
Provably expressive temporal graph networks

Anonymous Author(s)
Affiliation
email

Abstract

Temporal graph networks (TGNs) have gained prominence as models for embed-1

ding dynamic interactions, but little is known about their theoretical underpinnings.2

We establish fundamental results about the representational power and limits of the3

two main categories of TGNs: those that aggregate temporal walks (WA-TGNs),4

and those that augment local message passing with recurrent memory modules5

(MP-TGNs). Specifically, novel constructions reveal the inadequacy of MP-TGNs6

and WA-TGNs, proving that neither category subsumes the other. We extend the7

1-WL (Weisfeiler-Leman) test to temporal graphs, and show that the most powerful8

MP-TGNs should use injective updates, as in this case they become as expressive9

as the temporal WL. Also, we show that sufficiently deep MP-TGNs cannot benefit10

from memory, and MP/WA-TGNs fail to compute graph properties such as girth.11

These theoretical insights lead us to introduce PINT — a novel architecture that12

leverages injective temporal message passing and relative positional features. Im-13

portantly, PINT is provably more expressive than both MP-TGNs and WA-TGNs.14

Our experiments demonstrate that PINT significantly outperforms existing TGNs15

on several real-world benchmarks.16

1 Introduction17

Graph neural networks (GNNs) [11, 30, 38] have recently led to breakthroughs in many applications18

[7, 28, 31] by resorting to message passing between neighboring nodes in input graphs. While19

message passing imposes an important inductive bias, it does not account for the dynamic nature of20

interactions in time-evolving graphs arising from many real-world domains such as social networks21

and bioinformatics [16, 39]. In several scenarios, these temporal graphs are only given as a sequence22

of timestamped events. Recently, temporal graph nets (TGNs) [16, 27, 32, 37, 41] have emerged as a23

prominent learning framework for temporal graphs and have become particularly popular due to their24

outstanding predictive performance. Aiming at capturing meaningful structural and temporal patterns,25

TGNs combine a variety of building blocks, such as self-attention [33, 34], time encoders [15, 40],26

recurrent models [5, 13], and message passing [10].27

Unraveling the learning capabilities of (temporal) graph networks is imperative to understanding28

their strengths and pitfalls, and designing better, more nuanced models that are both theoretically29

well-grounded and practically efficacious. For instance, the enhanced expressivity of higher-order30

GNNs has roots in the inadequacy of standard message-passing GNNs to separate graphs that are31

indistinguishable by the Weisfeiler-Leman isomorphism test, known as 1-WL test or color refinement32

algorithm [21, 22, 29, 36, 42]. Similarly, many other notable advances on GNNs were made possible33

by untangling their ability to generalize [9, 17, 35], extrapolate [44], compute graph properties [4, 6, 9],34

and express Boolean classifiers [1]; by uncovering their connections to distributed algorithms [19, 29],35

graph kernels [8], dynamic programming [43], diffusion processes [3], graphical models [45], and36

combinatorial optimization [2]; and by analyzing their discriminative power [20, 23]. In stark contrast,37

the theoretical foundations of TGNs remain largely unexplored. For instance, unresolved questions38

include: How does the expressive power of existing TGNs compare? When do TGNs fail? Can we39

improve the expressiveness of TGNs? What are the limits on the power of TGNs?40

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.

PINT

CAWInjective
MP-TGNs

SOTA
M

P-TGNs

Open
problems

Overview of the theoretical results

Relationship between CTDGs and DTDGs Prop. 1
Injective MP-TGNs ⪰ MP-TGNs Prop. 2
Sufficiently deep MP-TGNs do not need memory Prop. 3
SOTA MP-TGNs ≺ Injective MP-TGNs Prop. 4
MP-TGNs ̸≻ WA-TGNs and WA-TGNs ̸≻ MP-TGNs Prop. 5
Injective MP-TGNs ∼= temporal-WL test Prop. 6
MP-TGNs/CAWs cannot recognize graph properties Prop. 7
Constructing injective temporal MP Prop. 8
PINT (ours) ≻ both MP-TGNs and WA-TGNs Prop. 9
Limitations of PINT Prop. 10

Figure 1: Schematic diagram and summary of our contributions.

We establish a series of results to address these fundamental questions. We begin by showing that41

discrete-time dynamic graphs (DTDGs) can always be converted to continuous-time analogues42

(CTDGs) without loss of information, so we can focus on analyzing the ability of TGNs to distinguish43

nodes/links of CTDGs. We consider a general framework for message-passing TGNs (MP-TGNs)44

[27] that subsumes a wide variety of methods [e.g., 16, 32, 41]. We prove that equipping MP-TGNs45

with injective aggregation and update functions leads to the class of most expressive anonymous46

MP-TGNs (i.e., those that do not leverage node ids). Extending the color-refinement algorithm to47

temporal settings, we show that these most powerful MP-TGNs are as expressive as the temporal48

WL method. Notably, existing MP-TGNs do not enforce injectivity. We also delineate the role of49

memory in MP-TGNs: nodes in a network with only a few layers of message passing fail to aggregate50

information from a sufficiently wide receptive field (i.e., from distant nodes), so memory serves51

to offset this highly local view with additional global information. In contrast, sufficiently deep52

architectures obviate the need for memory modules.53

Different from MP-TGNs, walk-aggregating TGNs (WA-TGNs) such as CAW [37] obtain represen-54

tations from anonymized temporal walks. We provide constructions that expose shortcomings of55

each framework, establishing that WA-TGNs can distinguish links in cases where MP-TGNs fail and56

vice-versa. Consequently, neither class is more expressive than the other. Additionally, we show that57

MP-TGNs and CAWs cannot decide temporal graph properties such as diameter, girth, or number of58

cycles. Strikingly, our analysis unravels the subtle relationship between the walk computations in59

CAWs and the MP steps in MP-TGNs.60

Equipped with these theoretical insights, we propose PINT (short for position-encoding injective61

temporal graph net), founded on a new temporal layer that leverages the strengths of both MP-TGNs62

and WA-TGNs. Like the most expressive MP-TGNs, PINT defines injective message passing and63

update steps. PINT also augments memory states with novel relative positional features, and these64

features can replicate all the discriminative benefits available to WA-TGNs. Interestingly, the time65

complexity of computing our positional features is less severe than the sampling overhead in CAW,66

thus PINT can often be trained faster than CAW. Importantly, we establish that PINT is provably67

more expressive than CAW as well as MP-TGNs.68

Our contributions are three-fold:69

• a rigorous theoretical foundation for TGNs is laid - elucidating the role of memory, benefits70

of injective message passing, limits of existing TGN models, temporal extension of the71

1-WL test and its implications, impossibility results about temporal graph properties, and72

the relationship between main classes of TGNs - as summarized in Figure 1;73

• explicit injective temporal functions are introduced, and a novel method for temporal graphs74

is proposed that is provably more expressive than state-of-the-art TGNs;75

• extensive empirical investigations underscore practical benefits of this work. The proposed76

method is either competitive or significantly better than existing models on several real77

benchmarks for dynamic link prediction, in transductive as well as inductive settings.78

2

2 Preliminaries79

We denote a static graph G as a tuple (V,E,X , E), where V = {1, 2, . . . , n} denotes the set of80

nodes and E ⊆ V × V the set of edges. Each node u ∈ V has a feature vector xu ∈ X and each81

edge (u, v) ∈ E has a feature vector euv ∈ E , where X and E are countable sets of features.82

Dynamic graphs can be roughly split according to their discrete- or continuous-time nature [14].83

A discrete-time dynamic graph (DTDG) is of a sequence of graph snapshots (G1, G2, . . .) usually84

sampled at regular intervals, each snapshot being a static graph Gt = (Vt, Et,Xt, Et).85

A continuous-time dynamic graph (CTDG) evolves with node- and edge-level events, such as addition86

and deletion. We represent a CTDG as a sequence of time-stamped graphs (G(t0),G(t1), . . .) such87

that tk < tk+1, and G(tk+1) results from updating G(tk) with all events at time tk+1. We assume88

no event occurs between tk and tk+1. We denote an interaction (i.e., edge addition event) between89

nodes u and v at time t as a tuple (u, v, t) associated with a feature vector euv(t). Unless otherwise90

stated, interactions correspond to undirected edges, i.e., (u, v, t) is a shorthand for ({u, v}, t).91

Noting the CTDGs allow for finer (irregular) temporal resolution, we now formalize the intuition that92

DTDGs can be reduced to, and thus analyzed as CTDGs, but the converse does not always hold.93

Proposition 1 (Relationship between DTDG and CTDG). For any DTDG we can build a CTDG with94

the same sets of node and edge features that contains the same information, i.e., we can reconstruct95

the original DTDG from the converted CTDG. The converse holds if the CTDG timestamps form a96

subset of a uniformly spaced countable set.97

Following the usual practice [16, 37, 41], we focus on CTDGs with edge addition events (see98

Appendix E for a discussion on deletion). Thus, we can represent temporal graphs as sets G(t) =99

{(uk, vk, tk) | tk < t}. We also assume each distinct node v in G(t) has an initial feature vector xv .100

Message-passing temporal graph nets (MP-TGNs). Rossi et al. [27] introduced MP-TGN as101

a general representation learning framework for temporal graphs. The goal is to encode the graph102

dynamics into node embeddings, capturing information that is relevant for the task at hand. To103

achieve this, MP-TGNs rely on three main ingredients: memory, aggregation, and update. Memory104

comprises a set of vectors that summarizes the history of each node, and is updated using a recurrent105

model whenever an event occurs. The aggregation and update components resemble those in message-106

passing GNNs, where the embedding of each node is refined using messages from its neighbors.107

We define the temporal neighbohood of node v at time t as N (v, t) = {(u, euv(t′), t′) | ∃(u, v, t′) ∈108

G(t)}, i.e., the set of neighbor/feature/timestamp triplets from all interactions of node v prior to t.109

MP-TGNs compute the temporal representation h(ℓ)v (t) of v at layer ℓ by recursively applying110

h̃(ℓ)v (t) = AGG(ℓ)({{(h(ℓ−1)
u (t), t− t′, e) | (u, e, t′) ∈ N (v, t)}}) (1)

h(ℓ)v (t) = UPDATE(ℓ)
(
h(ℓ−1)
v (t), h̃(ℓ)v (t)

)
, (2)

where {{·}} denotes multisets, h(0)v (t) = sv(t) is the state of v at time t, and AGG(ℓ) and UPDATE(ℓ)
111

are arbitrary parameterized functions. The memory block updates the states as events occur. Let112

J (v, t) be the set of events involving v at time t. The state of v is updated due to J (v, t) as113

mv(t) = MSGAGG({{[sv(t−), su(t−), t− tv, evu(t)] | (v, u, t) ∈ J (v, t)}}) (3)

sv(t) = MEMORY(sv(t
−),mv(t)), (4)

where sv(0) = xv (initial node features), sv(t−) denotes the state of v right before time t, and tv114

denotes the time of the last update to v. MSGAGG combines information from simultaneous events115

involving node v and MEMORY usually implements a GRU [5]. Notably, some MP-TGNs do not use116

memory, or equivalently, they employ identity memory, i.e., sv(t) = xv . See Appendix A for details.117

Causal Anonymous Walks (CAWs). Wang et al. [37] proposed CAW as an effective approach for118

link prediction on temporal graphs. To predict if an event (u, v, t) occurs, CAW first obtains sets Su119

and Sv of temporal walks starting at nodes u and v. An L-length temporal walk is represented asW =120

((w1, t1), (w2, t2), . . . , (wL, tL)), with t1 > t2 > · · · > tL and (wi−1, wi, ti) ∈ G(t) for all i. Then,121

CAW anonymizes walks replacing each node w with a set ICAW(w;Su, Sv) = {g(w;Su), g(w;Sv)}122

of two feature vectors. The ℓ-th entry of g(w;Su) stores how many times w appears at the ℓ-th123

position in a walk of Su, i.e. g(w, Su)[ℓ] = |{W ∈ Su : (w, tℓ) =Wℓ}| where Wℓ is ℓ-th pair of W .124

3

To encode a walk W with respect to the sets Su and Sv, CAW applies ENC(W ;Su, Sv) =125

RNN([f1(ICAW(wi;Su, Sv))∥f2(ti−1 − ti)]
L
i=1) where f1 is a permutation-invariant function, f2 is126

a time encoder, and t0 = t. Finally, CAW combines the embeddings of each walk in Su ∪ Sv using127

mean-pooling or self-attention to obtain the representation for the event (u, v, t).128

In practice, TGNs often rely on sampling schemes for computational reasons. However we are129

concerned with the expressiveness of TGNs, so our analysis assumes complete structural information,130

i.e., Su is the set of all temporal walks from u and MP-TGNs combine information from all neighbors.131

3 The representational power and limits of TGNs132

We now study the expressiveness of TGNs on node/edge-level prediction. We also establish connec-133

tions to a variant of the WL test and show limits of specific TGN models. Proofs are in Appendix B.134

3.1 Distinguishing nodes with MP-TGNs135

We analyze MP-TGNs w.r.t. their ability to map different nodes to different locations in the embedding136

space. In particular, we say that an L-layer MP-TGN distinguishes two nodes u, v of a temporal137

graph at time t, if the last layer embeddings of u and v are different, i.e., h(L)u (t) ̸= h
(L)
v (t).138

We can describe the MP computations of a node v at time t via its temporal computation tree (TCT)139

Tv(t). Tv(t) has v as its root and height equal to the number of TGN layers L. We will keep the140

dependence on depth L implicit for notational simplicity. For each element (u, e, t′) ∈ N (v, t)141

associated with v, we have a node, say i, in the next layer of the TCT linked to the root by an edge142

annotated with (e, t′). The remaining TCT layers are built recursively using the same mechanism.143

We denote by ♯tv the (possibly many-to-one) operator that maps nodes in Tv(t) back to nodes in G(t),144

e.g., ♯tvi = u. Each node i in Tv(t) has a state vector si = s♯tvi(t). To get the embedding of the root145

v, information is propagated bottom-up, i.e., starting from the leaves all the way up to the root —146

each node aggregates the message from the layer below and updates its representation along the way.147

Whenever clear from context, we denote ♯tv simply as ♯ for a cleaner notation.148

We study the expressive power of MP-TGNs through the lens of functions on multisets adapted to149

temporal settings, i.e., comprising triplets of node states, edge features, and timestamps. Intuitively,150

injective functions ‘preserve’ the information as it is propagated, so should be essential for maximally151

expressive MP-TGNs. We formalize this idea in Lemma 1 and Proposition 2 via Definition 1.152

Definition 1 (Isomorphic TCTs). Two TCTs Tz(t) and Tz′(t) at time t are isomorphic if there is a153

bijection f : V (Tz(t)) → V (Tz′(t)) between the nodes of the trees such that the following holds:154

(u, v, t′) ∈ E(Tz(t)) ⇐⇒ (f(u), f(v), t′) ∈ E(Tz′(t))155

∀(u, v, t′) ∈ E(Tz(t)) : euv(t
′) = ef(u)f(v)(t

′) and ∀u ∈ V (Tz(t)) : su = sf(u) and ku = kf(u)156

Here, ku denotes the level (depth) of node u in the tree. The root node has level 0, and for a node u157

with level ku, the children of u have level ku + 1.158

Lemma 1. If an MP-TGN Q with L layers distinguishes two nodes u, v of a dynamic graph G(t),159

then the L-depth TCTs Tu(t) and Tv(t) are not isomorphic.160

For non-isomorphic TCTs, Proposition 2 shows that improving MP-TGNs with injective message161

passing layers suffices to achieve node distinguishability, extending results from static GNNs [42].162

Proposition 2 (Most expressive MP-TGNs). If the L-depth TCTs of two nodes u, v of a temporal163

graph G(t) at time t are not isomorphic, then there exists an MP-TGN Q with L layers and injective164

aggregation and update functions at each layer that is able to distinguish nodes u and v.165

So far, we have considered TCTs with general memory modules, i.e., nodes are annotated with166

memory states. However, an important question remains: How does the expressive power of MP-167

TGNs change as a function of the memory? Our next result - Proposition 3 - shows that adding168

GRU-based memory does not increase the expressiveness of suitably deep MP-TGNs.169

Proposition 3 (The role of memory). Let Q[M]
L denote the class of MP-TGNs with recurrent memory170

and L layers. Similarly, we denote by QL the family of memoryless MP-TGNs with L layers. Let ∆171

be the temporal diameter of G(t) (see Definition B2). Then, it holds that:172

1. If L < ∆: Q[M]
L is strictly more powerful than QL in distinguishing nodes of G(t);173

2. For any L : QL+∆ is at least as powerful as Q[M]
L in distinguishing nodes of G(t).174

4

Figure 2: Limitations of TGNs. [Left] Temporal graph with nodes u, v that TGN-Att/TGAT cannot
distinguish. Colors are node features, edge features are identical, and t3 > t2 > t1. [Center] TCTs
of u and v are non-isomorphic. However, the attention layers of TGAT/TGN-Att compute weighted
averages over a same multiset of values, returning identical messages for u and v. [Right] MP-TGNs
fail to distinguish the events (u, v, t3) and (v, z, t3) as TCTs of z and u are isomorphic. Meanwhile,
CAW cannot separate (u, z, t3) and (u′, z, t3): the 3-depth TCTs of u and u′ are not isomorphic, but
the temporal walks from u and u′ have length 1, keeping CAW from capturing structural differences.

