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1 Department of Computer Science, University of Manchester, UK
2 Idiap Research Institute, Switzerland

mario.ramirezorihuela@postgrad.manchester.ac.uk
{alex.bogatu,norman.paton,andre.freitas}@manchester.ac.uk

Abstract. Data lakes are repositories of data with potential for analysis. Data
lakes aim to liberate data from silos, thereby enabling cross-cutting analyses that
were hitherto out of reach. This gives rise to significant challenges for data scien-
tists simply discovering what data sets may be relevant to a task-in-hand. Given a
data set of interest, several proposals have been made for indexing schemes that
can identify related data sets. However, such schemes tend to build on similarity
metrics that stop short of providing a clear explanation as to how an identified
data set relates to a provided target. We address this problem by applying Natu-
ral Language Inference (NLI) to providing explanations as to how the attributes
of discovered data sets relate to those of the target, in terms of a collection of
semantic relations. We provide two approaches to inferring semantic relations:
(a) by performing unsupervised intensional and extensional analysis of the data
sources using Natural Language Processing techniques; and (b) by performing
supervised learning of semantic relations by applying BERT over source schema
information. The contributions of this paper are: an NLI strategy for providing
explicit characterisation of semantic relations between data sets; two approaches
to inferring the semantic relations; and an empirical evaluation of the approaches
using open government data.

1 Introduction

The growing availability of potentially valuable datasets is leading organisations to
develop centralised, scalable repositories, such as data lakes [21]. On-demand infras-
tructures allow access to such data for analytics and reporting [9]. This creates a data
discovery problem, identifying data sources that are relevant to an information require-
ment.

Commonly, the data discovery problem is formulated as the computation of a simi-
larity function, which aggregates semantic, morphological and distributional features
into a similarity score (e.g, [2], [4]). More recently, the evolution of neural language
models [8] has lowered the barriers for complex language interpretation and inference.
Contemporary architectures (e.g. transformer-based models) [22] have consistently de-
livered accurate language inference capabilities across different tasks. Additionally,
variations of these models have been adapted to operate over structured (e.g, [10], [5])
and semi-structured data [24]. However, these models commonly trade interpretability
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Semantic Relation Symbol Abbreviation Example

Equivalence ≡ EQ couch ≡ sofa
Forward Entailment @ FWD crow @ bird

Reverse Entailment A REV European A French

Negation ∧ NEG human ∧ nonhuman
Alternation | ALT cat | dog
Cover ^ COV animal ^ nonhuman

Independence # IND hungry#hippo

Table 1: Semantic Relations in NLI.

and semantic control for inferential performance, operating by the same principle of a
latent space (a black-box) delivering a similarity score.

Approach: In this paper we aim to make explicit the nature of the relationships between
tables using Natural Language Inference (NLI). NLI provides a set of atomic natural
language inference computations that deliver a step-wise and transparent semantic
inference model [13]. For example, NLI can recognise that the text Kennedy was chosen
can be inferred from JFK was elected. Textual Entailment has been seen as a framework
for modelling semantic inference that can be generalised into entailment engines for use
in many applications [1]. We adapt the formal model of NLI into a variant for structured
data, named Relational Natural Language Inference model (RNLI), in which we extend
the NLI paradigm to exploit intensional and extensional features of data sets. Given a
collection of sources, RNLI outputs a set of entailment relations between pairs of table
attributes to qualitatively determine candidate sources for a given query. The specific
semantic entailment relations inferred are listed in Table 1.

Motivating Scenario. Consider a data scientist that needs to build a report of the
best universities based on their rankings, fees and potential graduate employability.
Additionally, it is of interest to know factual information about safety in the cities where
universities are based on. The report would be as table H in Figure 1. To address this
task, the data scientist has access to a large collection of data sets related to the domains
of the original requirement. Therefore, one key challenge is to find candidate tables
in the data lake that contain properties for the expected output. Based on the sources
shown in Figure 1, the aim of the data discovery task is to determine which attributes of
candidate sources S1, S2 and S3 are relevant to the target table H . Specifically, it is of
interest of the final user to obtain an explainable output to understand in the form of the
semantic relations between source and target attributes.

