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Abstract
Fluid dynamics modeling has received extensive
attention in the machine learning community. Al-
though numerous graph neural network (GNN)
approaches have been proposed for this problem,
the problem of out-of-distribution (OOD) gener-
alization remains underexplored. In this work,
we propose a new large-scale dataset Prometheus
which simulates tunnel and pool fires across var-
ious environmental conditions and builds an ex-
tensive benchmark of 13 baselines, which demon-
strates that the OOD generalization performance
is far from satisfactory. To tackle this, this paper
introduces a new approach named Disentangled
Graph ODE (DGODE), which learns disentan-
gled representations for continuous interacting
dynamics modeling. In particular, we utilize a
temporal GNN and a frequency network to extract
semantics from historical trajectories into node
representations and environment representations
respectively. To mitigate the potential distribu-
tion shift, we minimize the mutual information
between invariant node representations and the
discretized environment features using adversarial
learning. Then, they are fed into an environment-
aware graph ODE framework, which models the
evolution using neighboring nodes and dynamical
environmental context. In addition, we enhance
the stability of the framework by perturbing the
environment features to enhance robustness. Ex-
periments validate the effectiveness of DGODE
compared with state-of-the-art approaches.
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1. Introduction
Computational fluid dynamics modeling (Kochkov et al.,
2021; Obiols-Sales et al., 2020; Steeven et al., 2024; Li et al.,
2021; Wu et al., 2023c; Wu et al.) is an important problem
in fluid mechanics, which can facilitate our understanding
of fluid flows (Li et al., 2023a; Yu et al., 2024). Recently, a
range of machine learning approaches have been developed
to solve this problem (Pfaff et al., 2021; Li et al., 2023b;
Shao et al., 2022; Sanchez-Gonzalez et al., 2020; Han et al.,
2022a; Deng & Hooi, 2021). They usually construct geomet-
ric graphs to model the relationships between neighborhood
observation points and then adopt graph neural networks
(GNNs) to model fluid dynamics, which follow the mes-
sage passing mechanism (Kipf & Welling, 2017; Veličković
et al., 2018) by aggregating neighborhood information of
each node for interactive updating.

Although these approaches have achieved some progress
in fluid dynamics modeling (Yu et al., 2023; Huang et al.,
2023a; Luo et al., 2024), they usually assume that train-
ing and test data come from the same distribution (Pfaff
et al., 2021; Shao et al., 2022; Sanchez-Gonzalez et al.,
2020; Lippe et al., 2023), which is not practical in the real-
world analysis since fluid mechanisms always face different
environments resulting from system parameters such as
temperature, viscosity and pressure (Baradel et al., 2019;
Sanchez-Gonzalez et al., 2020; Huang et al., 2023b). Exist-
ing machine learning algorithms would suffer from inferior
out-of-distribution (OOD) performance (Hendrycks et al.,
2021). Therefore, in this work, we study the problem of
OOD fluid dynamics modeling, which aims to learn data-
driven models generalized well on systems with different
parameters. However, there are limited large-scale fluid
dynamics datasets and benchmarks for this practical and
emerging problem, which could hinder from algorithm re-
search and development.

In this work, we first build a large-scale OOD fluid dynam-
ics dataset Prometheus using extensive fire simulations. In
particular, both tunnel and pool fires are modeled using
fire dynamics simulators, which solve Navier-Stokes equa-
tions in fire scenarios. More importantly, our simulators
consider 25 different environments with varying parame-
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ters including HRR and ventilation speeds, which results
in well-designed datasets for OOD generalization evalua-
tion. Totally, we generate 4.8TB of raw data compressed
into 340GB and construct the benchmark with 12 popular
dynamics modeling baselines.