The MP-TGN framework is rather general and subsumes many modern methods for temporal graphs175

[e.g., 16, 32, 41]. We now analyze the theoretical limitations of two concrete instances of MP-TGNs:176

TGAT [41] and TGN-Att [27]. Remarkably, these models are among the best-performing MP-TGNs.177

Nonetheless, we can show that there are nodes of very simple temporal graphs that TGAT and178

TGN-Att cannot distinguish (see Figure 2). We formalize this in Proposition 4 by establishing that179

there are cases in which TGNs with injective layers can succeed, but TGAT and TGN-Att cannot.180

Proposition 4 (Limitations of TGAT/TGN-Att). There exist temporal graphs containing nodes u, v181

that have non-isomorphic TCTs, yet no TGAT nor TGN-Att with mean message aggregator (i.e., using182

MEAN as MSGAGG) can distinguish u and v.183

This limitation stems from the fact that the attention mechanism employed by TGAT and TGN-Att is184

proportion invariant [26]. The memory module of TGN-Att cannot counteract this limitation due to185

its mean-based message aggregation scheme. We provide more details in Appendix B.6.186

3.2 Predicting temporal links187

Models for dynamic graphs are usually trained and evaluated on temporal link prediction [18], which188

consists in predicting whether an event would occur at a given time. To predict an event between189

nodes u and v at t, MP-TGNs combine the node embeddings h(L)u (t) and h(L)v (t), and evaluate the190

resulting vector using an MLP. On the other hand, CAW is originally designed for link prediction191

tasks and directly computes edge embeddings, bypasssing the computation of node representations.192

We can extend the notion of node distinguishability to edges/events. We say that a model distinguishes193

two synchronous events γ = (u, v, t) and γ′ = (u′, v′, t) of a temporal graph if it assigns different194

edge embeddings hγ ̸= hγ′ for γ and γ′. Proposition 5 asserts that CAWs are not strictly more195

expressive than MP-TGNs, and vice-versa. Intuitively, CAW’s advantage over MP-TGNs lies in its196

ability to exploit node identities and capture correlation between walks. However, CAW imposes197

temporal constraints on random walks, i.e., walks have timestamps in decreasing order, which can198

limit its ability to distinguish events. Figure 2(Right) sketches constructions for Proposition 5.199

Proposition 5 (Limitations of MP-TGNs and CAW). There exist distinct synchronous events of a200

temporal graph that CAW can distinguish but MP-TGNs with injective layers cannot, and vice-versa.201

3.3 Connections with the WL test202

The Weisfeiler-Leman test (1-WL) has been used as a key tool to analyze the expressive power of203

GNNs. We now study the power of MP-TGNs under a temporally-extended version of 1-WL, and204

prove negative results regarding whether MP-TGN’s can recognize properties of temporal graphs.205

Temporal WL test. We can extend the WL test for temporal settings in a straightforward manner206

by exploiting the equivalence between temporal graphs and multi-graphs with timestamped edges207

[24]. In particular, the temporal variant of 1-WL assigns colors for all nodes in an input dynamic208

graph G(t) by applying the following iterative procedure:209

Initialization: The colors of all nodes in G(t) are initialized using the initial node features: ∀v ∈210

V (G(t)), c0(v) = xv . If node features are not available, all nodes receive identical colors;211

Refinement: At step ℓ, the colors of all nodes are refined using a hash (injective) function: for all212

v ∈ V (G(t)), we apply cℓ+1(v) = HASH(cℓ(v), {{(cℓ(u), euv(t′), t′) : (u, v, t′) ∈ G(t)}});213

5

Termination: The test is carried out for two temporal graphs at time t in parallel and stops when214

the multisets of corresponding colors diverge, returning non-isomorphic. If the algorithm215

runs until the number of different colors stops increasing, the test is deemed inconclusive.216

We note that the temporal WL test trivially reduces to the standard 1-WL test if all timestamps and217

edge features are identical. The resemblance between MP-TGNs and GNNs and their corresponding218

WL tests suggests that the power of MP-TGNs is bounded by the temporal WL test. Proposition 6219

conveys that MP-TGNs with injective layers are as powerful as the temporal WL test.220

Proposition 6. Assume finite spaces of initial node features X , edge features E , and timestamps T .221

Let the number of events of any temporal graph be bounded by a fixed constant. Then, there is an222

MP-TGN with suitable parameters using injective aggregation/update functions that outputs different223

representations for two temporal graphs if and only if the temporal-WL test outputs ‘non-isomorphic’.224

A natural consequence of the limited power of MP-TGNs is that even the most powerful MP-TGNs225

fail to distinguish relevant graph properties, and the same applies to CAWs (see Proposition 7).226

Proposition 7. There exist non-isomorphic temporal graphs differing in properties such as diameter,227

girth, and total number of cycles, which cannot be differentiated by MP-TGNs and CAWs.228

Figure 3: Examples of temporal graphs for which
MP-TGNs cannot distinguish the diameter, girth,
and number of cycles.

Figure 3 provides a construction for Proposition 7.229

The temporal graphs G(t) and G′(t) differ in diameter230

(∞ vs. 3), girth (3 vs. 6), and number of cycles (2231

vs. 1). By inspecting the TCTs, one can observe that,232

for any node in G(t), there is a corresponding one233

in G′(t) whose TCTs are isomorphic, e.g., Tu1(t)
∼=234

Tu′
1
(t) for t > t3. As a result, the multisets of node235

embeddings for these temporal graphs are identical.236

We provide more details and a construction - where CAW fails to decide properties - in the Appendix.237

4 Position-encoding injective temporal graph net238

We now leverage insights from our analysis in Section 3 to build more powerful TGNs. First, we239

discuss how to build injective aggregation and update functions in the temporal setting. Second, we240

propose an efficient scheme to compute positional features based on counts from TCTs. In addition,241

we show that the proposed method, called position-encoding injective temporal graph net (PINT), is242

more powerful than both WA-TGNs and MP-TGNs in distinguishing events in temporal graphs.243

Injective temporal aggregation. An important design principle in TGNs is to prioritize (give higher244

importance to) events based on recency [37, 41]. Proposition 8 introduces an injective aggregation245

scheme that captures this principle employing a linearly exponential time decay.246

Proposition 8 (Injective function on temporal neighborhood). Let X and E be countable, and T247

countable and bounded. There exists a function f and scalars α and β such that
∑
i f(xi, ei)α

−βti248

is unique on any multiset M = {{(xi, ei, ti)}} ⊆ X × E × T with |M | < N , where N is a constant.249

Leveraging Proposition 8 and the approximation capabilities of multi-layer perceptrons (MLPs), we250

propose position-encoding injective temporal graph net (PINT). In particular, PINT computes the251

embedding of node v at time t and layer ℓ using the following message passing steps:252

h̃(ℓ)v (t) =
∑

(u,e,t′)∈N (v,t)

MLP(ℓ)agg

(
h(ℓ−1)
u (t) ∥ e

)
α−β(t−t′) (5)

h(ℓ)v (t) = MLP
(ℓ)
upd

(
h(ℓ−1)
v (t) ∥ h̃(ℓ)v (t)

)
(6)

where ∥ denotes concatenation, h(0)v = sv(t), α and β are scalar (hyper-)parameters, and MLP(ℓ)
agg253

and MLP(ℓ)
upd denote the nonlinear transformations of the aggregation and update steps, respectively.254

We note that to guarantee that the MLPs in PINT implement injective aggregation/update, we must255

further assume that the edge and node features (states) take values from some finite support. In256

addition, we highlight that there may exist many other ways to achieve injective temporal MP - we257

have presented a solution that captures the ‘recency’ inductive bias of real-world temporal networks.258

6

Compute via

Injective Temporal MP

Monotone TCT

Compute
positional
featuresM

em
or

y
Te

m
po

ra
l G

ra
ph

time
. . .

Figure 4: PINT. Following the MP-TGN protocol, PINT updates memory states as events unroll.
Meanwhile, we use Eqs. (7-11) to update positional features. To extract the embedding for node v,
we build its TCT, annotate nodes with memory + positional features, and run (injective) MP.

Relative positional features. To boost the power of PINT, we propose augmenting memory states259

with relative positional features. These features count how many temporal walks of a given length260

exist between two nodes, or equivalently, how many times nodes appear at different levels of TCTs.261

Formally, let P be the d × d matrix obtained by padding a (d − 1)-dimensional identity matrix262

with zeros on its top row and its rightmost column. Also, let r(t)j→u ∈ Nd denote the positional263

feature vector of node j relative to u’s TCT at time t. For each event (u, v, t), with u and264

v not participating in other events at t, we recursively update the positional feature vectors as265

V(0)
i = {i} ∀i (7)

r
(0)
i→j =

{
[1, 0, . . . , 0]⊤ if i = j

[0, 0, . . . , 0]⊤ if i ̸= j
(8)

V(t)
u = V(t)

v = V(t−)
v ∪ V(t−)

u (9)

r
(t)
i→v = P r

(t−)
i→u + r

(t−)
i→v ∀i ∈ V(t−)

u (10)

r
(t)
j→u = P r

(t−)
j→v + r

(t−)
j→u ∀j ∈ V(t−)

v (11)

266

where we use t− to denote values “right before” t. The set Vi keeps track of the nodes for which267

we need to update positional features when i participates in an interaction. For simplicity, we have268

assumed that there are no other events involving u or v at time t. Appendix B.10 provides equations269

for the general case where nodes can participate in multiple events at the same timestamp.270

The value r(t)i→v[k] (the k-th component of r(t)i→v) corresponds to how many different ways we can get271

from v to i in k steps through temporal walks. Additionally, we provide in Lemma 2 an interpretation272

of relative positional features in terms of the so-called monotone TCTs (Definition 2).273

Definition 2. The monotone TCT of a node u at time t, denoted by T̃u(t), is the maximal subtree of274

the TCT of u s.t. for any path p = (u, t1, u1, t2, u2, . . .) from the root u to leaf nodes of T̃u(t) time275

monotonically decreases with respect to time, i.e., we have that t1 > t2 >276

Lemma 2. For any pair of nodes i, u of a temporal graph G(t), the k-th component of the positional277

feature vector r(t)i→u stores the number of times i appears at the k-th layer of the monotone TCT of u.278

Edge and node embeddings. To obtain the embedding hγ for an event γ = (u, v, t), an L-layer279

PINT computes embeddings for node u and v using L steps of temporal message passing. However,280

when computing the embedding hLu (t) of u, we concatenate node states sj(t) with the positional281

features r(t)j→u and r(t)j→v for all node j in the L-hop temporal neighborhood of u. We apply the same282

procedure to obtain hLv (t), and then combine hLv (t) and hLu (t) using a readout function.283

Similarly, to compute representations for node-level prediction, for each node j in the L-hop neigh-284

borhood of u, we concatenate node states sj(t) with features r(t)j→u. Then, we use our injective MP to285

combine the information stored in u and its neighboring nodes. Figure 4 illustrates the process.286

Notably, Proposition 9 states that PINT is strictly more powerful than existing TGNs. In fact, the287

relative positional features mimic the discriminative power of WA-TGNs, while eliminate their288

temporal monotonicity constraints. Additionally, PINT can implement injective temporal message289

passing, achieving maximally-expressive MP-TGNs.290

7

Proposition 9 (Expressiveness of PINT: link prediction). PINT (with relative positional features) is291

strictly more powerful than both MP-TGNs and CAW in distinguishing events in temporal graphs.292

Figure 5: PINT cannot
distinguish the events
(u, v, t3) and (v, z, t3).