The contributions of this paper can be summarised as:

1. A proposal of an interpretable semantic entailment framework for tabular datasets
(RNLI).

2. An implementation of this model using a rule-based linguistic feature model and a
transformer-based architecture.

3. An evaluation of the model for the task of explainable table entailment.



Title Suppressed Due to Excessive Length 3

S1: University Rankings
Name Location University Rank Tuition and Fees

Princeton University Princeton, NJ 1 $45,320
Cornell University Ithaca, NY 15 $50,953

S2: Graduate Employability
University State City Rank

Harvard University Massachusetts Cambridge 1
Columbia University New York Now York 14

S3: City Safety Statistics
City Rank Safety Index

Memphis, TN 1 24,42
New York, NY 34 56,3

H: University Selection Indicators
University Ranking Fees Employability Rank City Safety Index

Harvard University 2 $47,074 1 Princeton 30
Columbia University 5 $55,056 14 Now York 60.4

Fig. 1: Running example: source (Si) and target (H) tables.

This paper is organised as follows. Related work regarding the data discovery prob-
lem is described in Section 2. Section 3 formalises and describes the proposed RNLI
model and the transformer–based alternative as a mechanism to deliver RNLI. Section 4
provides a qualitative and quantitative empirical analysis using large and diverse real-
world data collections from open government data. Finally, conclusions are presented in
Section 5.

2 Related Work

Data discovery approaches can be characterised on the basis of the evidence that informs
the discovery process and the nature of its results. For example, Pham et al. [19], Das
Sarma et al. [7] and Ventis et al. [23] rely on external databases, such as WebIsA [20]
and Freebase [3], to perform entity annotation in tables. These approaches combine
string and entity similarities to relate source and target tables. Alternatively, ontology
based approaches address the discovery problem by annotating cells and headers in each
of the sources [12]. However, these approaches are limited in scope by their dependence
on external knowledge bases.

More recent approaches have fewer external dependencies. For example, Aurum
[4] adopts a data-driven approach by using data summarization and hashing to capture
relationships between sources, to create what are referred to as enterprise knowledge
graphs. An extension, SemProp [5], expands the similarity framework to include semantic
similarities based on word embeddings. For the most part, these approaches provide
quantitative measures of similarity that are used to rank sources.

D3L [2] provides evidence–based models, where features are extracted from attribute
names and values to capture similarity signals. Consequently, a common space of features
is generated, from which distance vectors are used for similarity measurements. Like
Aurum, D3L stops short of providing a clear explanation as to how an identified data set
relates to other datasets or to a provided target.
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There is, therefore, a lack of explanatory information for the identified relationships
between tables/attributes in data discovery, a gap that we seek to bridge using language
inference. In particular, we pioneer the use of NLI [14] to infer explanatory semantic
relations between tables and attributes using NLP-based analysis and transformer–based
[22] classification. The former builds on a Relational Natural Language Inference Model
that exploits intensional and extensional features to compute similarity relationships in
an explainable way.

Our second approach builds on a deep-learning transformer architecture [22], specif-
ically BERT [8]. Bidirectional Encoder Representations from Transformers (BERT)
[8] is a universal language model pre-trained on large amounts of textual data with the
aim of providing a solid base model that can be further fine-tuned to accommodate
different downstream tasks (e.g., we use it for NLI-based semantic tagging) in a super-
vised manner with relatively little additional training. BERT proposes a technique for
representing sentences in a similarity-preserving Euclidean space, where semantically
similar constructions are close by. We built on this similarity-preserving property to
generate representations for schema-level table information (i.e., table and attribute
names) and use them to classify the different types of similarity relationships they find
themselves in, in accordance to the RNLI model.

