
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

EFFI-CODE: UNLEASHING CODE EFFICIENCY
IN LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

As the use of large language models (LLMs) for code generation becomes more
prevalent in software development, it is critical to enhance both the efficiency
and correctness of the generated code. Existing methods and models primarily
focus on the correctness of LLM-generated code, ignoring efficiency. In this work,
we present EFFI-CODE, an approach to enhancing code generation in LLMs that
can improve both efficiency and correctness. We introduce a Self-Optimization
process based on Overhead Profiling that leverages open-source LLMs to generate
a high-quality dataset of correct and efficient code samples. This dataset is then
used to fine-tune various LLMs. Our method involves the iterative refinement of
generated code, guided by runtime performance metrics and correctness checks.
Extensive experiments demonstrate that models fine-tuned on the EFFI-CODE
show significant improvements in both code correctness and efficiency across task
types. For example, the pass@1 of DeepSeek-Coder-6.7B-Instruct generated code
increases from 43.3% to 76.8%, and the average execution time for the same
correct tasks decreases by 30.5%. EFFI-CODE offers a scalable and generalizable
approach to improving code generation in AI systems, with potential applications
in software development, algorithm design, and computational problem-solving.

1 INTRODUCTION

Large language models (LLMs) have recently made significant strides across various tasks (OpenAI,
2023; Anil et al., 2023; Anthropic, 2024; Meta, 2024), including code-related applications like code
completion (Chen et al., 2021; Austin et al., 2021), debugging (Haque et al., 2022; Chen et al., 2023),
and translation(Rozière et al., 2020; Ahmad et al., 2023). These advanced tools have been seamlessly
integrated into popular development environments, enhancing developer productivity by providing
intelligent code recommendations based on natural language instructions.

Before deploying LLMs into integrated development environments (IDEs) as tools, it is crucial to
ensure that the generated code meets the required efficacy standards. To address this, researchers
have explored various datasets to fine-tune LLMs, thereby improving the efficacy of LLM-generated
code (Ouyang et al., 2022; Wei et al., 2022). For example, Code Alpaca (Chaudhary, 2023) utilized
the Self-Instruct framework (Wang et al., 2023) to synthesize data, while WizardCoder (Luo et al.,
2024) employed the Evol-Instruct technique (Xu et al., 2024) to generate heuristic prompts for
diverse solutions. Additionally, OSS-Instruct (Wei et al., 2024) created new coding problems using
open-source snippets with LLMs, and Octopack (Muennighoff et al., 2024) focused on curating
high-quality Git commit messages that resemble natural language instructions. These fine-tuning
efforts have led to increased correctness in LLM-generated code.

However, our observation is that existing works primarily focus on enhancing the correctness of
LLM-generated code while neglecting to optimize its efficiency. As a result, the efficiency of
such code often falls short compared to canonical solutions written by human developers. Recent
studies (Shi et al., 2024; Niu et al., 2024; Du et al., 2024; Huang et al., 2024a) also point out that
LLM-generated code typically exhibits lower efficiency in terms of execution time and memory
usage. For instance, on the EffiBench benchmark (Huang et al., 2024b), even the most advanced
LLMs, such as GPT-4-Turbo, produced less efficient code, with average and worst-case execution
times being 1.69 and 45.49 times longer than those of canonical solutions, respectively.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Efficiency is crucial because inefficient code consumes more computational resources, leading to
higher energy consumption and increased operational costs. This is particularly important in the
context of sustainability, as the demand for computing power continues to grow, and reducing
the environmental impact of large-scale computations becomes a pressing concern. Furthermore,
inefficient code may be impractical for use in resource-constrained environments, such as mobile
devices or embedded systems, where both energy and processing power are limited. This underscores
the urgent need to develop new methods that can enhance both the correctness and efficiency of
LLM-generated code.

In this paper, we introduce the dataset EFFI-CODE, aimed at fine-tuning LLMs to improve both code
efficiency and correctness. We begin by aggregating source code from eight existing open-source
datasets available on the Hugging Face platform. This is followed by a rigorous preprocessing and
cleaning process, coupled with the generation of test cases for each task to evaluate code efficiency.
The cleaned code is executed using test cases to profile memory usage and execution time Huang
et al. (2024a). Through a self-optimization process based on these profiles Huang et al. (2024a), we
iteratively refine the code over five optimization cycles. The resulting optimized code, along with its
associated metadata, forms the foundation of our fine-tuning dataset, EFFI-CODE, which serves as a
high-quality resource for training LLMs to generate more efficient code while ensuring correctness.

Extensive experiments on HumanEval (Chen et al., 2021) and EffiBench (Huang et al., 2024b)
demonstrate that fine-tuning LLMs with EFFI-CODE improves both correctness and efficiency. For
example, the fine-tuned DeepSeek-Coder-6.7B (DeepSeekAI, 2023) increases the pass@1 from 43.3%
to 76.8% on HumanEval, while also reducing the average execution time from 0.59 seconds to 0.41
seconds — representing a 30.5% reduction in execution time overhead. Compared to PIE (Shypula
et al., 2024), which increases the pass@1 from 12.2% to 19.5% on HumanEval, the pass@1 of
CodeLlama-7B (Rozière et al., 2023) fine-tuned with EFFI-CODE further increases to 37.8%. In
addition, EFFI-CODE decreases the execution time by 7.1% while PIE decreases it by 4.8%. We
will fully open-source EFFI-CODE, the source code, and model weights to facilitate research. To
conclude, this paper makes the following contributions:

• We provide a framework to inspire researchers to construct code generation datasets contain-
ing efficient solutions for each code generation task, which is versatile and can be adapted to
different programming languages and leverage various existing data sources. Unlike some
other code generation datasets that rely on powerful models (e.g., GPT-4), our framework
can be implemented only using open-sourced LLMs. The framework provides a systematic
method for researchers to enhance existing datasets or create new ones focused on code
efficiency across different languages and domains.

• Based on our proposed framework, we release the Effi-Code dataset. To the best of our
knowledge, it is the first instruct tuning dataset that focuses on improving the efficiency of
LLM-generated code. The primary purpose of Effi-Code is to instruct and fine-tune LLMs
to ensure that the LLM-generated code is more efficient.

• We use Effi-Code to fine-tune widely used LLMs and will release these models on the
Hugging Face website in the final version. Different from existing datasets that are used to
finetune the LLMs to improve the pass@1 of LLM-generated code, our evaluation results
demonstrate that both the pass@1 and the efficiency results would be improved for LLMs
finetuned on our Effi-Code dataset.

2 RELATED WORKS

Instruction tuning has proven effective in enhancing the usability and overall performance of LLMs
across various language tasks (Ouyang et al., 2022; Wei et al., 2022; Zhao et al., 2024). This approach
has been extended to the domain of code generation. The core challenge is the acquisition of high-
quality instructional data, which is often labor-intensive. To address this, recent research has focused
on developing methods to generate synthetic instruction data. Studies have shown that textbook-
quality synthetic data alone can improve a model’s coding and reasoning capabilities (Gunasekar
et al., 2023; Li et al., 2023b). One early effort was Self-Instruct (Wang et al., 2023), which utilized
LLMs to generate synthetic instruction-response pairs using carefully crafted prompts. The same
LLM was then instruction-tuned on this synthetic data. Code Alpaca (Chaudhary, 2023) applied the

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Self-Instruct approach with GPT models, tailoring it specifically for code generation, editing, and
optimization tasks. Building upon this, WizardCoder (Luo et al., 2024) adapted the Evol-Instruct
technique (Xu et al., 2024) to the coding domain by designing heuristic prompts to create more
complex and diverse synthetic data. OSS-Instruct (Wei et al., 2024) took a different approach by
leveraging LLMs to automatically generate new coding problems inspired by random code snippets
from open-source repositories. In contrast, Octopack (Muennighoff et al., 2024) focused on collecting
and filtering high-quality Git commit messages that resemble natural language instructions. While
these existing methods primarily emphasize generating correct code, EFFI-CODE explores the use of
fine-tuning to improve code efficiency. Our method is orthogonal to existing synthetic techniques,
offering the potential for combination to further enhance the coding capabilities of LLMs.

3 EFFI-CODE: FINE-TUNING FOR EFFICIENCY

In this section, we provide a det ailed pipeline for constructing the dataset EFFI-CODE for fine-tuning.
Specifically, we first collect source code from eight existing open-source datasets available on the
HuggingFace platform1. To ensure the quality and usability of the collected data, we use several
filtering strategies, such as filtering tasks that are not algorithmic tasks and do not require efficiency
optimization2. In addition, we also generate test cases for each task to ensure that we can measure
the efficiency of each task’s source code.

Next, we execute the cleaned source code using the generated test cases to profile the memory usage
and execution time for each task. Then, we use Self-Optimization based on these overheAd Profiles
(SOAP; Huang et al. 2024a), which iteratively refines the code over five optimization cycles to
generate an efficient solution for each task in the collected tasks. Finally, we process the optimized
code and the associated metadata to create our final fine-tuning dataset, EFFI-CODE, which is carefully
curated to provide a high-quality resource for training models to generate more efficient code while
maintaining correctness.

3.1 SOURCE DATA COLLECTION

To construct a high-quality dataset to improve code efficiency, the first important step is to collect
a large number of code task candidates, which will be used for further processing. In our exper-
iments, we collected code candidates from several existing code generation tasks. As shown in
Table 1, the collected datasets include CodeFeedback-Filtered-Instruction (CodeFeed; MAP 2023),
Tested-143k-Python-Alpaca (Alpaca; Vezora 2023), Glaive-Code-Assistant (Glaive; Computer 2023),
Magicoder-Evol-Instruct-110K (Evol-Ins; UIUC 2023a), Dolphin-Coder (Dolphin; Computations
2023), Magicoder-OSS-Instruct-75K (Oss-Ins; UIUC 2023b), Self-OSS-Instruct-SC2-Exec-Filter-
50K (Self-Oss; BigCode 2023), and Apps (Hendrycks et al., 2021).

3.2 PRE-SOAP CONSTRUCTION

Before the SOAP stage (Section 3.3), we construct the correct solutions and unit test cases for the
collected data. To create a well-structured dataset for the SOAP process, we follow the steps below to
filter and process tasks from our collected candidates:

Convert code into functions (Step 1): The first step in our experiments is to convert the Python
source code for tasks that are not initially in function format into a function representation and filter
out tasks that are not written in Python. For example, in the original solutions provided by the APPS
dataset, some task solutions are not at the function level. In this setup, we convert these solutions
into function-level representations. Additionally, since the test cases for these tasks are not in the
unit test case format, we also convert them into unit test cases using the following format: assert
function_name(inputs) == outputs.

Filter tasks with risky operations (Step 2): In our experiments, some datasets are generated based
on Language Models (LLMs), where they first require an LLM (e.g., GPT-3.5-turbo) to generate
task descriptions and then generate source code based on those descriptions. As the source code

1https://huggingface.co/docs/datasets/index
2Data decontamination was not included in the filtering process as most of the tasks we collected have been

decontaminated, such as OSS-Instruct (UIUC, 2023b).

3

https://huggingface.co/docs/datasets/index

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Table 1: The statistics of the dataset construction process. We start with a large pool of tasks from
various datasets and apply a series of filtering steps to create a high-quality dataset for fine-tuning.
In the pre-SOAP cleaning phase, we convert the code into functions (Step 1), filter tasks with risky
operations (Step 2), construct test cases (Step 3), and filter non-algorithmic tasks (Step 4). After
applying SOAP to optimize the code, we perform post-SOAP cleaning by filtering tasks not addressed
by the teacher model (Step 5) and tasks without efficient solutions (Step 6). The resulting dataset
contains tasks with optimized solutions that demonstrate significant efficiency improvements.

Dataset CodeFeed Alpaca Glaive Evol-Ins Dolphin Oss-Ins Self-Oss Apps

Initial Size 156526 143327 136109 111183 109118 75197 50661 5000

Pre-SOAP

Step 1 76534 121810 46422 40285 21154 40459 50660 2731
Step 2 15180 33262 16700 10078 4938 4961 15477 -
Step 3 13953 29746 14703 9061 4318 4353 3183 -
Step 4 3704 12320 94 3136 3892 388 2328 2183

Post-SOAP

Step 5 3691 12293 94 3133 3870 388 2316 -
Step 6 1387 2920 32 1250 1958 76 827 1001

generated by LLMs is not evaluated locally, some tasks with risky operations (e.g., deleting system
files) may not be filtered out. To address this, we feed all tasks into GPT-3.5-turbo and require it to
analyze whether the source code contains any risky operations. We then remove tasks that are labeled
as containing risky operations.

Construct test cases (Step 3): In our experiments, most tasks do not have existing test cases3. To
address this, we use GPT-3.5-turbo to construct test cases by feeding the task description and source
code into the model and requiring it to generate test cases for our experiments. After that, we analyze
whether each test case generated by GPT-3.5-turbo is correct and then filter out incorrect test cases
and tasks that do not have correct test cases. To determine the correctness of the test cases generated
by GPT-3.5-turbo, we execute each test case individually with the initial solution provided for each
task in our collected candidate tasks. These initial solutions are usually correct but do not have
efficiency optimization. We check whether any errors are raised during the execution of each test
case with the initial solution. In other words, we verify if the test case passes the initial solution.
Since the initial solutions are correct, we treat the test cases that pass the canonical solution as correct.
On the other hand, test cases that do not pass the canonical solution are filtered out. By using the
canonical solution as a reference, we can effectively assess the correctness of the generated test cases
and ensure that only valid test cases are retained for further analysis.