When does PINT fail? Naturally, whenever the TCTs (annotated with293

positional features) for the endpoints of two edges (u, v, t) and (u′, v′, t)294

are pairwise isomorphic, PINT returns the same edge embedding and is295

not able to differentiate the events. Figure 5 shows an example in which296

this happens — we assume that all node/edge features are identical. Due297

to graph symmetries, u and z occur the same number of times in each level298

of v’s monotone TCT. Also, the sets of temporal walks starting at u and z299

are identical if we swap the labels of these nodes. Importantly, CAWs and300

MP-TGNs also fail here, as stated in Proposition 9.301

Proposition 10 (Limitations of PINT). There are synchronous events of temporal graphs that PINT302

cannot distinguish (as seen in Figure 5).303

Implementation and computational cost. The online updates for PINT’s positional features have304

complexity O
(
d |V(t−)

u |+ d |V(t−)
v |

)
. Similarly to CAW’s sampling procedure, our online update305

is a sequential process better done in CPUs. However, while CAW may require significant CPU-306

GPU memory exchange — proportional to both the number of walks and their depth —, we only307

communicate the positional features. We can also speed-up the training of PINT by pre-computing308

the positional features for each batch, avoiding redundant computations at each epoch. Apart from309

positional features, the computational cost of PINT is similar to that of TGN-Att. Following standard310

MP-TGN procedure, we control the branching factor of TCTs using neighborhood sampling.311

Note that the positional features monotonically increase with time, which is undesirable for practical312

generalization purposes. Since our theoretical results hold for any fixed t, this issue can be solved313

by dividing the positional features by a time-dependent normalization factor. Nonetheless, we have314

found that employing L1-normalization leads to good empirical results for all evaluated datasets.315

5 Experiments316

We now assess the performance of PINT on several popular and large-scale benchmarks for TGNs.317

We have implemented experiments using PyTorch [25] and code is available as additional material.318

Tasks and datasets. We evaluate PINT on dynamic link prediction, closely following the evaluation319

setup employed by Rossi et al. [27] and Xu et al. [41]. We use six popular benchmark datasets:320

Reddit, Wikipedia, Twitter, UCI, Enron, and LastFM [16, 27, 37, 41]. Notably, UCI, Enron, and321

LastFM are non-attributed networks, i.e., they do not contain feature vectors associated with the322

events. Node features are absent in all datasets, thus following previous works we set them to vectors323

of zeros [27, 41]. Since Twitter is not publicly available, we follow the guidelines by Rossi et al. [27]324

to create our version. We provide more details regarding datasets in the supplementary material.325

Baselines. We compare PINT against five prominent TGNs: Jodie [16], DyRep [32], TGAT [41],326

TGN-Att [27], and CAW [37]. For completeness, we also report results using two static GNNs: GAT327

[34] and GraphSage [12]. Since we adopt the same setup as TGN-Att, we use their table numbers328

for all baselines but CAW on Wikipedia and Reddit. The remaining results were obtained using the329

implementations and guidelines available from the official repositories. As an ablation study, we also330

include a version of PINT without relative positional features in the comparison. We provide detailed331

information about hyperparameters and the training of each model in the supplementary material.332

Experimental setup. We follow Xu et al. [41] and use a 70%-15%-15% (train-val-test) temporal333

split for all datasets. We adopt average precision (AP) as the performance metric. We also analyze334

separately predictions involving only nodes seen during training (transductive), and those involving335

novel nodes (inductive). We report mean and standard deviation of the AP over ten runs. For further336

details, see Appendix D. We provide additional results in the supplementary material.337

Results. Table 1 shows that PINT is the best-performing method on five out of six datasets for the338

transductive setting. Notably, the performance gap between PINT and TGN-Att amounts to over339

15% AP on UCI. The gap is also relatively high compared to CAW on LastFM, Enron, and UCI;340

with CAW being the best model only on Enron. We also observe that many models achieve relatively341

high AP on the attributed networks (Reddit, Wikipedia, and Twitter). This aligns well with findings342

8

Table 1: Average Precision (AP) results for link prediction. We denote the best-performing model (highest
mean AP) in blue. In 5 out of 6 datasets, PINT achieves the highest AP in the transductive setting. For the
inductive case, PINT outperforms previous MP-TGNs and competes with CAW. We also show the performance
of PINT with and without relative positional features. For all datasets, adopting positional features leads to
significant performance gains.

Model Reddit Wikipedia Twitter UCI Enron LastFM

Tr
an

sd
uc

tiv
e

GAT 97.33± 0.2 94.73± 0.2 - - - -
GraphSAGE 97.65± 0.2 93.56± 0.3 - - - -

Jodie 97.11± 0.3 94.62± 0.5 98.23± 0.1 86.73± 1.0 77.31± 4.2 69.32± 1.0
DyRep 97.98± 0.1 94.59± 0.2 98.48± 0.1 54.60± 3.1 77.68± 1.6 69.24± 1.4
TGAT 98.12± 0.2 95.34± 0.1 98.70± 0.1 77.51± 0.7 68.02± 0.1 54.77± 0.4
TGN-Att 98.70± 0.1 98.46± 0.1 98.00± 0.1 80.40± 1.4 79.91± 1.3 80.69± 0.2
CAW 98.39± 0.1 98.63± 0.1 98.72± 0.1 92.16± 0.1 92.09± 0.7 81.29± 0.1

PINT (w/o pos. feat.) 98.62± .04 98.43± .04 98.53± 0.1 92.68± 0.5 83.06± 2.1 81.35± 1.6
PINT 99.03± .01 98.78± 0.1 99.35± .01 96.01± 0.1 88.71± 1.3 88.06± 0.7

In
du

ct
iv

e

GAT 95.37± 0.3 91.27± 0.4 - - - -
GraphSAGE 96.27± 0.2 91.09± 0.3 - - - -

Jodie 94.36± 1.1 93.11± 0.4 96.06± 0.1 75.26± 1.7 76.48± 3.5 80.32± 1.4
DyRep 95.68± 0.2 92.05± 0.3 96.33± 0.2 50.96± 1.9 66.97± 3.8 82.03± 0.6
TGAT 96.62± 0.3 93.99± 0.3 96.33± 0.1 70.54± 0.5 63.70± 0.2 56.76± 0.9
TGN-Att 97.55± 0.1 97.81± 0.1 95.76± 0.1 74.70± 0.9 78.96± 0.5 84.66± 0.1
CAW 97.81± 0.1 98.52± 0.1 98.54± 0.4 92.56± 0.1 91.74± 1.7 85.67± 0.5

PINT (w/o pos. feat.) 97.22± 0.2 97.81± 0.1 96.10± 0.1 90.25± 0.3 75.99± 2.3 88.44± 1.1
PINT 98.25± .04 98.38± .04 98.20± .03 93.97± 0.1 81.05± 2.4 91.76± 0.7

from [37], where TGN-Att was shown to have competitive performance against CAW on Wikipedia343

and Reddit. The performance of GAT and TGAT (static GNNs) on Reddit and Wikipedia reinforces344

the hypothesis that the edge features add significantly to the discriminative power. On the other345

hand, PINT and CAW, which leverage relative identities, show superior performance relative to346

other methods when only time and degree information is available, i.e., on unattributed networks347

(UCI, Enron, and LastFM). Table 1 also shows the effect of using relative positional features. While348

including these features boosts PINT’s performance systematically, our ablation study shows that349

PINT w/o positional features still outperforms other MP-TGNs on unattributed networks. In the350

inductive case, we observe a similar behavior: PINT is consistently the best MP-TGN, and is better351

than CAW on 3/6 datasets. Overall, PINT (w/ positional features) also yields the lowest standard352

deviations. This suggests that positional encodings might be a useful inductive bias for TGNs.353

0 25 50 100 150 200
Epochs

4

5

6

7

A
vg

.t
im

e
pe

re
po

ch
lo

g
(s

) Wikipedia

0 25 50 100 150 200
Epochs

2

3

4

5

UCI

PINT PINT (w/o pos.) TGAT CAW TGN-Att

Figure 6: Time comparison: PINT versus TGNs (in log-
scale). The cost of pre-computing positional features is
quickly diluted as the number of epochs increases.

Time comparison. Figure 6 compares the train-354

ing times of PINT against other TGNs. For355

fairness, we use the same architecture (number356

of layers & neighbors) for all MP-TGNs: i.e.,357

the best-performing PINT. For CAW, we use the358

one that yielded results in Table 1. As expected,359

TGAT is the fastest model. Note that the aver-360

age time/epoch of PINT gets amortized since361

positional features are pre-computed. Without362

these features, PINT’s runtime closely matches363

TGN-Att. When trained for over 25 epochs,364

PINT runs considerably faster than CAW. More365

details and results are provided in the Appendix.366

6 Conclusion367

We laid a rigorous theoretical foundation for TGNs, including the role of memory modules, relation-368

ship between classes of TGNs, and failure cases for MP-TGNs. Together, our theoretical results shed369

light on the representational capabilities of TGNs, and connections with their static counterparts. We370

also introduced a novel TGN method, provably more expressive than existing TGNs.371

Key practical takeaways from this work: (a) temporal models should be designed to have injective372

update rules and to exploit both neighborhood and walk aggregation, and (b) deep architectures can373

likely be made more compute-friendly as the role of memory gets diminished with depth, provably.374

9

References375

[1] P. Barceló, E. V. Kostylev, M. Monet, J. Pérez, J. L. Reutter, and J.-P. Silva. The logical expressiveness of376

graph neural networks. In International Conference on Learning Representations (ICLR), 2020.377

[2] Q. Cappart, D. Chételat, E. B. Khalil, A. Lodi, C. Morris, and P. Velickovic. Combinatorial optimization378

and reasoning with graph neural networks. In International Joint Conference on Artificial Intelligence379

(IJCAI), 2021.380

[3] B. Chamberlain, J. Rowbottom, M. Gorinova, M. M. Bronstein, S. Webb, and E. Rossi. GRAND: graph381

neural diffusion. In International Conference on Machine Learning (ICML), 2021.382

[4] M. Chen, Z. Wei, Z. Huang, B. Ding, and Y. Li. Simple and deep graph convolutional networks. In383

International Conference on Machine Learning (ICML), 2020.384

[5] K. Cho, B. van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio.385

Learning phrase representations using RNN encoder–decoder for statistical machine translation. In386

Empirical Methods in Natural Language Processing (EMNLP), 2014.387

[6] N. Dehmamy, A.-L. Barabási, and R. Yu. Understanding the representation power of graph neural networks388

in learning graph topology. In Advances in neural information processing systems (NeurIPS), 2019.389

[7] A. Derrow-Pinion, J. She, D. Wong, O. Lange, T. Hester, L. Perez, M. Nunkesser, S. Lee, X. Guo,390

B. Wiltshire, P. W. Battaglia, V. Gupta, A. Li, Z. Xu, A. Sanchez-Gonzalez, Y. Li, and P. Velickovic. Eta391

prediction with graph neural networks in google maps. In Conference on Information and Knowledge392

Management (CIKM), 2021.393

[8] Simon S. Du, Kangcheng Hou, Ruslan Salakhutdinov, Barnabás Póczos, Ruosong Wang, and Keyulu Xu.394

Graph neural tangent kernel: Fusing graph neural networks with graph kernels. In Advances in Neural395

Information Processing Systems (NeurIPS), 2019.396

[9] V. Garg, S. Jegelka, and T. Jaakkola. Generalization and representational limits of graph neural networks.397

In International Conference on Machine Learning (ICML), 2020.398

[10] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl. Neural message passing for quantum399

chemistry. In International Conference on Machine Learning (ICML), 2017.400

[11] M. Gori, G. Monfardini, and F. Scarselli. A new model for learning in graph domains. In IEEE International401

Joint Conference on Neural Networks (IJCNN), 2005.402

[12] W. Hamilton, Z. Ying, and J. Leskovec. Inductive representation learning on large graphs. In Advances in403

Neural Information Processing Systems (NeurIPS), 2017.404

[13] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation, 9(8):1735–1780, 1997.405

[14] S. Kazemi, R. Goel, K. Jain, I. Kobyzev, A. Sethi, P. Forsyth, and P. Poupart. Representation learning for406

dynamic graphs: A survey. Journal of Machine Learning Research, 21(70):1–73, 2020.407

[15] S. M. Kazemi, R. Goel, S. Eghbali, J. Ramanan, J. Sahota, S. Thakur, S. Wu, C. Smyth, P. Poupart, and408

M. Brubaker. Time2vec: Learning a vector representation of time. ArXiv: 1907.05321, 2019.409

[16] S. Kumar, X. Zhang, and J. Leskovec. Predicting dynamic embedding trajectory in temporal interaction410

networks. In International Conference on Knowledge Discovery & Data Mining (KDD), 2019.411

[17] Renjie Liao, Raquel Urtasun, and Richard Zemel. A PAC-bayesian approach to generalization bounds for412

graph neural networks. In International Conference on Learning Representations (ICLR), 2021.413

[18] D. Liben-Nowell and J. Kleinberg. The link prediction problem for social networks. Journal of the414

American Society for Information Science and Technology, 58(7):1019–1031, 2007.415

[19] A. Loukas. What graph neural networks cannot learn: depth vs width. In International Conference on416

Learning Representations (ICLR), 2020.417

[20] Andreas Loukas. How hard is to distinguish graphs with graph neural networks? In Advances in Neural418

Information Processing Systems (NeurIPS), 2020.419

[21] H. Maron, H. Ben-Hamu, H. Serviansky, and Y. Lipman. Provably powerful graph networks. In Advances420

in Neural Information Processing Systems (NeurIPS), 2019.421

10

[22] C. Morris, M. Ritzert, M. Fey, W. L. Hamilton, J. E. Lenssen, G. Rattan, and M. Grohe. Weisfeiler and422

leman go neural: Higher-order graph neural networks. In AAAI Conference on Artificial Intelligence423

(AAAI), 2019.424

[23] H. Nguyen and T. Maehara. Graph homomorphism convolution. In International Conference on Machine425

Learning (ICML), 2020.426

[24] F. Orsini, P. Frasconi, and L. D. Raedt. Graph invariant kernels. In International Joint Conference on427

Artificial Intelligence (IJCAI), 2015.428

[25] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, and429

A. Lerer. Automatic differentiation in pytorch. In Advances in Neural Information Processing Systems430

(NeurIPS - Workshop), 2017.431

[26] Jorge Pérez, Javier Marinković, and Pablo Barceló. On the turing completeness of modern neural network432

architectures. In International Conference on Learning Representations (ICLR), 2019.433

[27] Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico Monti, and Michael Bron-434

stein. Temporal graph networks for deep learning on dynamic graphs. In ICML 2020 Workshop on Graph435

Representation Learning, 2020.436

[28] A. Sanchez-Gonzalez, J. Godwin, T. Pfaff, R. Ying, J. Leskovec, and P. Battaglia. Learning to simulate437

complex physics with graph networks. In International Conference on Machine Learning (ICML), 2020.438

[29] R. Sato, M. Yamada, and H. Kashima. Approximation ratios of graph neural networks for combinatorial439

problems. In Advances in Neural Information Processing Systems (NeurIPS), 2019.440

[30] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini. The graph neural network model.441

IEEE Transactions on Neural Networks, 20(1):61–80, 2009.442

[31] J. M. Stokes, K. Yang, K. Swanson, W. Jin, A. Cubillos-Ruiz, N. M. Donghia, C. R. MacNair, S. French,443

L. A. Carfrae, Z. Bloom-Ackermann, V. M. Tran, A. Chiappino-Pepe, A. H. Badran, I. W. Andrews, E. J.444

Chory, G. M. Church, E. D. Brown, T. S. Jaakkola, R. Barzilay, and J. J. Collins. A deep learning approach445

to antibiotic discovery. Cell, 180(4):688 – 702, 2020.446

[32] R. Trivedi, M. Farajtabar, P. Biswal, and H. Zha. DyRep: Learning representations over dynamic graphs.447

In International Conference on Learning Representations (ICLR), 2019.448

[33] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin.449

Attention is all you need. In Advances in Neural Information Processing Systems (NeurIPS), 2017.450

[34] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua Bengio.451

Graph Attention Networks. In International Conference on Learning Representations (ICLR), 2018.452

[35] S. Verma and Z.-L. Zhang. Stability and generalization of graph convolutional neural networks. In453

International Conference on Knowledge Discovery & Data Mining (KDD), 2019.454

[36] C. Vignac, A. Loukas, and P. Frossard. Building powerful and equivariant graph neural networks with455

structural message-passing. In Neural Information Processing Systems (NeurIPS), 2020.456

[37] Y. Wang, Y. Chang, Y. Liu, J. Leskovec, and P. Li. Inductive representation learning in temporal networks457

via causal anonymous walks. In International Conference on Learning Representations (ICLR), 2021.458

[38] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu. A comprehensive survey on graph neural459

networks. IEEE Transactions on Neural Networks and Learning Systems, pages 1–21, 2020.460

[39] D. Xu, W. Cheng, D. Luo, Y. Gu, X. Liu, J. Ni, B. Zong, H. Chen, and X. Zhang. Adaptive neural network461

for node classification in dynamic networks. In IEEE International Conference on Data Mining (ICDM),462

