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Fig. 1. DualGuard MPPI solves optimal control problems with hard safety constraints by integrating safety filtering during sampling, ensuring safe and
efficient rollouts. An output least-restrictive filter handles potential multimodality during execution. (A) In an RC car experiment, the vehicle completes laps
safely while maximizing speed and staying centered. (B) Classical MPPI produces unsafe, high-cost trajectories near tight corners, breaching track boundaries.
(C) DualGuard MPPI generates only safe, performance-driven rollouts. See Section V for details.

Abstract—Designing controllers that are both safe and per-
formant is inherently challenging. This co-optimization can be
formulated as a constrained optimal control problem, where the
cost function represents the performance criterion and safety is
specified as a constraint. While sampling-based methods, such
as Model Predictive Path Integral (MPPI) control, have shown
great promise in tackling complex optimal control problems,
they often struggle to enforce safety constraints. To address
this limitation, we propose DualGuard-MPPI, a novel frame-
work for solving safety-constrained optimal control problems.
Our approach integrates Hamilton-Jacobi reachability analysis
within the MPPI sampling process to ensure that all generated
samples are provably safe for the system. This integration
allows DualGuard-MPPI to enforce strict safety constraints; at
the same time, it facilitates a more effective exploration with
the same number of samples, leading to better performance
optimization. Through simulation and hardware experiments,
we demonstrate that DualGuard achieves higher performance
compared to existing MPPI methods, without compromising
safety.

I. INTRODUCTION

Co-optimizing safety and performance is essential for au-
tonomous systems operating in safety-critical environments.
While dynamic programming provides rigorous solutions to
constrained control [1, 2], its computational demands limit
real-time use. In contrast, sampling-based MPC methods like
Model Predictive Path Integral (MPPI) control [3] offer scal-
ability for complex, uncertain, and nonlinear systems, but
struggle to enforce hard safety constraints.

Existing MPPI extensions address safety by penalizing un-
safe trajectories or applying post-hoc filtering [4, 5], but these
approaches cannot guarantee constraint satisfaction or ne-
glect cost optimization for safety guarantees. Barrier function
methods [6, 7] and probabilistic safety strategies [8, 9] offer

alternatives, yet often neglect the long-term impact of safety
actions or rely on limited performance formulations. Recent
work has explored integrating safety filters during planning or
training to proactively reduce undesired interventions [10, 11].

This work introduces DualGuard-MPPI, a novel MPPI
algorithm that enforces safety constraints using Hamilton-
Jacobi (HJ) reachability during both sampling and execution.
Unsafe control perturbations are filtered upfront to generate
only provably safe rollouts, and multimodal safe trajectories
are managed to prevent unsafe combinations.

Contributions:

• A sampling-based MPC framework that guarantees safety
throughout planning and execution using HJ reachability.

• Elimination of safety penalty tuning and improved sample
efficiency by filtering unsafe trajectories.

• Demonstrated superior performance and robustness in
simulation and hardware experiments.

II. PROBLEM STATEMENT

Consider a system with state x ∈ X ⊆ Rn governed by
ẋ = f(x, u, d), where u ∈ U and d ∈ D are control and
disturbance inputs. The disturbance d may represent model
uncertainty or adversarial input. We assume f is uniformly
continuous in u and d, bounded, and Lipschitz continuous in
x for fixed inputs.

Let ξu,dx,t (τ) denote the system state at time τ , starting from
x at time t under control u(·) and disturbance d(·). Both
signals are measurable functions of time into U and D, and
assumed piecewise continuous to ensure well-posedness of the
trajectory [12, 13].



A failure set F ⊂ X—e.g., obstacle regions—is defined via
a Lipschitz function l such that F = {x : l(x) ≤ 0}. The goal
is to minimize a cost S over the trajectory while keeping x
out of F under worst-case d. The cost is:

S(ξ) = ϕ(x(tf ), tf ) +

∫ tf

0

L(x(t), u(t), t) dt (1)

We thus formulate the constrained optimal control problem as:

u∗(·) = argmin
u(·)

S(ξu,dx,t , u(·))

s.t. ẋ(t) = f(x(t), u(t), d(t)),

l(x(t)) > 0, u(t) ∈ U , d(t) ∈ D, ∀t ∈ [t, tf ]

(2)

Where (2) is generally non-convex and hard to solve. We
propose a novel MPPI-based method to address this challenge.