3 Relational Natural Language Inference (RNLI)

In this paper, we show that explaining the similarity relationships existing between differ-
ent tables/attributes of a data lake can be achieved using unsupervised analysis grounded
on intentional (i.e., schema–level) and extensional (i.e., instance–level) evidence. Addi-
tionally, we also describe a supervised alternative, construed as a classification problem
that assumes the existence of training data. The unsupervised proposal, described in this
section, builds on Natural Language Inference and aims to support dataset discovery
through the generation of semantic alignments between tables in data lakes by relying
on various evidence types, as we now describe.

3.1 Semantic evidence types

Let D be a data lake that consists of a set of source tables D = {S1, ..., Sn}. Each
Si ∈ D is composed of a set of attributes {a1, ..., am}. In identifying attribute pairs that
are semantically related, we consider four types of semantic evidence:

N : the table descriptors (e.g., table names) of elements in D, with N = {nS1 , . . . nSn}
the set of table names.
A : the attribute descriptors (e.g., attribute names) of attributes in D, with Ai =
{n1i . . . nmi } the set of attribute names of source Si.
T : the attribute data types (e.g., numerical, categorical, etc.) of attributes in D, with
Ti = {t1i . . . tmi } the set of attribute types of source Si.
D : the value domains of attributes inD, with Di = {d1i . . . dmi } the set of value domains
of attributes of source Si. Here, a domain d

j
i , is defined as a collection of representative

terms, shared by the extents of attributes pertaining to d
j
i , and identified through value

extent analysis using specific domain discovery techniques, such as D4 [18].
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Fig. 2: Relational Natural Language Inference Model

As part of our unsupervised NLI–based approach, N and A denote intensional
evidence types, while T and D denote extensional evidence types. We take a multi–
evidence approach and combine both intensional and extensional types of signal to
derive similarity features that have the potential of explaining the relationships beyond
abstract relatedness.

3.2 Intensional Entailment Computation

This subsection describes how the RNLI model identifies attributes that are semantically
related on the basis of intensional information, to determine the conceptual meaning of
table and attribute names. We rely on the presence of natural language descriptors as
part of table and attribute names and aim to capture these types of signal in the following
similarity features:

Full literal match: Given a pair of table/attribute names, (nSi , n
S
j )/(n

i
k, n

j
l ), construed

as strings (si, sj), we define lf (si, sj), the full literal match, as a binary feature (i.e, EQ
or IND) between si and sj .
Head term literal match: Given a pair of table/attribute names, (nSi , n

S
j )/(n

i
k, n

j
l ),

construed as strings (si, sj), we define lh(si, sj), the head term literal match, as a binary
feature (i.e, EQ or IND) between si’s and sj’s head terms. We obtain head terms
from noun phrases identified using NLP–specific techniques (e.g., Part of Speech (PoS)
tagging).

Head term synonymic match: Given a pair of table/attribute names, (nSi , n
S
j )/(n

i
k, n

j
l ),

construed as strings (si, sj), we define sh(si, sj), the head term synonymic match, as a
binary feature (i.e, EQ or IND) between the Wordnet–specific synsets of si’s and sj’s
head terms.

Head term taxonomic match: Given a pair of table/attribute names, (nSi , n
S
j )/(n

i
k, n

j
l ),

construed as strings (si, sj) in an already determined synonymic equivalence as per sh,
we define th(si, sj), the head term taxonomic match, as a multi–valued feature. The
value of th is determined based on the previously identified head terms and modifiers.
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Specifically, equality between the two sets of modifiers leads to EQ, containment leads to
FWD or REV , partial overlap leads to COV , and non–overlap leads to ALT because
the head terms already match as per sh.

Given a target table H ∈ D (i.e., as in the example from Figure 1), in order to identify
similar attributes to the attributes in H , we perform a pair–wise processing of attributes
in H and all the other attributes of tables in D, and extract the above–defined lf , lh, sh,
and th, for each attribute pair3. The process for intensional entailment computation
responsible for extracting the above features is depicted in the upper part of Figure 2 and
described next.

