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Abstract

Active learning methods are useful when a limited budget for data labelling is
available. However, the most widely used methods – uncertainty sampling – may
suffer from problems derived from an excessive dependence on the model learned
during data acquisition. This results in datasets which are not optimal when they
are used to train models very different from those used during data creation. In
this paper, we link this to the tendency of uncertainty sampling to select outliers
and show that other methods that favour selection of representative sampling are
more robust to changes in models. We validate this experimentally on four NLP
datasets.

1 Introduction

Active learning is a powerful technique to get the best out of an annotation budget for machine
learning services in general, and Natural Language Processing ones in particular. It consists of
integrating the current model itself in the selection of which data points should be annotated next,
which are selected based on an heuristic that is supposed to maximize the improvement of the model.
Recent work however [Lowell et al., 2019] has drawn attention to a dangerous side-effect of data-sets
created through such models. Because the data selection is model-specific, the best selection for
one model might not be the same than the best selection for another one. This becomes an issue in
particular when datasets outlive model usage, as has happened in NLP in the last years.

This point was already made 10 years ago. In an influential paper, Settles said [Settles, 2011, Sect
2.6]:

An important side-effect of active learning that the resulting labeled training set
L is not an i.i.d. sample of the data, but is rather a biased distribution which is
implicitly tied to the model used in selecting the queries. Most work in active
learning has assumed that the appropriate model class for the task is already known,
so this is not generally a problem. However, it can become problematic if we wish
to re-use the training data with a model of a different type—which is common
when the state of the art advances—or if we do not even know the appropriate
model class (or feature set) for the task to begin with

In this overview, Settles cites pre–deep-learning work that made similar arguments and that propose
as an alternative the use of ensemble models to obtain data points that improve performance across a
variety of models [Baldridge and Osborne, 2004, Lu et al., 2010, Sugiyama and Rubens, 2008].

In this paper, we analyse how this issue affects NLP classification problems, and we show the
effectiveness of a much simpler solution. The key insight is that the most used active learning
strategy, namely uncertainty sampling, tends to select outliers: data points that are far apart from
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the underling generative distribution p(x). As different models approximate p(y|x) differently,
uncertainty sampling tends to pick up extreme elements with respect to the selection model that are
not necessarily representative. We benchmark this observation empirically on NLP datasets, and
show that this phenomenon gets mitigated by using diversity-based acquisition functions. Diversity
Sampling methods will find points representative of different parts of the distribution, and not only
those close to the decision boundary. When used in combination with uncertainty sampling, diversity
enriches the training samples and, therefore, fosters the learning process.

Our contribution consists in benchmarking data selection criteria for their robustness across a variety
of deep and linear models. The experiments on 4 datasets show that using active learning strategies
less prone to select outliers are more robust to model change.

2 Notation and Related Work

In the present work, we focus on active learning strategies for textual document classification. In order
to measure the robustness of selection criteria, we will differentiate between the model that is used to
select data points (A, the acquisition model) and the model that is used to train on the final data-set
(S, the successor model) [Lowell et al., 2019]. The acquisition model is used to select different
batches of data points to annotate, which we – as is common practice – simulate by retrieving their
annotations. In this form, incremental annotated data-sets Dt

A are created. We assume that at each
time-step a fixed number (B) of data points are selected from the full unlabelled data-set U . After T
iterations, the final data-set DT

A is then used to train the successor model S and the performance of
that model on the unseen test-set Dtest is reported.

The active learning process starts with a warm-start dataset, D0
A = DW , and the batch of new data

points at time step t is denoted by CtA, using an acquisition function fac. The full algorithm is shown
in Alg. 1.