III. BACKGROUND

A. Model Predictive Path Integral (MPPI)

MPPI [3] is a zeroth-order, sampling-based MPC method
for stochastic optimal control of nonlinear systems. At each
state, MPPI samples K random control sequences around a
nominal sequence over a horizon T̂ ≤ tf , discretized into H
steps. Each sample follows: uk(x, j) = u(x, j) + δkj , where
u(x, j) is the nominal control and δkj is a random perturbation.

The corresponding trajectory ξkj and cost S(ξkj ) are com-
puted for each sequence. The optimal control is approximated
using the weighted average:

u(x, j)∗ ≈ u(x, j) +

∑K
k=1 exp[−(1/λ)S(ξkj )]δ

k
j∑K

k=1 exp[−(1/λ)S(ξkj )]
(3)

λ > 0 the temperature parameter controls the influence of
each sample. Only the first control in the updated sequence is
applied, and the process repeats at the next step [14].

B. Hamilton-Jacobi Reachability

Hamilton-Jacobi (HJ) reachability guarantees safety by
computing the Backward Reachable Tube (BRT) of a failure
set F , i.e., the set of states from which the system cannot
avoid entering F within a time horizon T , even under optimal
control. This is framed as a zero-sum game between control
and disturbance, with cost defined as the closest a trajectory
ever was to F :

J(x, t, u(·), d(·)) = min
τ∈[t,T ]

l(x(τ)) (4)

The value function V for this optimal control problem is:

V (x, t) = inf
γ∈Γ(t)

sup
u(·)

{J(x, t, u(·), γ[u](·))} (5)

where Γ(t) is the set of non-anticipative disturbance strate-
gies [15]. Using dynamic programming, this yields the HJI
Variational Inequality (HJI-VI) [15, 16, 17]:

min{DtV (x, t) +H(x, t,∇V ), l(x)− V (x, t)} = 0

V (x, T ) = l(x), t ∈ [0, T ]
(6)

Here, Dt and ∇ are the time and spatial gradients, and the
Hamiltonian is:

H(x, t,∇V ) = min
u∈U

max
d∈D

∇V · f(x, u, d) (7)

The BRT is the sub-zero level set of V :

V(t) = {x : V (x, t) ≤ 0} (8)

The corresponding optimal safe controller is:

u∗
safe(x, t) = argmax

u∈U
min
d∈D

∇V · f(x, u, d) (9)

To ensure safety at all times, we use the time-converged BRT,
relying on the stationary value function V (x), removing time
dependence from (9). The value function can be computed via
numerical solvers [18, 19] or learning-based methods [20, 21].

C. Least Restrictive Filtering

Given the converged BRT, we define a Least Restrictive
Filter (LRF) to switch between a nominal and a safety
controller:

u(x, t) =

{
unom(x, t) V (x) > 0

u∗
safe(x) V (x) = 0

(10)

Here, unom may optimize performance without safety guaran-
tees. When V (x) > 0, the system is safe, and unom is applied.
When V (x) = 0, the LRF switches to the safe controller (9),
which guarantees safety by keeping the system outside the
BRT. See [5] for formal guarantees.

IV. DUALGUARD MPPI

To address the challenge of enforcing safety in sampling-
based control, we propose DualGuard MPPI, a two-stage
safety filtering framework that integrates HJ reachability into
MPPI. Offline, we compute a safety value function under
worst-case disturbances. Online, we modify the MPPI pro-
cedure (Alg. 1) to apply safety filtering both during trajectory
sampling and before control execution, as described next:

A. Generating Safe Rollouts

As in standard MPPI, we sample K perturbation sequences
δkj around a nominal sequence uj . These are applied to the
deterministic dynamics, but each step is filtered with the LRF
(Eq. 10) to ensure safety. The resulting safe rollouts are used
to compute costs Sk and filtered control perturbations ∆k

j .
The updated optimal control u∗

j is computed using (3),
now averaging only over safe trajectories. This improves
performance by avoiding wasted samples.