Linguistic Analysis. The first step in the process is linguistic analysis of table/attribute
names. We parse each table/attribute name to obtain their PoS labels in order to heuristi-
cally generate a structured representation. Using PoS tags and Named Entity Recognition
(NER) we split each table/attribute name in a sequence of noun phrases. We extract
the head terms of the noun phrases and use them to compute lh, while lf is computed
using the full table/attribute names. Often, noun phrases contain additional terms called
modifiers that provide additional information about the concept of the phrase. We use
these modifiers next.

Descriptor Alignment. From the collection of noun phrases associated with each ta-
ble/attribute name we perform phrase alignments to simplify entailment computation.
We use the head term of each noun phrase to perform a first conceptual comparison. We
use Wordnet to identify synonymic relations between head terms to determine candidate
alignments between table/attribute names, i.e., sh. Additionally, we use the modifiers
associated with each head term, when they exist, to discover a taxonomic relation be-
tween noun phrases, i.e., th. For example when, comparing Regional University Rank -
September against University Rank - October we aim to align the noun phrases (Regional
University Rank, University Rank) and the modifiers (September, October) to determine
an entailment relation between noun phrases in terms of their taxonomic representation,
as shown in Algorithm 1. In the algorithm, isSynonymic determines the value of sh

based on Wordnet. When sh = EQ, we proceed with a lexical entailment analysis (i.e.,
GETTAXONOMICREL) described next.

Lexical Entailment. With alignments identified in the previous step we now proceed
to determine lexical entailments between noun phrases using GETTAXONOMICREL.
First, tokenized table/attribute names are construed as sequences of modifiers plus one
head term per name. We perform comparisons between modifier tokens to check for
overlapping concepts. We also consider the number of modifier tokens and assume
that the more modifiers exist the more specific a concept is being represented. Then,
we conclude an entailment relation, i.e., the value of th, based on the rules already
mentioned in the head term taxonomic match feature definition. For instance, in the
previous example, we can see that Regional University Rank forward entails University
Rank and September is an alternation of October. The composition of these two different
relations is described next.

3 In practice, one could drastically reduce the potentially prohibitive space of attribute pairs to
process by initially performing general similarity discovery (e.g., using D3L [2]) and apply
RNLI only on the resulted similar pairs.
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Algorithm 1 Compute noun phrase
entailment
1: Input: noun phrases npx, npy
2: Output: inp entailment relation be-

tween noun phrases
3: function GETNPRELATION(npx ,
npy )

4: hx← x.getHeadToken()
5: hy ← y.getHeadToken()
6: if !isSynonymic(hx, hy) then
7: inp ← independence
8: else
9:

inp←GETTAXONOMICREL(npx ,
npy )

10: end if
11: return inp

12: end function

Algorithm 2 Compute intensional entailment com-
position

1: Input: table, attribute entailments it, ia
2: Output: Composite Intensional Entailment I
3: function COMPUTEINTENSIONALVALUE(it ,
ia)

4: if it = IND then
5: if ia != IND then
6: I ← ALT
7: else
8: I ← IND
9: end if

10: else if it = FWD or it = REV then
11: if ia = EQ then
12: I ← it
13: else
14: I ← ia
15: end if
16: else
17: I ← ia
18: end if
19: return I
20: end function

Entailment Projection. Given a pair of table/attribute names, the previous steps of our
approach can output multiple candidate alignments between associated noun phrases.
Consequently, this leads to multiple possible values for th. We aggregate such cases
according to the rules in Figure 3. For instance, in the previous example, Algorithm 2
determines that Regional University Rank - September is an alternation of University
Rank - October.
Entailment Composition. The intensional features described at the beginning of this
section are extracted separately for each pair of table names and for each pair of at-
tribute names. In considering both table– and attribute–level intensional evidence, we
assume that attribute names provide specific information of a concept which requires a
contextualisation from the table name. Algorithm 2 is used to compute an intensional
entailment by composing table and attribute level entailments. This is a rule-based algo-
rithm in which, based on the table–level and attribute–level intensional entailments, a
final intensional entailment is produced.