Algorithm 1 Active learning template algorithm
Require: |U| � |D| ∧ T > 0
accuracies← [ ]
D0

A = DW

for t ∈ [1 . . . T ] do
A ← train_model(Dt

A)
S ← train_model(Dt

A)
accuracies[t]← get_accuracies(S,Dtest)
select_indexes← select_items(U ,A, fac)
CtA ← U [select_indexes]
U ← U \ CtA
Dt+1

A ← Dt
A ∪ CtA

end for

3 Setting

In our experiment we keep B fixed, and we experiment across 4 datasets (U ), 4 acquisition functions
(fac), and 3 acquisition (A) and successor (S) models.

3.1 Datasets

Regarding datasets, we use 4 standard benchmarks, varying across domains and number of classes,
presented in Table 1. All the datasets are split into an 80-20 split among train and test samples (for
each setting we perform several runs). No special pre-processing of the texts is performed, except for
newsgroup where documents with less than 10 tokens are removed.

3.2 Acquisition functions

As standard baseline (and comparison point), we use random that samples data points from a uniform
distribution. The most popular selection criterion is uncertainty sampling which uses the probability
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Table 1: Datasets used in the experiments

Dataset Domain # documents # classes Avg length
Newsgroups [Lang, 1995] Newsgroups posts 15,174 20 400
TREC [Li and Roth, 2002] Questions type classification 5,952 6 48
Subjectivites [Pang and Lee, 2004] Movie reviews (objective or subjective) 10,000 2 130
Movies [Pang and Lee, 2005] Movie reviews (positive or negative) 10,662 2 115

of predicted classes. Data points are scored according to the entropy of pA(y|x), prioritizing higher-
entropy points (less certainty).

In addition to this, we study acquisition functions proposed in Zhdanov [2019], which aim to increase
diversity in the selection of new items to annotate. On top of informative examples, those strategies
also aim to select representative ones. This is achieved by clustering selected data points and choosing
only one representative per cluster: β ∗B (β > 1) data points are selected using uncertainty sampling
and used as input of a clustering algorithm to produce B clusters, each one of which will provide one
data point to annotate. Here, we benchmark the following clustering strategies:

• K-means++. The standard k-means algorithm with the recommended initialization
from Arthur and Vassilvitskii [2007]. The representative is the point closest to the centre of
each cluster.

• Weighted k-means++. Similar to previous set-up, but the distance of a data point to the
centroid is weighted by its corresponding uncertainty score.

• k-medoids. The representatives are directly the referent data point of each cluster.

3.3 Models

Model variations comprise 1 linear and 2 deep models:1

• Support Vector Machines (SVMs): on top of texts represented via sparse, TF-IDF bag-of-
words (BoW) vectors. SVM is implemented using a linear kernel.

• Convolutional Neural Networks (CNNs): the text is represented by a `× d matrix, where `
is the sequence length (120) and d is the dimension of the Glove embeddings [Pennington
et al., 2014]. For the convolution, we applied filter sizes of 3, 4, and 5, with 128 filters per
size.

• Bidirectional Long Short-Term Memory (BiLSTM): words are also represented as Glove
embeddings, and the maximum sentence length is set such that it covers 90% of the docu-
ments [Lowell et al., 2019].

Hyperparameters of deep models were fine-tuned for each task, resulting in values for learning rates
between 1e-4 and 4e-4, a number of epochs that went from 100 to 150 and for all cases a batch size
of 128 samples and a dropout rate of 50%.

4 Experiments

We performed one experiment for each combination of dataset, acquisition function, acquisition
model and successor model. For each combination, we performed 10 runs and report the mean and
standard deviation of the corresponding accuracy on the test set. The warm-up dataset (D0) is a
random subset, of size 2.5%, each batch B corresponds also to 2.5% of the total data-set and we
performed 10 time-steps (T ).

In Appendix A we show the accuracies obtained with the different combinations. Here, we focus on
a direct comparison with uncertainty sampling, and plot the difference in accuracy with respect of the
other strategies with respect to that one. Fig. 1 plots that average difference, for each combination of
acquisition model→ successor model. By averaging differences, the relative performance of each
model is taken care of (computing the difference normalizes against that variance). We can conclude
from there that in general the cluster-based acquisition functions are more robust to the drop in

1implemented following https://github.com/asiddhant/Active-NLP
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performance due to model change, with 3 absolute points of difference in some cases (newsgroups
and trec).