2019.463

[40] D. Xu, C. Ruan, E. Korpeoglu, S. Kumar, and K. Achan. Self-attention with functional time representation464

learning. In Advances in Neural Information Processing Systems (NeurIPS), 2019.465

[41] D. Xu, C. Ruan, E. Korpeoglu, S. Kumar, and K. Achan. Inductive representation learning on temporal466

graphs. In International Conference on Learning Representations (ICLR), 2020.467

[42] K. Xu, W. Hu, J. Leskovec, and S. Jegelka. How powerful are graph neural networks? In International468

Conference on Learning Representations (ICLR), 2019.469

11

[43] K. Xu, J. Li, M. Zhang, S. S. Du, K.-I. Kawarabayashi, and S. Jegelka. What can neural networks reason470

about? In International Conference on Learning Representations (ICLR), 2020.471

[44] K. Xu, M. Zhang, J. Li, S. S. Du, K.-I. Kawarabayashi, and S. Jegelka. How neural networks extrapolate:472

From feedforward to graph neural networks. In International Conference on Learning Representations473

(ICLR), 2021.474

[45] Z. Zhang, F. Wu, and W. S. Lee. Factor graph neural networks. In Advances in Neural Information475

Processing Systems (NeurIPS), 2020.476

12

Provably expressive temporal graph networks
(Supplementary material)

Anonymous Author(s)
Affiliation
email

A Further details on temporal graph networks477

In this section we present more details about the models TGAT, TGN-Att, and CAW.478

A.1 Temporal graph attention (TGAT)479

Temporal graph attention networks [41] combine time encoders [15] and self-attention [33]. In480

particular, the time encoder ϕ is given by481

ϕ(t− t′) = [cos(ω1(t− t′) + b1), . . . , cos(ωd(t− t′) + bd)], (S1)

where ωi’s and bi’s are learned scalar parameters. The time embeddings are concatenated to the482

edge features before being fed into a typical self-attention layer, where the query q is a function of a483

reference node v, and both values V and keys K depend on v’s temporal neighbors. Formally, TGAT484

first computes a matrix C(ℓ)
v (t) whose u-th row is c(ℓ)vu(t) = [h

(ℓ−1)
u (t) ∥ ϕ(t − tuv) ∥ euv] for all485

(u, euv, tuv) ∈ N (v, t). Then, the output h̃(ℓ)v (t) of the AGG(ℓ) function is given by486

q = [h(ℓ−1)
v (t) ∥ ϕ(0)]W (ℓ)

q K = C(ℓ)
v (t)W

(ℓ)
K V = C(ℓ)

v (t)W
(ℓ)
V (S2)

h̃(ℓ)v (t) = softmax
(
qK⊤)V (S3)

where W (ℓ)
q ,W

(ℓ)
K , and W (ℓ)

V are model parameters. Regarding the UPDATE function, TGAT applies487

a multilayer perceptron, i.e., h(ℓ)v (t) = MLP(ℓ)(h
(ℓ−1)
v (t) ∥ h̃(ℓ)v (t)).488

A.2 Temporal graph networks with attention (TGN-Att)489

We now discuss details regarding the MP-TGN framework omitted from the main paper for simplicity.490

For the sake of generality, Rossi et al. [27] present a formulation for MP-TGNs that can handle491

node-level events, e.g., node feature updates. These events lead to i) updating node memory states,492

and ii) using the time-evolving node features as additional inputs for the message passing functions.493

Nonetheless, to the best of our knowledge, all relevant CTDG benchmarks comprise only edge494

events. Therefore, for ease of presentation, we omit node events and temporal node features from our495

treatment. In Appendix E, we discuss how to handle node-level events.496

Equation 1, Equation 2, and Equation 3 might make the reader believe that memory states are updated497

before prediction, i.e., computing node embeddings (message passing) using the features of the edge498

we want to predict. However, this would incur information leakage. On the other hand, not doing so499

prevents us from propagating gradients through the memory modules. To get around this problem,500

Rossi et al. [27] propose updating the memory with messages coming from previous batches, and501

then predicting the interactions.502

Revisiting memory with message aggregators. To speed up computations, MP-TGNs employ a503

form of batch learning where events/messages in a same batch are aggregated. In our analysis, we504

assume that two events belong to the same batch only if they occur at the same timestamp. Importantly,505

message aggregators allow removing ambiguity in the way the memory of a node participating in506

multiple events (at the same timestamp) is updated — two events involving a given node i at the same507

time could lead to different ways of updating the state of i.508

Suppose the event γ = (i, u, t) occurs. MP-TGNs proceed by computing a message function MSGe509

for each endpoint of γ, i.e.,510

mi,u(t) = MSGe(si(t
−), su(t

−), t− ti, eiu(t))

mu,i(t) = MSGe(su(t
−), si(t

−), t− tu, eiu(t))

Following the original formulation, we assume an identity message function — simply the concatena-511

tion of the inputs, i.e., MSGe(si(t
−), su(t

−), t− ti, eiu(t)) = [si(t
−), su(t

−), t− ti, eiu(t)].512

Now, suppose two events (i, u, t) and (i, v, t) happen. MP-TGNs aggregate the messages from these513

events using a function MSGAGG to obtain a single message for i:514

m̄i(t) = MSGAGG(mi,u(t),mi,v(t))

Rossi et al. [27] propose non-learnable message aggregators, such as the mean aggregator (av-515

erage all messages for a given node), that we denote as MEANAGG and adopt throughout our516

analysis. As an example, under events (i, u, t) and (i, v, t), the aggregated message for i is517

m̄i(t) = 0.5([si(t
−), su(t

−), t− ti, eiu(t)] + [si(t
−), sv(t

−), t− ti, eiv(t)]).518

The memory update of our query node i is given by519

si(t) = MEMORY(si(t
−), m̄i(t)).

Finally, we note that TGAT does not have a memory module. TGN-Att consists of the model resulting520

from augmenting TGAT with a GRU-based memory.521

A.3 Causal anonymous walks (CAW)522

We now provide details regarding how CAW obtains edge embeddings for a query event γ = (u, v, t).523

A temporal walk is represented as W = ((w1, t1), (w2, t2), . . . , (wL, tL)), with t1 > t2 > · · · > tL524

and (wi−1, wi, ti) ∈ G(t) for all i. We denote by Su(t) the set of maximal temporal walks starting at525

u of size at most L obtained from the temporal graph at time t. Following the original paper, we drop526

the time dependence henceforth.527

A given walk W gets anonymized through replacing each element wi belonging to W by a 2-element528

set of vectors ICAW(wi;Su, Sv) accounting for how many times wi appears at each position of walks529

in Su and Sv. These vectors are denoted by g(wi, Su) and g(wi, Sv). The walk is encoded using a530

RNN:531

ENC(W ;Su, Sv) = RNN([f1(ICAW(wi;Su, Sv))∥f2(ti − ti−1)]
L
i=1),

where f1 is532

f1(ICAW(wi;Su, Sv)) = MLP(g(wi, Su)) +MLP(g(wi, Sv)).

We note that the MLPs share parameters. The function f2 is given by533

f2(t) = [cos(ωit), sin(ω1t), . . . , cos(ωdt), sin(ωdt)]

where ωi’s are learned parameters.534

To compute the embedding hγ for (u, v, t), CAW considers two readout functions: mean and self-535

attention. Finally, the final link prediction is obtained from a 2-layer MLP over hγ .536

14

B Proofs537

B.1 Further definitions and Lemmata538

Definition B1 (Monotone walk.). AnN -length monotone walk in a temporal graph G(t) is a sequence539

(w1, t1, w2, t2, . . . , wN+1) such that ti > ti+1 and (wi, wi+1, ti) ∈ G(t) for all i.540

Definition B2 (Temporal diameter.). We say the temporal diameter of a graph G(t) is ∆ if the longest541

monotone walk in G(t) has length (i.e, number of edges) exactly ∆.542

Lemma B1. If the TCTs of two nodes are isomorphic, then their monotone TCTs (Definition 2) are543

also isomorphic, i.e., Tu(t) ∼= Tv(t) ⇒ T̃u(t) ∼= T̃v(t) for two nodes u and v of a dynamic graph.544

Proof. Since Tu(t) ∼= Tv(t), we have that545

p = (u0, t1, u1, t2, u2, . . .) from Tu(t) ⇐⇒ p′ = (f(u0), t1, f(u1), t2, f(u2), . . .) from Tv(t),

with sui
= sf(ui) and euiui+1

(ti+1) = ef(ui)f(ui+1)(ti+1) and kui
= kf(ui) ∀i

where f : V (Tu(t)) → V (Tv(t)) is a bijection.546

Assume that T̃u(t) ̸∼= T̃v(t). Then, either there exists a path ps = (u′0, t
′
1, u

′
1, t

′
2, . . .) in T̃u(t), such547

that t′k+1 < t′k for all k (i.e., a monotone walk), with no corresponding one in T̃v(t) or vice-versa.548

Without loss of generality, let us consider the former case.549

We can construct the path p′s in Tv(t) by applying f in all elements of ps, i.e., p′s =550

(f(u′0), t
′
1, f(u

′
1), t

′
2, . . .). Note that p′s is a monotone walk in Tv(t). Since T̃v(t) is the maximal551

monotone subtree of Tv(t), it must contain p′s, leading to contradiction.552

Lemma B2. Let G(t) and G′(t) be any two non-isomorphic temporal graphs. If an MP-TGN obtains553

different multisets of node embeddings for G(t) and G′(t). Then, the temporal WL test decides G(t)554

and G′(t) are not isomorphic.555

Proof. Recall Proposition 3 shows that if an MP-TGN with memory is able to distinguish two nodes,556

then there is a memoryless MP-TGN with ∆ (temporal diameter) additional layers that does the557

same. Thus, it suffices to show that if the multisets of colors from temporal WL for G(t) and G′(t)558

after ℓ iterations are identical, then the multisets of embeddings from the memoryless MP-TGN559

are also identical, i.e., if {{cℓ(u)}}u∈V (G(t)) = {{cℓ(u′)}}u′∈V (G′(t)), then {{h(ℓ)u (t)}}u∈V (G(t)) =560

{{h(ℓ)u′ (t)}}u′∈V (G′(t)). To do so, we repurpose the proof of Lemma 2 in [42].561

More broadly, we show that for any two nodes of a temporal graph G(t), if the temporal WL returns562

cℓ(u) = cℓ(v), we have that corresponding embeddings from MP-TGN without memory are identical563

hℓu(t) = hℓv(t). We proceed with a proof by induction.564

[Base case] For ℓ = 0, the proposition trivially holds as the temporal WL has the initial node features565

as colors, and memoryless MP-TGNs have these features as embeddings.566

[Induction step] Assume the proposition holds for iteration ℓ. Thus, for any two nodes u, v, if567

cℓ+1(u) = cℓ+1(v), we have568

(cℓ(u), {{(cℓ(i), eiu(t′), t′) : (u, i, t′) ∈ G(t)}}) = (cℓ(v), {{(cℓ(j), ejv(t′), t′) : (v, j, t′) ∈ G(t)}})
and, by the induction hypothesis, we know569

(h(ℓ)u (t), {{(h(ℓ)i (t), eiu(t
′), t′) : (u, i, t′) ∈G(t)}}) =

(h(ℓ)v (t), {{(h(ℓ)j (t), ejv(t
′), t′) : (v, j, t′) ∈ G(t)}})

We also note that this last identity also implies570

(h(ℓ)u (t), {{(h(ℓ)i (t), t− t′, e) | (i, e, t′) ∈N (u, t)}}) =

(h(ℓ)v (t), {{(h(ℓ)j (t), t− t′, e) | (j, e, t′) ∈ N (v, t)}})

since there exists an event (u, i, t′) ∈ G(t) with feature eui(t′) = e iff there is an element (i, e, t′) ∈571

N (u, t).572

15

As a result, the inputs of the MP-TGN’s aggregation and update functions are identical, which leads573

to identical outputs h(ℓ+1)
u (t) = h

(ℓ+1)
v (t). Therefore, if the temporal WL test obtains identical574

multisets of colors for two temporal graphs after ℓ steps, the multisets of embeddings at layer ℓ for575

these graphs are also identical.576

Lemma B3 (Lemma 5 in [42]). Assume X is countable. There exists a function f : X → Rn so that577

h(X) =
∑
x∈X f(x) is unique for each multiset X ⊂ X of bounded size. Moreover, any multiset578

function g can be decomposed as g(X) = φ
(∑

x∈X f(x)
)

for some function φ.579

B.2 Proof of Proposition 1: Relationship between DTDGs and CTDGs580

Proof. We prove the two statements in Proposition 1 separately. In the following, we treat CTDGs as581

sets of events up to a given timestamp.582

Statement 1: For any DTDG we can build a CTDG that contains the same information.583

A DTDG consists of a sequence of graphs with no temporal information. We can model this using the584

CTDG formalism by setting a fixed time difference δ between consecutive elements G(ti),G(ti+1)585

of the CTDG, i.e., ti+1 − ti = δ for all i ≥ 0.586

Consider a DTDG given by the sequence (G1, G2, . . .). To build the equivalent CTDG, we define587

S(Gi) as the set of edge events corresponding to Gi, i.e., S(Gi) = {(u, v, iδ) : (u, v) ∈ E(Gi)}.588

We also make the edge features of these events match those in the DTDG, i.e., euv(iδ) = euv ∈ Ei.589

To account for node features, for all u ∈ V (Gi), we create an event (u, ⋄, iδ) between u and a590

dummy node ⋄, with feature eu⋄(iδ) = xu ∈ Xi. Let C(Gi) denote the set comprising these591

node-level events. Then, we can construct the CTDG G(ti) = ∪ij=1S(Gj) ∪ C(Gj) for i = 1,592

Reconstructing the DTDG (G1, G2, . . .) is trivial. To build Gi, it suffices to select all events at time593

iδ in the CTDG. Events involving ⋄ determine node features and the remaining ones constitute edges594

in the DTDG.595

Statement 2: The converse holds if the CTDG timestamps form a subset of some uniformly spaced596

countable set.597

We say that a countable set A ⊂ R is uniformly spaced if there exists some δ ∈ R such that598

ai+1 − ai = δ for all i where (a1, a2, . . .) is the ordered sequence formed from elements ar of A,599

i.e., a1 < a2 < . . . < ai < ai+1, . . .600

Note that DTDGs are naturally represented by a set of uniformly spaced timestamps. This is because601

DTDGs correspond to sequences that do not contain any time information. Let us denote the set of602

CTDG timestamps T ⊆ T such that T is countable and uniformly spaced. Our idea is to construct a603

DTDG sequence with timestamps that coincide with the elements in T . Then, since T ⊆ T , we do604

not lose any information pertaining to events occurring at timestamps given by T . Without loss of605

generality, in the following we assume that the elements of T and T are arranged in their increasing606

order respectively, i.e., ti < ti+1 for all i, and τk < τk+1 for all k.607

Consider a CTDG (G(t1),G(t2), . . .) such that G(ti) = {(u, v, t) : t ∈ T and t ≤ ti} for ti ∈ T .608

Also, let us denote H(ti) = {(u, v, t) ∈ G(ti) : t = ti} the set of events at time ti ∈ T . We can609

build a corresponding DTDG (G1, G2, . . .) such that for all τk ∈ T the k-th snapshot Gk is610

V (Gk) =

{
{u : (u, ·, τk) ∈ H(τk)}, if τk ∈ T ;

∅, otherwise.