As a second contribution, we propose an effective solution
to this problem. Our motivation is to answer the follow-
ing two research questions: (1) How to handle distribution
shifts from different system parameters for fluid dynamics
modeling? Different system parameters could result in dis-
tribution shifts across dynamical systems and thus spuri-
ous correlations involved in trajectory predictions. Exist-
ing OOD generalization problems (Liu et al., 2021a; Gui
et al., 2023) usually capture invariant patterns across sev-
eral environments using environment labels, which can help
to remove spurious correlations. However, we would en-
counter a large variety of different environments, and their
labels are usually unavailable for fluid dynamics due to their
high complexity. (2) How to model continuous complicated
interacting dynamics across different environments? Re-
cent GNN approaches (Pfaff et al., 2021; Shao et al., 2022;
Sanchez-Gonzalez et al., 2020) usually leverage the current
states for next-time predictions without consideration of the
environmental context, which could continuously influence
the evolution mechanisms. Moreover, since fluid dynamics
is intrinsically continuous, it is highly expected to incorpo-
rate environmental context into a unified and continuous
trajectory forecasting framework.

In this paper, we propose a novel framework termed
Disentangled Graph ODE (DGODE) for OOD fluid dynam-
ics modeling. The core of our DGODE is to learn disen-
tangled representations for capturing continuous dynamics.
Concretely, we utilize a temporal GNN and a frequency
network, which learns spatio-temporal relationships and
frequency semantics from complementary views for node
features and environment features. To mitigate the OOD
distribution shift across different environments, we aim to
minimize the mutual information between invariant node
features and environment features. To achieve this, we
stratify all environmental features into discrete pieces us-
ing vector quantization and minimize the upper bound of
mutual information by adversarial learning. To model the
continuous complicated interacting dynamics under differ-
ent environments, we incorporate all the node features and
environment features into a graph ODE framework, which
models the evolution of latent states of interacting nodes
and the environment simultaneously. Here, node states are
driven by interacting neighboring nodes and the environ-
ment while environment states always evolve to simulate
dynamical influence. Finally, a decoder is adopted to output
the future trajectories and we also perturb the environment
features to enhance the stability of node states w.r.t different
environments for generalization robustness. Extensive ex-

periments on various benchmarks showcase the superiority
of the DGODE compared to existing SOTAs.

The contribution of this paper can be summarized as fol-
lows: (I) We propose a new large-scale dataset and an ex-
tensive benchmark of 12 baselines for OOD fluid dynam-
ics modeling. (II) We develop a novel approach named
DGODE for this problem. Our DGODE learns disen-
tangled node and environment representations to mitigate
the risk of distribution shift and incorporates them into
a continuous graph ODE framework to model interact-
ing dynamics across different environments. (III) Exten-
sive experiments validate the effectiveness of the proposed
DGODE in comparison to a wide range of approaches.
Our Prometheus dataset can be found at the following link:
https://huggingface.co/datasets/easylearning/Prometheus.

2. Benchmark
Problem Definition. Given a fluid dynamical system, we
characterize the observation states and interaction at the t-th
step using a graph Gt = (V, E ,Xt). Each node represents
an observation point, E collects all the edges, and Xt de-
notes the attribute matrix. In our settings, we employ the
historical trajectories XH = X1:Tobs and aim to learn a
model to predict the future trajectories XF = XTobs+1:T .
In our problem, the fluid dynamics can be governed by a
range of different hidden system parameters, which results
in different environments. These environments would lead
to potential distribution shifts in historical trajectories to
degrade the forecasting performance during inference.

Purpose. We built Prometheus to meet the growing demand
for deep learning technologies and fluid dynamics data. This
dataset integrates advanced methodologies from the field of
engineering, with a special focus on precise and efficient
data analysis and inference on irregular grid structures. As
shown in Figure 1, we use Computational Fluid Dynamics
(CFD) technology to focus on simulating tunnel fires and
pool fires. By finely adjusting a variety of physical param-
eters, we can simulate different environmental conditions.
This helps us recreate complex and challenging turbulence
phenomena. Moreover, this approach is very beneficial for
conducting Out-Of-Distribution (OOD) tests.