B. Output Least Restrictive Filtering

Although u∗
j is built from safe rollouts, the resulting aver-

aged action is not guaranteed to be safe. Therefore, we apply
one final LRF step to u∗

0 before execution. One example case
where this can happen is with multi-modal rollouts arising
from multiple safe modes (e.g., swerving left vs. right).



Illustrative Example (Safe Planar Navigation): We
illustrate the proposed DualGuard-MPPI method using
a Dubins’ car navigating toward a goal in a cluttered
environment. The car’s dynamics are:

ẋ =
[
ẋ ẏ θ̇

]
=

[
V cos(θ) V sin(θ) u

]
(11)

where (x, y) is the position, θ is the heading, V is a
constant speed, and u is the control input. We assume
a cost function that penalizes obstacle penetration.

Figure 2 (left) shows the standard MPPI sampling step:
dotted lines are rollouts from perturbed control sequences.
Unsafe trajectories incur high costs (red), while safer ones
are preferred by the update law in Eq. (3) (blue to purple).
However, MPPI may still fail if most samples violate
safety, or if the number of safe samples is too small,
increasing variance and reducing performance.

Figure 2 (center) illustrates the effect of the Safe Roll-
outs step, where we apply stepwise LRF filtering, which
ensures all samples remain within the safe set. These
filtered rollouts are used for cost evaluation and control
update, improving safety and sample efficiency.

Figure 2 (right) shows a key motivation for the Output
Least Restrictive Filtering step: even if all rollouts are
safe, multimodal behaviors—e.g., turning left or right to
avoid an obstacle—can lead to unsafe averaging. Output
LRF filtering ensures that only one consistent safe action
is executed.

Fig. 2. Unfiltered rollouts (Left). Safe rollouts via LRF (Center).
Multimodal safe samples motivate output filtering (Right).

V. HARDWARE EXPERIMENTS

We compare against five MPPI-based baselines with varying
safety mechanisms:
Obs. Penalty: Classical MPPI with high costs for entering
obstacle regions to encourage avoidance.
BRT Penalty: Penalizes trajectories that enter the BRT
of obstacles—states from which collisions become in-
evitable—representing preemptive safety [22, 23, 24].
Obs. penalty + LRF: Adds an output LRF to the obstacle-
penalty baseline, filtering unsafe controls just before execution.
BRT penalty + LRF: Adds an output LRF to the BRT-penalty
baseline, filtering unsafe controls just before execution.
Shield MPPI: Implements the method in [4], combining CBF-
inspired cost terms with a CBF-based repair step. We use the
HJ value function as the barrier to ensure all methods operate
within the same maximal safe set [25].
Evaluation Metrics: For hardware experiments, we use met-
rics tailored to real-time, single-run scenarios:

• Failure: Whether a safety violation (e.g., collision) oc-
curs during a run.

• RelCost: Average trajectory cost and standard error,
normalized to our method, evaluated over shared safe
trajectories.

• CompTime: Time to generate and evaluate control sam-
ples, reflecting real-time feasibility.

• Speed: Average speed over three laps, indicating policy
aggressiveness.

• LapTime: Average lap completion time over three laps.

A comprehensive comparison of these baselines, includ-
ing simulation-based batch statistics and significance test-
ing, is available in the full version of this work pub-
lished in the IEEE Robotics and Automation Letters
(RAL) 10.1109/LRA.2025.3568686. In this section, we focus
on real-world performance using hardware experiments and
single-run metrics that better reflect practical constraints such
as safety, responsiveness, and policy aggressiveness.

A. RC Car Experiments

We consider a real-world miniature RC car with dynamics
modeled as (12), with L = 23.5 cm, controls u = [V, δ] with
ranges V ∈ [0.7, 1.4] m/s and δ ∈ [−25◦, 25◦], and distur-
bances dx, dy ∈ [−0.1, 0.1] to account for model mismatches
and state estimation error. The vehicle’s task is to complete
laps on the racetrack shown in Fig. 1.