E(Gk) =

{
{(u, v) : (u, v, τk) ∈ H(τk)}, if τk ∈ T ;

∅, otherwise.

To recover the original CTDG, we can adapt the reconstruction procedure we used in the previous611

part of the proof. We define612

Ĩ = {(i, k) ∈ N× N : τk = ti for ti ∈ T and τk ∈ T }. (S4)

Note that we can treat Ĩ as a map by defining Ĩ(i) = k if and only if (i, k) ∈ Ĩ . To recover the613

original CTDG, we first create the set of events S(Gk) = {(u, v, kδ) : (u, v) ∈ E(Gk)}. Then, we614

build G(ti) = ∪j:j≤Ĩ(i)S(Gj) for ti ∈ T .615

16

B.3 Proof of Lemma 1616

Proof. Here we show that if two nodes u and v have isomorphic (L-depth) TCTs, then MP-TGNs617

(with L-layers) compute identical embeddings for u and v. Formally, let Tu,ℓ(t) denote the TCT of u618

with ℓ layers. We want to show that Tu,ℓ(t) ∼= Tv,ℓ(t) ⇒ h
(ℓ)
u (t) = h

(ℓ)
v (t). We employ a proof by619

induction on ℓ. Since there is no ambiguity, we drop the dependence on time in the following.620

[Base case] Consider ℓ = 1. By the isomorphism assumption Tu,1 ∼= Tv,1, h(0)u = su = sv = h
(0)
v —621

roots of both trees have the same states. Also, for any children i of u in Tu,1 there is a corresponding622

one (with annotated edges) f(i) in Tv,1 with si = sf(i). Recall that the ℓ-th layer aggregation623

function AGG(ℓ)(·) acts on multisets of tiplets of previous-layer embeddings, edge features and624

timestamps of temporal neighbors (see Equation 1). Since the temporal neighbors of u correspond to625

its children in Tu,1, then the output of the aggregation function for u and v are identical: h̃(1)u = h̃
(1)
v .626

In addition, since the initial embeddings of u and v are also equal (i.e., h(0)u = h
(0)
v), we can ensure627

that the update function returns h(1)u = h
(1)
v .628

[Induction step] Assuming that Tu,ℓ−1
∼= Tv,ℓ−1 ⇒ h

(ℓ−1)
u = h

(ℓ−1)
v for any pair of nodes u and629

v, we will show that Tu,ℓ ∼= Tv,ℓ ⇒ h
(ℓ)
u = h

(ℓ)
v . For any children i of u, let us define the subtree630

of Tu,ℓ rooted at i by Ti. We know that Ti has depth ℓ − 1, and since Tu,ℓ ∼= Tv,ℓ, there exists a631

corresponding subtree of Tv (of depth ℓ− 1) rooted at f(i) such that Ti ∼= Tf(i). Using the induction632

hypothesis, we obtain that the multisets of embeddings from the children i of u and children f(i) of633

v are identical. Note that if two ℓ-depth TCTs are isomorphic, they are also isomorphic up to depth634

ℓ− 1, i.e., Tu,ℓ ∼= Tv,ℓ implies Tu,ℓ−1
∼= Tv,ℓ−1 and, consequently, h(ℓ−1)

u = h
(ℓ−1)
v (by induction635

hypothesis). Thus, the input of the aggregation and update functions are identical and they compute636

the same embeddings for u and v.637

B.4 Proof of Proposition 2: Most expressive MP-TGNs638

Proof. Consider MP-TGNs with parameter values that make AGG(ℓ)(·) and UPDATE(ℓ)(·) injective639

functions on multisets of triples of hidden representations, edge features and timestamps. The640

existence of these parameters is guaranteed by the fact that, at any given time t, the space of observed641

node states (and hidden embeddings from temporal neighbors), edge features and timestamps is finite642

(see Lemma B3).643

Again, let Tu,ℓ(t) denote the TCT of u with ℓ layers. We want to prove that, under the injectivity644

assumption, if Tu,ℓ(t) ̸∼= Tv,ℓ(t), then h(ℓ)u (t) ̸= h
(ℓ)
u (t) for any two nodes u and v. In the following,645

we simplify notation by removing the dependence on time. We proceed with proof by induction on646

the TCT’s depth ℓ. Also, keep in mind that φℓ = UPDATE(ℓ) ◦ AGG(ℓ) is injective for any ℓ.647

[Base case] For ℓ = 1, if Tu,1 ̸∼= Tv,1 then the root node states are different (i.e., su ̸= sv) or the648

multiset of states/edge features/ timestamps triples from u and v’s children are different. In both649

cases, the inputs of φℓ are different and it therefore outputs different embeddings for u and v.650

[Induction step] The inductive hypothesis is Tu,ℓ−1 ̸∼= Tv,ℓ−1 ⇒ h
(ℓ−1)
u ̸= h

(ℓ−1)
v for any pair of651

nodes u and v. If Tu,ℓ ̸∼= Tv,ℓ, at least one of the following holds: i) the states of u and v are different,652

ii) the multisets of edges (edge features/ timestamps) with endpoints in u and v are different, or iii)653

there is no pair-wise isomorphism between the TCTs rooted at u and v’s children. In the first two654

cases, φℓ trivially outputs different embeddings for u and v. We are left with the case in which only655

the latter occurs. Using our inductive hypothesis, the lack of a (isomorphism ensuring) bijection656

between the TCTs rooted at u and v’s children implies there is also no bijection between their multiset657

of embeddings. In turn, this guarantees that φ will output different embeddings for u and v.658

B.5 Proof of Proposition 3: The role of memory659

Proof. We prove the two parts of the proposition separately. In the following proofs, we rely on the660

concept of monotone TCTs (see Definition 2).661

Statement 1: If L < ∆: Q[M]
L is strictly stronger than QL.662

17

We know that the family of L-layer MP-TGNs with memory comprises the family of L-layer MP-663

TGNs without memory (we can assume identity memory). Therefore, Q[M]
L is at least as powerful664

as QL. To show that Q[M]
L is strictly stronger (more powerful) than QL, when L < ∆, it suffices665

to create an example for which memory can help distinguish a pair of nodes. We provide a trivial666

example in Figure S1 for L = 1. Note that the 1-depth TCTs of u and v are isomorphic when no667

memory is used. However, when equipped with memory, the interaction (b, c, t1) affects the states of668

v and c, making the 1-depth TCTs of u and v (at time t > t2) no longer isomorphic.669

Figure S1: Temporal graph where all initial node features and edge features are identical. We assume
that t2 > t1.

Statement 2: For any L : QL+∆ is at least as powerful as Q[M]
L .670

It suffices to show if QL+∆ cannot distinguish a pair of nodes u and v , Q[M]
L cannot distinguish them671

too. Let TMu,L(t) and Tu,L(t) denote the L-depth TCTs of u with and without memory respectively.672

Using Lemma 1, this is equivalent to showing that Tu,L+∆(t) ∼= Tv,L+∆(t) ⇒ TMu,L(t)
∼= TMv,L(t),673

since no MP-TGN can separate nodes associated with isomorphic TCTs. In the following, when we674

omit the number of layers from TCTs, we assume TCTs of arbitrary depth.675

Step 1: Characterizing the dependence of memory on initial states and events in the dynamic graph.676

We now show that the memory for a node u, after processing all events with timestamp ≤ tn, depends677

on the initial states of a set of nodes Vnu , and a set of events annotated with their respective timestamps678

and features Bnu . If at time tn no event involves a node z , we set Bnz = Bn−1
z and Vnz = Vn−1

z . We679

also initialize B0
u = ∅ and V0

u = {u} for all nodes u. We proceed with a proof by induction on the680

number of observed timestamps n.681

[Base case] Let I1(u) = {v : (u, v, t1) ∈ G(t+1)} be the set of nodes interacting with u at time682

t1, where G(t+1) is the temporal graph right after t1. Similarly, let J1(u) = {(u, ·, t1) ∈ G(t+1)}683

be the set of events involving u at time t1. Recall that before t1, all memory states equal initial684

node features (i.e., su(t−1) = su(0)). Then, the updated memory (see Equation 3) for u depends on685

V1
u = V0

u ∪v∈I(u) V0
v , B1

u = B0
u ∪ J1(u).686

[Induction step] Assume that for timestamp tn−1 the proposition holds. We now show that it holds for687

tn. Since the proposition holds for n−1 timestamps, we know that the memory of any w that interacts688

with u in tn, i.e. w ∈ In(u), depends on Vn−1
w and Bn−1

w , and the memory of u so far depends on689

Vn−1
u and Bn−1

u . Then, the updated memory for u depends on Vnu = Vn−1
u ∪w∈I(u) {w, u} ∪ Vn−1

w690

and Bnu = Bn−1
u ∪ Jn(u) ∪w∈I(u) Bn−1

w .691

Step 2: (z, w, tzw) ∈ Bnu if and only if there is a path (uk, tk = tzw, uk+1) in T̃u(t+n) — the692

monotone TCT of u (see Definition 2) after processing events with timestamp ≤ tn — with either693

♯uk = z, ♯uk+1 = w or ♯uk = w, ♯uk+1 = z.694

[Forward direction] An event (z, w, tzw) with tzw ≤ tn will be in Bnu only if z = u or w = u, or695

if there is a subset of events {(u, ♯u1, t1), (♯u1, ♯u2, t2), . . . , (♯uk, ♯uk+1, tzw)} with ♯uk = z and696

♯uk+1 = w such that tn ≥ t1 > · · · > tzw. In either case, this will lead to root-to-leaf path in T̃u(t+n)697

passing through (uk, tzw, uk+1). This subset of events can be easily obtained by backtracking edges698

that caused unions/updates in the procedure from Step 1.699

[Backward direction] Assume there is a subpath p = (uk, tk = tzw, uk+1) ∈ T̃u(t
+
n) with ♯uk = z700

and ♯uk+1 = w such that (z, w, tzw) /∈ Bnu . Since we can obtain p from T̃u(t
+
n), we know that the701

sequence of events r = ((u, ♯u1, t1), . . . , (♯uk−2, ♯uk−1 = z, tk−1), (z, w, tk = tzw)) happened and702

that ti > ti+1 ∀i. However, since (z, w, tzw) /∈ Bnu , there must be no monotone walk starting from703

u going through the edge (z, w, tzw) to arrive at w, which is exactly what r characterizes. Thus, we704

reach contradiction.705

18

Note that the nodes in Vnu are simply the nodes that have an endpoint in the events Bnu , and therefore706

are also nodes in T̃u(t+n) and vice-versa.707

Step 3: For any node u, there is a bijection that maps (Vnu ,Bnu) to T̃u(t+n).708

First, we note that (Vnu ,Bnu) depends on a subset of all events, which we represent as G′ ⊆ G(t+n).709

Since Bnu contains all events in G′ and (Vnu ,Bnu) can be uniquely constructed from G′, then there is a710

bijection g that maps from G′ to (Vnu ,Bnu).711

Similarly, T̃u(t+n) also depends on a subset of events which we denote by G′′ ⊆ G(t+n). We note that712

the unique events in T̃u(t+n) correspond to G′′, and we can uniquely build the tree T̃u(t+n) from G′′.713

This implies that there is a bijection h that maps from G′′ to T̃u(t+n).714

Previously, we have shown that all events in Bnu are also in T̃u(t+n) and vice-versa. This implies that715

both sets depend on the same events, and thus on the same subset of all events, i.e., G′ = G′′ = GS .716

Since there is a bijection g between GS and (Vnu ,Bnu), and a bijection h between GS and T̃u(t+n),717

there exists a bijection f between (Vnu ,Bnu) and T̃u(t+n).718

Step 4: If Tu,L+∆(t
+) ∼= Tv,L+∆(t

+), then TMu,L(t
+) ∼= TMv,L(t

+).719

To simplify notation, we omit here the dependence on time.720

Any node w ∈ TMu,L also appears in Tu,L+∆ at the same level. The subtree of Tu,L+∆ rooted at w,721

denoted here by T ′
w, has depth at least k ≥ ∆. Note that T ′

w corresponds to the k-depth TCT of ♯w.722

Since the depth of T ′
w is at least ∆, we know that the T̃ ′

w
∼= T̃♯w — i.e., imposing time-constraints to723

T ′
w results in the monotone TCT of node ♯w. Also, because the memory of ♯w depends on T̃♯w, T ′

w724

comprises the information used to compute the memory state of ♯w. Note that this applies to any w in725

TMu,L; thus, Tu,L+∆ contains all we need to compute the states of any node of the dynamic graph that726

appears in TMu,L. The same argument applies to Tv,L+∆ and TMv,L. Finally, since TMu,L can be uniquely727

computed from Tu,L+∆, and TMv,L from Tv,L+∆, if Tu,L+∆
∼= Tv,L+∆, then TMu,L ∼= TMv,L.728

B.6 Proof of Proposition 4: Limitations of TGAT and TGN-Att729

Proof. In this proof, we first provide an example of a dynamic graph where the TCTs of two730

nodes u and v are not isomorphic. Then, we show that we can not find a TGAT model such that731

h
(L)
u (t) ̸= h

(L)
v (t), i.e., TGAT does not distinguish u and v. Next, we show that even if we consider732

TGATs with memory (TGN-Att), it is still not possible to distinguish nodes u and v in our example.733

Figure S2: (Leftmost) Example of a temporal graph for which TGN-Att and TGAT cannot distinguish
nodes u and v even though their TCTs are non-isomorphic. Colors denote node features and all edge
features are identical, and t2 > t1 (and t > t2). (Right) The 2-depth TCTs of nodes u, v, z and w.
The TCTs of u and v are non-isomorphic whereas the TCTs of z and w are isomorphic.