2.1. Proxy Task Configuration

In this section, we provide a detailed introduction to the
design of proxy tasks. This includes the geometric shape of
the work condition, the design of physical parameters, and
the grid situation in the computational domain, among other
aspects. The specific descriptions are shown below:

Tunnel Fires. In this study, we design a proxy task to
investigate tunnel fire dynamics, as shown in Figure 1(a),
building a 6× 6× 100 m simulation tunnel with a consis-
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Figure 1. (a). Tunnel Design: A 100 m long, 6 m wide and high tunnel, with a focus on 2D flow data at y=3 m, using sensors for
temperature and visibility. (b). Industrial Park Tanks: Three tanks, each 20 m in diameter, with heights of 10 m, 20 m, and a building
of 55 m length, 40 m width, and 30 m height. (c). Tunnel Visualization: Displaying temperature and visibility distribution. (d). Fire
Dynamics: Visualizing velocity and temperature in a pool fire to study its dynamics.

tent landscape and a fixed fire source 59 meters from the
entrance. We vary the heat release rate (HRR) and venti-
lation speed to simulate different fire scenarios, observing
smoke stratification, flame spread, and diverse burning pat-
terns. We equip the tunnel with 32×480 sensors to measure
temperature and flue gas concentration, creating 25 envi-
ronmental combinations with varying HRR and ventilation
speeds. Additionally, we introduce vent parameters in five
settings as disturbances, forming a 30-condition dataset for
tunnel fire combustion analysis. These 30 environments are
denoted as a1, a2, a3, ..., a30.

Pool Fires. Next, as shown in Figure 1(b), we build a fire
model for a tank storage area, our goal is to examine its
impact on the surroundings. The model spans a 150× 100
m area and includes tanks, buildings, and pool fires. We
position the simulated fire source above the leftmost tank, 5
meters from other structures. Our study finely adjusts the
HRR and ventilation speed to assess different variables. We
focus on analyzing changes in flame contours, temperature,
and internal velocity under various HRR conditions, and
how ventilation affects flame length and tilt angle. The
study also evaluates the thermal impact of a fire on nearby
buildings and tanks. We deploy a sensor grid in and around
the model area to measure temperature and speed, setting 25
environmental combinations of HRR and ventilation speeds
for simulating different fire scenarios. Sensor data helps us
understand the temperature distribution and velocity fields in
the area during tank fires. We denote these 25 environments
as b1, b2, b3, ..., b25.

2.2. Numerical Simulation

In combustion dynamics modeling, we use FDS (Fire Dy-
namics Simulator) based on the Navier-Stokes equations to
simulate thermal combustion phenomena accurately. These
equations form the foundation of fluid dynamics, describing
gas and liquid flow dynamics. To simulate fire scenarios

better, we adjust and expand the Navier-Stokes equations
to consider heat transfer, combustion processes, and smoke
propagation. This method generates 4.8TB of raw data with
a grid precision of 2 million. We then downsample the data
and compress it to 340GB. More details and data processing
information are available in the Appendix E.

2.3. Physical Field Visualization

In this section, we detail the simulation’s 10 physical vari-
ables in tunnel and building pool fire scenarios, as illustrated
in Figure 6, divided into two categories for in-depth expla-
nation. (1). Pool Fires: We analyze pool fires from the front
and top views. The front view shows Z-axis velocity (vz),
X-axis velocity (vx1), and their resultant speed (vspeed1 =√
vz2 + v2x1), along with temperature (tempool1). The top

view presents Y-axis velocity (vy), X-axis velocity (vx2),
their resultant speed (vspeed2 =

√
vy2 + v2x2), and tempera-

ture (tempool2). (2). Tunnel Fires: For tunnel fires, we ex-
amine the tunnel’s longitudinal section, focusing on temper-
ature (temtunnel) and flue gas concentration (fluetunnel),
to understand their distribution inside the tunnel.