3.3 Extensional Entailment Computation

We now describe how we extract extensional features from the value extent of each
attribute in a given table. We extract three types of extensional similarity features:

Data type match: Given a pair of attribute extents, ([[ai]], [[aj ]]), we define qv([[ai]], [[aj ]]),
the data type match, as a binary feature (i.e, EQ or IND) between ([[ai]] and [[aj ]]). We
use a simple classification of data types: categorical or numerical.



8 Mario Ramirez, Alex Bogatu, Norman W. Paton, and André Freitas

Fig. 3: Entailment Composition Rules

Categorical value domain match: Given a pair of attributes (ai, aj) with categorical
value extents, ([[ai]], [[aj ]]), we define dv([[ai]], [[aj ]]), the categorical value domain match,
as a multi–valued feature. The value of dv is determined based on the value domains
of ([[ai]] and [[aj ]]). A domain d

j
i of attribute aj from a table Si is a collection of

representative tokens shared with [[aj ]]). As such, given another domain dik of an attribute
ai from some table Sk, equality between d

j
i and dik leads to EQ, containment leads to

FWD or REV , partial overlap leads to COV , and non–overlap (i.e, different domains)
leads to IND. In practice however, FWD or REV are not possible because the domain
identification process uses D4 which aims for a minimal domain identification [18].

Numerical value domain match: Given a pair of attributes (ai, aj) with numerical
value extents, ([[ai]], [[aj ]]), we define dk([[ai]], [[aj ]]), the numerical value domain match,
as a binary feature (i.e., EQ or IND) between ([[ai]] and [[aj ]]). We ground dk in the
Kolmogorov–Smirnov (KS) statistic [6] that allows us to evaluate whether the two
corresponding extents, seen as samples, are drawn from the same distribution (i.e.,
domain).

Given a target table H ∈ D, similarly to the intensional case, we perform pair–wise
processing of attribute extent pairs, as illustrated in the bottom part of Figure 2 and
described next.

Extensional Domain Extraction. In analyzing extensional information, we start from
the assumption that in order to produce an entailment relation between two attributes
they need to be qv–equivalent. Once that happens, we use the results of a previous run
of D4 at data lake–level to obtain the domain of each attribute and to extract dv for
categorical attribute pairs and dk for numerical attribute pairs. D4 leverages value co-
occurrence information across columns in a dataset to output a set of domains discovered
by gathering contextual information for terms within columns in a set of tables. Full
details of how D4 achieves domain discovery are available in [18].

Once the extensional features are extracted for a given attribute pair, we employ
Algorithm 3 to infer a composite extensional entailment. In the algorithm, we first
obtain the domains for each attribute of the input pair (i.e., Lines 4 and 5). Equivalent
domains lead to EQ, while attributes with different domains are further processed using
GETCONTAINMENTREL, which takes two domains as arguments and applies the rules
defined in Table 2 to infer a semantic relation between the given attributes.
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Algorithm 3 Compute extensional entailment for categorical attributes
1: Input: categorical attributes x, y
2: Output: ed entailment relation between categorical attributes
3: function GETDOMAINRELATION(x, y)
4: dx← x.getDomain()
5: dy ← y.getDomain()
6: if !isSameDomain(dx, dy) then
7: DTx← dx.getDomainTerms()
8: DTy ← dy.getDomainTerms()
9: ed←GETCONTAINMENTREL(DTx , DTy )

10: else
11: ed←equivalence
12: end if
13: return ed

14: end function

edomain(a,b) Semantic Relation

Da = Db ≡
Da ⊂ Db @
Da ⊃ Db A
Da ∩Db ^

Da 6= Db #

Table 2: Domain Containment Relation.

Finally, for the numerical case, we only consider EQ and IND as the possible
values of dk and heuristically choose between them based on a dkthreshold threshold
(i.e., a KS–statistic > dkthreshold results in EQ, and in IND otherwise). dkthreshold is
obtained through Equation 1, a common threshold used with the KS statistic, i.e., the
95% critical value of the KS statistic [6].

dkthreshold = 1.36

√
1

|[[ai]]|
+

1

|[[aj ]]|
(1)

for a pair of numerical value extents ([[ai]], [[aj ]]).

