1.02%
PLKNN 37.73± 2.85% 41.28 ± 2.25% 64.32 ± 1.05% 48.21 ± 1.21% 40.67 ± 1.58%

PLECOC 50.95 ± 7.81% 43.25 ± 3.61% 70.51 ± 4.31% 55.29 ± 1.95% 61.23 ± 1.52%
SURE 75.56 ± 5.62% 46.72 ± 4.21% 55.42 ± 1.52% 48.61 ± 0.84% 55.17 ± 1.05%

LW 79.74 ± 3.81% 45.65 ± 3.12% 72.01 ± 2.31% 57.12 ± 3.25% 67.94 ± 1.64%
RC 80.45 ± 3.85% 46.85 ± 2.52% 72.15 ± 2.14% 57.05 ± 2.15% 68.12 ± 0.67%
CC 73.78 ± 4.34% 45.13 ± 2.67% 71.86 ± 1.34% 56.54 ± 0.74% 67.00± 0.35%

PRODEN 80.12± 4.52% 45.32 ± 2.38% 71.90 ± 2.34% 56.12 ± 3.12% 67.92± 0.48%

CAVL 82.07 ± 3.18% 48.39 ± 2.12% 71.92 ± 0.73% 57.32 ± 2.24% 68.89± 0.55%

Figure 2: Study of CAV attributes on various backbones and datasets. Note that here CAM could
only been obtained in deep CNN architectures, namely ResNet and DenseNet.

1-layer linear model and 3-layer MLP as the backbones to validate the performance of our CAVL in
these five datasets.

Compared methods and training settings. Apart from the four methods mentioned in Sec-
tion 4.1.1, we add SURE (Feng & An, 2019b), CLPL (Cour et al., 2011), IPAL (Zhang & Yu,
2015), PLSVM (Elkan & Noto, 2008), PLECOC (Zhang et al., 2017) and PLKNN (Hüllermeier &
Beringer, 2006) as extra methods for comparison, where the parameters are searched to maximize
the accuracy on a validation set (10% of the training set). We repeatedly run all experiments 10
times, and report the average accuracy with the standard deviation for each method. Other settings
are similar to Section 4.1.1. The comparison results using MLP is recorded in Appendix B.2.

Experiment results. In Table 3, our proposed CAVL shows the best performance in nearly all
five real datasets. Besides, CAM is unable to be extracted with the word embedding input such as
BirdSong, lacking spatial information. Therefore, the achievement of CAVL on these real datasets
shows the generalization and superiority of our CAVL to shallow model, where CAV could serve as
the CAM to lead the classifier to learn the true label.

4.2 CAV ATTRIBUTES

In this part, we conduct several experiments to present how these attributes of CAV guide the learn-
ing process. We implement CAVL with four backbones including linear, MLP, ResNet and DenseNet
on four benchmark datasets, whose candidate label sets are generated by USS. The training settings
are similar to the ones in Section 4.1.1. Figure 2 illustrates the averaging performance of CAV, CAM
(for deep networks) and the model itself during the 5-time training process. The red (blue) line in
Figure 2 depicts the training accuracy measured by treating the maximum CAV (CAM) from the

8

Published as a conference paper at ICLR 2022

candidate set as the true label, and the cyan line depicts the test accuracy of the model. We note that
here CAM is simply extracted from the classifier for comparison, which is different from its usage
in Section 2.2. As shown in Figure 2, it is clear that the classifier learns to approximate the better
data distribution by CAV, and the accuracy trend recognized by CAV is consistent with the classifier
performance in the test datasets, which validates the Power and Dynamic attribute of CAV.

5 RELATED WORK

In this section, we give a brief introduction to the two mainstream strategies for partial-label learn-
ing (PLL), i.e., the averaged-based strategy (ABS) and the identification-based strategy (IBS).