Figure S2(leftmost) provides a temporal graph where all edge events have the same edge features.734

Colors denote node features. As we can observe, the TCTs of nodes u and v are not isomorphic. In735

the following, we consider node distinguishability at time t > t2.736

Statement 1: TGAT cannot distinguish the nodes u and v in our example.737

Step 1: For any TGAT with ℓ layers, we have that h(ℓ)w (t) = h
(ℓ)
z (t).738

We note that the ℓ-layer TCTs of nodesw and z are isomorphic, for any ℓ. To see this, one can consider739

the symmetry around node u that allows us to define a node permutation function (bijection) f given740

by f(z) = w, f(w) = z, f(a) = v, f(u) = u, f(b) = c, f(c) = b, f(v) = a. Figure S2(right)741

provides an illustration of the 2-depth TCTs of z and w at time t > t2.742

19

By Lemma 1, if the ℓ-layer TCTs of two nodes z and w are isomorphic, then no ℓ-layer MP-TGN can743

distinguish them. Thus, we conclude that h(ℓ)w (t) = h
(ℓ)
z (t) for any TGAT with arbitrary number of744

layers ℓ.745

Step 2: There is no TGAT such that h(ℓ)v (t) ̸= h
(ℓ)
u (t).746

To compute h(ℓ)v (t), TGAT aggregates the messages of v’s temporal neighbors at layer ℓ − 1, and747

then combines h(ℓ−1)
v (t) with the aggregated message h̃(ℓ−1)

v (t) to obtain h(ℓ)v (t).748

Note that N (u, t) = {(z, e, t1), (w, e, t1)} and N (v, t) = {(w, e, t1)}, where e denotes an edge749

feature vector. Also, we have previously shown that h(ℓ−1)
w (t) = h

(ℓ−1)
z (t).750

Using the TGAT aggregation layer (Equation S2), the query vectors of u and v are qu =751

[h
(ℓ−1)
u (t)||ϕ(0)]W (ℓ)

q and qv = [h
(ℓ−1)
v (t)||ϕ(0)]W (ℓ)

q , respectively.752

Since all events have the common edge features e, the matrices C(ℓ)
u and C(ℓ)

v share the same vector in753

their rows. The single-row matrixC(ℓ)
v is given byC(ℓ)

v = [h
(ℓ−1)
w (t)||ϕ(t−t1)||e], while the two-row754

matrix C(ℓ)
u =

[
[h

(ℓ−1)
w (t)||ϕ(t− t1)||e]; [h(ℓ−1)

z (t)∥ϕ(t− t1)||e]
]
, with h(ℓ−1)

w (t) = h
(ℓ−1)
z (t). We755

can express C(ℓ)
u = [1, 1]⊤r and C(ℓ)

v = r , where r denotes the row vector r = [h
(ℓ−1)
z (t)||ϕ(t −756

t1)||e].757

Using the key and value matrices of node v, i.e., Kv = C
(ℓ)
v W

(ℓ)
K and Vv = C

(ℓ)
v W

(ℓ)
V , we have that758

h̃(ℓ)v (t) = softmax(qvK
⊤
v)Vv

= softmax(qvK
⊤
v)︸ ︷︷ ︸

=1

rW
(ℓ)
V [softmax of a single element is 1]

= rW
(ℓ)
V

= softmax(quK
⊤
u)[1, 1]

⊤︸ ︷︷ ︸
=1

rW
(ℓ)
V = h̃(ℓ)u (t) [softmax outputs a convex combination]

We have shown that the aggregated messages of nodes u and v are the same at any layer ℓ. We note759

that the initial embeddings are also identical h(0)v (t) = h
(0)
u (t) as u and v have the same color. Recall760

that the update step is h(ℓ)v (t) = MLP(h
(ℓ−1)
v (t), h̃

(ℓ)
v (t)). Therefore, if the initial embeddings are761

identical, and the aggregated messages at each layer are also identical, we have that h(ℓ)u (t) = h
(ℓ)
v (t)762

for any ℓ.763

Statement 2: TGN-Att cannot distinguish the nodes u and v in our example.764

We now show that adding a memory module to TGAT produces node states such that su(t) = sv(t) =765

sa(t), sz(t) = sw(t), and sb(t) = sc(t). If that is the case, then these node states could be treated766

as node features in a equivalent TGAT model of our example in Figure S2, proving that there is no767

TGN-Att such that h(ℓ)v (t) ̸= h
(ℓ)
u (t). In the following, we consider TGN-Att with average message768

aggregators (see Appendix A).769

We begin by showing that sa(t) = su(t) = sv(t) after memory updates. We note770

that the message node a receives is [e∥t1∥sz(t−1)]. The message node u receives is771

MEANAGG([e∥t1∥sw(t−1)], [e∥t1∥sz(t
−
1)]), but since sw(t−1) = sz(t

−
1), both messages are the same,772

and the average aggregator outputs [e∥t1∥sz(t−1)]. Finally, the message that node v receives is773

[e∥t1∥sw(t−1)] = [e∥t1∥sz(t−1)]. Since all three nodes receive the same message and have the same774

initial features, their updated memory states are identical.775

Now we show that sz(t) = sw(t), for t1 ≤ t < t2. Note that the message that node z receives is776

MEANAGG([e∥t1∥sa(t−1)], [e∥t1∥su(t
−
1)]) = [e∥t1∥su(t−1)], with su(t−1) = sa(t

−
1). The message777

that node w receives is MEANAGG([e∥t1∥su(t−1)], [e∥t1∥sv(t
−
1)]) = [e∥t1∥su(t−1)]. Again, since778

the initial features and the messages received by each node are equal, sz(t) = sw(t) for t1 ≤ t < t2.779

We can then use this to show that sz(t) = sw(t) for t ≥ t2. Note that at time t2, the message780

that nodes z and w receive are [e∥t2 − t1∥sb(t−2)] and [e∥t2 − t1∥sc(t−2)], respectively. Also, note781

20

that sb(t−2) = sc(t
−
2) = sb(0) = sc(0) as the states of b and c are only updated at t2. Because782

the received messages and the previous states (before t2) of z and w are identical, we have that783

sz(t) = sw(t) for t ≥ t2.784

Finally, we show that sb(t) = sc(t). Using that sz(t−2) = sw(t
−
2) in conjunction with the fact that785

node b receives message [[e∥t2 − t1∥sz(t−2)]], and node c receives [e∥t2 − t1∥sw(t−2)], we obtain786

sb(t) = sc(t) since initial memory states and messages that the nodes received are the same.787

B.7 Proof of Proposition 5: Limitations of MP-TGN and CAWs788

Figure S3: (Left) Example of a temporal graph for which CAW can distinguish the events (u, v, t3)
and (z, v, t3) but MP-TGNs cannot. We assume that all edge and node features are identical, and
tk+1 > tk for all k. (Right) Example for which MP-TGNs can distinguish (u, z, t4) and (u′, z, t4)
but CAW cannot.

Proof. Using the example in Figure S3(Left), we adapt a construction by Wang et al. [37] to show789

that CAW can separate events that MP-TGNs adopting node embedding concatenation cannot. We790

first note that the TCTs of u and z are isomorphic. Thus, since v is a common endpoint in (u, v, t3)791

and (z, v, t3), no MP-TGN can distinguish these two events. Nonetheless, CAW obtains the following792

anonymized walks for the event (u, v, t3):793

{[1, 0, 0], [0, 1, 0]}︸ ︷︷ ︸
ICAW(u;Su,Sv)

t1−→ {[0, 1, 0], [2, 0, 0]}︸ ︷︷ ︸
ICAW(v;Su,Sv)

{[0, 1, 0], [2, 0, 0]}︸ ︷︷ ︸
ICAW(v;Su,Sv)

t1−→ {[1, 0, 0], [0, 1, 0]}︸ ︷︷ ︸
ICAW(u;Su,Sv)

{[0, 1, 0], [2, 0, 0]}︸ ︷︷ ︸
ICAW(v;Su,Sv)

t2−→ {[0, 0, 0], [0, 1, 0]}︸ ︷︷ ︸
ICAW(w;Su,Sv)

t1−→ {[0, 0, 0], [0, 0, 1]}︸ ︷︷ ︸
ICAW(z;Su,Sv)

and the walks associated with (z, v, t3) are (here we omit underbraces for readability):794

{[1, 0, 0], [0, 0, 1]} t1−→ {[0, 1, 0], [0, 1, 0]}

{[0, 0, 0], [2, 0, 0]} t1−→ {[0, 0, 0], [0, 1, 0]}

{[0, 0, 0], [2, 0, 0]} t2−→ {[0, 1, 0], [0, 1, 0]} t1−→ {[1, 0, 0], [0, 0, 1]}

In this example, assume that MLPs used to encode each walk correspond to identity mappings. Then,795

the sum of the elements in each set is injective since each element of the sets in the anonymized796

walks are one-hot vectors. We note that, in this example, we can simply choose a RNN that sums the797

vectors in each sequence (walks), and then apply a mean readout layer (or pooling aggregator) to798

obtain distinct representations for (u, v, t3) and (z, v, t3).799

We now use the example in Figure S3(Right) to show that MP-TGNs can separate events that CAW800

cannot. To see why MP-TGNs can separate the events (u, z, t4) and (u′, z, t4), it suffices to observe801

that the 4-depth TCTs of u and u′ are non-isomorphic. Thus, a MP-TGN with injective layers could802

distinguish such events. Now, let us take a look at the anonymized walks for (u, z, t4):803

{[1, 0], [0, 0]}︸ ︷︷ ︸
ICAW(u;Su,Sz)

t1−→ {[0, 1], [0, 0]}︸ ︷︷ ︸
ICAW(v;Su,Sz)

{[0, 0], [1, 0]}︸ ︷︷ ︸
ICAW(z;Su,Sz)

t1−→ {[0, 0], [0, 1]}︸ ︷︷ ︸
ICAW(w;Su,Sz)

21

and for (u′, z, t4):804

{[1, 0], [0, 0]}︸ ︷︷ ︸
ICAW(u′;Su′ ,Sz)

t1−→ {[0, 1], [0, 0]}︸ ︷︷ ︸
ICAW(v′;Su′ ,Sz)

{[0, 0], [1, 0]}︸ ︷︷ ︸
ICAW(z;Su′ ,Sz)

t1−→ {[0, 0], [0, 1]}︸ ︷︷ ︸
ICAW(w;Su′ ,Sz)

Since the sets of walks are identical, they must have the same embedding. Therefore, there is no805

CAW model that can separate these two events.806

B.8 Proof of Proposition 6: Injective MP-TGNs and the temporal WL test807

We want to prove that injective MP-TGNs can separate two temporal graphs if and only if the808

temporal WL does the same. Our proof comprises two parts. We first show that if an MP-TGN809

produces different multisets of embeddings for two non-isomorphic temporal graphs G(t) and G′(t),810

then the temporal WL decides these graphs are not isomorphic. Then, we prove that, if the temporal811

WL decides G(t) and G′(t) are non-isomorphic, there is an injective MP-TGN (i.e., with injective812

message-passing layers) that outputs distinct multisets of embeddings.813

Statement 1: Temporal WL is at least as powerful as MP-TGNs.814

See Lemma B2 for proof.815

Statement 2: Injective MP-TGN is at least as powerful as temporal WL.816

Proof. To prove this, we can repurpose the proof of Theorem 3 in [42]. In particular, we assume MP-817

TGNs that meet the injective requirements of Proposition 2, i.e., MP-TGNs that implement injective818

aggregate and update functions on multisets of hidden representations from temporal neighbors.819

Following their footprints, we prove that there is a injection φ to the set of embeddings of all nodes820

in a temporal graph from their respective colors in the temporal WL test. We do so via induction821

on the number of layers ℓ. To achieve our purpose, we can assume identity memory without loss of822

generality.823

The base case (ℓ = 0) is straightforward since the temporal WL test initializes colors with node824

features. We now focus on the inductive step. Suppose the proposition holds for ℓ− 1. Note that our825

update function:826

h(ℓ)v (t) = UPDATE(ℓ)
(
h(ℓ−1)
v (t),AGG(ℓ)({{(h(ℓ−1)

u (t), t− t′, e) | (u, e, t′) ∈ N (v, t)}})
)

can be rewritten using φ as a function of node colors:827

h(ℓ)v (t) = UPDATE(ℓ)
(
φ(cℓ−1(v)),AGG(ℓ)({{(φ(cℓ−1(u)), t− t′, e) | (u, e, t′) ∈ N (v, t)}})

)
.

Note that the composition of injective functions is also injective. In addition, time-shifting operations828

are also injective. Thus we can construct an injection ψ such that:829

h(ℓ)v (t) = ψ
(
cℓ−1(v), {{(cℓ−1(u), t′, e) | (u, e, t′) ∈ N (v, t)}})

)
= ψ

(
cℓ−1(v), {{(cℓ−1(u), t′, euv(t

′)) | (v, u, t′) ∈ G(t)}})
)

since there exists an element (u, e, t′) ∈ N (v, t) if and only if there is an event (u, v, t′) ∈ G(t) with830

feature euv(t′) = e.831

Then, we can write:832

h(ℓ)v (t) = ψ ◦ HASH−1 ◦ HASH
(
cℓ−1(v), {{(cℓ−1(u), t′, euv(t

′)) | (u, v, t′) ∈ G(t)}})
)

= ψ ◦ HASH−1(c(ℓ)(v))

Note φ = ψ ◦ HASH−1 is injective since it is a composition of two injective functions. We then833

conclude that if the temporal WL test outputs different multisets of colors, then a suitable MP-TGN834

outputs different multisets of embeddings.835

22

Figure S4: Examples of temporal graphs for which MP-TGNs cannot distinguish the diameter, girth, and
number of cycles. For any node in G(t) (e.g., u1), there is a corresponding one in G′(t) (u′

1) whose TCTs are
isomorphic.

B.9 Proof of Proposition 7: MP-TGNs and CAWs fail to decide some graph properties836

Statement 1: MP-TGNs fail to decide some graph properties.837

Proof. Adapting a construction by Garg et al. [9], we provide in Figure S4 an example that demon-838

strates Proposition 7. Colors denote node features, and all edge features are identical. The temporal839

graphs G(t) and G′(t) are non-isomorphic and differ in properties such as diameter (∞ for G(t) and840

3 for G′(t)), girth (3 for G(t) and 6 for G′(t)), and number of cycles (2 for G(t) and 1 for G′(t)). In841

spite of that, for t > t3, the set of embeddings of nodes in G(t) is the same as that of nodes in G′(t)842

and, therefore, MP-TGNs cannot decide these properties. In particular, by constructing the TCTs of843

all nodes at time t > t3, we observe that the TCTs of the pairs (u1, u′1), (u2, u
′
2), (v1, v

′
1), (v2, v

′
2),844

(w1, w
′
1), (w2, w

′
2) are isomorphic and, therefore, they can not be distinguished (Lemma 1).845

Statement 2: CAWs fail to decide some graph properties.846

Since CAW does not provide a recipe to obtain graph-level embeddings, we first define such a847

procedure. Let G(t) be a temporal graph given as a set of events. We sequentially compute event848

embeddings hγ for each event γ = (u, v, t′) ∈ G(t) respecting the temporal order (two or more849

events at the same timestamp are computed in parallel). We then apply a readout layer to the set of850

event embeddings to obtain a graph-level representation. We provide a proof assuming this procedure.851

Figure S5: Examples of temporal graphs with different diameters, girths, and numbers of cycles.
CAWs fail to distinguish G1(t) and G2(t).

Proof. We can adapt our construction in Figure 2 [rightmost] to extend Proposition 7 to CAW. The852

idea consists of creating two temporal graphs with different diameters, girths, and numbers of cycles853

that comprise events that CAW cannot separate — Figure S5 provides one such construction. In854

particular, CAW obtains identical embeddings for (u, z, t3) and (a′, z′, t3) (as shown in Proposition 5).855

The remaining events are the same up to node re-labelling and thus also lead to identical embeddings.856

Therefore, CAW cannot distinguish G1(t) and G2(t) although they clearly differ in diameter, girth,857

and number of cycles.858

B.10 Proof of Lemma 2859

We now show that the k-th component of the relative positional features r(t)u→v corresponds to the860

number of occurrences of u at the k-th layer of the monotone TCT of v, and this is valid for all pairs861

of nodes u and v of the dynamic graph. We proceed with a proof by induction.862

[Base case] Let us consider t = 0, i.e., no events have occurred. By definition, r(0)u→v is the zero vector863

if u ̸= v, indicating that node u does not belong to the TCT of v. If u = v, then r(0)u→u = [1, 0, . . . , 0]864

corresponds to count 1 for the root of the TCT of u. Thus, for t = 0, the proposition holds.865

23

Figure S6: Illustration of how the monotone
TCT of v changes after an event between u
and v at time t. This allows us to see how to
update the positional features of any node i
of the dynamic graph that belongs to T̃u(t−)
relative to v.