Filter non-algorithmic tasks (Step 4): Finally, we filter out tasks that do not involve algorithms.
We define a task as ’non-algorithmic’ if it does not require a specific algorithm or computational
steps to solve. non-algorithmic tasks might involve coding but do not require complex algorithmic
reasoning. Instead, they might focus on straightforward implementation or basic syntax usage. For
example, an algorithmic task may be Implement a function to find the longest palindromic substring
in a given string. This requires an understanding of dynamic programming and string manipulation
algorithms. While a non-algorithmic task may be Write a function to print ’Hello, World!’. This is a
clear example of routine implementation without algorithmic challenges. The primary motivation
for filtering out non-algorithmic tasks is to ensure that our dataset focuses on problems that assess
algorithmic thinking and coding skills. By excluding tasks that do not require algorithmic problem-
solving, we maintain the coherence and relevance of our dataset to the intended purpose of evaluating
AI models’ coding abilities. To identify and filter out non-algorithmic tasks, we provide the task
description and the canonical solution to GPT-3.5-turbo and request it to analyze whether the given
task is an algorithmic task based on our provided definition. GPT-3.5-turbo is instructed to return a
binary classification (True or False) based on its analysis. Tasks classified as False are considered
non-algorithmic and are subsequently removed from our candidate tasks.

3Some datasets do not generate test cases as they do not need to check the correctness of the source code.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.3 SELF-OPTIMIZATION BASED ON OVERHEAD PROFILE (SOAP)

To optimize the source code in our collected tasks, we employ the Self-Optimization based on
overheAd Profile (SOAP; Huang et al. 2024a) to optimize the efficiency of the source code. For each
task in our dataset, we execute the source code using the generated test cases and profile the execution
time and memory usage for each line of code using the line_profiler and memory_profiler
libraries in Python. The profiling results, along with the original source code and task description,
are then fed into DeepSeek-Coder-V2-Lite (Zhu et al., 2024), which analyzes the profiles to identify
performance bottlenecks and inefficiencies in the code. The model applies various optimization
techniques to refine the code for better efficiency, and the optimized code is validated against the
provided test cases to ensure its functional correctness. This process is repeated for a predefined
number of optimization iterations. By applying SOAP to our collected tasks, we create a dataset of
optimized source code that demonstrates improved efficiency compared to the original code. This
dataset serves as a valuable resource for training models to generate more efficient code and for
understanding the effectiveness of LLM-driven code optimization techniques.

3.4 POST-SOAP CLEANING

After generating efficient source code based on SOAP, we then filter tasks in our candidate pool to
enable our fine-tuning process.

Filtering tasks not addressed by the Teacher Model (Step 5): As mentioned in Section 3.3, we
use DeepSeek-Coder-V2-Lite to construct more efficient solutions for our candidate tasks. However,
some tasks are not addressed by DeepSeek-Coder-V2-Lite, which means that we cannot obtain
“efficient” solutions for these tasks in our experiments. To maintain the quality and consistency of our
dataset, we remove these unaddressed tasks from our candidate pool. This filtering step ensures that
all tasks in our dataset have been successfully optimized by the teacher model, providing a reliable
foundation for the fine-tuning process.

Filtering tasks without efficient solutions (Step 6): We define a solution as inefficient if it exhibits
suboptimal execution time or memory usage compared to the initial solution (solution provided by
the collected dataset) for the given task. The criteria for determining inefficiency are based on the
potential for improvement in terms of execution time and memory usage after applying optimization
techniques. Consider a task where the goal is to sort an array. An inefficient solution uses Bubble
Sort, which has a time complexity of O(n2), as opposed to an efficient solution like Quick Sort with
an average time complexity of O(n log n).

Despite the application of SOAP (Huang et al., 2024a), some tasks may not yield more efficient
solutions due to limited optimization potential, even though they are algorithmic tasks. In such
cases, the SOAP process may not be able to generate solutions that significantly improve upon the
original code in terms of efficiency. To ensure that our dataset focuses on tasks with meaningful
optimization potential, we filter out these tasks from our experiments. To identify and filter out tasks
with inefficient solutions, we employ a two-step process. First, we use self-optimization to require
DeepSeek-Coder-V2-Lite to improve the efficiency of the code solutions, which aims to improve
the efficiency of the code by making optimizations such as reducing redundant computations or
improving data structures. We run DeepSeek-Coder-V2-Lite for five iterations and analyze whether
the efficiency of the code has improved based on metrics such as execution time and memory usage.
If the efficiency does not show improvement after these iterations, we consider the task to have an
inefficient solution and remove it from our candidate tasks. We acknowledge that there may be cases
where the initial code is already efficient, and the lack of improvement after optimization does not
necessarily indicate an inefficient solution. However, detecting such cases would require significant
manual effort to analyze each task individually. To maintain a consistent and automated approach,
we opted to remove all tasks that did not show efficiency improvement after the optimization process,
which proved to still perform very well in our evaluation.

The post-SOAP cleaning process plays a crucial role in refining our candidate tasks and creating a
high-quality dataset for fine-tuning. By filtering out tasks that are not addressed by the teacher model
and those without significant efficiency improvements, we ensure that our final dataset consists of
tasks with optimized solutions that demonstrate a notable enhancement in performance. This curated
dataset serves as a valuable resource for training models to generate efficient code and for advancing
the field of code optimization using LLMs.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Execution Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

De
ns

ity

Execution Time
Inefficient Mean: 1.14s
Efficient Mean: 0.31s

0 20 40 60 80
Memory Usage (MB*s)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

De
ns

ity

Memory Usage
Inefficient Mean: 26.50MB * s
Efficient Mean: 6.03MB * s

15 20 25 30 35 40
Max Memory Peak (MB)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

De
ns

ity

Max Memory Peak
Inefficient Mean: 26.28MB
Efficient Mean: 22.28MB

Figure 1: Efficiency distribution of the dataset. The figure shows the distribution of execution time,
memory usage, and max memory peak for both inefficient (task-provided solution) and efficient
solutions in the EFFI-CODE. The inefficient solutions have higher overheads for all three metrics
compared to the efficient solutions.

3.5 EVALUAITON METRICS

Following Huang et al. (2024b), we evaluate the effectiveness of EFFI-CODE fine-tuned LLMs using
two key aspects: correctness and efficiency of the LLM-generated code. Our metrics are outlined as:

• Execution Time (ET): Measures the time taken for code execution.
• Max Memory Usage (MU): Assesses the peak memory requirement during code execution.
• Total Memory Usage (TMU): Evaluates the overall memory usage throughout code execution.
• Normalized Metrics: The metrics contains NET (Normalized Execution Time), NMU (Nor-

malized Max Memory Usage), and NTMU (Normalized Total Memory Usage). They are our
primary metrics for assessing efficiency, measuring how efficient/inefficient the LLM-generated
code is compared with the human-written canonical solution for ET, MU, and TMU.

• Correctness: We assess the correctness of LLM-generated code using the pass@1 metric with
greedy decoding, following the approach of existing works.

3.6 DATASET STATISTICS

As shown in Table 1, coding problems in EFFI-CODE have been collected from eight datasets,
resulting in 9,451 tasks. The initial pool of tasks was quite large, with over 780,000 tasks across the
eight datasets. However, through our rigorous cleaning processes, we carefully filtered and refined
the tasks to create a high-quality dataset for fine-tuning. The final EFFI-CODE contains 9,451 tasks,
with contributions from each of the eight datasets as follows: 1,387 tasks from CodeFeedback, 2,920
tasks from Alpaca, 32 tasks from Glaive, 1,250 tasks from Evol-Ins, 1,958 tasks from Dolphin, 76
tasks from Oss-Ins, 827 tasks from Self-Oss, and 1,001 tasks from Apps.

Figure 1 illustrates the efficiency distribution of the dataset for three key metrics: execution time,
memory usage, and max memory peak, which compares the distribution of these metrics for both
inefficient (canonical solutions provided by the eight datasets) and efficient solutions in the EFFI-
CODE. For execution time, the inefficient solutions have a mean value of 1.14s, while the efficient
solutions have a significantly lower mean of 0.31s, which indicates that the optimization process has
successfully reduced the execution time of the code, resulting in more efficient solutions. Similarly,
the memory usage and max memory peak also show a notable difference between inefficient and
efficient solutions. For example, inefficient solutions have a mean memory usage of 26.50MBs, while
the efficient solutions have a much lower mean of 6.03MBs.

The efficiency distribution visualization highlights the effectiveness of the optimization process in
creating more efficient solutions across all three metrics. By carefully curating tasks through the
multi-step cleaning process and applying SOAP optimization, we have created a dataset that serves
as a valuable resource for training models to generate efficient code. EFFI-CODE provides a diverse
range of optimized coding problems, enabling researchers and practitioners to advance the field of
code optimization using LLMs.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 2: Code efficiency and pass@1 of LLMs trained with EFFI-CODE. The percentage in the brack-
ets indicates the extent of the reduction for each respective item. Overlap means the percentage of
correct tasks addressed by both EFFI-CODE finetuned LLM and original LLM in total tasks of the
dataset. We provide a case example in Figure 3 to demonstrate how EFFI-CODE fine-tuned LLM
improves the efficiency of LLM-generated code.

Model ET (s) ↓ NET ↓ MU (Mb) ↓ NMU ↓ TMU (Mb*s) ↓ NTMU ↓ Overlap (%) ↑ Pass@1 (%) ↑

HumanEval

DeepSeek-Coder-6.7b-base 0.89 2.07 67.50 1.00 56.66 1.96 7.3 7.3
+ SFT (Ours) 0.71 (20.2%) 1.14 (44.9%) 67.50 (0.0%) 1.00 (0.0%) 53.09 (6.3%) 1.16 (40.8%) 7.3 59.8
DeepSeek-Coder-6.7b-instruct 0.59 2.07 63.48 0.99 24.42 2.08 39.0 43.3
+ SFT (Ours) 0.41 (30.5%) 1.19 (42.5%) 63.48 (0.0%) 0.99 (0.0%) 19.96 (18.3%) 1.36 (34.6%) 39.0 76.8
Qwen2.5-Coder-7B 0.59 1.95 61.95 0.99 24.29 1.83 56.1 63.4
+ SFT (Ours) 0.40 (32.2%) 1.01 (48.2%) 61.96 (-0.0%) 0.99 (0.0%) 18.74 (22.8%) 1.02 (44.3%) 56.1 79.9
Qwen2.5-Coder-7B-Instruct 0.74 2.72 62.81 1.00 35.43 3.15 51.2 54.3
+ SFT (Ours) 0.51 (31.1%) 1.68 (38.2%) 62.77 (0.1%) 1.00 (0.0%) 28.01 (20.9%) 2.24 (28.9%) 51.2 84.8

EffiBench

DeepSeek-Coder-6.7b-base 0.44 2.61 57.24 1.26 54.57 7.94 7.3 8.5
+ SFT (Ours) 0.29 (34.1%) 2.08 (20.3%) 50.58 (11.6%) 1.00 (20.6%) 17.25 (68.4%) 2.79 (64.9%) 7.3 57.6
DeepSeek-Coder-6.7b-instruct 0.14 1.00 38.36 1.00 4.21 0.97 1.0 1.3
+ SFT (Ours) 0.13 (7.1%) 0.93 (7.0%) 38.31 (0.1%) 1.00 (0.0%) 4.01 (4.8%) 0.92 (5.2%) 1.0 51.6
Qwen2.5-Coder-7B 0.26 1.79 38.06 1.01 18.30 2.74 44.2 50.1
+ SFT (Ours) 0.21 (19.2%) 1.45 (19.0%) 38.15 (-0.2%) 1.01 (0.0%) 15.88 (13.2%) 1.70 (38.0%) 44.2 63.9
Qwen2.5-Coder-7B-Instruct 0.44 3.96 28.62 1.00 10.17 5.43 3.2 3.3
+ SFT (Ours) 0.43 (2.3%) 3.88 (2.0%) 28.59 (0.1%) 1.00 (0.0%) 10.10 (0.7%) 5.37 (1.1%) 3.2 61.0

4 EXPERIMENT

Datasets and Models In our experiments, we evaluate the efficiency and correctness of LLM-
generated code on two code generation benchmarks, i.e., HumanEval and EffiBench. We fine-
tune four open-source LLMs with EFFI-CODE, including DeepSeek-Coder-6.7B base and instruct
model (DeepSeekAI, 2023), Qwen2.5-Code-7B base and instruct model (Hui et al., 2024).

Fine-tuning Setup We use Llama-factory (Zheng et al., 2024) to fully fine-tune all LLMs with the
same setup and train the models using EFFI-CODE. The maximum sequence length is set to 2048
tokens. We use a batch size of 128 and set the learning rate to 5e-6 with a cosine learning rate
scheduler and a warmup ratio of 0.03. We fine-tune all LLMs for 4 epochs under the bf16 data type.

Prompt Template For all experiments, we use the inference prompt provided by DeepSeek-Coder
for both fine-tuning and inference. The detailed template can be found in Appendix A.3.

4.1 MAIN RESULTS

The evaluation results of EFFI-CODE are shown in Table 2, where we can observe that EFFI-CODE
can improve both the efficiency and the correctness (pass@1) for LLM-generated code in most of the
experiments across HumanEval and EffiBench.

HumanEval We observe that all LLMs achieve better efficiency and higher correctness after be-
ing fine-tuned with EFFI-CODE. For instance, the pass@1 of DeepSeek-Coder-6.7B-Instruct on
HumanEval is 43.3%. However, the fine-tuned DeepSeek-Coder-6.7B-Instruct achieves a pass@1
of 76.8% for the same dataset. Furthermore, the average execution time (ET) for all correct tasks
addressed by both the initial and fine-tuned model generated by DeepSeek-Coder-6.7B-Instruct is
0.59 (s), while it decreases to 0.41 (s) for EFFI-CODE fine-tuned DeepSeek-Coder-6.7B-Instruct,
resulting in a 30.5% reduction in average execution time.