In order to control for the fact that the benchmarked acquisitions functions are just better per se,
we also plot that difference when there is no change between acquisition and successor model in
Fig. 1b. As can be seen in this case the difference with uncertainty sampling gets reduced as more
data points are annotated (except for movies), arguably because of the overlap between the datasets
Dt

A increases as t increases. The fact that this does not happen when there is a change in the models
seems to indicate that the improvement of the diversity-based methods is maintained even when
trained on more data.

(a) Successor and acquisition models are different.

(b) Successor and acquisition models are the same.

Figure 1: Difference of accuracy with respect to uncertainty sampling, measuring the robustness to
model shift (a) and their improvement when the model stays the same (b).

5 Bias towards Outlier Selection

Here we investigate one hypothesis for the reason of the better results achieved with diversity-based
acquisitions functions. We test if this might be due (or correlated) to the fact that uncertainty sampling
is prone to select noisy or out-of-distribution points that fall out of the main data distribution p(x),
as approximated by the acquisition model. The relationship between the selection of uncertainty
sampling (which focuses on p(y|x)) and the outlier-ness of a data point (related to p(x)) is not straight-
forward. However, it is common practice to modify acquisition functions to select representative
samples Settles [2011].
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We investigate this empirically as follows: we start by selecting 2.5% random data points and train a
model on this subset. At line 7 of Alg. 1, we enrich the unlabelled pool U by 10% with data points
from another dataset. We perform three runs, where in each run we inject random data points from
only one of the three other datasets. Afterwards the 200 data point with the highest score given by
uncertainty sampling are selected. If the selection would be random, then 10% of the selected data
points would come from the out-of-domain dataset.

Fig 2 plots this proportion for different datasets and models. Each bar is the average of the three
runs. The biggest influence on how much uncertainty sampling selects outliers is the dataset, with the
biggest proportion for newsgroup, where 80% of the selected data points are outliers on average (for
BiLSTM). In general, uncertainty sampling is indeed much more sensitive to select such outliers,
excepting when using CNN as the base model.

Figure 2: Percentage of selected (using uncertainty sampling) outliers, which were 10% of the pool
of unlabelled data points. Each of the four group corresponds to one in-domain dataset, and each of
the three subgroup is one base model.

Most interestingly for this paper, there is a correlation between the difference of outlier selection
in Fig. 2 and the magnitude of the difference in Fig. 1a. For trec and newsgroups uncertainty
sampling is very biased towards outlier, and indeed, the difference in accuracy in Fig. 1a is the
highest; while this difference is much lower for the other two data-sets.

6 Conclusions

We have analysed the sensitivity of active learning strategies against model change in NLP problems.
In particular, we have pinpointed the tendency of uncertainty sampling to select outliers concerning
the acquisition model: diversity-based models not only improve upon this, but their improvement is
correlated to their robustness against outliers. While they sometimes still perform worse than the
random baseline (see the Appendix), they do much better than uncertainty sampling.
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A Appendices

The following tables show the results of comparing the different acquisition functions for active
learning analysed in the paper with a non-active learning approach that chooses elements to label
randomly.

For each dataset included in the experiments, we plot the results for the different combinations of
acquisition and successor models when selecting the different architectures (CNN, BiLSTM and
SVM)
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(a) CNN

(b) BiLSTM

(c) SVM

Figure 3: Results on newsgroup.
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(a) CNN

(b) BiLSTM

(c) SVM

Figure 4: Results on trec.
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(a) CNN

(b) BiLSTM

(c) SVM

Figure 5: Results on subjectivity.
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(a) CNN

(b) BiLSTM

(c) SVM

Figure 6: Results on movies.
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