3. Methodology
3.1. Framework Overview

This work studies the problem of OOD fluid dynamics mod-
eling, which is challenging due to distribution shifts across
different environments and complicated interacting dynam-
ics. Here, we propose a new approach named DGODE for
this problem, which can learn disentangled representations
for continuous dynamics modeling. In particular, we involve
a temporal GNN and a frequency network to extract node
features and environment features. To tackle the OOD shift,
we stratify environments using vector quantization and con-
duct representation disentanglement by mutual information
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Figure 2. An Overview of DGODE. Our DGODE utilizes a temporal GNN and a frequency network to generate node features and
environment features. We adopt vector quantization to discretize environment features, which would be disentangled with node features
by mutual information minimization. These features would be fed into an environment-aware graph ODE to model the evolution of
dynamical systems. We also minimize the variance of node features across different environments for enhanced generalization capacity.

minimization. To model the complicated interacting dy-
namics under different environments, we incorporate all the
node features and environment features into a graph ODE
framework, which models the evolution using states of inter-
acting nodes and the environment simultaneously. We also
introduce a regularization term to enhance the stability of
our framework to different environments. An overview of
our DGODE can be found in Figure 2.

3.2. Learning Disentangled Representations from
Historical Trajectories

The major obstacle is that different environments would
bring in distribution shift (Rämä & Sipilä, 2017; Luo et al.,
2023a), which would generate spurious correlations between
historical trajectories and future predictions. To tackle this,
we introduce representation disentanglement, which decom-
poses historical trajectories into invariant node representa-
tions and environment representations with mutual informa-
tion minimization. Here, a temporal GNN (Huang et al.,
2021) and a frequency network are adopted to generate
node features and environment features from complemen-
tary views. More importantly, we stratify all the environ-
ment features using vector quantization representation and
then ensure representation disentanglement by mutual infor-
mation minimization (Belghazi et al., 2018), which can mit-
igate the influence of environments on node representations
and help to capture invariant patterns in OOD scenarios.

Feature Extraction. In detail, we first utilize a temporal
GNN to summarize the node representations from historical
trajectories, which updates temporal node representations
using their related nodes. In formulation, given a temporal
node representation h

t,(l)
i at the l-th layer, the update rule

can be formulated as:

h
t,(l)
i = ϕe([h

t,(l−1)
i ,h

t−1,(l−1)
i ,N

t,(l−1)
i ]), (1)

where N
t,(l−1)
i = AGG(h

t,(l−1)
j |j ∈ N (i)) is the neigh-

borhood representation and AGG(·) is the aggregation oper-
ator. After stacking L layers, we summarize all the temporal
node representations into spatial node features for down-
stream forecasting by:

h
(s)
i = SUM({ht,(L)i |t = 1, 2, ..., Tobs}), (2)

where SUM(·) denotes the summarization operator. Be-
sides temporal GNNs, we leverage the frequency domain
to enhance the representation learning, which can explore
the periodic information as a complementary. To be spe-
cific, we utilize a Fast Fourier Transform (FFT) (Li et al.,
2021) to transform historical data into the frequency domain,
and then utilize a feed-forward network (FFN) to feature
updates, followed by an inverse Fast Fourier Transform
(iFFT). Finally, these reconstructed features would be re-
shaped frequency-based node features h(f)

i . In formulation,
we have:

{h(f)
i }i∈V = Re(iFFT(FFN(FFT(G1:Tobs))), (3)

where Re(·) is to convert the reconstructed feature maps
into a set of node features. Finally, we concatenate spatial
node features and frequency-based node features generated
from complementary views into final node features as:

hi = [h
(s)
i ,h

(f)
i ]. (4)

To generate environmental representations, we utilize the
same backbone with different parameters for node features
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h′
i, followed by a summarization operator for environment

features. In formulation, we have:

he = SUM({h′
i|i ∈ V }). (5)

Representation Disentanglement. To enhance the invari-
ance of node features across different environments, we
disentangle {h(f)

i }i∈V and e using mutual information min-
imization. However, I({hi}i∈V ;he) is difficult to obtain.
To tackle this, we stratify all the environments into discrete
pieces by introducing the vector quantization strategy. Here,
we have a codebook {e1, · · · , eK} and map each environ-
ment feature he into its closed one by:

VQ(he) = ek̂, where k̂he = argmink ∥h(e)− ek∥2 ,
(6)

The quantization (Zhou et al., 2023; Xia et al., 2024; Van
Den Oord et al., 2017) can decrease the complexity of our
model, which can facilitate our mutual information maxi-
mization (Huang et al., 2023b) as well as the stability max-
imization in Eqn. 20. After stratification, given a graph
sample, we concatenate all the node features into ha and in-
troduce a classifier gψ to predict the environment p(k̂he

|ha).
Then, we can estimate the upper bound of mutual informa-
tion, which can be written as:

Lmi = Ep(ha,k̂he )
[p(k̂he

|ha)]− Ep(ha)Ep(k̂′)[p(k̂
′|ha)]],

(7)
To model p(k̂he |ha), we maximize Eqn. 7 with respect
to classifier parameters ψ for accurate prediction. Then,
we minimize Eqn. 7 with respect to network parameters θ
for disentanglement. The alternative optimization is con-
ducted in a standard adversarial learning paradigm (Luo
et al., 2023c). The minimal-extremal formula is:

min
θ

max
ψ

Lmi = min
θ

max
ψ

(
Ep(ha,k̂he )

[p(k̂he |ha)]

−Ep(ha)Ep(k̂′)[p(k̂
′|ha)]

) (8)

Eqn. 8 aims to achieve representation disentanglement
through adversarial learning by adjusting classifier param-
eters ψ to maximize environmental predictive accuracy
and network parameters θ to minimize mutual information,
thereby promoting feature disentanglement.

3.3. Environment-aware Graph ODE

After generating disentangled representations for both node
representations and environment representations, we aim to
develop an effective framework for dynamical system mod-
eling, which is challenging due to complicated continuous
interacting dynamics (Chen et al., 2024a; Luo et al., 2024;
Huang et al., 2023b; 2022) and environmental influence. To
tackle this, we introduce an environment-aware graph ODE
framework, which models the evolution of node states and
environment states simultaneously.

In particular, the initial node states and environments for
our ODE model are from their features, i.e., z0

i = hi and
z0
e = he. Then, the interacting dynamics can be modeled

by a graph ODE as:

dzti
dt

= σ

 ∑
j∈N s(i)

wijz
s
jW 1 + zeW 2

 , (9)

dzte
dt

= σ

(∑
i∈V

zsjW 3 + zeW 4

)
, (10)

where W1, W2, W3 and W4 are learnable weight matrix.
wij =

Âij√
D̂iD̂j

is the fixed weight from adjacency matrix

where D̂ and Â denote the degree matrix and the adja-
cency matrix of the graph with self-loop. σ is an activation
function. Eqn. 9 models the evolution of hidden states
using neighboring nodes and the environment state. More-
over, Eqn. 10 models the evolution of the environment
state using all the nodes in the system, which can charac-
terize the dynamical influence of environments. In com-
parison to previous approaches (Huang et al., 2020; Chen
et al., 2018), we introduce environment states into the graph
ODE framework to model complicated OOD fluid dynamics.
Our environment-aware ODE framework can be viewed as
adding a virtual node connected with all nodes in the graph.
Finally, we can utilize a decoder ϕd(·) to produce the future
trajectories as:

x̂ti = ϕd(zti). (11)

Theoretical Analysis. In this part, we will theoreti-
cally show the necessity of incorporating the environ-
ment states into the system. Consider the case where
we have the p-dimension environment vector ze(t) =
(ze1(t), . . . , zep(t))

T and p node states z(t) = (z1(t), . . .
, zp(t))

T . Suppose that the interacting dynamics of node
states and environments follows a system of linear ordinary
differential equations,

dz(t)

dt
= W ∗

1 z(t) +W ∗
2 ze(t), z(0) = h,

dze(t)

dt
= W ∗

3 z(t) +W ∗
4 ze(t), ze(0) = he,

(12)

where W ∗
1 , W ∗

2 , W ∗
3 , and W ∗

4 are target parameters. De-
fine Z(t) = (zT (t), zTe (t))