EffiBench As shown in Table 2 EffiBench, similar to the results of the HumanEval dataset, EFFI-
CODE fine-tuned LLMs increase the overall pass@1 and efficiency of the generated code. For
example, the pass@1 of DeepSeek-Coder-6.7B-base achieves only 8.5%, but it reaches 57.6% when
fine-tuned with EFFI-CODE. Additionally, the overhead of the LLM-generated code is significantly
reduced. DeepSeek-Coder-6.7B-base requires an average of 0.44 (s) to execute its generated code.
However, for the same tasks, the EFFI-CODE fine-tuned DeepSeek-Coder-6.7B-base only requires
0.29 (s), which results in an average of 34.1% decrease in execution time.

4.2 ABLATION STUDY

How does the size of the fine-tuning dataset affect the effectiveness of LLM-generated code? To
investigate the impact of the fine-tuning dataset size on the effectiveness of LLM-generated code,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 3: Efficiency and pass@1 results for DeepSeek-Coder-6.7B-base/instruct fine-tuned on 25%,
50%, 75%, and 100% proportions of the EFFI-CODE.

Model ET (s) ↓ NET ↓ MU (Mb) ↓ NMU ↓ TMU (Mb*s) ↓ NTMU ↓ Overlap (%) ↑ Pass@1 (%) ↑

Base 0.99 2.11 69.10 1.00 65.56 1.99 6.1 7.3
25 0.97 (2.0%) 1.96 (7.1%) 69.02 (0.1%) 1.00 (0.0%) 66.00 (-0.7%) 1.97 (1.0%) 6.1 55.5
50 0.98 (1.0%) 2.03 (3.8%) 68.78 (0.5%) 1.00 (0.0%) 65.03 (0.8%) 1.90 (4.5%) 6.1 54.3
75 0.95 (4.0%) 1.93 (8.5%) 68.85 (0.4%) 1.00 (0.0%) 64.17 (2.1%) 1.89 (5.0%) 6.1 54.3
100 0.80 (19.2%) 1.13 (46.4%) 69.01 (0.1%) 1.00 (0.0%) 62.14 (5.2%) 1.15 (42.2%) 6.1 59.8

Instruct 0.42 1.99 62.52 1.00 14.78 1.89 32.9 43.3
25 0.43 (-2.4%) 2.02 (-1.5%) 62.45 (0.1%) 1.00 (0.0%) 15.06 (-1.9%) 1.91 (-1.1%) 32.9 71.3
50 0.41 (2.4%) 1.94 (2.5%) 62.44 (0.1%) 1.00 (0.0%) 14.41 (2.5%) 1.84 (2.6%) 32.9 72.0
75 0.42 (0.0%) 1.96 (1.5%) 62.45 (0.1%) 1.00 (0.0%) 14.61 (1.2%) 1.85 (2.1%) 32.9 73.8
100 0.24 (42.9%) 1.09 (45.2%) 62.56 (-0.1%) 1.00 (0.0%) 10.10 (31.7%) 1.15 (39.2%) 32.9 76.8

Table 4: Efficiency and pass@1 results for different sizes of DeepSeek-Coder models.

Model ET (s) ↓ NET ↓ MU (Mb) ↓ NMU ↓ TMU (Mb*s) ↓ NTMU ↓ Overlap (%) ↑ Pass@1 (%) ↑

DeepSeek-Coder-1.3b-base 0.51 1.06 65.61 1.00 35.67 1.05 11.0 12.2
+ SFT (Ours) 0.50 (2.0%) 1.05 (0.9%) 65.37 (0.4%) 1.00 (0.0%) 34.65 (2.9%) 1.03 (1.9%) 11.0 43.9
DeepSeek-Coder-1.3b-instruct 0.38 1.14 63.32 1.00 21.30 1.21 34.8 45.7
+ SFT (Ours) 0.35 (7.9%) 1.09 (4.4%) 63.31 (0.0%) 1.00 (0.0%) 19.57 (8.1%) 1.18 (2.5%) 34.8 59.1
DeepSeek-Coder-6.7b-base 0.89 2.07 67.50 1.00 56.66 1.96 7.3 7.3
+ SFT (Ours) 0.71 (20.2%) 1.14 (44.9%) 67.50 (0.0%) 1.00 (0.0%) 53.09 (6.3%) 1.16 (40.8%) 7.3 59.8
DeepSeek-Coder-6.7b-instruct 0.59 2.07 63.48 0.99 24.42 2.08 39.0 43.3
+ SFT (Ours) 0.41 (30.5%) 1.19 (42.5%) 63.48 (0.0%) 0.99 (0.0%) 19.96 (18.3%) 1.36 (34.6%) 39.0 76.8
DeepSeek-Coder-33b-base 1.04 4.44 57.64 0.93 56.63 6.75 16.5 18.9
+ SFT (Ours) 0.27 (74.0%) 1.33 (70.0%) 61.02 (-5.9%) 0.99 (-6.5%) 10.81 (80.9%) 1.61 (76.1%) 16.5 66.5
DeepSeek-Coder-33b-instruct 0.49 1.38 62.51 0.99 28.18 1.65 64.0 70.1
+ SFT (Ours) 0.39 (20.4%) 1.11 (19.6%) 62.56 (-0.1%) 0.99 (0.0%) 20.40 (27.6%) 1.20 (27.3%) 64.0 75.6

we conducted experiments using 25%, 50%, 75%, and 100% of the EFFI-CODE for fine-tuning the
DeepSeek-Coder-6.7B-base and DeepSeek-Coder-6.7B-instruct models utilizing SFT fine-tuning.
The evaluation results are shown in Table 3, providing efficiency metrics for different dataset ratios
assessed from two perspectives: individual and all. The individual perspective evaluates the
efficiency metrics for the correct code generated by both the original model and the fine-tuned model
itself. all focuses on tasks successfully addressed by all LLMs fine-tuned with varying dataset ratios.

We can observe that as we increase the fine-tuning dataset, the pass@1 consistently improves. For
example, when we increase the ratio of the fine-tuning dataset from 25% to 100%, the pass@1 of
DeepSeek-Coder-6.7B-base increases from 55.5% to 59.8%, and we can also observe this trend in
DeepSeek-Coder-6.7B-instruct, where the pass@1 increases from 71.3% to 76.8%. Next, we can
also observe that as we increase the overall dataset ratio for fine-tuning, the efficiency metrics show
a consistent trend of improvement. For instance, the average ET for DeepSeek-Coder-6.7B-base
decreases from 0.99 (s) with the baseline model to 0.80 (s) with 100% of the EFFI-CODE, which
results in a 19.2% decrease in execution time. Similarly, for DeepSeek-Coder-6.7B-instruct, the
ET reduces from 0.42 (s) to 0.24 (s) when trained on 100% of the dataset, which highlights the
effectiveness of a larger fine-tuned dataset in enhancing the efficiency of code generation.

Is EFFI-CODE effective for different model sizes? To evaluate the generalizability of EFFI-CODE
across different model sizes during the fine-tuning process, we employed multiple versions of
DeepSeek-Coder models, ranging from 1.3B to 33B parameters, for both base and instruct models.
As shown in Table 4, the evaluation results demonstrate that EFFI-CODE improves performance across
all model sizes. For instance, the pass@1 for the DeepSeek-Coder-1.3B-base increased significantly
from 12.2% to 43.9% after fine-tuning it with EFFI-CODE, and the DeepSeek-Coder-6.7B-base
also demonstrates an increase from 7.3% to 59.8%. A similar trend is observed with the instruct
models, where the pass@1 for DeepSeek-Coder-1.3B-instruct improved from 45.7% to 59.1%, and
for DeepSeek-Coder-6.7B-instruct, it improved from 43.3% to 76.8%. Additionally, efficiency
metrics show consistent improvement across different model sizes. Specifically, the average ET for
DeepSeek-Coder-33B-base decreased from 1.04 (s) to 0.27 (s) after fine-tuning, which resulted in a
74.0% decrease in execution time on average for all executed tasks. These findings suggest that as
the model size increases, EFFI-CODE continues to enhance both the effectiveness and efficiency of
the model-generated code.

Whether open source model is enough to serve as a teacher model? In our experiments, we
employ DeepSeek-Coder-V2-Lite-Instruct as the teacher model to generate efficient solutions for
constructing the EFFI-CODE. To assess the impact of the teacher model, we perform additional

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 5: Comparison of code efficiency and pass@1 between different teacher models.

Model ET (s) ↓ NET ↓ MU (Mb) ↓ NMU ↓ TMU (Mb*s) ↓ NTMU ↓ Overlap (%) ↑ Pass@1 (%) ↑

DeepSeek-Coder-6.7B-base 1.38 2.16 72.86 1.00 99.37 1.95 3.7 7.3
Claude-3.5-Sonnet 1.11 (19.6%) 1.02 (52.8%) 72.83 (0.0%) 1.00 (0.0%) 92.07 (7.3%) 1.03 (47.2%) 3.7 29.9
GPT-4o 1.10 (20.3%) 0.99 (54.2%) 72.63 (0.3%) 1.00 (0.0%) 91.76 (7.7%) 0.99 (49.2%) 3.7 39.0
DeepSeek-Coder-V2-Lite (Ours) 1.16 (15.9%) 1.06 (50.9%) 72.90 (-0.1%) 1.00 (0.0%) 97.47 (1.9%) 1.08 (44.6%) 3.7 59.8

Instruct 0.41 2.01 65.38 1.01 14.37 1.93 0.6 43.3
Claude-3.5-Sonnet 0.26 (36.6%) 1.27 (36.8%) 65.24 (0.2%) 1.00 (1.0%) 9.45 (34.2%) 1.27 (34.2%) 0.6 11.0
GPT-4o 0.20 (51.2%) 0.98 (51.2%) 65.13 (0.4%) 1.00 (1.0%) 7.34 (48.9%) 0.98 (49.2%) 0.6 9.8
DeepSeek-Coder-V2-Lite (Ours) 0.21 (48.8%) 1.04 (48.3%) 65.31 (0.1%) 1.00 (1.0%) 7.76 (46.0%) 1.04 (46.1%) 0.6 76.8

Table 6: Evaluation results for different teacher models of the EFFI-CODE fine-tune dataset.

Model ET (s) ↓ NET ↓ MU (Mb) ↓ NMU ↓ TMU (Mb*s) ↓ NTMU ↓ Overlap (%) ↑ Pass@1 (%) ↑

DeepSeek-Coder-6.7b-base 0.39 2.00 62.52 1.01 12.78 1.85 1.8 7.3
Canonical Solution 0.42 (-7.7%) 2.12 (-6.0%) 62.16 (0.6%) 1.00 (1.0%) 14.91 (-16.7%) 2.15 (-16.2%) 1.8 15.2
EFFI-CODE 0.23 (41.0%) 1.19 (40.5%) 62.40 (0.2%) 1.00 (1.0%) 8.31 (35.0%) 1.21 (34.6%) 1.8 59.8

DeepSeek-Coder-6.7b-instruct 0.44 2.07 62.47 1.00 15.95 2.11 31.1 43.3
Canonical Solution 0.45 (-2.3%) 2.11 (-1.9%) 62.48 (-0.0%) 1.00 (0.0%) 16.92 (-6.1%) 2.23 (-5.7%) 31.1 57.3
EFFI-CODE 0.27 (38.6%) 1.25 (39.6%) 62.48 (-0.0%) 1.00 (0.0%) 11.81 (26.0%) 1.45 (31.3%) 31.1 76.8

experiments using GPT-4o-20240806 (GPT-4o) and Claude-3.5-Sonnet as alternative teacher models.
The evaluation results are shown in Table 5, where we can observe that the efficient solutions
generated by DeepSeek-Coder-V2-Lite-Instruct exhibit a higher pass@1 compared to those generated
by GPT-4o and Claude-3.5-Sonnet. Specifically, the datasets constructed using DeepSeek-Coder-V2-
Lite-Instruct fine-tuned on DeepSeek-Coder-6.7B-base achieve a 59.8% pass@1, whereas the models
fine-tuned on datasets generated by the other two LLMs attain only a 39.0% pass@1. However, we
can also observe that the efficiency improvement is highest for the GPT-4o-generated dataset. For
example, we can observe that the ET of DeepSeek-Coder-6.7B-instruct requires 0.41 (s) to execute
the correct code, while GPT-4o generated code only requires 0.20 (s) to execute for same tasks, where
DeepSeek-Coder-V2-Lite-Instruct generated code also requires 0.21 (s) to execute.

Measuring Efficiency Gains from Synthetic Code Over Original Code In our dataset construction
process, we use self-optimization with overhead profiles to generate more efficient solutions for
each task and then use them for the fine-tuning process. To analyze the importance of this step,
we compare the performance of LLMs fine-tuned on our self-optimized dataset with that of LLMs
directly fine-tuned on the initial canonical solutions, which are usually less efficient. The evaluation
results are shown in Table 6, where we can observe that directly fine-tuning LLMs with the canonical
solutions provided by the dataset may not be able to improve the efficiency of LLM-generated code
even though it improves the pass@1. For example, we can observe that when we directly use the
dataset-provided canonical solutions to fine-tune DeepSeek-Coder-6.7B-base, the execution time
increases from 0.39 (s) to 0.42 (s) for the same tasks, but it decreases to 0.23 (s) when we use
EFFI-CODE’s efficient solutions, which emphasizes the significance of using efficient source code for
fine-tuning LLMs to generate high-performance code.