ABS treats all candidate labels in an equal manner and then averages the model outputs of all can-
didate labels for prediction. Some non-parametric methods (Hüllermeier & Beringer, 2006; Gong
et al., 2017) concentrated on predicting the label by leveraging the outputs of its neighbors. Fur-
thermore, some methods (Cour et al., 2009; Zhang et al., 2016; Yao et al., 2020) aimed to subtly
leverage the labels outside the candidate set so as to discriminate the potential true label. Yao et al.
(2020) designed an entropy-based regularizer to minimize the entropy of each label to maximize
the margin between the potential true label and the unlikely labels. A recent study (Feng et al.,
2020; Lv et al., 2020; Wen et al., 2021; Lv et al., 2021) focused on the data generation process and
proposed a classifier-consistent method based on a transition matrix. (Chen et al., 2020) proposed a
new problem General Partial Label Learning and leveraged graph neural network to tackle the label
ambiguity.

IBS aims to constantly identify the most possible true label from the candidate label set to eliminate
the label ambiguity. Early works treated the potential truth label as a latent variable and optimized
the objective function by the maximum likelihood criterion (Jin & Ghahramani, 2002; Liu & Di-
etterich, 2014) or the maximum margin criterion (Nguyen & Caruana, 2008; Yu & Zhang, 2016).
Later, taking advantage of topological information of feature space to generate the score of each
candidate label (Zhang & Yu, 2015; Zhang et al., 2016; Feng & An, 2018; Wang et al., 2019) at-
tracted much attention from researchers. These methods commonly aimed to iteratively update the
confidence of each candidate label based on the widely used assumption that similar instance are
supposed to possess the same label. Xu et al. (2019b) proposed to model the generalized label
distribution by leveraging the topological information of the feature space. Lyu et al. (2021) refor-
mulated PLL into a matching selection problem and proposed a Graph-Matching based Partial Label
Learning framework to solve the problem. It is worth noting that IBS is commonly susceptible to
the false positive labels that co-occur with the true label in the candidate label set. Thus our CAVL,
which belongs to IBS, also owns this inevitable shortcoming.

6 CONCLUSION

In this paper, we exploited the learned intrinsic representation of the model for partial-label learn-
ing (PLL). We made two key contributions. Firstly, we found that the class activation map (CAM),
a simple technique for discriminating the learning patterns of each class in an image, could sur-
prisingly be used to differentiate the true label from candidate labels. Unfortunately, we are yet
unable to directly use CAM for PLL, as CAM is subject to image inputs with convolutional neural
networks. Thus, our second contribution is to propose the class activation value (CAV), which not
only owns similar properties of CAM but also is versatile in various types of inputs and models.
Based on CAV, we proposed a simple yet effective PLL method that selects the true label by the
class with the maximum CAV for model training. Comprehensive experimental results on various
datasets demonstrated that our CAVL achieved state-of-the-art performance.

9

Published as a conference paper at ICLR 2022

ACKNOWLEDGMENT

FZ and BH were supported by NSFC Young Scientists Fund No. 62006202, RGC Early Career
Scheme No. 22200720 and HKBU CSD Departmental Incentive Grant. BH was also supported
by MSRA StarTrack Program. LF was supported by the National Natural Science Foundation of
China (Grant No. 62106028) and CAAI-Huawei MindSpore Open Fund. TLL was supported by
Australian Research Council Projects DE-190101473 and DP-220102121. MS was supported by
JST CREST Grant Number JPMJCR18A2.

REFERENCES

Devansh Arpit, Stanislaw Jastrzebski, Nicolas Ballas, David Krueger, Emmanuel Bengio, Maxin-
der S Kanwal, Tegan Maharaj, Asja Fischer, Aaron Courville, Yoshua Bengio, et al. A closer look
at memorization in deep networks. In International Conference on Machine Learning (ICML),
pp. 233–242. PMLR, 2017.

Forrest Briggs, Xiaoli Z Fern, and Raviv Raich. Rank-loss support instance machines for miml
instance annotation. In Proceedings of the 18th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD), pp. 534–542, 2012.

