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Abstract

Majority of existing semantic video understanding methods process every video
independently without considering the underlying inter-video relationships.
However, videos uploaded by users on social media platforms like YouTube,
Instagram etc. exhibit inter-video relationship which are a reflection of the
interest, geography, culture etc. of the users. In this work, we explicitly attempt
to model this inter-video relationship, originating from the creators of these
videos using Graph Neural Networks (GNN) in a multimodal setup. We perform
video classification by leveraging the creators of the videos and semantic similarity
between videos for creating edges and observe improvements of 4% in accuracy.

1 Introduction

Semantic understanding of videos has received lot of attention from both the research community
and industry. Advancements in this field have been accelerated by the presence of large scale video
understanding datasets like [14, 3, 8, 20, 17, 25, 16, 5, 4, 13, 29, 18] and deep learning models
like [2, 6, 7, 12, 23]. Majority of these tasks process every video sample in isolation during the
training and inference stage. The core assumption of this approach is that the videos are independent
from each other and underlying inter-video relationships, if any, would be implicitly modelled
by the network. However, in practical scenarios, videos originating from similar sources are often
correlated, especially on social media platforms. For example, videos uploaded by an individual on a
social media platform would be related by the interest or skill-set of the individual. An individual
with a deep interest in comedy videos has higher probability of uploading and creating comedy
videos. Similarly, an expert in cooking might create more food related videos. This inter-video
relationship alludes to the presence of latent relationship existing between different videos which could
be modelled for improving video understanding. While some of the previous works have modelled
the intra-video spatio-temporal relationships [21, 28, 24, 19, 22], the efficacy of modelling
inter-video correlations for improved semantic video understanding has not been explored. [1]
explored the inter-video relationship but mainly from the semantic similarity perspective in an
unsupervised settings. In this work, we explore the inter-video relationship between videos using
Graph Neural Networks (GNN) in a multimodal setup using the 3MASSIV dataset. 3MASSIV dataset
has been sourced from short-video application platform Moj and contains annotated social media
videos along with masked identity of the uploaders of these videos. We leverage the creators of the
videos and semantic similarity between them for connecting the videos to create the graph.

To the best of our knowledge, our work is the first attempt towards performing multimodal video
understanding by modelling inter-video relations. We perform extensive experiments using Graph
Convolutional Network (GCN) [15] and GraphSage [11] in unimodal and multimodal setup and
demonstrate the advantages of modelling inter-video relationships.
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2 Our Method

2.1 Task

We model the semantic understanding of video as a node classification problem where every video
vi ∈ V is a node in the graph G and is annotated with a category yi ∈ Y . Two videos, vi and vj ,
created by the same creator are connected with each other using an edge eij ∈ E. By leveraging the
semantic content encapsulated in the videos and inter-video relationships, the task is to classify
each video vi into one of the categories yi ∈ Y . We model this graph G =< V, Y,E > using
Graph Convolutional Network (GCN) [15] and GraphSage [11] and use cross-entropy loss (Lce) for
classification. We present the details of GraphSage in next section and GCN in Section A.1.

2.2 GraphSAGE

We represent the videos (node) of the graph G =< V, Y,E > by d-dimensional semantic features.
Let, H be the feature matrix formed by stacking d-dimensional features (h1, h2, ..., hn) of n nodes
or videos. Let, W (l) represents the weights of the lth layer and N represent the neighbourhood
function where, N (i) gives the list of nodes belonging to the neighbourhood of vi node. For every
node, GraphSage uniformly samples nodes from the neighbourhood and aggregates them using an
aggregator function ϕ as shown in Equation 1.

h
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The aggregated features are then concatenated with the features of the node and transformed us-
ing weight matrix W (l) and passed to the next layer after applying an activation function φ and
normalization.
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where, h(l+1)
i represents the transformed features of node i at layer l + 1 and ∥h(l+1)

i ∥2 represents
the norm of the features.

2.3 Video Representations

We represent the videos as nodes with features h ⊂= Rd extracted from pretrained spatio-temporal
and audio models. We used ResNext50-3D [27] (pretrained on Kinetics400) for extracting the spatio-
temporal features and CLSRIL-23 [9] models for representing audio. These features are averaged
across the temporal dimension for normalizing the temporal dimension. More details about feature
extraction is present in Appendix Section A.2.

2.4 Edge Creation

We generate the edges between videos for the graph using two constraints:

(a) Semantic Similarity: We create an edge between two videos if the cosine similarity between the
features of the nodes exceeds a predefined threshold. The optimum value of this threshold is selected
using cross validation.

(b) Creator Information: An edge is created between two nodes if they belong to the same creator
and semantic similarity is greater than the threshold.

3 Dataset

We experiment with 3MASSIV [10] dataset which has been sourced from popular short-video platform
Moj. 3MASSIV contains the masked identities of the creators of the videos along with human annotated
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Table 1: Accuracy over 3MASSIV test set using different models. We report mean and standard
deviation of Top-1, Top-3 and Top-5 accuracy using 3 seeds. (.) shows the best Top-1 accuracy.