Effectiveness with DPO fine-tuning In Table 2, we use SFT to fine-tune LLMs with our EFFI-CODE,
which raises the question of whether EFFI-CODE is also effective when using other fine-tuning
techniques. To investigate this, we conduct experiments using DPO (Rafailov et al., 2024) and
ORPO (Hong et al., 2024) to fine-tune DeepSeek-Coder-6.7B-instruct with EFFI-CODE. To collect
preference datasets, for each task question x, we use our EFFI-CODE as the preferred completion yp,
then we use the original solution provided by each task in the datasets as dispreferred completion yd,

and construct the preference dataset D =
{(

x(i), y
(i)
p , y

(i)
d

)}N

i=1
. We then fine-tune models on this

dataset with two different methods.

Table 7: Code efficiency and pass@1 of DeepSeek-Coder-6.7B-instruct fine-tuned using ORPO and
DPO with the EFFI-CODE.

Model ET (s) ↓ NET ↓ MU (Mb) ↓ NMU ↓ TMU (Mb*s) ↓ NTMU ↓ Overlap (%) ↑ Pass@1 (%) ↑

HumanEval

deepseek-coder-6.7b-instruct 0.64 1.99 63.85 0.98 26.98 1.88 29.3 43.3
ORPO 0.43 (32.8%) 0.99 (50.3%) 63.74 (0.2%) 0.98 (0.0%) 20.64 (23.5%) 1.00 (46.8%) 29.3 71.3
DPO 0.44 (31.2%) 1.00 (49.7%) 63.78 (0.1%) 0.98 (0.0%) 21.11 (21.8%) 1.02 (45.7%) 29.3 55.5

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 8: Code efficiency and pass@1 of DeepSeek-Coder-6.7B-instruct with EFFI-CODE with the
five times execution on HumanEval.

Model ET (s) ↓ NET ↓ MU (Mb) ↓ NMU ↓ TMU (Mb*s) ↓ NTMU ↓ Pass@1 (%) ↑

1 0.47 1.44 63.17 0.99 25.10 1.75 75.6
2 0.46 1.44 63.12 0.99 24.98 1.75 75.6
3 0.47 1.43 63.17 0.99 25.17 1.75 75.6
4 0.47 1.45 63.15 0.99 25.01 1.76 75.6
5 0.46 1.43 63.15 0.99 24.84 1.74 75.6

mean 0.46 1.44 63.15 0.99 25.02 1.75 75.6
std 0.0 0.01 0.02 0.0 0.11 0.01 0.0

Table 9: Code efficiency and pass@1 of CodeLlama-7b-hf fine-tuned with PIE and EFFI-CODE.

Model ET (s) ↓ NET ↓ MU (Mb) ↓ NMU ↓ TMU (Mb*s) ↓ NTMU ↓ Overlap (%) ↑ Pass@1 (%) ↑

CodeLlama-7b-hf 0.42 2.06 62.10 1.00 14.08 1.93 5.5 12.2
PIE 0.40 (4.8%) 1.96 (4.9%) 62.05 (0.1%) 1.00 (0.0%) 13.95 (0.9%) 1.93 (0.0%) 5.5 19.5
EFFI-CODE 0.39 (7.1%) 1.90 (7.8%) 61.92 (0.3%) 1.00 (0.0%) 13.13 (6.7%) 1.79 (7.3%) 5.5 37.8

The evaluation results are shown in Table 7, where we can observe that EFFI-CODE improves the
performance of LLMs fine-tuned with ORPO and DPO. For example, the pass@1 of DeepSeek-Coder-
6.7B-instruct increases from 43.3% to 71.3% after ORPO fine-tuning, and the average ET decreases
from 0.64 (s) to 0.43 (s), which results in a 32.8% decrease in average execution time for the same
tasks. Next, for DPO, we can also observe that DPO improves the performance of fine-tuned LLMs in
most of the experiments. For example, the pass@1 of DeepSeek-Coder-6.7B-instruct increases from
43.3% to 55.5%, and the ET decreases from 0.64 (s) to 0.44 (s), which results in a 31.2% decrease in
average execution time for the same tasks.

Randomness To ensure reliable model performance, we also account for variability in system
conditions. Metrics like Execution Time (ET), Max Memory Usage (MU), and Total Memory Usage
(TMU) might fluctuate due to factors like server workload and hardware availability, introducing
noise that affects performance measurements. To demonstrate whether our results are affected by
such randomness, we provide five results at different times with the mean and std for DeepSeek-
Coder-6.7B-instruct in Table 8. We can observe that the results are robust as the std of the five
execution times is very low for all metrics. For example, the std of ET for the five executions is 0.00.

Comparison with PIE To improve the efficiency of LLM-generated code, Shypula et al. (2024)
propose a dataset of performance-improving edits made by human programmers consisting of over
77,000 competitive C++ programming submission pairs. To demonstrate EFFI-CODE’s effectiveness,
we compare the efficiency and correctness of LLM-generated code for PIE and EFFI-CODE. As
PIE only releases the fine-tuned LLM that is fine-tuned on the CodeLlama family, we then fine-tune
CodeLlama-7b-hf for a fair comparison. The evaluation results are shown in Table 9, where we can
observe that the fine-tuned results of EFFI-CODE are more efficient and effective compared to those
of PIE. For example, the pass@1 of PIE only achieves 19.5% while EFFI-CODE achieves a 37.8%
pass@1. In addition, we can observe that EFFI-CODE decreases the ET from 0.42 (s) to 0.39 (s),
while PIE reduces the average ET from 0.42 (s) to 0.41 (s).

5 CONCLUSION

In this paper, our research addresses a critical gap in the efficiency of code generated by LLMs
by introducing the EFFI-CODE dataset, designed to enhance both the correctness and execution
efficiency of LLM-generated code via fine-tuning (e.g., SFT, DPO, and ORPO). Through meticulous
aggregation, preprocessing, and iterative optimization, we provide a robust resource that significantly
boosts the performance of open-source LLMs like DeepSeek-Coder and Qwen. Our experiments
reveal substantial improvements, with notable increases in pass rates and decreases in execution
time, underscoring the potential of EFFI-CODE to advance the state of code generation in resource-
constrained environments. By open-sourcing our model weights, training data, and source code, we
aim to foster further research and innovation in this vital area of AI development tools.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Wasi Uddin Ahmad, Md Golam Rahman Tushar, Saikat Chakraborty, and Kai-Wei Chang. AVATAR:
A parallel corpus for java-python program translation. In Anna Rogers, Jordan L. Boyd-Graber,
and Naoaki Okazaki (eds.), Findings of the Association for Computational Linguistics: ACL 2023,
Toronto, Canada, July 9-14, 2023, pp. 2268–2281. Association for Computational Linguistics,
2023. doi: 10.18653/V1/2023.FINDINGS-ACL.143. URL https://doi.org/10.18653/
v1/2023.findings-acl.143.

Toufique Ahmed and Premkumar T. Devanbu. Few-shot training llms for project-specific code-
summarization. In 37th IEEE/ACM International Conference on Automated Software Engineering,
ASE 2022, Rochester, MI, USA, October 10-14, 2022, pp. 177:1–177:5. ACM, 2022. doi: 10.1145/
3551349.3559555. URL https://doi.org/10.1145/3551349.3559555.

Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher Akiki, Carlos Muñoz
Ferrandis, Niklas Muennighoff, Mayank Mishra, Alex Gu, Manan Dey, Logesh Kumar Umapathi,
Carolyn Jane Anderson, Yangtian Zi, Joel Lamy-Poirier, Hailey Schoelkopf, Sergey Troshin,
Dmitry Abulkhanov, Manuel Romero, Michael Lappert, Francesco De Toni, Bernardo García del
Río, Qian Liu, Shamik Bose, Urvashi Bhattacharyya, Terry Yue Zhuo, Ian Yu, Paulo Villegas,
Marco Zocca, Sourab Mangrulkar, David Lansky, Huu Nguyen, Danish Contractor, Luis Villa, Jia
Li, Dzmitry Bahdanau, Yacine Jernite, Sean Hughes, Daniel Fried, Arjun Guha, Harm de Vries,
and Leandro von Werra. Santacoder: don’t reach for the stars! CoRR, abs/2301.03988, 2023.
doi: 10.48550/ARXIV.2301.03988. URL https://doi.org/10.48550/arXiv.2301.
03988.

Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
Johan Schalkwyk, Andrew M. Dai, Anja Hauth, Katie Millican, David Silver, Slav Petrov, Melvin
Johnson, Ioannis Antonoglou, Julian Schrittwieser, Amelia Glaese, Jilin Chen, Emily Pitler,
Timothy P. Lillicrap, Angeliki Lazaridou, Orhan Firat, James Molloy, Michael Isard, Paul Ronald
Barham, Tom Hennigan, Benjamin Lee, Fabio Viola, Malcolm Reynolds, Yuanzhong Xu, Ryan
Doherty, Eli Collins, Clemens Meyer, Eliza Rutherford, Erica Moreira, Kareem Ayoub, Megha
Goel, George Tucker, Enrique Piqueras, Maxim Krikun, Iain Barr, Nikolay Savinov, Ivo Danihelka,
Becca Roelofs, Anaïs White, Anders Andreassen, Tamara von Glehn, Lakshman Yagati, Mehran
Kazemi, Lucas Gonzalez, Misha Khalman, Jakub Sygnowski, and et al. Gemini: A family of highly
capable multimodal models. CoRR, abs/2312.11805, 2023. doi: 10.48550/ARXIV.2312.11805.
URL https://doi.org/10.48550/arXiv.2312.11805.

Anthropic. Introducing the next generation of claude, 2024. URL https://www.anthropic.
com/news/claude-3-family.

Jacob Austin, Augustus Odena, Maxwell I. Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le, and Charles Sutton. Program synthesis
with large language models. CoRR, abs/2108.07732, 2021. URL https://arxiv.org/abs/
2108.07732.

BigCode. Self-oss-instruct-sc2-exec-filter-50k. https://huggingface.co/datasets/
bigcode/self-oss-instruct-sc2-exec-filter-50k, 2023.

Evelyn M Boyd and Ann W Fales. Reflective learning: Key to learning from experience. Journal of
humanistic psychology, 23(2):99–117, 1983.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler,
Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCan-
dlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot
learners. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html.

11

https://doi.org/10.18653/v1/2023.findings-acl.143
https://doi.org/10.18653/v1/2023.findings-acl.143
https://doi.org/10.1145/3551349.3559555
https://doi.org/10.48550/arXiv.2301.03988
https://doi.org/10.48550/arXiv.2301.03988
https://doi.org/10.48550/arXiv.2312.11805
https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-family
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://huggingface.co/datasets/bigcode/self-oss-instruct-sc2-exec-filter-50k
https://huggingface.co/datasets/bigcode/self-oss-instruct-sc2-exec-filter-50k
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Sahil Chaudhary. Code alpaca: An instruction-following llama model for code generation. https:
//github.com/sahil280114/codealpaca, 2023.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé de Oliveira Pinto, Jared
Kaplan, Harrison Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino,
Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
large language models trained on code. CoRR, abs/2107.03374, 2021. URL https://arxiv.
org/abs/2107.03374.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language models
to self-debug. CoRR, abs/2304.05128, 2023. doi: 10.48550/ARXIV.2304.05128. URL https:
//doi.org/10.48550/arXiv.2304.05128.

Cognitive Computations. Dolphin coder. https://huggingface.co/datasets/
cognitivecomputations/dolphin-coder, 2023.

Together Computer. Glaive-code-assistant. https://huggingface.co/datasets/
Together/Glaive-Code-Assistant, 2023.

Jianbo Dai, Jianqiao Lu, Yunlong Feng, Rongju Ruan, Ming Cheng, Haochen Tan, and Zhijiang
Guo. MHPP: exploring the capabilities and limitations of language models beyond basic code
generation. CoRR, abs/2405.11430, 2024. doi: 10.48550/ARXIV.2405.11430. URL https:
//doi.org/10.48550/arXiv.2405.11430.

DeepSeekAI. Deepseek coder: Let the code write itself, 2023. URL https://deepseekcoder.
github.io/.

Yinlin Deng, Chunqiu Steven Xia, Chenyuan Yang, Shizhuo Dylan Zhang, Shujing Yang, and
Lingming Zhang. Large language models are edge-case fuzzers: Testing deep learning libraries
via fuzzgpt. CoRR, abs/2304.02014, 2023. doi: 10.48550/ARXIV.2304.02014. URL https:
//doi.org/10.48550/arXiv.2304.02014.

Mingzhe Du, Anh Tuan Luu, Bin Ji, and See-Kiong Ng. Mercury: An efficiency benchmark for
LLM code synthesis. CoRR, abs/2402.07844, 2024. doi: 10.48550/ARXIV.2402.07844. URL
https://doi.org/10.48550/arXiv.2402.07844.

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda Shi, Ruiqi Zhong,
Scott Yih, Luke Zettlemoyer, and Mike Lewis. Incoder: A generative model for code infilling and
synthesis. In The Eleventh International Conference on Learning Representations, ICLR 2023,
Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL https://openreview.net/
pdf?id=hQwb-lbM6EL.

Luyu Gao, Zhuyun Dai, Panupong Pasupat, Anthony Chen, Arun Tejasvi Chaganty, Yicheng Fan,
Vincent Y. Zhao, Ni Lao, Hongrae Lee, Da-Cheng Juan, and Kelvin Guu. RARR: researching
and revising what language models say, using language models. In Anna Rogers, Jordan L. Boyd-
Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), ACL 2023, Toronto, Canada, July 9-14,
2023, pp. 16477–16508. Association for Computational Linguistics, 2023. doi: 10.18653/V1/2023.
ACL-LONG.910. URL https://doi.org/10.18653/v1/2023.acl-long.910.