Aditya Chattopadhay, Anirban Sarkar, Prantik Howlader, and Vineeth N Balasubramanian. Grad-
cam++: Generalized gradient-based visual explanations for deep convolutional networks. In 2018
IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 839–847. IEEE, 2018.

Brian Y. Chen, Bo Wu, Alireza Zareian, Hanwang Zhang, and Shih-Fu Chang. General partial label
learning via dual bipartite graph autoencoder. In Proceedings of the AAAI Conference on Artificial
Intelligence (AAAI), 2020.

Tarin Clanuwat, Mikel Bober-Irizar, Asanobu Kitamoto, Alex Lamb, Kazuaki Yamamoto, and David
Ha. Deep learning for classical japanese literature. arXiv preprint arXiv:1812.01718, 2018.

Timothee Cour, Benjamin Sapp, Chris Jordan, and Ben Taskar. Learning from ambiguously labeled
images. In 2009 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
919–926. IEEE, 2009.

Timothee Cour, Ben Sapp, and Ben Taskar. Learning from partial labels. The Journal of Machine
Learning Research (JMLR), 12:1501–1536, 2011.

Charles Elkan and Keith Noto. Learning classifiers from only positive and unlabeled data. In
Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD), pp. 213–220, 2008.

Lei Feng and Bo An. Leveraging latent label distributions for partial label learning. In International
Joint Conference on Artificial Intelligence (IJCAI), pp. 2107–2113, 2018.

Lei Feng and Bo An. Partial label learning by semantic difference maximization. In International
Joint Conference on Artificial Intelligence (IJCAI), pp. 2294–2300, 2019a.

Lei Feng and Bo An. Partial label learning with self-guided retraining. In Proceedings of the AAAI
Conference on Artificial Intelligence (AAAI), pp. 3542–3549, 2019b.

Lei Feng, Jiaqi Lv, Bo Han, Miao Xu, Gang Niu, Xin Geng, Bo An, and Masashi Sugiyama. Prov-
ably consistent partial-label learning. In Advances in Neural Information Processing Systems
(NeurIPS), 2020.

Chen Gong, Tongliang Liu, Yuanyan Tang, Jian Yang, Jie Yang, and Dacheng Tao. A regularization
approach for instance-based superset label learning. IEEE Transactions on Cybernetics, 48(3):
967–978, 2017.

Matthieu Guillaumin, Jakob Verbeek, and Cordelia Schmid. Multiple instance metric learning from
automatically labeled bags of faces. In European Conference on Computer Vision (ECCV), pp.
634–647. Springer, 2010.

10

Published as a conference paper at ICLR 2022

Bo Han, Gang Niu, Xingrui Yu, Quanming Yao, Miao Xu, Ivor Tsang, and Masashi Sugiyama.
Sigua: Forgetting may make learning with noisy labels more robust. In International Conference
on Machine Learning (ICML), pp. 4006–4016. PMLR, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 770–778, 2016.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 4700–4708, 2017.

Huawei. Mindspore, 2020. URL https://www.mindspore.cn/.

Eyke Hüllermeier and Jürgen Beringer. Learning from ambiguously labeled examples. Intelligent
Data Analysis, 10(5):419–439, 2006.

Rong Jin and Zoubin Ghahramani. Learning with multiple labels. In Advances in Neural Information
Processing Systems (NeurIPS), volume 2, pp. 897–904. Citeseer, 2002.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. International
Conference on Learning Representations (ICLR), 2015.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Liping Liu and Thomas Dietterich. Learnability of the superset label learning problem. In Interna-
tional Conference on Machine Learning (ICML), pp. 1629–1637. PMLR, 2014.

Liping Liu and Thomas G Dietterich. A conditional multinomial mixture model for superset la-
bel learning. In Advances in Neural Information Processing Systems (NeurIPS), pp. 548–556.
Citeseer, 2012.

Tongliang Liu and Dacheng Tao. Classification with noisy labels by importance reweighting. IEEE
Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 38(3):447–461, 2015.