Model Top-1 Top-3 Top-5
GCNbase 54.1 (54.3) ±0.15 74.5 (74.7) ±0.15 82.6 (82.7) ±0.50
GCNcos 52.5 (52.6) ±0.11 73.9 (73.9) ±0.20 83.1 (83.3) ±0.23
GCNcre 54.1 (54.1) ±0.11 75.2 (75.3) ±0.17 84.0 (84.0) ±0.00

GraphSagebase 53.6 (53.9) ±0.23 73.9 (74.4) ±0.38 82.4 (82.2) ±0.20
GraphSagecos 53.3 (53.6) ±0.26 74.1 (73.5) ±0.51 82.4 (81.9) ±0.46
GraphSagecre 57.7 (58.0) ±0.23 77.5 (77.5) ±0.05 85.1 (85.2) ±0.05

Table 2: Accuracy over 3MASSIV test set for GraphSage using visual and audio features for node
representation and edge generation. We report mean and standard deviation of Top-1, Top-3 and
Top-5 accuracy using 3 seeds. The value in (.) shows the best Top-1 accuracy.

Node features Edge Creation Top-1 Top-3 Top-5

Video Audio Creator Video Audio

✓ ✓ ✓ 57.7 (58.0) ±0.23 77.5 (77.5) ±0.05 85.1 (85.2) ±0.05
✓ ✓ ✓ 57.9 (58.1) ±0.26 77.5 (77.5) ±0.06 84.9 (84.8) ±0.21
✓ ✓ ✓ ✓ 58.0 (58.1) ±0.10 77.4 (77.5) ±0.15 84.9 (85.2) ±0.30
✓ ✓ ✓ ✓ ✓ 59.3 (59.5) ±0.17 79.4 (79.4) ±0.06 86.7 (86.5) ±0.29

labels. 3MASSIV contains 50K annotated videos belonging to 34 popular social media concepts and
comprises of 11 Indic languages with an average duration of around 20 seconds. The videos in this
dataset have been contributed by more than 20K social media users, thus providing rich and diverse
graphical information for our task.

4 Architecture and Training Details

We use 2-layered graphical networks for our experiments. We used ReLU as the non-linearity and
added a batch normalization layer between the two layers. We trained our models on A100 GPUs for
150 epochs with a learning rate of 0.001 and Adam Optimizer using 2048 as batch size. We used
DGL [26] library. We use the training, validation and test split provided with the dataset for our
experiments and report the mean and standard deviation of Top-1, Top-3 and Top-5 accuracy over 3
random runs .

(a) Different aggregators (b) Distance threshold between nodes

Figure 1: Ablation experiments comparing different hyperparameters: (a) Effect of different aggre-
gator function on accuracy in GraphSage model (b) Effect of distance threshold between nodes for
creating edge on GraphSage model
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Table 3: Transductive and Inductive settings

Model Setting Top-1 Top-3 Top-5
GraphSagecre Transductive 58.0 77.5 85.2
GraphSagecre Inductive 57.4 77.5 85.2

5 Results and Discussion

5.1 Unimodal Experiments

In Table 1, we report the performance using visual features. We train the models (GCNbase and
GraphSagebase) without edges to baseline the results in absence of inter-video relations. On
using the semantic similarity (GCNcos and GraphSagecos) for creating edges between videos, we do
not observe gains. However, on leveraging the creator relationships (GCNcre and GraphSagecre)
between the videos, we observe substantial gains. This demonstrates the efficacy of the creator
edges towards improving semantic understanding of videos. Overall, we observe that across all the
configurations, GraphSage shows improved performance over GCN.

5.2 Multimodal Experiments

Videos are multimodal in nature due to presence of visual and audio channel. We explore the
multimodality in different ways. (a) Firstly, we use visual features for node representation and
generate edges using similarity between the visual features with creator identifier (b) In second setting,
we used the visual features for node representation but generate edges using similarity between audio
features along with creator identifier (c) Then, we generate the edges using concatenation of both
visual and audio features and creator identifier while representing the node using visual features. All
these approaches showed similar performance but using the audio features for edge creation improved
the Top-1 performance by 0.2% over using only visual features. (d) Next, we concatenate the visual
and audio information together for node representations and edge creation with creator information.
We can see that this shows the best results and improves the accuracy by more than 1%. We show
these quantitative results in Table 2.

5.3 Inductive and Transductive Settings

In Table 3, we compare transductive and inductive settings of training GNNs. In transductive setting,
we use all the dataset splits for generating the training graph. However, we mask the labels of
non-train set videos so that only the labels of train set are used for training. In the inductive setting,
we use only the training videos and labels for creating the training graph and training the model. We
observe that transductive setting shows higher performance than inductive settings as it processes all
the splits of the dataset during graph creation.