Amelia Glaese, Nat McAleese, Maja Trebacz, John Aslanides, Vlad Firoiu, Timo Ewalds, Mari-
beth Rauh, Laura Weidinger, Martin J. Chadwick, Phoebe Thacker, Lucy Campbell-Gillingham,
Jonathan Uesato, Po-Sen Huang, Ramona Comanescu, Fan Yang, Abigail See, Sumanth Dathathri,
Rory Greig, Charlie Chen, Doug Fritz, Jaume Sanchez Elias, Richard Green, Sona Mokrá, Nicholas
Fernando, Boxi Wu, Rachel Foley, Susannah Young, Iason Gabriel, William Isaac, John Mellor,

12

https://github.com/sahil280114/codealpaca
https://github.com/sahil280114/codealpaca
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://doi.org/10.48550/arXiv.2304.05128
https://doi.org/10.48550/arXiv.2304.05128
https://huggingface.co/datasets/cognitivecomputations/dolphin-coder
https://huggingface.co/datasets/cognitivecomputations/dolphin-coder
https://huggingface.co/datasets/Together/Glaive-Code-Assistant
https://huggingface.co/datasets/Together/Glaive-Code-Assistant
https://doi.org/10.48550/arXiv.2405.11430
https://doi.org/10.48550/arXiv.2405.11430
https://deepseekcoder.github.io/
https://deepseekcoder.github.io/
https://doi.org/10.48550/arXiv.2304.02014
https://doi.org/10.48550/arXiv.2304.02014
https://doi.org/10.48550/arXiv.2402.07844
https://openreview.net/pdf?id=hQwb-lbM6EL
https://openreview.net/pdf?id=hQwb-lbM6EL
https://doi.org/10.18653/v1/2023.acl-long.910

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Demis Hassabis, Koray Kavukcuoglu, Lisa Anne Hendricks, and Geoffrey Irving. Improving
alignment of dialogue agents via targeted human judgements. CoRR, abs/2209.14375, 2022.
doi: 10.48550/ARXIV.2209.14375. URL https://doi.org/10.48550/arXiv.2209.
14375.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen, Yujiu Yang, Nan Duan, and Weizhu
Chen. CRITIC: large language models can self-correct with tool-interactive critiquing. CoRR,
abs/2305.11738, 2023. doi: 10.48550/ARXIV.2305.11738. URL https://doi.org/10.
48550/arXiv.2305.11738.

Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del Giorno, Sivakanth
Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli Saarikivi, Adil Salim, Shital
Shah, Harkirat Singh Behl, Xin Wang, Sébastien Bubeck, Ronen Eldan, Adam Tauman Kalai,
Yin Tat Lee, and Yuanzhi Li. Textbooks are all you need. CoRR, abs/2306.11644, 2023. doi: 10.
48550/ARXIV.2306.11644. URL https://doi.org/10.48550/arXiv.2306.11644.

Md. Mahim Anjum Haque, Wasi Uddin Ahmad, Ismini Lourentzou, and Chris Brown. Fixeval:
Execution-based evaluation of program fixes for competitive programming problems. CoRR,
abs/2206.07796, 2022. doi: 10.48550/ARXIV.2206.07796. URL https://doi.org/10.
48550/arXiv.2206.07796.

Masum Hasan, Tanveer Muttaqueen, Abdullah Al Ishtiaq, Kazi Sajeed Mehrab, Md. Mahim Anjum
Haque, Tahmid Hasan, Wasi Uddin Ahmad, Anindya Iqbal, and Rifat Shahriyar. Codesc: A
large code-description parallel dataset. In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto
Navigli (eds.), Findings of the Association for Computational Linguistics: ACL/IJCNLP 2021,
Online Event, August 1-6, 2021, volume ACL/IJCNLP 2021 of Findings of ACL, pp. 210–218.
Association for Computational Linguistics, 2021. doi: 10.18653/V1/2021.FINDINGS-ACL.18.
URL https://doi.org/10.18653/v1/2021.findings-acl.18.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo, Collin
Burns, Samir Puranik, Horace He, Dawn Song, and Jacob Steinhardt. Measuring coding challenge
competence with apps. NeurIPS, 2021.

Jiwoo Hong, Noah Lee, and James Thorne. Orpo: Monolithic preference optimization without
reference model, 2024. URL https://arxiv.org/abs/2403.07691.

Dong Huang, Jianbo Dai, Han Weng, Puzhen Wu, Yuhao Qing, Jie M. Zhang, Heming Cui, and
Zhijiang Guo. SOAP: enhancing efficiency of generated code via self-optimization. CoRR,
abs/2405.15189, 2024a. doi: 10.48550/ARXIV.2405.15189. URL https://doi.org/10.
48550/arXiv.2405.15189.

Dong Huang, Jie M Zhang, Yuhao Qing, and Heming Cui. Effibench: Benchmarking the efficiency
of automatically generated code. arXiv preprint arXiv:2402.02037, 2024b.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun
Zhang, Bowen Yu, Kai Dang, An Yang, Rui Men, Fei Huang, Xingzhang Ren, Xuancheng
Ren, Jingren Zhou, and Junyang Lin. Qwen2.5-coder technical report. 2024. URL https:
//api.semanticscholar.org/CorpusID:272707390.

Nan Jiang, Kevin Liu, Thibaud Lutellier, and Lin Tan. Impact of code language models on automated
program repair. In 45th IEEE/ACM International Conference on Software Engineering, ICSE 2023,
Melbourne, Australia, May 14-20, 2023, pp. 1430–1442. IEEE, 2023a. doi: 10.1109/ICSE48619.
2023.00125. URL https://doi.org/10.1109/ICSE48619.2023.00125.

Shuyang Jiang, Yuhao Wang, and Yu Wang. Selfevolve: A code evolution framework via large
language models. CoRR, abs/2306.02907, 2023b. doi: 10.48550/ARXIV.2306.02907. URL
https://doi.org/10.48550/arXiv.2306.02907.

Julia Kreutzer, Shahram Khadivi, Evgeny Matusov, and Stefan Riezler. Can neural machine
translation be improved with user feedback? In Srinivas Bangalore, Jennifer Chu-Carroll,
and Yunyao Li (eds.), Proceedings of the 2018 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, NAACL-
HLT 2018, New Orleans, Louisiana, USA, June 1-6, 2018, Volume 3 (Industry Papers), pp.

13

https://doi.org/10.48550/arXiv.2209.14375
https://doi.org/10.48550/arXiv.2209.14375
https://doi.org/10.48550/arXiv.2305.11738
https://doi.org/10.48550/arXiv.2305.11738
https://doi.org/10.48550/arXiv.2306.11644
https://doi.org/10.48550/arXiv.2206.07796
https://doi.org/10.48550/arXiv.2206.07796
https://doi.org/10.18653/v1/2021.findings-acl.18
https://arxiv.org/abs/2403.07691
https://doi.org/10.48550/arXiv.2405.15189
https://doi.org/10.48550/arXiv.2405.15189
https://api.semanticscholar.org/CorpusID:272707390
https://api.semanticscholar.org/CorpusID:272707390
https://doi.org/10.1109/ICSE48619.2023.00125
https://doi.org/10.48550/arXiv.2306.02907

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

92–105. Association for Computational Linguistics, 2018. doi: 10.18653/V1/N18-3012. URL
https://doi.org/10.18653/v1/n18-3012.

Caroline Lemieux, Jeevana Priya Inala, Shuvendu K. Lahiri, and Siddhartha Sen. Codamosa:
Escaping coverage plateaus in test generation with pre-trained large language models. In 45th
IEEE/ACM International Conference on Software Engineering, ICSE 2023, Melbourne, Australia,
May 14-20, 2023, pp. 919–931. IEEE, 2023. doi: 10.1109/ICSE48619.2023.00085. URL https:
//doi.org/10.1109/ICSE48619.2023.00085.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao
Mou, Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, Qian Liu, Evgenii Zheltonozhskii,
Terry Yue Zhuo, Thomas Wang, Olivier Dehaene, Mishig Davaadorj, Joel Lamy-Poirier, João
Monteiro, Oleh Shliazhko, Nicolas Gontier, Nicholas Meade, Armel Zebaze, Ming-Ho Yee,
Logesh Kumar Umapathi, Jian Zhu, Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo Wang,
Rudra Murthy V, Jason Stillerman, Siva Sankalp Patel, Dmitry Abulkhanov, Marco Zocca, Manan
Dey, Zhihan Zhang, Nour Moustafa-Fahmy, Urvashi Bhattacharyya, Wenhao Yu, Swayam Singh,
Sasha Luccioni, Paulo Villegas, Maxim Kunakov, Fedor Zhdanov, Manuel Romero, Tony Lee,
Nadav Timor, Jennifer Ding, Claire Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri Dao, Mayank
Mishra, Alex Gu, Jennifer Robinson, Carolyn Jane Anderson, Brendan Dolan-Gavitt, Danish
Contractor, Siva Reddy, Daniel Fried, Dzmitry Bahdanau, Yacine Jernite, Carlos Muñoz Ferrandis,
Sean Hughes, Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries. Starcoder: may
the source be with you! CoRR, abs/2305.06161, 2023a. doi: 10.48550/ARXIV.2305.06161. URL
https://doi.org/10.48550/arXiv.2305.06161.

Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar, and Yin Tat Lee.
Textbooks are all you need II: phi-1.5 technical report. CoRR, abs/2309.05463, 2023b. doi: 10.
48550/ARXIV.2309.05463. URL https://doi.org/10.48550/arXiv.2309.05463.

Yujia Li, David H. Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond,
Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy,
Cyprien de Masson d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl,
Sven Gowal, Alexey Cherepanov, James Molloy, Daniel J. Mankowitz, Esme Sutherland Robson,
Pushmeet Kohli, Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-level
code generation with alphacode. CoRR, abs/2203.07814, 2022. doi: 10.48550/ARXIV.2203.07814.
URL https://doi.org/10.48550/arXiv.2203.07814.

Jianqiao Lu, Zhiyang Dou, Hongru Wang, Zeyu Cao, Jianbo Dai, Yingjia Wan, Yinya Huang, and
Zhijiang Guo. Autocv: Empowering reasoning with automated process labeling via confidence
variation. CoRR, abs/2405.16802, 2024a. doi: 10.48550/ARXIV.2405.16802. URL https:
//doi.org/10.48550/arXiv.2405.16802.

Jianqiao Lu, Zhengying Liu, Yingjia Wan, Yinya Huang, Haiming Wang, Zhicheng Yang, Jing Tang,
and Zhijiang Guo. Process-driven autoformalization in lean 4. CoRR, abs/2406.01940, 2024b.
doi: 10.48550/ARXIV.2406.01940. URL https://doi.org/10.48550/arXiv.2406.
01940.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing
Ma, Qingwei Lin, and Daxin Jiang. Wizardcoder: Empowering code large language models with
evol-instruct. In The Twelfth International Conference on Learning Representations, ICLR 2024,
Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL https://openreview.net/
forum?id=UnUwSIgK5W.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegr-
effe, Uri Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bod-
hisattwa Prasad Majumder, Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and
Peter Clark. Self-refine: Iterative refinement with self-feedback. In Alice Oh, Tristan
Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Ad-
vances in Neural Information Processing Systems 36: Annual Conference on Neural Infor-
mation Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 -
16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
91edff07232fb1b55a505a9e9f6c0ff3-Abstract-Conference.html.

14

https://doi.org/10.18653/v1/n18-3012
https://doi.org/10.1109/ICSE48619.2023.00085
https://doi.org/10.1109/ICSE48619.2023.00085
https://doi.org/10.48550/arXiv.2305.06161
https://doi.org/10.48550/arXiv.2309.05463
https://doi.org/10.48550/arXiv.2203.07814
https://doi.org/10.48550/arXiv.2405.16802
https://doi.org/10.48550/arXiv.2405.16802
https://doi.org/10.48550/arXiv.2406.01940
https://doi.org/10.48550/arXiv.2406.01940
https://openreview.net/forum?id=UnUwSIgK5W
https://openreview.net/forum?id=UnUwSIgK5W
http://papers.nips.cc/paper_files/paper/2023/hash/91edff07232fb1b55a505a9e9f6c0ff3-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/91edff07232fb1b55a505a9e9f6c0ff3-Abstract-Conference.html

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

MAP. Codefeedback-filtered-instruction. https://huggingface.co/datasets/m-a-p/
CodeFeedback-Filtered-Instruction, 2023.

Meta. Introducing meta llama 3: The most capable openly available llm to date, 2024. URL
https://ai.meta.com/blog/meta-llama-3/.

Janet Metcalfe. Learning from errors. Annual review of psychology, 68:465–489, 2017.

Amir M. Mir, Evaldas Latoskinas, Sebastian Proksch, and Georgios Gousios. Type4py: Practical
deep similarity learning-based type inference for python. In 44th IEEE/ACM 44th International
Conference on Software Engineering, ICSE 2022, Pittsburgh, PA, USA, May 25-27, 2022, pp. 2241–
2252. ACM, 2022. doi: 10.1145/3510003.3510124. URL https://doi.org/10.1145/
3510003.3510124.

Niklas Muennighoff, Qian Liu, Armel Randy Zebaze, Qinkai Zheng, Binyuan Hui, Terry Yue
Zhuo, Swayam Singh, Xiangru Tang, Leandro von Werra, and Shayne Longpre. Octopack:
Instruction tuning code large language models. In The Twelfth International Conference on
Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024.
URL https://openreview.net/forum?id=mw1PWNSWZP.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese,
and Caiming Xiong. Codegen: An open large language model for code with multi-turn program
synthesis. In The Eleventh International Conference on Learning Representations, ICLR 2023,
Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL https://openreview.net/
pdf?id=iaYcJKpY2B_.

Changan Niu, Ting Zhang, Chuanyi Li, Bin Luo, and Vincent Ng. On evaluating the efficiency of
source code generated by llms. arXiv preprint arXiv:2404.06041, 2024.