Jie Luo and Francesco Orabona. Learning from candidate labeling sets. In Advances in Neural
Information Processing Systems (NeurIPS), 2010.

Yucen Luo, Jun Zhu, Mengxi Li, Yong Ren, and Bo Zhang. Smooth neighbors on teacher graphs
for semi-supervised learning. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 8896–8905, 2018.

Jiaqi Lv, Miao Xu, Lei Feng, Gang Niu, Xin Geng, and Masashi Sugiyama. Progressive identifi-
cation of true labels for partial-label learning. In International Conference on Machine Learning
(ICML), pp. 6500–6510. PMLR, 2020.

Jiaqi Lv, Lei Feng, Miao Xu, Bo An, Gang Niu, Xin Geng, and Masashi Sugiyama. On the robust-
ness of average losses for partial-label learning. arXiv preprint arXiv:2106.06152, 2021.

Gengyu Lyu, Songhe Feng, Tao Wang, Congyan Lang, and Yidong Li. Gm-pll: Graph matching
based partial label learning. IEEE Transactions on Knowledge and Data Engineering (TKDE),
33(2):521–535, 2021.

Takeru Miyato, Shin-ichi Maeda, Masanori Koyama, and Shin Ishii. Virtual adversarial training: a
regularization method for supervised and semi-supervised learning. IEEE Transactions on Pattern
Analysis and Machine Intelligence (TPAMI), 41(8):1979–1993, 2018.

Nam Nguyen and Rich Caruana. Classification with partial labels. In Proceedings of the 14th
ACM SIGKDD international conference on Knowledge discovery and data mining (KDD), pp.
551–559, 2008.

11

https://www.mindspore.cn/

Published as a conference paper at ICLR 2022

Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based local-
ization. In Proceedings of the IEEE International Conference on Computer Vision (CVPR), pp.
618–626, 2017.

Deng-Bao Wang, Li Li, and Min-Ling Zhang. Adaptive graph guided disambiguation for partial
label learning. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining (KDD), pp. 83–91, 2019.

Yunchao Wei, Xiaodan Liang, Yunpeng Chen, Xiaohui Shen, Ming-Ming Cheng, Jiashi Feng, Yao
Zhao, and Shuicheng Yan. Stc: A simple to complex framework for weakly-supervised semantic
segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 39(11):
2314–2320, 2016.

Hongwei Wen, Jingyi Cui, Hanyuan Hang, Jiabin Liu, Yisen Wang, and Zhouchen Lin. Leveraged
weighted loss for partial label learning. In Marina Meila and Tong Zhang (eds.), Proceedings of
the 38th International Conference on Machine Learning (ICML), volume 139, pp. 11091–11100.
PMLR, 2021.

Xiaobo Xia, Tongliang Liu, Bo Han, Nannan Wang, Mingming Gong, Haifeng Liu, Gang Niu,
Dacheng Tao, and Masashi Sugiyama. Part-dependent label noise: Towards instance-dependent
label noise. Advances in Neural Information Processing Systems (NeurIPS), 33:7597–7610, 2020.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Kaidi Xu, Sijia Liu, Pu Zhao, Pin-Yu Chen, Huan Zhang, Quanfu Fan, Deniz Erdogmus, Yanzhi
Wang, and Xue Lin. Structured adversarial attack: Towards general implementation and better
interpretability. In International Conference on Learning Representations (ICLR), 2019a.

Ning Xu, Jiaqi Lv, and Xin Geng. Partial label learning via label enhancement. In Proceedings of
the AAAI Conference on Artificial Intelligence (AAAI), volume 33, pp. 5557–5564, 2019b.

Yan Yan and Yuhong Guo. Partial label learning with batch label correction. In Proceedings of the
AAAI Conference on Artificial Intelligence (AAAI), volume 34, pp. 6575–6582, 2020.

Yan Yan and Yuhong Guo. Multi-level generative models for partial label learning with non-random
label noise. In Proceedings of the International Joint Conference on Artificial Intelligence (IJ-
CAI), pp. 3264–3270, 2021.