3.4 Entailment composition

We have described how, given a pair of attributes (ai, aj) we extract the NLI–specific
value for [lf , lh, sh, th] at intensional level, and for [qv, dv, kv] at extensional level.
Additionally, we have described how each of the two feature collections is aggregated to
a single relation type using Algorithm 2 and Algorithm 3, respectively. We now describe
how the two types of relations, viz. intensional and extensional, are combined: attributes
that are extensionally independent are by default labelled with IND, while extensionally
related attributes are labelled by their intensional features. The full set of composition
rules is defined in Figure 4.
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Fig. 4: Entailment Composition Rules

3.5 Transformer-based RNLI

Given a pair of attributes between which exists a similarity relationship, the RNLI
approach described above assigns an explainability dimension to an existing, general–
level similarity. Having described how we perform unsupervised NLP–based analysis for
similarity explainability, we now discuss a potential alternative for explaining how the
attributes of retrieved datasets relate. We construe this explainability task as a fine–tuning
BERT step where we rely on a pre–train BERT model to generate similarity–preserving
representations for intensional information (i.e., table and attribute names). With these
representations in hand, we build a simple downstream classification model that takes as
input pairs of attribute intensional representations and labels them with one of the NLI
semantic relations from Table 1.

Note that, for this simple alternative approach, we only consider intensional informa-
tion. This, in turn, requires the assumption that the analyzed data lake presents datasets
with semantically–meaningful table and attribute names. We argue that such scenarios
are common in practice. For example, most of the datasets available on the public data
lake www.data.gov.uk present such table and attribute names. We leave the more
complex task of performing transformer–based extensional analysis for future work.

3.6 Intensional attribute representations

At its core, BERT is a language representation model capable of generating context–
aware embeddings (as opposed to the limited context awareness of Word2Vec [16]
models) for words and sentences. Given a name nSi of some table Si (e.g., University
Rankings, Graduate Employability, etc. from Figure 1) and an attribute name nji (e.g.,
Name, Location, etc. from Figure 1), we construe each concatenation nSi ||n

j
i as a sentence

and represent it in an embedding space Rd, offered by the pre–trained BERT model.
We, thus, leverage the semantic awareness property of BERT to represent sentences and
use such representation in a downstream classification task to identify specific semantic
similarity types, as we now describe.

3.7 Supervised NLI labelling

Given a pair of table name||attribute name concatenations, for which we already have
identified signals of general similarity (e.g., at intensional or extensional levels using
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Fig. 5: BERT for NLI labeling. Pre–training is used to generate intensional attribute
representations. Fine–tuning is used to label pairs of representations with NLI labels.

approaches such as D3L [2]), we use the model pictured in Figure 5 with a fine–tuning
BERT task to further explain the type of similarity existing between the two attributes.

Specifically, and with reference to Figure 1, given the pair (University Rankings
Name, University Selection Indicators University), corresponding to the first attributes
from source S1 and target H in Figure 1, respectively, we feed it to a BERT neural
network. During training, we also feed the pair’s corresponding NLI label (i.e., from
Table 1). Using its pre–trained weights, the model firstly generates a semantics–aware
attention–based representation for each of the input sentences and optimizes new weights
for a classifier whose aim is to label the pair appropriately.

4 Evaluation

We firstly evaluate the quality of our two methods for identifying inter–column entail-
ment. We then compare the results against a similarity discovery technique from the
state–of–the–art, D3L [2]. Thirdly, we evaluate the quality of our proposed model when
using it to explain the relationship between known similar columns. Finally, we perform
an ablation analysis to determine how extensional and intensional features contribute to
the explanations.
Evaluation data: The models are evaluated on ∼600 tables from real–world UK open
government data4, with information from seven domains, such as business, education,
salaries, public service, etc.. The same dataset in used in [2].
Experimental setup: To parse and capture linguistic features on dataset elements we
used the Stanford Core NLP library [15]. Additionally, we employ Wordnet [17] as an
external lexical source to capture semantic features such as synonymic and taxonomic
representations of attribute descriptors. For the transformer–based approach, we used a
BERT pre–trained model from the Python transformers package5. During fine–tuning,