OpenAI. GPT-4 Technical Report. CoRR, abs/2303.08774, 2023. doi: 10.48550/arXiv.2303.08774.
URL https://doi.org/10.48550/arXiv.2303.08774.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser
Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F. Christiano, Jan
Leike, and Ryan Lowe. Training language models to follow instructions with human feedback.
In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.),
Advances in Neural Information Processing Systems 35: Annual Conference on Neural Information
Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December
9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
b1efde53be364a73914f58805a001731-Abstract-Conference.html.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36, 2024.

Baptiste Rozière, Marie-Anne Lachaux, Lowik Chanussot, and Guillaume Lample. Unsupervised
translation of programming languages. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell,
Maria-Florina Balcan, and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing
Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020,
December 6-12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/
2020/hash/ed23fbf18c2cd35f8c7f8de44f85c08d-Abstract.html.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton,
Manish Bhatt, Cristian Canton-Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade
Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, and Gabriel
Synnaeve. Code llama: Open foundation models for code. CoRR, abs/2308.12950, 2023. doi: 10.
48550/ARXIV.2308.12950. URL https://doi.org/10.48550/arXiv.2308.12950.

Jieke Shi, Zhou Yang, and David Lo. Efficient and green large language models for software
engineering: Vision and the road ahead. arXiv preprint arXiv:2404.04566, 2024.

15

https://huggingface.co/datasets/m-a-p/CodeFeedback-Filtered-Instruction
https://huggingface.co/datasets/m-a-p/CodeFeedback-Filtered-Instruction
https://ai.meta.com/blog/meta-llama-3/
https://doi.org/10.1145/3510003.3510124
https://doi.org/10.1145/3510003.3510124
https://openreview.net/forum?id=mw1PWNSWZP
https://openreview.net/pdf?id=iaYcJKpY2B_
https://openreview.net/pdf?id=iaYcJKpY2B_
https://doi.org/10.48550/arXiv.2303.08774
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
https://proceedings.neurips.cc/paper/2020/hash/ed23fbf18c2cd35f8c7f8de44f85c08d-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/ed23fbf18c2cd35f8c7f8de44f85c08d-Abstract.html
https://doi.org/10.48550/arXiv.2308.12950

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Re-
flexion: language agents with verbal reinforcement learning. In Alice Oh, Tristan Nau-
mann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Advances
in Neural Information Processing Systems 36: Annual Conference on Neural Informa-
tion Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
1b44b878bb782e6954cd888628510e90-Abstract-Conference.html.

Alexander Shypula, Aman Madaan, Yimeng Zeng, Uri Alon, Jacob Gardner, Milad Hashemi, Gra-
ham Neubig, Parthasarathy Ranganathan, Osbert Bastani, and Amir Yazdanbakhsh. Learning
Performance-Improving Code Edits. In The Twelfth International Conference on Learning Repre-
sentations (ICLR), 2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian
Canton-Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin
Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar
Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel Kloumann,
Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana
Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra, Igor
Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan
Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang,
Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurélien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models.
CoRR, abs/2307.09288, 2023. doi: 10.48550/ARXIV.2307.09288. URL https://doi.org/
10.48550/arXiv.2307.09288.

ISE UIUC. Magicoder-evol-instruct-110k. https://huggingface.co/datasets/
ise-uiuc/Magicoder-Evol-Instruct-110K, 2023a.

ISE UIUC. Magicoder-oss-instruct-75k. https://huggingface.co/datasets/
ise-uiuc/Magicoder-OSS-Instruct-75K, 2023b.

Vezora. Tested-143k-python-alpaca. https://huggingface.co/datasets/Vezora/
Tested-143k-Python-Alpaca, 2023.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions. In
Anna Rogers, Jordan L. Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2023,
Toronto, Canada, July 9-14, 2023, pp. 13484–13508. Association for Computational Linguistics,
2023. doi: 10.18653/V1/2023.ACL-LONG.754. URL https://doi.org/10.18653/v1/
2023.acl-long.754.

Yue Wang, Weishi Wang, Shafiq R. Joty, and Steven C. H. Hoi. Codet5: Identifier-aware unified pre-
trained encoder-decoder models for code understanding and generation. In Marie-Francine Moens,
Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih (eds.), Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Processing, EMNLP 2021, Virtual Event / Punta
Cana, Dominican Republic, 7-11 November, 2021, pp. 8696–8708. Association for Computational
Linguistics, 2021. doi: 10.18653/V1/2021.EMNLP-MAIN.685. URL https://doi.org/10.
18653/v1/2021.emnlp-main.685.

Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan
Du, Andrew M. Dai, and Quoc V. Le. Finetuned language models are zero-shot learners. In
The Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event,
April 25-29, 2022. OpenReview.net, 2022. URL https://openreview.net/forum?id=
gEZrGCozdqR.

Jiayi Wei, Greg Durrett, and Isil Dillig. Typet5: Seq2seq type inference using static analysis.
In The Eleventh International Conference on Learning Representations, ICLR 2023, Kigali,

16

http://papers.nips.cc/paper_files/paper/2023/hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/1b44b878bb782e6954cd888628510e90-Abstract-Conference.html
https://openreview.net/pdf?id=ix7rLVHXyY
https://openreview.net/pdf?id=ix7rLVHXyY
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.48550/arXiv.2307.09288
https://huggingface.co/datasets/ise-uiuc/Magicoder-Evol-Instruct-110K
https://huggingface.co/datasets/ise-uiuc/Magicoder-Evol-Instruct-110K
https://huggingface.co/datasets/ise-uiuc/Magicoder-OSS-Instruct-75K
https://huggingface.co/datasets/ise-uiuc/Magicoder-OSS-Instruct-75K
https://huggingface.co/datasets/Vezora/Tested-143k-Python-Alpaca
https://huggingface.co/datasets/Vezora/Tested-143k-Python-Alpaca
https://doi.org/10.18653/v1/2023.acl-long.754
https://doi.org/10.18653/v1/2023.acl-long.754
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://doi.org/10.18653/v1/2021.emnlp-main.685
https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=gEZrGCozdqR

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL https://openreview.net/pdf?
id=4TyNEhI2GdN.

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and Lingming Zhang. Magicoder: Em-
powering code generation with oss-instruct. In Forty-first International Conference on Ma-
chine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024. URL
https://openreview.net/forum?id=XUeoOBid3x.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, Qingwei
Lin, and Daxin Jiang. Wizardlm: Empowering large pre-trained language models to follow complex
instructions. In The Twelfth International Conference on Learning Representations, ICLR 2024,
Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL https://openreview.net/
forum?id=CfXh93NDgH.

Yuxuan Yao, Han Wu, Zhijiang Guo, Biyan Zhou, Jiahui Gao, Sichun Luo, Hanxu Hou, Xiaojin
Fu, and Linqi Song. Learning from correctness without prompting makes LLM efficient reasoner.
CoRR, abs/2403.19094, 2024. doi: 10.48550/ARXIV.2403.19094. URL https://doi.org/
10.48550/arXiv.2403.19094.

Wenhao Yu, Zhihan Zhang, Zhenwen Liang, Meng Jiang, and Ashish Sabharwal. Improving language
models via plug-and-play retrieval feedback. CoRR, abs/2305.14002, 2023. doi: 10.48550/ARXIV.
2305.14002. URL https://doi.org/10.48550/arXiv.2305.14002.

Kechi Zhang, Zhuo Li, Jia Li, Ge Li, and Zhi Jin. Self-edit: Fault-aware code editor for code
generation. In Anna Rogers, Jordan L. Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings
of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), ACL 2023, Toronto, Canada, July 9-14, 2023, pp. 769–787. Association for Computational
Linguistics, 2023a. doi: 10.18653/V1/2023.ACL-LONG.45. URL https://doi.org/10.
18653/v1/2023.acl-long.45.

Kexun Zhang, Danqing Wang, Jingtao Xia, William Yang Wang, and Lei Li. ALGO: syn-
thesizing algorithmic programs with generated oracle verifiers. In Alice Oh, Tristan Nau-
mann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Advances
in Neural Information Processing Systems 36: Annual Conference on Neural Informa-
tion Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
2023, 2023b. URL http://papers.nips.cc/paper_files/paper/2023/hash/
abe1eb21ceb046209c96a0f5e7544ccc-Abstract-Conference.html.

Chenyang Zhao, Xueying Jia, Vijay Viswanathan, Tongshuang Wu, and Graham Neubig. Self-
guide: Better task-specific instruction following via self-synthetic finetuning. arXiv preprint
arXiv:2407.12874, 2024.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyan Luo, Zhangchi Feng, and
Yongqiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. In Pro-
ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3:
System Demonstrations), Bangkok, Thailand, 2024. Association for Computational Linguistics.
URL http://arxiv.org/abs/2403.13372.

Qihao Zhu, Daya Guo, Zhihong Shao, Dejian Yang, Peiyi Wang, Runxin Xu, Y Wu, Yukun Li,
Huazuo Gao, Shirong Ma, et al. Deepseek-coder-v2: Breaking the barrier of closed-source models
in code intelligence. arXiv preprint arXiv:2406.11931, 2024.

17

https://openreview.net/pdf?id=4TyNEhI2GdN
https://openreview.net/pdf?id=4TyNEhI2GdN
https://openreview.net/forum?id=XUeoOBid3x
https://openreview.net/forum?id=CfXh93NDgH
https://openreview.net/forum?id=CfXh93NDgH
https://doi.org/10.48550/arXiv.2403.19094
https://doi.org/10.48550/arXiv.2403.19094
https://doi.org/10.48550/arXiv.2305.14002
https://doi.org/10.18653/v1/2023.acl-long.45
https://doi.org/10.18653/v1/2023.acl-long.45
http://papers.nips.cc/paper_files/paper/2023/hash/abe1eb21ceb046209c96a0f5e7544ccc-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/abe1eb21ceb046209c96a0f5e7544ccc-Abstract-Conference.html
http://arxiv.org/abs/2403.13372

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Original Code Solution

def singleNumber(num):
 for i in range(len(num)):
 if num.count(num[i]) == 1:
 return num[i]

High
Memory

Slow
Execution

Iterative Code Solution

def singleNumber(num):
 a = b = 0
 for c in num:
 aa = (~a & b& c) \ (a & ~b & ~c)
 bb = ~a & (b ^ c)
 a, b = aa, bb
 return b

Self-optimize

Fine-tune

快乐再出发 第二季

Overhead Profile

Analyse

Optimize

Synthetic Code Solution

def singleNumber(num):
 return reduce(operator.xor, num)

Low
Memory

Optimized
Execution

Filter
Efficoder

Language model

Total time: 0.00804642 s

Time def singleNumber(num):
 a + b = 0
 15 for c in num:
1797 aa = (~a & b& c) \ (a & ~b & ~c)
2584 bb = ~a & (b ^ c)
1963 a, b = aa, bb
1654 return b

Figure 2: Overview of the construction pipeline for EFFI-CODE.

A APPENDIX

A.1 CONSTRUCTION PIPELINE

Figure 2 illustrates the overall framework of EFFI-CODE. We begin by filtering illegal. tasks and
collect the initial EFFI-CODE from different open-source datasets. Starting with the original code,
we apply self-optimization to enhance efficiency, using test cases to profile execution overhead, and
self-improve the code based on the profile. Finally, tasks that fail to have efficiency improvements
are removed. We then have our final fine-tuning dataset, EFFI-CODE, which consists of optimized
code and rich metadata, designed to train models for generating both efficient and correct code.

A.2 ADDITIONAL RELATED WORK

LLMs for Code The increasing popularity of LLMs for code generation has coincided with the
growing availability of open-source code repositories and the need to boost developer productivity.
Initial efforts focused on training models specifically for coding tasks, such as CodeT5 (Wang et al.,
2021), AlphaCode (Li et al., 2022), CodeGen (Nijkamp et al., 2023), InCoder (Fried et al., 2023),
StarCoder (Li et al., 2023a), SantaCoder (Allal et al., 2023), and DeepSeek-Coder (DeepSeekAI,
2023). Contrastingly, models such as Codex (Chen et al., 2021) and CodeLlama (Rozière et al., 2023)
represent a subsequent stride, being fine-tuned from foundation models (Brown et al., 2020; Touvron
et al., 2023). These code LLMs have been applied to various tasks, including code generation (Chen
et al., 2021; Dai et al., 2024), program repair (Haque et al., 2022; Jiang et al., 2023a), automated
testing (Lemieux et al., 2023; Deng et al., 2023), code translation (Rozière et al., 2020; Ahmad
et al., 2023), type prediction (Mir et al., 2022; Wei et al., 2023), and code summarization (Hasan
et al., 2021; Ahmed & Devanbu, 2022). While LLMs have achieved impressive results in code
generation tasks like HumanEval (Chen et al., 2021) and MBPP (Austin et al., 2021), their efficiency
has received less attention. Recent studies (Shi et al., 2024; Huang et al., 2024b; Niu et al., 2024) have
shown that LLM-generated code exhibits lower efficiency in terms of execution time and memory
usage compared to canonical solutions. These findings highlight the need for further research and
development to improve the efficiency of LLM-generated code. In this work, we propose the first
fine-tuning method that significantly improves both the efficiency and correctness of code generated
by various LLMs.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

A.3 PROMPT TEMPLATE

Please continue to complete the function. You are not allowed to modify the given code and
do the completion only. Please return all completed functions in a code block. Here is the
given code to complete:
‘‘‘python
{{Prompt}}
‘‘‘

A.4 EFFICIENCY METRICS

Execution Time (ET) Execution time (ET) measures the average time taken for code execution.
Mathematically, ET is defined as:

ET =
1

N

N∑
Tcode

where ET is the execution time metric, Tcode is the execution time of the code (with all the test cases),
and N is the number of codes generated by code generation models used for evaluation.