Yao Yao, Jiehui Deng, Xiuhua Chen, Chen Gong, Jianxin Wu, and Jian Yang. Deep discriminative
cnn with temporal ensembling for ambiguously-labeled image classification. In Proceedings of
the AAAI Conference on Artificial Intelligence (AAAI), volume 34, pp. 12669–12676, 2020.

Fei Yu and Min-Ling Zhang. Maximum margin partial label learning. In Asian Conference on
Machine Learning (ACML), pp. 96–111. PMLR, 2016.

Zinan Zeng, Shijie Xiao, Kui Jia, Tsung-Han Chan, Shenghua Gao, Dong Xu, and Yi Ma. Learning
by associating ambiguously labeled images. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 708–715, 2013.

Min-Ling Zhang and Fei Yu. Solving the partial label learning problem: An instance-based ap-
proach. In Twenty-fourth International Joint Conference on Artificial Intelligence (IJCAI), 2015.

Min-Ling Zhang, Bin-Bin Zhou, and Xu-Ying Liu. Partial label learning via feature-aware disam-
biguation. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD), pp. 1335–1344, 2016.

Min-Ling Zhang, Fei Yu, and Cai-Zhi Tang. Disambiguation-free partial label learning. IEEE
Transactions on Knowledge and Data Engineering (TKDE), 29(10):2155–2167, 2017.

Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. Learning deep
features for discriminative localization. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 2921–2929, 2016.

12

Published as a conference paper at ICLR 2022

Zhi-Hua Zhou. A brief introduction to weakly supervised learning. National Science Review, 5(1):
44–53, 08 2017.

Zhi-Hua Zhou, Min-Ling Zhang, Sheng-Jun Huang, and Yu-Feng Li. Multi-instance multi-label
learning. Artificial Intelligence, 176(1):2291–2320, 2012.

Xiaojin Zhu and Andrew B Goldberg. Introduction to semi-supervised learning. Synthesis lectures
on Artificial Intelligence and Machine Learning, 3(1):1–130, 2009.

A DERIVATION PROCESS OF EQUATION. (3)

The SoftMax function is ψj(x) = exp(xj)/
∑k

j=1 exp(xj), where x ∈ Rd refers to the. Then we
can obtain the derivation of − log(ψj(x)) with respect to the xj by

∂(− log(ψj(x)))

∂xj
=
∂(− log(ψj(x)))

∂ψj(x)

∂ψj(x)

∂xj

=− 1

ψj(x)

∂ψj(x)

∂xj

=− 1

ψj(x)

∑d
i=1 e

xjexi − (exi)2∑d
i=1(e

xi)2

=− 1

ψj(x)
(

exj∑d
i=1(e

xi)2
)(1− exj∑d

i=1(e
xi)2

)

=− 1

ψj(x)
ψj(x)(1− ψj(x))

= ψj(x)− 1.

(9)

B DETAILED SUPPLEMENTARY FOR EXPERIMENTS

B.1 BENCHMARK DATASETS

In Section 4.1.1, we use four widely-used benchmark datasets, i.e. MNIST (LeCun et al., 1998),
Fashion-MNIST (Xiao et al., 2017), Kuzushiji-MNIST (Clanuwat et al., 2018) and CIFAR-10
(Krizhevsky et al., 2009). Table 4 lists the characteristics of these datasets. We respectively de-
scribe these datasets as follows.

• MNIST: It is a 10-class dataset of handwritten digits. Each data is a 28 × 28 grayscale
image.

• Fashion-MNIST: It is also a 10-class dataset. Each instance is a fashion item from one of
the 10 classes, which are T-shirt/top, trouser, pullover, dress, sandal, coat, shirt, sneaker,
bag, and ankle boot. Moreover, each image is a 28 × 28 grayscale image.

• Kuzushiji-MNIST: Each instance is a 28 × 28 grayscale image associated with one label of
10-class cursive Japanese (“Kuzushiji”) characters.