[Induction step] Assume that the proposition holds866

for all nodes and any time instant before t. We will867

show that after the event γ = (u, v, t) at time t, the868

proposition remains true.869

Note that the event γ only impacts the monotone870

TCTs of u and v. The reason is that the TCTs of871

all other nodes have timestamps lower than t, which872

prevents the event γ from belonging to any path (with873

decreasing timestamps) from the root.874

Without loss of generality, let us now consider the875

impact of γ on the monotone TCT of v. Figure S6876

shows how the TCT of v changes after γ, i.e., how it877

goes from T̃v(t
−) to T̃v(t). In particular, the process878

attaches the TCT of u to the root node v. Under this879

change, we need to update the counts of all node i880

in T̃u(t−) regarding how many times it appears in881

T̃v(t). We do so by adding the counts in T̃u(t−) (i.e.,882

r
(t−)
i→u) to T̃v(t−) (i.e., r(t

−)
i→v), accounting for the 1-883

layer mismatch, since T̃u(t−) is attached to the first layer. This can be easily achieved with the shift884

matrix P =

[
0 0

Id−1 0

]
applied to the counts of any node i in T̃u(t−), i.e.,885

r
(t)
i→v = Pr

(t−)
i→u + r

(t−)
i→v ∀i ∈ V(t−)

u ,

where V(t−)
u comprises the nodes of the original graph that belong to T̃ (t−)

u .886

Similarly, the event γ also affects the counts of nodes in the TCT of v w.r.t. the TCT of u. To account887

for that change, we follow the same procedure and update r(t)j→u = Pr
(t−)
j→v + r

(t−)
j→u,∀j ∈ V(t−)

v .888

Handling multiple events at the same time. We now consider the setting where a given node v889

interacts with multiple nodes u1, u2, . . . , uJ at time t. We can extend the computation of positional890

features to this setting in a straightforward manner by noting that each event leads to an independent891

branch in the TCT of v. Therefore, the update of the positional features with respect to v is given by892

r
(t)
i→v = P

J∑
j=1

r
(t−)
i→uj

+ r
(t−)
i→v ∀i ∈

J⋃
j=1

V(t−)
uj

V(t)
v = V(t−)

v

J⋃
j=1

V(t−)
uj

.

We note that the updates of the positional features of u1, . . . , uJ remain untouched if they do not893

interact with other nodes at time t.894

B.11 Proof of Proposition 8: Injective function on temporal neighborhood895

Proof. To capture the intuition behind the proof, first consider a multiset M such that |M | < 4. We896

can assign a unique number ψ(m) ∈ {1, 2, 3, 4} to any distinct element m ∈M . Also, the function897

h(m) = 10−ψ(m) denotes the decimal expansion of ψ(m) and corresponds to reserving one decimal898

place for each unique element m ∈ M . Since there are less than 10 elements in the multiset, note899

that
∑
m h(m) is unique for any multiset M .900

To prove the proposition, we also leverage the well-known fact that the Cartesian product of two901

countable sets is countable — the Cantor’s (bijective) pairing function z : N × N → N, with902

z(n1, n2) =
(n1+n2)(n1+n2+1)

2 + n2, provides a proof for that.903

Here, we consider multisets M = {{(xi, ei, ti)}} whose tuples take values on the Cartesian product of904

the countable sets X , E , and T — the latter is also assumed to be bounded. In addition, we assume905

the lengths of all multisets are bounded by N , i.e., |M | < N for all M . Since X and E are countable,906

24

there exists an enumeration function ψ : X × E → N for all M . Without loss of generality, we907

assume T = {1, 2, tmax}. We want to show that exists a function of the form
∑
i 10

−kψ(xi,ei)α−βti908

that is unique on any multiset M .909

Our idea is to separate a range of k decimal slots for each unique element (xi, ei, ·) in the multiset.910

Each such a range has to accommodate at least tmax decimal slots (one for each value of ti). Finally,911

we need to make sure we can add up to N values at each decimal slot.912

Formally, we map each tuple (xi, ei, ·) to one of k decimal slots starting from 10−kψ(xi,ei). In913

particular, for each element (xi, ei, ti = j) we add one unit at the j-th decimal slot after 10−kψ(xi,ei).914

Also, to ensure the counts for (xi, ei, j) and (xi, ei, l ̸= j) do not overlap, we set β = ⌈log10N⌉915

since no tuple can repeat more than N times. We use α = 10 as we shift decimals. Finally, to916

guarantee that each range encompasses tmax slots of β decimals, we set k = β(tmax + 1). Therefore,917

the function918 ∑
i

10−kψ(xi,ei)α−βti

is unique on any multiset M . We note that, without loss of generality, one could choose a different919

basis (other than 10).920

B.12 Proof of Proposition 9: Expressiveness of PINT: link prediction921

Proof. We now show that PINT (with relative positional features) is strictly more powerful than922

MP-TGN and CAW in distinguishing edges of temporal graphs. Leveraging Proposition 5, it suffices923

to show that PINT is at least as powerful as both CAW and MP-TGN.924

Statement 1: PINT is at least as powerful as MP-TGNs.925

Since PINT is a generalization of MP-TGNs with injective aggregation/update layers, it derives that926

it is at least as powerful as MP-TGNs. We can set the model’s parameters associated with positional927

features to zero and obtain an equivalent MP-TGN.928

Statement 2: PINT is at least as powerful as CAW.929

We wish to show that for any pair of events that PINT cannot distinguish, CAW also cannot distinguish930

it. Let us consider the events (u, v, t) and (u′, v′, t) of a temporal graph G(t). Formally, we want to931

prove that if {{Tu(t), Tv(t)}} = {{Tu′(t), Tv′(t)}} (i.e., the multisets contain TCTs that are pairwise932

isomorphic), then {{ENC(W ;Su, Sv)}}W∈{Su∪Sv} = {{ENC(W ′;Su′ , Sv′)}}W ′∈{Su′∪Sv′}, where933

ENC denotes the walk-encoding function of CAW. Importantly, for the sake of this proof, we assume934

that all TCTs here are augmented with positional features, characterizing edge embeddings obtained935

from PINT.936

Without loss of generality, we can assume that Tu(t) ∼= Tu′(t) and Tv(t) ∼= Tv′(t). By Lemma B1,937

we know that the corresponding monotone TCTs are also isomorphic: T̃u(t) ∼= T̃u′(t), and T̃v(t) ∼=938

T̃v′(t) with associated bijections f1 : V (T̃u(t)) → V (T̃u′(t)) and f2 : V (T̃v(t)) → V (T̃v′(t)).939

We can construct a tree Tuv by attaching T̃u(t) and T̃v(t) to a (virtual) root node uv — without loss940

of generality, u and v are the left-hand and right-hand child of uv, respectively. We can follow the941

same procedure and create the tree Tu′v′ by attaching the TCTs T̃u′(t) and T̃v′(t) to a root node942

u′v′. Since the left-hand and right-hand subtrees of Tuv and Tu′v′ are isomorphic, then Tuv and943

Tu′v′ are also isomorphic. Let f : V (Tuv) → V (Tu′v′) denote the bijection associated with the944

augmented trees. We also assume f is constructed by preserving the bijections f1 and f2 defined945

between the original monotone TCTs: this ensures that f does not map any node in V (T̃u(t)) to a946

node in V (T̃v′(t)), for instance. We have that947

[r
(t)
♯i→u∥r

(t)
♯i→v] = [r

(t)
♯f(i)→u′∥r(t)♯f(i)→v′] ∀i ∈ V (Tuv) \ {uv}

Note that we use the function ♯ (that maps nodes in the TCT to nodes in the dynamic graph) here948

because the positional feature vectors are defined for nodes in the dynamic graph.949

To guarantee that two encoded walks are identical ENC(W ;Su, Sv) = ENC(W ′;Su′ , Sv′), it950

suffices to show that the anonymized walks are equal. Thus, we turn our problem into show-951

ing that for any walk W = (w0, t0, w1, t1, . . .) in Su ∪ Sv, there exists a corresponding one952

25

W ′ = (w′
0, t0, w

′
1, t1, . . .) in Su′ ∪ Sv′ such that ICAW(wi;Su, Sv) = ICAW(w′

i;Su′ , Sv′) for all953

i. Recall that ICAW(wi;Su, Sv) = {g(wi;Su), g(wi;Sv)}, where g(wi;Su) is a vector whose k-954

component stores how many times wi appears in a walk from Su at position k.955

A key observation is that there is an equivalence between deanonymized root-leaf paths in Tuv and956

walks in Su ∪ Sv (disregarding the virtual root node). By deanonymized, we mean paths where node957

identities (in the temporal graph) are revealed by applying the function ♯. Using this equivalence, it958

suffices to show that959

g(♯i;Su) = g(♯f(i);Su′) and g(♯i;Sv) = g(♯f(i);Sv′) ∀i ∈ V (Tuv) \ {uv}

Suppose there is an i ∈ V (Tuv)\{uv} such that g(♯i;Su) ̸= g(♯f(i);Su′). Without loss of generality,960

suppose this holds for the ℓ-th entry of the vectors.961

We know there are exactly r(t)a→u[ℓ] nodes at the ℓ-th level of T̃u(t) that are associated with a = ♯i ∈962

V (G(t)). We denote by Ψ the set comprising such nodes. It also follows that computing g(♯i;Su)[ℓ]963

is the same as summing up the amount of leaves of each subtree of T̃u(t) rooted at ψ ∈ Ψ, which we964

denote as l(ψ; T̃u(t)), i.e.,965

g(♯i;Su)[ℓ] =
∑
ψ∈Ψ

l(ψ; T̃u(t)).

Since we assume g(♯i;Su)[ℓ] ̸= g(♯f(i);Su′)[ℓ], then it holds that966

g(♯i;Su)[ℓ] ̸= g(♯f(i);Su′)[ℓ] ⇒
∑
ψ∈Ψ

l(ψ; T̃u(t)) ̸=
∑
ψ∈Ψ

l(f(ψ); T̃u′(t)) (S5)

Note that the subtree of T̃u rooted at ψ should be isomorphic to the subtree of T̃u′ rooted at f(ψ),967

and therefore have the same number of leaves. However, the RHS of Equation S5 above implies there968

is a ψ ∈ Ψ for which l(ψ; T̃u) ̸= l(f(ψ); T̃u′), reaching a contradiction. The same argument can969

be applied to v and v′ to prove that g(♯i;Sv) = g(♯f(i);Sv′).970

971

C Additional related works972

Structural features for static GNNs. Using structural features to enhance the power of GNNs is973

an active research topic. Bouritsas et al. [47] improved GNN expressivity by incorporating counts974

of local structures in the message-passing procedure, e.g, the number triangles a node appears on.975

These counts depend on identifying subgraph isomorphisms and, naturally, can become intractable976

depending on the chosen substructure. Li et al. [51] proposed increasing the power of GNNs using977

distance encodings, i.e., augmenting original node features with distance-based ones. In particular,978

they compute the distance between a node set whose representation is to be learned and each node979

in the graph. To alleviate the cost of distance encoding, an alternative is to learn absolute position980

encoding schemes [50, 59, 60], that try to summarize the role each node plays in the overall graph981

topology. We note that another class of methods uses random features to boost the power of GNNs982

[46, 56]. However, these models are referred to be hard to converge and to obtain noisy predictions983

[60].984

The most trivial difference between these approaches and PINT is that our relative positional features985

account for temporal information. On a deeper level, our features summarize the role each node plays986

in each other’s monotone TCT instead of measuring, e.g., pair-wise distances in the original graph or987

counting substructures. Also, our scheme leverages the temporal aspect to achieve computational988

tractability, updating features incrementally as events unroll. Finally, while some works proposing989

structural features for static GNNs present marginal gains [60], PINT exhibits significant performance990

gains in real-world temporal link prediction tasks.991

Other models for temporal graphs. Representation learning for dynamic graphs is a broad and992

diverse field. In fact, strategies to cope with the challenge of modeling dynamic graphs can come993

in many flavors, including simple aggregation schemes [18], walk-aggregating methods [52], and994

combinations of sequence models with GNNs [54, 57]. For instance, Seo et al. [57] used a spectral995

graph convolutional network [48] to encode graph snapshots followed by a graph-level LSTM [13].996

26

Manessi et al. [53] followed a similar approach but employed a node-level LSTM, with parameters997

shared across the nodes. Sankar et al. [55] proposed a fully attentive model based on graph attention998

networks [34]. Pareja et al. [54] applied a recurrent neural net to dynamically update the parameters999

of a GCN. Gao and Ribeiro [49] compared the expressive power of two classes of models for discrete1000

dynamic graphs: time-and-graph and time-then-graph. The former represents the standard approach1001

of interleaving GNNs and sequence (e.g., RNN) models. In the latter class, the models first capture1002

node and edge dynamics using RNNs, and are then feed into graph neural networks. The authors1003

showed that time-then-graph has expressive advantage over time-and-graph approaches under mild1004

assumptions. For an in-depth review of representation learning for dynamic graphs, we refer to the1005

survey works by Kazemi et al. [14] and Skarding et al. [58].1006

While most of the early works focused on discrete-time dynamic graphs, we have recently witnessed1007

a rise in interest in models for event-based temporal graphs (i.e., CTDGs). The reason is that1008

models for DTDGs may fail to leverage fine-grained temporal and structural information that can be1009

crucial in many applications. In addition, it is hard to specify meaningful time intervals for different1010

tasks. Thus, modern methods for temporal graphs explicitly incorporate timestamp information1011

into sequence/graph models, achieving significant performance gains over approaches for DTDGs1012

[37]. Appendix A provides a more detailed presentation of CAW, TGN-Att, and TGAT, which are1013

among the best performing models for link prediction on temporal graphs. Besides these methods,1014

JODIE [16] applies two RNNs (for the source and target nodes of an event) with a time-dependent1015

embedding projection to learn node representations of item-user interaction networks. Trivedi et al.1016

[32] employed RNNs with a temporally attentive module to update node representations. APAN1017

[61] consists of a memory-based TGN that uses attention mechanism to update memory states using1018

multi-hop temporal neighborhood information.1019

27

D Datasets and implementation details1020

D.1 Datasets1021

In our empirical evaluation, we have considered six datasets for dynamic link prediction: Reddit1,1022

Wikipedia2, UCI3, LastFM4, Enron5, and Twitter. Reddit is a network of posts made by users on1023

subreddits, considering the 1,000 most active subreddits and the 10,000 most active users. Wikipedia1024

comprises edits made on the 1,000 most edited Wikipedia pages by editors with at least 5 edits. Both1025

Reddit and Wikipedia networks include links collected over one month, and text is used as edge1026

features, providing informative context. The LastFM dataset is a network of interactions between1027

user and the songs they listened to. UCI comprises students’ posts to a forum at the University1028

of California Irvine. Enron contains a collection of email events between employees of the Enron1029

Corporation, before its bankruptcy. The Twitter dataset is a non-bipartite net where nodes are users1030

and interactions are retweets. Since Twitter is not publicly available, we build our own version by1031

following the guidelines by Rossi et al. [27]. We use the data available from the 2021 Twitter RecSys1032

Challenge and select 10,000 nodes and their associated interactions based on node participation:1033

number of interactions the node participates in. We also apply multilingual BERT to obtain text1034

representations of retweets (edge features).1035

Table S1 reports statistics of the datasets such as number of temporal nodes and links, and the1036

dimensionality of the edge features. We note that UCI, Enron, and LastFM represent non-attributed1037

networks and therefore do not contain feature vectors associated with the events. Also, the node1038

features for all datasets are vectors of zeros [41].1039

Table S1: Summary statistics of the datasets.
Dataset #Nodes #Events #Edge feat. Bipartite?
Reddit 10,984 (10,000 / 984) 672,447 172 Yes
Wikipedia 9,227 (8,227 / 1,000) 157,474 172 Yes
Twitter 8,925 406,564 768 No
UCI 1,899 59,835 - No
Enron 184 125,235 - No
LastFM 1,980 (980 / 1,000) 1,293,103 - Yes