Normalized Execution Time (NET) Normalized Execution Time (NET)4 measures the execution
time required by generated code relative to that of a canonical solution. We define NET as:

NET =
1

N

N∑ Tcode

Tcanonical

where Tcode is the execution time of the generated code and Tcanonical is the execution time of the
canonical solution. A NET value greater than 1 indicates that the generated code is slower than the
canonical solution, while a value less than 1 suggests the generated code is faster.

Max Memory Usage (MU) Max Memory Usage (MU) measures the average max memory con-
sumption during code execution. Mathematically, MU is defined as:

MU =
1

N

N∑
Mcode

where MU is the memory usage metric, Mcode is the max memory consumption of the generated
code among all the test cases, and N is the number of code instances generated by code generation
models used for evaluation. This metric is critical to assess the resource efficiency of generated code,
particularly in environments with limited maximum memory capacity.

Normalized Max Memory Usage (NMU) Normalized Max Memory Usage (NMU) quantifies
how the max memory efficiency of the generated code compares to the canonical solution. We define
NMU as:

NMU =
1

N

N∑ Mcode

Mcanonical

where NMU is the normalized max memory usage metric, Mcode is the max memory usage of the
generated code, and Mcanonical is the max memory usage of the canonical solution. An NMU value
less than 1 indicates that the generated code is more memory-efficient than the canonical solution,
whereas a value greater than 1 suggests it is less efficient in terms of memory usage. This metric
provides a relative measure of the memory optimization in the generated code in comparison to a
standard baseline.

4To demonstrate code-level efficiency, we evaluate the normalized efficiency metrics at the task level, rather
than total LLM-generated code / total canonical solutions. For the second calculation strategy, we also provide
the scripts in our Github Repo.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Total Memory Usage (TMU) Total Memory Usage (TMU) assesses the efficiency of memory
usage throughout the execution of code, taking into account both the magnitude and duration of
memory utilization. To calculate TMU, first, monitor and record the memory usage at discrete time
intervals during the execution, resulting in a memory usage profile M(t), where t represents time.
Then, compute the area under the curve of M(t) over the total execution time, Ttotal, using numerical
integration methods such as the trapezoidal rule:

TMU =
1

N

N∑∫ Ttotal

0

M(t) dt

A lower TMU value indicates higher memory efficiency, reflecting an optimized balance between the
amount of memory used and the duration of its usage.

Normalized Total Memory Usage (NTMU) The Normalized Total Memory Usage (NTMU) offers
a comparison of the dynamic memory efficiency between the generated code and the canonical
solution. To determine NTMU, calculate the TMU for both the generated code and the canonical
solution. Normalize the TMU of the generated code by dividing it by the TMU of the canonical
solution:

NTMU =
1

N

N∑ TMUcode

TMUcanonical

where TMUcode is the TMU of the generated code and TMUcanonical is the TMU of the canonical
solution. An NTMU value less than 1 signifies that the generated code manages dynamic memory
more efficiently compared to the canonical solution, while a value greater than 1 indicates less
efficient management of dynamic memory. This metric provides insight into the relative use of
dynamic memory of generated code compared to an established benchmark.

A.5 ADDITIONAL RELATED WORK

Learning From Feedback A prevalent strategy for improving the behavior of LLMs is learning
from feedback, mirroring human learning where individuals refine their actions through trial, error,
and correction (Boyd & Fales, 1983; Metcalfe, 2017). Early efforts involve using human feedback
to evaluate and refine models (Kreutzer et al., 2018; Ouyang et al., 2022; Glaese et al., 2022). To
minimize human intervention, another strategy focuses on automated feedback. These methods
iteratively learn from automatically generated feedback signals, understanding the consequences of
their actions and adapting their behaviors. The source of this automated feedback can be diverse,
ranging from the LLM itself (Madaan et al., 2023; Shinn et al., 2023), external tools (Gou et al.,
2023; Lu et al., 2024b) or verifiers (Lu et al., 2024a), external knowledge sources (Gao et al., 2023;
Yu et al., 2023) and even generation logits (Yao et al., 2024). In code generation, the program
executor is frequently used as a source of feedback for refining the model’s initial code. For example,
Self-Edit (Zhang et al., 2023a) and Self-Evolve (Jiang et al., 2023b) execute the initial program on
example test cases and provide the execution results as feedback, prompting the LLM to refine the
code. Self-Debug (Chen et al., 2023) explores using program explanation, unit tests, and program
interpreters as feedback types. ALGO (Zhang et al., 2023b) employs a more fine-grained approach by
generating a reference oracle program that solves the problem with an exhaustive search. Feedback is
then collected by comparing the generated outputs with the oracle. While existing work primarily
focuses on using feedback to edit the initial code to ensure correctness, our method explores using
overhead profiles to improve the efficiency of the code.

A.6 WHAT PERCENTAGE OF SOLUTIONS IMPROVED IN EFFICIENCY BUT SHOWED DEGRADED
CORRECTNESS

To address this, we provide the evaluation results of degraded correctness (tasks that were correct in
the original LLM but became incorrect in the Effi-Code fine-tuned LLM) and upgraded correctness
(tasks that were incorrect in the original LLM but became correct in the Effi-Code fine-tuned LLM) in
Rebuttal Table 3. We can observe that for all LLMs in the two evaluation datasets, the first scenario,
i.e., degraded correctness, is very low. For example, in DeepSeek-Coder-6.7B-base, no tasks went
from correct to incorrect after the Effi-Code fine-tuning. However, we can also observe that a large
number of incorrect tasks in the original LLMs were correctly addressed by the Effi-Code fine-tuned

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 10: Evaluation results of degraded and upgraded correctness after Effi-Code fine-tuning on
various LLMs.

Model Correct → Incorrect Incorrect → Correct

HumanEval
DeepSeek-Coder-6.7B-base 0% 52.5%
DeepSeek-Coder-6.7B-instruct 4.3% 37.8%
Qwen-Coder-7B 7.3% 23.8%
Qwen-Coder-7B-instruct 3.1% 33.6%

EffiBench
DeepSeek-Coder-6.7B-base 1.2% 50.3%
DeepSeek-Coder-6.7B-instruct 0.3% 50.6%
Qwen-Coder-7B 5.9% 19.7%
Qwen-Coder-7B-instruct 0.1% 57.8%

LLMs. For instance, in DeepSeek-Coder-6.7B-base, an additional 52.5% of tasks were addressed by
the fine-tuned version.

Case Study To illustrate how the source code generated by EFFI-CODE fine-tuned LLM is more
efficient than the source code generated by the LLM without fine-tuning on EFFI-CODE, we provide
an example in Figure 3. We can observe that the code generated by Qwen2.5-Coder-7B requires 9.89
(s) to execute all unit tests, while the code generated by EFFI-CODE fine-tuned Qwen2.5-Coder-7B
with SFT only requires 0.14 (s) to execute. The key reason is that the code generated by Qwen2.5-
Coder-7B requires significantly more recursive calls, as it lacks optimized pruning strategies such as
breaking early in redundant paths. This inefficiency leads to a much larger number of computations,
ultimately resulting in the observed longer execution time. The code generated by EFFI-CODE fine-
tuned Qwen2.5-Coder-7B, on the other hand, incorporates smart optimizations, such as terminating
recursion early when certain conditions are met, thereby reducing the overall time complexity.

A.7 CASE EXAMPLE IN IMPROVING EFFICIENCY OF CODE WITH SOAP

We have provided a case example in Figure 4 to demonstrate how SOAP’s iterative refinement
improves the quality of the solutions. In this example, the initial code generated by DeepSeek-Coder-
V2-Lite calculates the Levenshtein distance using a recursive approach, which has an exponential
time complexity of O(3(m+n)). For longer strings, this recursive method becomes highly inefficient
due to the large number of function calls. To optimize the code, the refined version employs dynamic
programming, which avoids redundant calculations by filling a distance matrix to compute the
Levenshtein distance. The time complexity of the dynamic programming approach is O(mn), where
m and n are the lengths of strings a and b, respectively. By filling the distance matrix in a single
traversal, the optimized code eliminates redundant calculations, resulting in improved efficiency. The
dynamic programming solution leverages the characteristics of optimal substructure and overlapping
subproblems, decomposing the problem into smaller subproblems and storing intermediate results
to avoid redundant calculations, thereby improving the efficiency of the algorithm. In the provided
example, the initial recursive code takes 1.100s to execute, while the optimized dynamic programming
code completes execution in just 0.00012s, demonstrating a significant improvement in execution
time.

A.8 ROBUSTNESS OF OVERHEAD RESULTS

The overhead results would be affected by the local environments, which causes that the results of
Effi-Code fine-tuned LLMs may not able to represent the results of the efficiency profiling in different
environments. To address this issue, we have conducted additional experiments and provided more
robust evaluation results.

Firstly, we have evaluated the effectiveness of Effi-Code on seven different software-hardware setups,
as shown in Rebuttal Table 2. The results demonstrate that Effi-Code fine-tuned LLMs achieve higher

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Task Description

Problem: You are given an integer array cookies, where cookies[i] denotes the number
of cookies in the ith bag. You are also given an integer k that denotes the number of children to
distribute all the bags of cookies to. All the cookies in the same bag must go to the same child
and cannot be split up. The unfairness of a distribution is defined as the maximum total
cookies obtained by a single child in the distribution. Return the minimum unfairness of all
distributions.
solution = Solution() assert solution.distributeCookies([8, 15, 10, 20, 8], 2) == 31 assert
solution.distributeCookies([6, 1, 3, 2, 2, 4, 1, 2], 3) == 7
solution = Solution()
assert solution.distributeCookies([8, 15, 10, 20, 8], 2) == 31
assert solution.distributeCookies([6, 1, 3, 2, 2, 4, 1, 2], 3) == 7

Qwen2.5-Coder-7B

Execution Time: 9.89 (s)
Max Memory Peak: 24.39 (MB)
Memory Usage: 240.47 (MB*s)
class Solution:

def distributeCookies(self, cookies,
k):↪→
min_unfairness = float('inf')
distribution = [0] * k
def distribute(i):

nonlocal min_unfairness
if i == len(cookies):

min_unfairness =
min(min_unfairness,\↪→

max(distribution))
return

for j in range(k):
distribution[j] +=

cookies[i]↪→
distribute(i + 1)
distribution[j] -=

cookies[i]↪→
distribute(0)
return min_unfairness

Qwen2.5-Coder-7B SFT with EFFI-CODE

Execution Time: 0.14 (s)
Max Memory Peak: 24.39 (MB)
Memory Usage: 2.47 (MB*s)
class Solution:

def distributeCookies(self, cookies,
k):↪→
def backtrack(i):

nonlocal ans
if i == len(cookies):

ans = min(ans,
max(children))↪→

return
for j in range(k):

children[j] += cookies[i]
backtrack(i + 1)
children[j] -= cookies[i]
if children[j] == 0:

break
children = [0] * k
ans = float('inf')
backtrack(0)
return ans

Figure 3: A case illustration for the task with code generated by Qwen2.5-Coder-7B and EFFI-CODE
fine-tuned Qwen2.5-Coder-7B in EffiBench problem_idx=2305.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Task Description

Problem: > In information theory and computer science, the Levenshtein distance is a string
metric for measuring the difference between two sequences. Informally, the Levenshtein
distance between two words is the minimum number of single-character edits (i.e. insertions,
deletions or substitutions) required to change one word into the other.
(http://en.wikipedia.org/wiki/Levenshtein_distance)
Your task is to implement a function which calculates the Levenshtein distance for two arbitrary
strings.

Initial

Execution Time: 1.100s
def levenshtein(a, b):

if not a:
return len(b)

if not b:
return len(a)

if a[0] == b[0]:
return levenshtein(a[1:], b[1:])

return 1 + min(levenshtein(a[1:], b),
levenshtein(a, b[1:]),
levenshtein(a[1:], b[1:]))

Optimized

Execution Time: 0.00012s
def levenshtein(a: str, b: str) -> int:

distance_matrix = [[0] * (len(b) + 1)\
for _ in range(len(a) + 1)]
for i in range(len(a) + 1):

distance_matrix[i][0] = i
for j in range(len(b) + 1):

distance_matrix[0][j] = j
for i in range(1, len(a) + 1):

for j in range(1, len(b) + 1):
if a[i-1] == b[j-1]:

distance_matrix[i][j] = \
distance_matrix[i-1][j-1]

else:
distance_matrix[i][j] =

min(↪→
distance_matrix[i-1][j] +

1,↪→
distance_matrix[i][j-1] +

1,↪→
distance_matrix[i-1][j-1] +

1)↪→
return distance_matrix[len(a)][len(b)]

Figure 4: A case for the task with code and SOAP refined version. The lower left panel shows the
initial completion generated by an LLM, its profile shows its inefficiency, which requires 1.100s to
execute. The lower right panel shows the final efficient answer output by applying SOAP, which only
requires 0.00012s to execute.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Setup ET NET MU NMU TMU NTMU

Python 3.11.10 - Intel(R) Xeon(R) Platinum 8336C CPU @ 2.30GHz

Qwen2.5-Coder-7B 0.59 1.95 61.95 0.99 24.29 1.83
+Effi-Code 0.40 1.01 61.96 0.99 18.74 1.02

Python 3.11.10 - Intel(R) Xeon(R) Silver 4216 CPU @ 2.10GHz

Qwen2.5-Coder-7B 0.28 1.63 36.15 1.00 20.01 1.88
+ SFT 0.25 1.38 36.52 1.01 19.85 1.56

Python 3.11.10 - Intel(R) Xeon(R) Silver 4116 CPU @ 2.10GHz

Qwen2.5-Coder-7B 0.35 1.45 36.14 1.00 24.28 1.63
+ SFT 0.22 1.01 36.51 1.01 15.26 1.09

Python 3.11.4 - Intel(R) Xeon(R) Silver 4216 CPU @ 2.10GHz

Qwen2.5-Coder-7B 0.67 1.16 61.43 1.00 40.01 1.22
+Effi-Code 0.58 1.02 60.77 0.97 32.50 1.03

Python 3.11.0 - Intel(R) Xeon(R) Silver 4216 CPU @ 2.10GHz

Qwen2.5-Coder-7B 0.28 1.64 34.55 1.00 19.39 1.87
+ SFT 0.25 1.39 34.90 1.02 20.03 1.59

Python 3.9.0 - Intel(R) Xeon(R) Silver 4216 CPU @ 2.10GHz

Qwen2.5-Coder-7B 0.30 1.60 34.26 1.01 21.02 2.10
+Effi-Code 0.24 1.20 34.52 1.02 19.84 1.32

Python 3.10.0 - Intel(R) Xeon(R) Silver 4216 CPU @ 2.10GHz

Qwen2.5-Coder-7B 0.29 1.63 33.26 1.01 20.32 2.16
+ SFT 0.26 1.43 33.50 1.02 19.53 1.61

Table 11: Rebuttal Table 2: Evaluation results of Effi-Code’s effectiveness on different software-
hardware setups.

efficiency than the original LLMs across all setups. For example, in the environment of Python
3.11.10 - Intel(R) Xeon(R) Platinum 8336C CPU @ 2.30GHz, the average execution time decreases
from 0.59s to 0.40s when using Effi-Code to fine-tune Qwen2.5-Coder-7B, reducing the average
execution time by 32%.