• CIFAR-10: Each instance is a 32 × 32 × 3 colored image in RGB format. It is a ten-class
dataset of objects including airplane, bird, automobile, cat, deer, frog, dog, horse, ship, and
truck.

B.2 REAL DATASETS

In Section 4.1.2, We select five real-world datasets including Lost (Cour et al., 2011), MSRCv2
(Liu & Dietterich, 2012), BirdSong (Briggs et al., 2012), Soccer Player (Zeng et al., 2013) and
Yahoo!News (Guillaumin et al., 2010). Here we make a comprehensive descriptions about them
shown as follows.

13

Published as a conference paper at ICLR 2022

• Lost, Soccer Player and Yahoo! News: They crop faces in images or video frames as in-
stances, and the names appearing on the corresponding captions or subtitles are considered
as candidate labels.

• MSRCv2: Each image segment is treated as a sample, and objects appearing in the same
image are regarded as candidate labels.

• BirdSong: The singing syllables of birds are regarded as instances and bird species who
are jointly singing during any ten seconds are represented as candidate labels

Table 4: Characteristics of benchmark datasets
Datasets #Train #Test #Features #Classes
MNIST 60,000 10,000 784 10

Fashion-MNIST 60,000 10,000 784 10
Kuzushiji-MNIST 60,000 10,000 784 10

CIFAR-10 50,000 10,000 3072 10

Table 5: Characteristics of real-world datasets
Datasets Application Domain #Examples #Features #Classes Avg #CLs

Lost Automatic face naming 1,122 108 16 2.23
MSRCv2 Object classification 1,758 48 23 3.16
BirdSong Bird song classification 4,998 38 13 2.18

Soccer Player Automatic face naming 17,472 279 171 2.09
Yahoo! News Automatic face naming 22,991 163 219 1.91

Table 6: Test performance of the CAVL and other methods uisng MLP on real-world datasets. The
best and second best results among all methods are marked in bold and underline.

Method Real-world datasets

Lost MSRCv2 Birdsong SoccerPlayer YahooNews

LW 67.53 ± 3.21% 50.54± 3.23% 71.74 ± 1.35% 53.29 ± 1.95% 65.94 ± 0.92%
RC 75.89 ± 5.10% 51.13 ± 2.67% 70.14 ± 1.54% 53.98 ± 0.85% 67.56± 2.53%
CC 70.10 ± 5.20% 50.57 ± 3.47% 70.51 ± 1.41% 54.87 ± 0.25% 67.75± 1.12%

CAVL 71.82 ± 3.24% 51.55 ± 3.31% 69.25 ± 1.44% 54.83 ± 0.74% 65.32± 1.04%

Table 5 shows the average number of candidate labels (Avg. # CLs) per instance. Table 6 presents
the performance comparison between other methods and our CAVL method based on MLP model,
the results of which also validate the effectiveness our CAVL.

B.3 ABLATION STUDIES ON THE STARTING EPOCH IN CAVL

In Section 3.2, we propose the CAVL method to address PLL. Specifically, we use the IM to train
the classifier in the first epoch, and then the potential true labels could be obtained with CAV after
the following training epochs. Here we set the epoch number for starting using the CAVL method,
i.e. the starting epoch, as one. To further validate the effectiveness of our CAVL, we explore the
effects of the starting epoch on our method. Specifically, we implement CAVL with two backbones
including LeNet and ResNet on four benchmark datasets. We repeatedly run the experiments 5 times
by using candidate labels generated by USS. Following similar training settings in Section 4.1.1, we
set the total training epoch as 250, and select the starting epoch from [10, 50, 100, 150]. IM is used
before the selected starting epoch and CAVL is implemented after the selected epoch.