4 www.data.gov.uk
5 https://pypi.org/project/transformers/
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Precision Recall F1-Score
Class RNLI BERT RNLI BERT RNLI BERT
IND 0.80 1.00 0.99 1.00 0.88 1.00
ALT 0.91 0.81 0.73 1.00 0.81 0.90
EQ 0.83 1.00 0.54 0.63 0.66 0.77
REV 0.56 1.00 0.55 0.88 0.55 0.94
FWD 0.72 1.00 0.87 0.57 0.79 0.73

Table 3: RNLI & BERT results

we trained the model using the Adam optimizer [11] with a linearly–increasing learning
rate starting from 10−5, for 10 epochs and with a batch sized of 5 6. We trained the model
on 70% of the data, validate it (i.e., hyperparameter optimization) on 10% of the data,
and tested it on the remaining 20%. All data, source code, baselines and hyperparameter
tuning settings are shared7 for reproducibility purposes.

Baselines and reported measures: We evaluate both the composite entailment and the
transformer–based models in terms of precision, recall and F1 scores. Using the same
measures, we also perform a comparative evaluation between our RNLI proposals and
the D3L similarity framework [2]. For the purpose of computing the evaluation metrics,
we use the same ground truth used in [2], where each attribute pair is associated with a
binary relatedness representation (i.e., related/unrelated). Out of the approx. 600,000
attribute pairs recorded in the ground truth, we explained 13,000 pairs by labeling each
such pair with one of our entailment relationship types from Table 1. Lastly, we use
the 600,000 attribute pairs for performing the comparative evaluation against D3L and
the more explicit 13,000 attribute pairs for evaluating the explainability potential of our
proposal.

4.1 Inference performance

Both composite entailment and the transformer–based models are initially evaluated
in terms of per–class precision, recall and F1 score. The hypothesis in this experiment
is that our intensional and extensional analysis can indicate not only similar attribute
pairs, but also explain the semantic relation type. Additionally, we hypothesize that,
when there is sufficient exemplar data available, the semantic relation identification can
effectively be construed as a BERT fine-tuning task. We report the per–relationship type
results in Table 3.

Overall, the supervised transformer–based approached proves superior to the unsu-
pervised method. However this is conditioned by the existence of labeled training data.
In this experiment, approximately 13, 000 attribute pairs had associated NLI labels.

Both RNLI and BERT tend to misclassify related attribute pairs as equivalent. This
leads to poorer precision and recall for EQ. In the case of REV and FWD the poor
recall of both RNLI and BERT can be explained by the relatively small number of

6 These parameters lead to the best results during validation.
7 https://bit.ly/3lrb5JD
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Accuracy Precision Recall F1-Score ∆ F1-score
Domain D3L RNLI D3L RNLI D3L RNLI D3L RNLI

Business 0.936 0.952 0.949 0.930 0.855 0.927 0.900 0.929 0.029
Schools 0.898 0.933 0.603 0.726 0.660 0.783 0.630 0.753 0.123
Elections 0.771 0.779 0.883 0.905 0.216 0.241 0.346 0.380 0.034
Flights 0.925 0.937 0.660 0.790 0.224 0.333 0.335 0.469 0.134
Food 0.916 0.927 1.000 0.912 0.317 0.454 0.482 0.606 0.124
Public Spending 0.764 0.915 0.999 1.000 0.540 0.833 0.701 0.909 0.208
Salaries 0.861 0.774 1.000 1.000 0.803 0.678 0.891 0.808 −0.083
Average 0.867 0.888 0.871 0.895 0.516 0.607 0.612 0.694 0.082

Table 4: D3L & RNLI results

instances with this label in our test data (i.e., less than 20 in each case). Thus, a single
miss can have a significant impact on the recall results.