Secondly, we clarify that for the same setup, where we evaluate the efficiency of LLM-generated
code several times, the efficiency results are consistent. As shown in Paper Table 8, where we execute
the LLM-generated code five times, the standard deviation of execution time (ET) is 0.00548 (s),
indicating that the evaluation results are consistent and reliable for a given setup.

Finally, our evaluation setup follows the practices established in recent works on benchmarking the
efficiency of automatically generated code, such as Mercury Du et al. (2024), Effibench Huang et al.
(2024b), and SOAP Huang et al. (2024a). By adhering to these benchmarks, we ensure that our
evaluation is in line with the current standards in the field.

A.9 ADDITIONAL EFFI-CODE INSTRUCT TUNING LLMS

We have conducted additional experiments by fine-tuning Effi-Code on five more open-source LLMs.
We have carefully selected these LLMs based on their popularity and performance in code generation
tasks. The results are presented in Table 12, demonstrating the effectiveness of Effi-Code in improving
the efficiency of the generated code across various LLMs. We can observe that all the evaluated LLMs
exhibit improvements in both code efficiency and pass@1 metrics after fine-tuning with Effi-Code.
For instance, CodeLlama-13B-hf shows a significant reduction in execution time (ET) from 0.86s
to 0.13s on average for correctly overlapped tasks, which reduces execution time by 84.88%. In
addition, we can also observe that the pass@1 of CodeLlama-13B-hf generated code increases
from 7.9% to 28.8%, which also increases pass@1 by 20.9% compared to the original LLM. These

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Model ET NET MU NMU TMU NTMU Overlap pass@1
starcoder2-7b 0.41 2.22 77.86 1.62 215.26 23.33 16.4 23.6
+ SFT 0.40 2.21 36.58 1.00 14.63 3.83 16.4 28.8

starcoder2-15b 0.29 1.52 41.28 1.00 34.09 1.85 17.9 21.2
+ SFT 0.20 1.08 42.18 1.04 20.07 1.06 17.9 42.8

CodeLlama-13b-hf 0.86 6.57 34.32 1.12 55.69 11.02 5.3 7.9
+ SFT 0.13 0.97 31.02 1.00 3.71 0.98 5.3 28.8

codegemma-7b 0.11 0.95 26.25 1.00 1.62 0.95 0.2 0.2
+ SFT 0.10 0.94 26.01 0.98 1.46 0.89 0.2 35.1

DeepSeek-Coder-6.7b-base 0.44 2.61 57.24 1.26 54.57 7.94 7.3 8.5
+ SFT (Ours) 0.29 2.08 50.58 1.00 17.25 2.79 7.3 57.6

DeepSeek-Coder-6.7b-instruct 0.14 1.00 38.36 1.00 4.21 0.97 1.0 1.3
+ SFT (Ours) 0.13 0.93 38.31 1.00 4.01 0.92 1.0 51.6

Qwen2.5-Coder-7B 0.26 1.79 38.06 1.01 18.30 2.74 44.2 50.1
+ SFT (Ours) 0.21 1.45 38.15 1.01 15.88 1.70 44.2 63.9

Qwen2.5-Coder-7B-Instruct 0.44 3.96 28.62 1.00 10.17 5.43 3.2 3.3
+ SFT (Ours) 0.43 3.88 28.59 1.00 10.10 5.37 3.2 61.0

Table 12: Comparison of Effi-Code across different open-source LLMs.

Table 13: Efficiency results on the HumanEval-X (C++) dataset.

HumanEval-X (C++) ET (s) NET MU (KB) NMU TMU (KB*s) NTMU

DeepSeek-Coder-6.7B-base 0.44 1.4 83.9 1.3 25.2 1.9
SFT with Effi-Code 0.32 1.0 71.3 1.1 18.9 1.4

additional experiments on a diverse set of open-source LLMs further validate the generalizability and
effectiveness of our proposed Effi-Code dataset.

A.10 EXPERIMENTAL RESULTS ON HUMANEVAL-X (C++) DATASET

We have conducted additional experiments on the HumanEval-X (C++) dataset and provided the
efficiency results in Table 13. We can observe that the efficiency of LLM-generated code also
improved with Effi-Code fine-tuned LLM. For instance, the average execution time (ET) for the
overlapped code decreases from 0.44s to 0.32s, resulting in a 27% reduction in execution time.

Furthermore, to investigate whether the efficiency of the code generated by Effi-Code fine-tuned
LLMs can be further enhanced once we add additional efficient C++ code into the Effi-Code dataset,
we have followed the pipeline of Effi-Code and constructed an Effi-Code (C++) subset containing
3,322 C++ tasks. We then fine-tuned LLMs using three different setups: Effi-Code (Py), Effi-Code
(C++), and Effi-Code (C++) + Effi-Code (Py). The evaluation results, presented in Table 14, reveal
several interesting findings.

Firstly, LLMs fine-tuned on the Effi-Code datasets generate more efficient code compared to the
original LLM-generated code. For example, the average execution time for Qwen2.5-Coder-7B
generated code is 0.35s, while the Effi-Code (Py) fine-tuned LLMs require only 0.17s on average for
overlapped tasks, resulting in a 51.4% reduction in average execution time.

Secondly, when we utilize Effi-Code (C++) and Effi-Code (Py) + Effi-Code (C++) to fine-tune LLMs,
the overhead of LLM-generated code is further decreased. The average execution time for overlapped
code decreases from 0.17s to 0.16s, and the memory peak (MU) also decreases from 46.71MB to
43.72MB. These results indicate that by incorporating C++ source code to guide LLM fine-tuning,
LLMs may learn additional optimization strategies.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Table 14: Efficiency results on the EffiBench dataset with different fine-tuning setups.

EffiBench ET (s) NET MU (MB) NMU TMU (MB*s) NTMU

Qwen2.5-Coder-7B 0.35 2.01 43.72 0.99 12.35 0.98
EffiCode (Py) 0.17 1.02 46.71 1.12 7.53 1.29
EffiCode (CPP) 0.17 1.01 43.74 0.99 6.65 1.04
EffiCode (Py) + EffiCode (CPP) 0.16 1.00 43.72 0.99 6.01 0.99

Table 15: Efficiency results on the EffiBench dataset with different fine-tuning setups.

EffiBench ET (s) NET MU (MB) NMU TMU (MB*s) NTMU

Qwen2.5-Coder-7B 0.49 3.50 25.69 1.00 10.75 4.78
+Effi-Code + non-algorithmic 0.19 1.16 25.67 1.00 4.17 1.17
+Effi-Code 0.19 1.15 25.69 1.00 4.07 1.15

A.11 INCORPORATING NON-ALGORITHMIC TASKS

We have conducted additional experiments and provided the evaluation results in Table 15, which
compares the performance of the original Qwen2.5-Coder-7B, the model fine-tuned on Effi-Code,
and the model fine-tuned on Effi-Code + non-algorithmic tasks (optimized).

As shown in Table 15, when we fine-tune Qwen2.5-Coder-7B on either Effi-Code or Effi-Code +
non-algorithmic tasks, the efficiency of LLM-generated code improves. For instance, the average
execution time for overlapped correct tasks decreases from 0.49s to 0.19s for both Effi-Code and
Effi-Code + non-algorithmic tasks fine-tuned Qwen2.5-Coder-7B.

However, we also observe that the TMU of the Effi-Code fine-tuned Qwen2.5-Coder-7B is lower
than the model fine-tuned on Effi-Code + non-algorithmic tasks. Specifically, the Effi-Code + non-
algorithmic tasks fine-tuned Qwen2.5-Coder-7B decreases the average TMU for overlapped correct
code from 10.75 MB*s to 4.17 MB*s. In contrast, Qwen2.5-Coder-7B fine-tuned only on Effi-Code
further reduces the TMU from 4.17 MB*s to 4.07 MB*s.

Our results indicate that while incorporating non-algorithmic tasks in the fine-tuning process can lead
to improvements in code efficiency, focusing solely on algorithmic tasks, as done in Effi-Code, may
yield even better results. Nonetheless, we acknowledge the potential benefits of broadening the scope
to include non-algorithmic optimizations, as it can enhance the real-world implications of Effi-Code.
In future work, we plan to explore the integration of non-algorithmic tasks more comprehensively
while maintaining the focus on algorithmic optimization.

A.12 EFFICIENCY RESULTS OF PIE AND EFFI-CODE FINE-TUNED LLM IN PIE TEST SET

We also provided the efficiency results of the PIE fine-tuned CodeLlama, and Effi-Code fine-tuned
CodeLlama in Table 16. For each task, we requested each LLM to generate efficient code. The results
demonstrate that for the PIE test set, the efficiency of the code generated by the Effi-Code fine-tuned
CodeLlama-7B is also better than that of the PIE fine-tuned CodeLlama-7B. Specifically, the average
execution time for overlapping correct code generated by the PIE fine-tuned LLM is 0.39s. However,
the Effi-Code fine-tuned CodeLlama further reduces this average execution time from 0.39s to 0.34s,
resulting in an additional 8% reduction in execution time.

Table 16: Efficiency comparison of CodeLlama-7B fine-tuned on PIE and Effi-Code, evaluated on
the PIE test set.

PIE Test Set ET (s) NET MU (MB) NMU TMU (MB*s) NTMU

CodeLlama7B+PIE 0.39 0.84 7.3 0.93 1.7 0.95
CodeLlama7B+Effi-Code 0.34 0.76 7.2 0.91 1.5 0.88

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Table 17: Efficiency comparison of different methods on the HumanEval dataset.

Method ET NET MU NMU TMU NTMU overlapped pass@1

CodeLlama-7B-hf 1.40 1.02 62.36 0.99 63.49 0.98 1.2 12.2
Supersonic 1.24 0.90 63.39 1.01 63.18 0.98 1.2 15.2
PIE 1.32 0.96 63.24 1.00 65.28 1.03 1.2 19.5
Effi-Code 1.21 0.87 62.06 0.99 56.05 0.87 1.2 37.8

DeepSeek-Coder-6.7B-base 2.30 1.00 75.35 1.00 166.68 0.97 4.9 7.3
Mercury 2.29 0.99 75.30 1.00 174.05 0.99 4.9 29.9
Effi-Code 2.24 0.94 75.30 1.00 160.10 0.92 4.9 51.8

A.13 EVALUATION RESULTS WITH ADDITIONAL BASELINES

We provide the evaluation results of Supersonic, PIE, Mercury, and Effi-Code in Table 17. We
currently only have the inference results of Mercury in the DeepSeek-Coder-6.7B-base, so we
compare the efficiency of Mercury and Effi-Code in the DeepSeek-Coder-6.7B-base. For Supersonic
and PIE, we compare the efficiency results in CodeLlama-7B-hf. Furthermore, as the training set of
Mercury contains some tasks in EffiBench, for a fair comparison, we evaluate the efficiency results in
the HumanEval dataset.

As shown in Table 17, we can observe that for both models, Effi-Code achieves state-of-the-art
(SOTA) performance compared to the baselines. For example, in CodeLlama-7B-hf, the average
execution time for Supersonic decreases from 1.40s to 1.24s on average for all overlapping correct
tasks, while Effi-Code further decreases the average execution time from 1.24s to 1.21s. Compared
to the solution generated by CodeLlama-7B-hf, the average execution time was reduced by 16.7%.

27

	Introduction
	Related Works
	Effi-Code: Fine-Tuning For Efficiency
	Source Data Collection
	Pre-SOAP Construction
	Self-Optimization based on OverheAd Profile (SOAP)
	Post-SOAP Cleaning
	Evaluaiton Metrics
	Dataset Statistics

	Experiment
	Main Results
	Ablation Study

	Conclusion
	Appendix
	Construction Pipeline
	Additional Related Work
	Prompt Template
	Efficiency Metrics
	Additional Related Work
	What percentage of solutions improved in efficiency but showed degraded correctness
	Case Example in improving efficiency of code with SOAP
	Robustness of Overhead Results
	Additional Effi-Code instruct tuning LLMs
	Experimental Results on HumanEval-X (C++) Dataset
	Incorporating Non-Algorithmic Tasks
	Efficiency Results of PIE and Effi-Code Fine-Tuned LLM in PIE test set
	Evaluation Results with Additional Baselines