As shown in Table 7, the accuracy of the classifier becomes lower as the increase of the starting
epoch in CAVL. Let us take the results in KMINIST as an example, the CAVL shows its superiority
with setting the starting epoch as 1, achieving 93.25± 0.21% accuracy performance. As the starting
epoch increases, the classifier is more negatively affected by the false positive labels in the candidate
sets and dragged away from the true labels by IM. Thus it only achieves 88.54 ± 0.26% with the
starting epoch as 150. This phenomenon is reasonable because the DNN learn patterns first, which
suggests that deep networks can gradually memorize the data, moving from regular data to irregular
data such as outliers and mislabeled data (Arpit et al., 2017). Therefore, our CAVL could not

14

Published as a conference paper at ICLR 2022

Table 7: The performance of our CAVL with different settings of the starting epoch.

Starting Epoch Dataset (Backbones)

MNIST (LeNet) KMNIST (LeNet) FMNIST (LeNet) CIFAR-10 (ResNet)

1 99.14 ± 0.03% 93.25 ± 0.21% 89.99 ± 0.10% 78.05 ± 0.32%
10 97.82 ± 0.04% 92.84 ± 0.21% 88.75 ± 0.14% 75.27 ± 0.42%

50 97.25 ± 0.03% 91.23 ± 0.25% 87.98 ± 0.15% 72.17 ± 0.31%

100 96.44 ± 0.07% 89.66 ± 0.42% 86.92 ± 0.16% 71.55 ± 0.18%

150 96.38 ± 0.07% 88.54 ± 0.26% 86.07 ± 0.34% 69.87 ± 0.12%

sufficiently help the classifier to deal with this memorization effect during the rest of the training
epochs. In conclusion, the effectiveness of our CAVL would be weakened as extending the starting
epoch.

B.4 GENERATION OF CANDIDATE LABELS

In Section 4.1.1 we introduce two different generation ways for the candidate label sets, i.e, USS,
Uniformly sampling a label set from all the partial label space C for each instance. FPS, Setting a
flipping probability q to any irrelevant label which could possibly become one item in the candidate
label set with probability q.

For USS, each partially labeled example (x, S) is independently drawn from a probability distribu-
tion with the following density:

P̃ (x, S) =
∑k

i=1
P (S|y = i)P (x, y = i), P (S|y = i) =

{
1

2k−1−1 i ∈ S,
0 i /∈ S.

(10)

The generation process assumes that the candidate label set S is independent of the instance x.
There are totally 2k−1 possible candidate label sets that contain the specific true label y. Therefore,
Eq. (10) illustrates the candidate label set for each instance is uniformly sampled.

For FPS, we set a flipping probability q to any irrelevant label that possibly entries the candidate
label set. Here we introduce the class transition matrix (denoted by T) for partially labeled data,
where Tij refers to the probability of the label j being a candidate label given the true label i for
each instance. Note that Tii = 1 always holds since the true label always belongs to the candidate
label. Tij = q, i 6= j holds for other elements. The matrix representation of T is expressed as:

1 q q q q q q q q q
q 1 q q q q q q q q
q q 1 q q q q q q q
q q q 1 q q q q q q
q q q q 1 q q q q q
q q q q q 1 q q q q
q q q q q q 1 q q q
q q q q q q q 1 q q
q q q q q q q q 1 q
q q q q q q q q q 1

B.5 COMPARED METHODS

The compared PLL methods are listed as follows.

• SURE (Feng & An, 2019b): It iteratively enlarges the confidence of the candidate label
with the highest probability to be the correct label.

• CLPL (Cour et al., 2011): It uses a convex formulation by using the one-versus-all strategy
in the multi class loss function.

15

Published as a conference paper at ICLR 2022

• IPAL (Zhang & Yu, 2015): It is a non-parametric method that applies the label propagation
strategy to iteratively update the confidence of each candidate label.

• PLSVM (Elkan & Noto, 2008): It is a maximum margin-based method that differentiates
candidate labels from non-candidate labels by maximizing the margin between them.

• PLECOC (Zhang et al., 2017): It adapts the Error-Correcting Output Codes method to deal
with partially labeled examples in a disambiguation-free manner.

• PLKNN (Hüllermeier & Beringer, 2006): It adapts the widely-used k-nearest neighbors
method to make predictions for partially labeled examples.