4.2 Comparative analysis

In this experiment, we aim to compare the performance of our unsupervised proposal
and a similarity–focused baseline, i.e., D3L [2]. For this purpose we:

1. Transform our multi–class problem to a binary class problem so that the comparison
is possible. The mapping that enables this transformation is: IND → dissimilar;
{EQ,ALT,REV, FWD} → similar.

2. Evaluate the two approaches on the entire D3L ground truth, i.e., 600,000 attribute
pairs. Consequently, we do not include the transformer–based approach in this evalu-
ation.

3. Since D3L is a ranked–retrieval approach, i.e., it retrieves the top–k most similar
attributes to a given query attribute, for the purpose of comparison, we randomly pick
20 tables and use their columns as the queries for both the compared approaches.
For D3L, k is set in accordance to the size of each domain existing in the data and
present in Table 4. For example, there are approx. 50 tables with Salary information
and, therefore, for each run of D3L with a target attribute from the same domain
k = 50. The purpose of this setting is to avoid penalizing D3L’s recall by setting a
fixed, potentially too small, value of k.

Table 4 shows the per–domain (i.e., there are seven different domains in the evaluation
dataset) accuracy, precision, recall, and F1–score values, and their average. Overall, it can
be concluded that the RNLI approach can be reliably converted to a similarity–focused
approach. When this happens, RNLI performs better in most cases. The exception,
Salaries, is due to a high concentration of numerical attributes that is specially addressed
in D3L.

4.3 Inference explanations

Previous experiments prove the comparable performance of RNLI to the similarity
discovery state–of–the–art. In this experiment, we aim to confirm similar levels of
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Relation Precision Recall F1 Score
EQ 0.866 0.742 0.799
REV 0.676 0.556 0.610
FWD 0.545 0.667 0.600
ALT 0.944 0.939 0.942
IND 0.904 1.000 0.950

Table 5: RNLI Composite Entailment Relation Performance

performance, this time with a focus on RNLI’s similarity explainability potential. To this
end, we consider a scenario in which D3L is initially employed to efficiently identify
similar attributes in a data lake. Then, we employ RNLI as a semantic explainability
mechanism to further explain the relationships between the attribute pairs that have been
deemed related by D3L. The results are shown in Table 5.

Overall, RNLI proves reliable in explaining similarity relations grounded on EQ,
ALT , and IND. As before, the results are moderate for REV and FWD, mostly due
to a relatively small number of instances with these labels in our test data.

4.4 Ablation Study

To have a better understanding of how extensional and intensional features contribute to
the final inference, an ablation study is performed in this experiment. To this end, we
first isolate intensional features and compute semantic relations. In a second run, we
focus exclusively on extensional features to compute the results. Finally we show the
results for the combined computation with all feature types considered. Figure 6 shows
the obtained results.

Intensional information proves superior to the extensional evidence in identifying
NLI relations. In the cases of EQ and IND, this is because, most of the time, the tables
and attributes in our test data lake present semantically meaningful names. Reasoning
based on these names is more reliable than inferring NLI relations from value domain
analysis. In the cases of REV,FWD and ALT , extensional results are close to zero
because D4 aims for a close to minimal and disjoint domain identification. This means
that RNLI will mostly infer EQ or IND when analyzing D4 domains. Lastly, in line
with our core desideratum in this paper, the combination of intensional and extensional
evidence leads to the strongest RNLI results.

5 Conclusions

This paper presented the Relational Natural Language Inference Model, a composite
entailment framework that models the data lake data discovery problem through natural
language inference. We empirically demonstrated an end-to-end process to compute
semantic relations at different levels of abstraction by leveraging different sources
of signal present in data sources. Additionally, this study was carried out by taking
consideration of the explainability of the candidate source relations. Overall, the RNLI
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Fig. 6: Ablation Study

model outperforms existing approaches, improving the way inferences are computed
and represented in an explainable format. This contributes to a better understanding and
semantic control of the inference process. Finally, we see our approach as a mechanism
for providing interpretable semantic relations for integration tasks, such as schema
matching and entity resolution.
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