D.2 Implementation details1040

We train all models in link prediction tasks in a self-supervised approach. During training, we1041

generate negative samples: for each actual event (z, w, t) (class 1), we create a fake one (z, w′, t)1042

(class 0) where w′ is uniformly sampled from the set of nodes, and both events have the same edge1043

feature vector.1044

To ensure a fair comparison, we mainly rely on the original repositories and guidelines. For instance,1045

regarding the training of MP-TGNs (including PINT), we mostly follow the setup and choices in the1046

implementation available in [27]. In particular, we apply the Adam optimizer with learning rate 10−41047

during 50 epochs with early stopping if there is no improvement in validation AP for 5 epochs. In1048

addition, we use batch size 200 for all methods. We report statistics (mean and standard deviation) of1049

the performance metric (AP) over ten runs.1050

MP-TGNs. For TGN-Att, we follow Rossi et al. [27] and sample either ten or twenty temporal1051

neighbors with memory dimensionality equal to 172, node embedding dimension equal to 100, and1052

two attention heads. We use a memory unit implemented as a GRU, and update the state of each node1053

based on only its most recent message. For TGAT, we use twenty temporal neighbors and two layers.1054

CAW. We conduct model selection using grid search over: i) time decay α ∈1055

{0.01, 0.1, 0.25, 0.5, 1.0, 2.0, 4.0, 10.0, 100.0} × 10−6, ii) number of walks M ∈ {1, 2, 3, 4, 5};1056

and iii) walk length L ∈ {32, 64, 128}. The best combination of hyperparameters is shown in1057

1http://snap.stanford.edu/jodie/reddit.csv
2http://snap.stanford.edu/jodie/wikipedia.csv
3http://konect.cc/networks/opsahl-ucforum/
4http://snap.stanford.edu/jodie/lastfm.csv
5https://www.cs.cmu.edu/~./enron/

28

http://snap.stanford.edu/jodie/reddit.csv
http://snap.stanford.edu/jodie/wikipedia.csv
http://konect.cc/networks/opsahl-ucforum/
http://snap.stanford.edu/jodie/lastfm.csv
https://www.cs.cmu.edu/~./enron/

Table S2. The remaining training choices follows the default values from the original implementation.1058

Importantly, we note that TGN-Att’s original evaluation setup is different from CAW’s. Thus, we1059

adapted CAW’s original repo to reflect these differences and ensure a valid comparison.1060

Table S2: Optimal hyperparameters for CAW.
Dataset Time decay α #Walks Walk length

Reddit 10−8 32 3
Wikipedia 4× 10−6 64 4
Twitter 10−6 64 3
UCI 10−5 64 2
Enron 10−6 64 5
LastFM 10−6 64 2

PINT. We use α = 2 (in the exponential aggregation function), and experiment with learned and1061

fixed β. We apply a relu function to avoid negative values of β, which could lead to unstable training.1062

We do grid search as the follow: when learning beta, we consider initial values for β ∈ {0.1, 0.5};1063

for the fixed case (requires_grad=False), we evaluate β ∈ {0.001, 0.0001, 0.0001} and always1064

apply memory as in the original implementation of TGN-Att. We consider number message passing1065

layers ℓ in {1, 2}. Also, we apply neighborhood sampling with the number of neighbors in {10, 20},1066

and update the state of a node based on its most recent message. We then carry out model selection1067

based on AP values obtained during validation. Overall, the models with fixed β led to better results.1068

Table S3 reports the optimal hyperparameters for PINT found via automatic model selection.1069

In all experiments, we use relative positional features with d = 4 dimensions. For computational1070

efficiency, we update the relative positional features only after processing a batch, factoring in all1071

events from that batch. Note that this prevents information linkage as these positional features take1072

effect after prediction. In addition, since temporal events repeat (in the same order) at each epoch, we1073

also speed up PINT’s training procedure by precomputing and saving the positional features for each1074

batch. To save up space, we store the positional features as sparse matrices.1075

Table S3: Optimal hyperparameters for PINT.
Dataset β #Neighbors #Layers

Reddit 10−5 10 2
Wikipedia 10−4 10 2
Twitter 10−5 20 2
UCI 10−5 10 2
Enron 10−5 20 2
LastFM 10−4 10 2

Hardware. For all experiments, we use Tesla V100 GPU cards and consider a memory budget of1076

32GB of RAM. We omit further details to preserve anonymity during the review process.1077

E Deletion and node-level events1078

Rossi et al. [27] propose handling edge deletions by simply updating memory states of the edge’s1079

endpoints, as if we were dealing with a usual edge addition. However, it is not discussed whether1080

the edge in question should be excluded from the event list or if we should just add a novel event1081

with edge features that characterize deletion. If we choose the former, we may be unable to recover1082

the memory state of a node from its monotone TCT and the original node features. Removing an1083

edge from the event list also affects the computation of node embeddings. Therefore, we advise1084

practitioners to do the latter when using PINT. It is worth mentioning that the vast majority of models1085

for temporal interaction prediction do not consider the possibility of deletion events.1086

Regarding node-level events, PINT can accommodate node addition by simply creating novel memory1087

states. To deal with node feature updates, we can create an edge event with both endpoints on that1088

node, inducing a self-loop in the dynamic graph. Also, we can combine (e.g., concatenate) the1089

29

temporal features in message-passage operations, similarly to the general formulation of the MP-TGN1090

framework [27]. Finally, we can deal with the removal of a node v by following our previous (edge1091

deletion) procedure to delete all edges with endpoints in v.1092

F Additional experiments1093

Time comparison. Figure S7 compares the time per epoch for PINT and for the prior art (CAW,1094

TGN-Att, and TGAT) in the Enron and LastFM datasets. Following the trend in Figure 6, Figure S71095

further supports that PINT is generally slower than other MP-TGNs but, after a few training epochs,1096

is orders of magnitude faster than CAW. In the case of Enron, the time CAW takes to complete an1097

epoch is much higher than the time we need to preprocess PINT’s positional features.1098

0 25 50 100 150 200
Epochs

4

5

6

7

A
vg

.t
im

e
pe

re
po

ch
lo

g
(s

) Enron

0 25 50 100 150 200
Epochs

6

7

8

9
LastFM

PINT PINT (w/o pos.) TGAT CAW TGN-Att

Figure S7: Time comparison: PINT versus TGNs (in log-scale) on Enron and LastFM.

Dimensionality of positional features. We now assess the performance of PINT as a function of1099

the dimensionality d of the relative positional features. Figure S8 shows the performance of PINT1100

for d ∈ {4, 10, 15, 20} on UCI and Enron. We report mean and standard deviation of AP on test set1101

obtained from five independent runs. In all experiments, we re-use the optimal hyper-parameters1102

found with d = 4 (the configuration shown in the main paper). Increasing the dimensionality of the1103

positional features leads to performance gains on both datasets. Notably, we obtain a significant boost1104

for Enron with d = 10: 92.696± 0.095% AP in the transductive setting and 88.342± 0.294% in the1105

inductive case. Thus, PINT becomes the best-performing model on Enron (transductive). On the UCI1106

dataset, higher d results in more significant gains in the inductive case. On UCI, with d = 20, we1107

obtain 96.36± 0.067 (transductive) and 94.77± 0.12 (inductive).1108

4 10 15 20
Dims. (d)

93

94

95

96

97

A
P

(t
es

t)

UCI

4 10 15 20
Dims. (d)

75

80

85

90

95
Enron

transductive
inductive

Figure S8: PINT: AP (mean and std) as a function of the dimensionality of the positional features.

Incorporating relative positional encoding into MP-TGNs. We can also use PINT’s relative1109

positional encoding to boost the performance of MP-TGNs. As a proof of concept, we have imple-1110

mented TGN-Att with PE. We use the same model selection procedure as TGN-Att in Table 1, and1111

incorporate d = 4-dimensional positional features.1112

Table S4 shows the performance of TGN-Att+PE on three unattributed link prediction benchmarks1113

(UCI, Enron, and LastFM). Notably, TGN-Att receives a significant boost from our PE. However,1114

PINT still beats TGN-Att+PE on 5 out of 6 cases. The values for TGN-Att+PE reflect the outcome of1115

5 repetitions.1116

30

Table S4: Link prediction: TGN-Att + relative positional encoding (AP).
Transductive Inductive

UCI Enron LastFM UCI Enron LastFM

TGN-Att 80.40± 1.4 79.91± 1.3 80.69± 0.2 74.70± 0.9 78.96± 0.5 84.66± 0.1
TGN-Att + PE 95.64± 0.06 85.04± 2.54 89.41± 0.91 92.82± 0.4 76.27± 3.37 91.63± 0.31
PINT 96.01± 0.1 88.71± 1.3 88.06± 0.7 93.97± 0.1 81.05± 2.4 91.76± 0.7

Experiments on node classification. For completeness, we also evaluate PINT on node-level1117

tasks (Wikipedia and Reddit). We follow closely the experimental setup in Rossi et al. [27] and1118

compare against the baselines therein. Table S5 shows that PINT ranks first on Reddit and second on1119

Wikipedia. The values for PINT reflect the outcome of 5 repetitions.1120

Table S5: Results for node classification (AUC).
Wikipedia Reddit

CTDNE 75.89 ± 0.5 59.43 ± 0.6
JODIE 84.84 ± 1.2 61.83 ± 2.7
TGAT 83.69 ± 0.7 65.56 ± 0.7
DyRep 84.59 ± 2.2 62.91 ± 2.4
TGN-Att 87.81 ± 0.3 67.06 ± 0.9
PINT 87.59 ± 0.6 67.31 ± 0.2

G Societal and broader impact1121

Temporal graph networks have shown remarkable performance in relevant domains such as social1122

networks, e-commerce, and education. In this paper, we establish fundamental results that delineate1123

the representational power of TGNs. We expect that our findings will help declutter the literature and1124

serve as a seed for future developments. Moreover, our analysis culminates with PINT, a method1125

that is provably more powerful than the prior art and shows superior predictive performance in a1126

series of benchmarks. We believe that PINT (and its underlying concepts) will help engineers and1127

researchers build better recommendation engines, improving the quality of systems that permeate1128

our lives. Furthermore, we do not foresee any negative societal impact stemming directly from our1129

developments.1130

Supplementary References1131

[46] R. Abboud, I. I. Ceylan, M. Grohe, and T. Lukasiewicz. The surprising power of graph neural networks1132

with random node initialization. In International Joint Conference on Artificial Intelligence (IJCAI), 2021.1133

[47] G. Bouritsas, F. Frasca, S. Zafeiriou, and M. M. Bronstein. Improving graph neural network expressivity1134

via subgraph isomorphism counting. In Arxiv e-prints, 2020.1135

[48] M. Defferrard, X. Bresson, and P. Vandergheynst. Convolutional neural networks on graphs with fast1136

localized spectral filtering. In Advances in Neural Information Processing Systems (NeurIPS), 2018.1137

[49] J. Gao and B. Ribeiro. On the equivalence between temporal and static graph representations for observa-1138

tional predictions. ArXiv, 2103.07016, 2021.1139

[50] D. Kreuzer, D. Beaini, W. L. Hamilton, V. Letourneau, and P. Tossou. Rethinking graph transformers with1140

spectral attention. In Advances in Neural Information Processing Systems (NeurIPS), 2021.1141

[51] P. Li, Y. Wang, H. Wang, and J. Leskovec. Distance encoding: Design provably more powerful neural1142

networks for graph representation learning. In Advances in Neural Information Processing Systems1143

(NeurIPS), 2020.1144

[52] S. Mahdavi, S. Khoshraftar, and A. An. dynnode2vec: Scalable dynamic network embedding. In1145

International Conference on Big Data, 2018.1146

[53] Franco Manessi, Alessandro Rozza, and Mario Manzo. Dynamic graph convolutional networks. Pattern1147

Recognition, 97, 2020.1148

31

[54] A. Pareja, G. Domeniconi, J. Chen, T. Ma, H. Kanezashi T. Suzumura, T. Kaler, T. B. Schardl, and C. E.1149

Leiserson. EvolveGCN: Evolving graph convolutional networks for dynamic graphs. In AAAI Conference1150

on Artificial Intelligence (AAAI), 2020.1151

[55] A. Sankar, Y. Wu, L. Gou, W. Zhang, and H. Yang. Dysat: Deep neural representation learning on dynamic1152

graphs via self-attention networks. In International Conference on Web Search and Data Mining (WSDM),1153

2020.1154

[56] R. Sato, M. Yamada, and H. Kashima. Random features strengthen graph neural networks. In SIAM1155

International Conference on Data Mining (SDM), 2021.1156

[57] Y. Seo, M. Defferrard, P. Vandergheynst, and X. Bresson. Structured sequence modeling with graph1157

convolutional recurrent networks. In International Conference on Neural Information Processing (ICONIP),1158

2018.1159

[58] Joakim Skarding, Bogdan Gabrys, and Katarzyna Musial. Foundations and modeling of dynamic networks1160

using dynamic graph neural networks: A survey. IEEE Access, 9:79143–79168, 2021.1161

[59] B. Srinivasan and B. Ribeiro. On the equivalence between positional node embeddings and structural graph1162

representations. In International Conference on Learning Representations (ICLR), 2020.1163

[60] H. Wang, H. Yin, M. Zhang, and P. Li. Equivariant and stable positional encoding for more powerful graph1164

neural networks. In International Conference on Learning Representations (ICLR), 2022.1165

[61] X. Wang, D. Lyu, M. Li, Y. Xia, Q. Yang, X. Wang, X. Wang, P. Cui, Y. Yang, B. Sun, and Z. Guo. APAN:1166

Asynchronous propagation attention network for real-time temporal graph embedding. International1167

Conference on Management of Data, 2021.1168

32

	Introduction
	Preliminaries
	The representational power and limits of TGNs
	Distinguishing nodes with MP-TGNs
	Predicting temporal links
	Connections with the WL test

	Position-encoding injective temporal graph net
	Experiments
	Conclusion
	Further details on temporal graph networks
	Temporal graph attention (TGAT)
	Temporal graph networks with attention (TGN-Att)
	Causal anonymous walks (CAW)

	Proofs
	Further definitions and Lemmata
	Proof of Proposition 1: Relationship between DTDGs and CTDGs
	Proof of Lemma 1
	Proof of Proposition 2: Most expressive MP-TGNs
	Proof of Proposition 3: The role of memory
	Proof of Proposition 4: Limitations of TGAT and TGN-Att
	Proof of Proposition 5: Limitations of MP-TGN and CAWs
	Proof of Proposition 6: Injective MP-TGNs and the temporal WL test
	Proof of Proposition 7: MP-TGNs and CAWs fail to decide some graph properties
	Proof of Lemma 2
	Proof of Proposition 8: Injective function on temporal neighborhood
	Proof of Proposition 9: Expressiveness of PINT: link prediction

	Additional related works
	Datasets and implementation details
	Datasets
	Implementation details

	Deletion and node-level events
	Additional experiments
	Societal and broader impact