ẋ = [ẋ ẏ θ̇] = [V cos(θ) + dx, V sin(θ) + dy , V tan(δ)/L] (12)

As cost function we use (13), where the first term penalizes
going slower than Vmax = 1.4 m/s, the second term penalizes
the distance from the track’s center line, the third term P (x)
is a method dependent safety penalty. The value function and
associated BRT are numerically computed using [18].

S = (Vmax − V )2 +Kc(lcenter − l(x)) + P (x) (13)

https://doi.org/10.1109/LRA.2025.3568686


TABLE I. Hardware experiments results summary.

Method CompTime
(ms)

RelCost Speed
(m/s)

LapTime
(s)

Obs costs 1.8 ± 0.3 fail 1.00 ± 0.05 fail
BRT costs 1.8 ± 0.3 fail 1.01 ± 0.06 fail

Obs costs + LRF 1.7 ± 0.4 1.1874 1.03 ± 0.12 16.54
BRT costs + LRF 1.8 ± 0.4 1.1626 1.04 ± 0.12 16.37

Shield-MPPI 1.7 ± 0.2 1.1038 1.04 ± 0.08 16.21
DualGuard (Ours) 2.5 ± 0.4 1.0000 1.10 ± 0.11 15.06

The controllers were implemented using JAX [26] on a laptop
equipped with an NVIDIA GeForce RTX 4060. We generate
1000 parallel rollouts (with 100 time steps each) in a loop
running at 50Hz. Results are summarized in Table I, and
trajectories for the first lap are shown in Fig 3.

First, we highlight the need for hard safety constraints as
methods that only rely on safety penalties fail to clear the
top-left tight turn as shown in Fig 3. Fine-tuning the cost
function and MPPI parameters might allow unfiltered methods
to complete laps. Still, we want to consider and compare
methods that provably allow for safe executions.

DualGuard leads to faster and more performant trajectories
than the other safe baselines. Comparison with the LRF
baselines shows how the proposed safe rollout step improved
samples quality as seen in Fig. 1(B)(C), leading to better
overall performance, higher average speed and shorter lap
times. Also, the proposed method outperforms Shield-MPPI
even after tuning its hyperparameters to the best of our
capabilities to maintain safety without an excessive impact on
performance.

Computation times are nearly identical across baselines, as
each method fundamentally involves calculating performant
terms of the cost function and querying the obstacle set or
BRT for safety-related penalties. DualGuard introduces an
additional LRF step for each sample along the trajectories,
resulting in an increase in computational time. Nevertheless,
all methods operate well within the 20ms time budget, leaving
ample time for the control loop to handle state estimation,
communications, and actuation.

Fig. 3. Top view of the RC car’s trajectories under each method.

VI. LIMITATIONS AND FUTURE WORK

In this work, we have presented DualGuard-MPPI, a novel
MPPI framework for addressing the safety-constrained optimal
control problem. By integrating Hamilton-Jacobi reachability
analysis with MPPI, our approach ensures strict adherence to
safety constraints throughout both the sampling and control
execution phases. This combination enables high-performance
trajectory optimization without compromising safety, validated
through extensive simulation and real-world experiments.
DualGuard-MPPI stands out for its capability to eliminate
safety-related terms from the cost function, thereby streamlin-
ing the optimization process to focus purely on performance
objectives.

While these contributions establish DualGuard-MPPI as a
robust and scalable framework, certain limitations remain that
warrant further exploration. The requirement for a precom-
puted BRT introduces considerable computational overhead
during setup, which may hinder its implementability in rapidly
changing environments. Additionally, the reliance on explic-
itly defined system dynamics may restrict the framework’s
applicability to systems with highly complex or partially
unknown models. Addressing these challenges—such as by
leveraging online reachability methods to dynamically update
BRTs [27, 28] or using reachability methods for black-box
systems [29, 30] could significantly expand the framework’s
usability. In addition, we will explore the deployment of the
proposed approach on other safety-critical robotics applica-
tions.
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