5.4 Ablation

We study the effect of different aggregators like pool, gcn and mean on GraphSage in Figure 1 (a)
and observe the best result using "mean" aggregator. Thus, we use "mean" aggregator for all our
experiments. We study the impact of varying the cosine distance threshold. Higher threshold allows
less number of edges while lower threshold results in more number of edges. From Figure 1 (b), we
observe that 0.4 shows the best performance and we use it for other experiments.

6 Conclusions

In this work, we explored the inherent inter-video relationship that exists between the videos
uploaded on social media platforms. We studied GCN and GraphSage under inductive and transductive
settings and observed substantial performance gains by exploiting the creator information. To the best
of our knowledge, this inter-video information has not been explored previously in the context of
video understanding. Further, we explored the impact of using both visual and audio modalities as
input and for creating graphical edges and observe improvement in video classification.
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A Appendix

A.1 Graph Convolutional Network (GCN)

GCN works on the spectral domain of the graph. Lets say we have n nodes representing n videos
through n features h1, h2, ..., hn of d dimensions. These features can be stacked together to form a
feature matrix X . We have an Adjacency matrix A which tells us about the edge connection between
the nodes. We also enforce the self-edge connection between the nodes via

Ã = A+ I

where, I represents identity matrix. We normalise Ã with D̃ where D̃ represent degree matrix
correponding to graph generated by Ã. D̃ij means row wise summation of Ã. The way normalization
of Ã is down is shown below:

D̃−1/2ÃD̃−1/2

Then the update rule for GCN is:

H(l+1) = σ(D̃−1/2ÃD̃−1/2H(l)W (l)) (4)

where, H(l) and W (l) means feature matrix and weight matrix at lth stage. Here, H(l) = X . σ
represents the non-linearity added after each layer.

A.2 Preprocessing

We used ResNext50-3D [27] (pretrained on Kinetics700) for extracting spatio-temporal visual features
from the 3MASSIV videos. We sample the videos at 25 frame per second and scale the frames by
resizing the shortest side to 240 pixels while maintaining the aspect ratio. We use 16 centrally cropped
frames of dimension 112 x 112 x 3 as clips for extracting 2048-dimensional features from the last
convolution layer and average the clip representations to generate a 2048-dimensional representation
for the video. For audio features, we extracted the audio channel as mono-channel from our videos
using ffmpeg2. We sample the audios at 16kHz and use CLSRIL-23 [9] models for audio feature
extraction. The audio features are averaged across the clip to get a 512-dimensional vector.

B Results

Edge Type: We experiment with using the semantic similarity between the videos as edge weight and
binary edges. In binary edge, if the edge exist, edge weight will be 1.0 else 0. From the experiments,
we found that edge type does not impact model performance although semantic similarity weights
shows slight improvement. We report the results of our ablation study in detail in Table 4, Table 5
and Table 6.

2https://www.ffmpeg.org/
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Table 4: Ablation study on threshold value used for edge generation for GraphSage. We compare
accuracy over 3MASSIV test set.

Model Threshold Top-1 Top-3 Top-5

GraphSage 0.9 54.4 74.3 82.5
GraphSage 0.8 56.1 75.8 83.6
GraphSage 0.7 57.8 77.1 84.4
GraphSage 0.6 57.8 77.3 85.1
GraphSage 0.5 58.0 77.5 85.2
GraphSage 0.4 58.0 77.5 85.2
GraphSage 0.3 57.9 77.4 85.2
GraphSage 0.2 57.9 77.5 85.1
GraphSage 0.1 57.9 77.3 85.2
GraphSage 0.0 57.9 77.5 85.2

Table 5: Ablation study on different aggregators.

Model Aggregator Top-1 Top-3 Top-5

GraphSage mean 58.0 77.5 85.2
GraphSage gcn 55.3 75.3 83.5
GraphSage pool 55.9 76.2 84.1

Table 6: Ablation on Binary vs Non-Binary edge on GraphSage on two different semantic similarity
threshold.

Model Type of edge Threshold Top-1 Top-3 Top-5

GraphSage Binary 0.7 57.7 77.5 84.9
GraphSage Non-Binary 0.7 57.8 77.1 84.4
GraphSage Binary 0.4 57.9 77.5 85.1
GraphSage Non-Binary 0.4 5.0 77.5 85.2

Threshold GCN GraphSage Avg Edges per node
0.9 53.8 54.4 3.37
0.8 54.1 56.1 12.32
0.7 50.6 57.8 21.88
0.6 46.4 57.8 26.29
0.5 45.7 58.0 26.84
0.4 45.7 58.0 26.85
0.3 45.7 57.9 26.85
0.2 45.7 57.9 26.85
0.1 45.7 57.9 26.85
0.0 45.7 57.9 26.85

Table 7: Ablation on GraphSage vs GCN performance on 3MASSIV dataset with respect with threshold
and Avg edges per node
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