• CC & RC (Feng et al., 2020): The former method is a novel risk-consistent partial label
learning method and the latter one is classifier-consistent based on the generation model.

• LW (Wen et al., 2021): The method proposes a family of loss function for the first time,
where introduces the leverage parameter β to consider the trade-off between losses on
partial labels and non-partial labels.

For all the above methods, their parameters are specified or searched according to the suggested
parameter settings by respective papers to maximize the accuracy performance on a validation set,
which is made by the 10% of the training set.

B.6 DETAILS OF THE BACKBONES

In Section 4 we select five network architectures as the backbones for modelling our classifier,
which are linear, 3-layer MLP, 5-layer LeNet, 34-layer ResNet (He et al., 2016) and 22-layer
DenseNet (Huang et al., 2017). The linear model is a linear-in-input model:d − k. MLP refers
to a 3-layer fully connected networks with ReLU as the activation function, and the architecture is
d − 500 − k. LeNet is comprised of 2 Convolution Layer and 3 fully connected layer. 34-layer
ResNet and 22-layer DenseNet strictly follow the implementation by He et al. (2016) and Huang
et al. (2017).

B.7 PILOT EXPERIMENTS IN REAL-WORLD DATATSETS

In Section 2.2 we present the pilot experiments on CIFAR10, which shows that CAM possess two
attributes, i.e., power and dynamic. Here we provide more results on five real-world datasets to
prove the rightness of our proposed CAV. The real-world datasets already have their candidate labels.
Following similar training settings in Section 2.2, we select 1-layer linear as the backbone for the
classifier and respectively use the IM and CAV to train it in 10 epochs. Intuitively, using CAV to
train the model is equal to CAVL. Note that CAM could not be obtained in the linear module. Figure
3 shows the average results of 10-time trials and it is easily found that CAV also shows power and
dynamic attributes in real-world datasets, validating the generalization and effectiveness of our
CAV.

C FURTHER EXPLANATIONS ON CLASS ACTIVATION MAP

Here we provide a detailed explanation of CAM. For a well-trained CNN module for addressing
the classification problem, the Class Activation Map (CAM) is simply a weighted linear sum of the
presence of the visual patterns at different spatial locations for the input images. CAM aims to mine
out what the network focuses on the input images related to true labels during the training phase. It is
known that a CNN-based module is a ”black box” and the meaning behind CAM is the exploration
of the inner principles inside such technology. Based on CAM, it is convenient to visualize the
learning patterns of the CNN-based modules. Figure 4 shows several CAM results selected from
(Zhou et al., 2016). Here we take one example of the Teapot for illustration, the CAM of the image
related to the teapot shows the most discriminative regions in the head part, which manifests that
the classification classifies the image to the teapot since it finds and concentrates on the head part of
the teapot. Thanks to CAM, we could conveniently and effectively investigate the inner principles
of CNN-based modules by simply utilizing the components from the network itself. This is also the
reason why we name it ”internal representation”, which is essentially a form of intermediate outputs.

16

Published as a conference paper at ICLR 2022

Figure 3: Comparison of accuracy performance on five real-world datatsets obtained by IM and
CAVL. Note that the training method is IM.

Figure 4: Some CAM samples selected from (Zhou et al., 2016).

17

	Introduction
	Discovering Class Activation Map for Partial-Label Learning
	Class Activation Map
	Pilot experiment on CAM

	Proposing Class Activation Value for Partial-Label Learning
	Class Activation Value—Simple and general representation
	Partial-Label Learning with Class Activation Value

	Experiments
	CAVL performance
	Benchmark dataset comparisons
	Real-world dataset comparisons

	CAV attributes

	Related Work
	Conclusion
	Derivation process of Equation. (3)
	Detailed supplementary for Experiments
	Benchmark Datasets
	Real Datasets
	Ablation studies on the starting epoch in CAVL
	Generation of Candidate labels
	Compared Methods
	Details of the backbones
	Pilot experiments in real-world datatsets

	Further explanations on Class Activation Map