T . Thus, the ODE for the con-
catenated vector can be written compactly below,

dZ(t)

dt
= W ∗Z(t), (13)

where W ∗ =

(
W ∗

1 ,W
∗
2

W ∗
3 ,W

∗
4

)
. The dynamics of the nodes

and environment states follow:

Z(t) = etW
∗
Z(0), Z(0) = (hT ,hTe )

T . (14)
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We assume that both z(t) and ze(t) are measured with
independent Gaussian errors at finite time points; that is,

Z̃(tj) = Z(tj) + εj , (15)

where εj ∼ N(0, σ2I), and without loss of generality tj =
j/n, j = 1, . . . , n.

Theorem 3.1. Under model Eqn. 14–Eqn. 15 where W ∗

and Z(0) both have strictly positive components, if we ig-
nore the environment states ze; that is, we specify a wrong
working model:

dz(t)

dt
= W z(t), z(0) = h, (16)

then the resulting least square estimator,

Ŵ = argmin
W

1

n

n∑
j=1

∥z̃(tj)− z(tj ;W )∥22, (17)

is inconsistent to W ∗
1 even when n→ ∞, where z(t;W ) =

etWh denotes the solution to the ODE Eqn. 16.

The proof of Theorem 3.1 can be found in Appendix A.

3.4. Optimization

To optimize the whole framework, we minimize the training
error compared with the ground truth as follows:

Lerr = −
∑
i

∑
t

∥∥xti − x̂ti
∥∥2 . (18)

To optimize the codebook with standard gradient descent,
we integrate the stopgradient operator sg(·) (Van Den Oord
et al., 2017), which is an identity operator during forwarding
the network and cuts off the gradient computation during
back propagation. The loss objective can be written as:

Lcod = ||sg(ek̂)− he||+ ||ek̂ − sg(he)||, (19)

which can avoid generating trivial solutions. In addition,
we enhance the generalization robustness to enhance the
stability of node states with respect to different environment
vectors as a regularization. Here, we replace V Q(he) with
the other ek in the codebook and minimize the variance of
node states:

Lsta = −
∑
k

∑
i

∑
t

∥∥∥zti − z̃
t,(k)
i

∥∥∥2 , (20)

where z̃
t,(k)
i is generated by replacing V Q(he) with ek. In

summary, the whole loss objective can be summarized as:

L = Lerr + Lcod + Lsta + Lmi. (21)

The whole algorithm of the proposed DGODE is summa-
rized in Algorithm B.

Table 1. Details include number of nodes (#N ), variables (#V ),
and total environments (#E), with specifics on both seen and
unseen environments for each benchmark.

BENCHMARKS #N #V #E SEEN #E UNSEEN #E

PROMETHEUS-T 15360 2 30 {a1, a2, ..., a25} {a26, a27, ..., a30}
PROMETHEUS-P 22225 4 25 {b1, b2, ..., b20} {b21, b22, ..., b25}
WEATHERBENCH-T 2048 1 3 {c1, c2} {c3}
WEATHERBENCH-W 2048 1 3 {d1, d2} {d3}
NAVIER–STOKES 4096 1 3 {e1, e2} {e3}

4. Experiments
4.1. Experimental Settings

In this section, we evaluate DGODE across benchmarks in
combustion dynamics, meteorology, and PDEs, categorized
as seen and unseen in Table 1. The model is trained in
seen environments and tested in unseen ones to evaluate
generalization ability.

Benchmarks. The study presents five benchmarks, as
shown in Table 5, featuring two of our datasets: Prometheus-
T for tunnel fire analysis (temperature and flue gas concen-
tration) and Prometheus-P for pool fire analysis (velocity
components, combined speed, and temperature), including
30 tunnel and 25 pool fire cases (details in Subsection 2.1).
It also includes the Weatherbench dataset with two bench-
marks: Weatherbench-T (temperature) and Weatherbench-W
(wind speed) in various environments. The study addition-
ally employs the Navier-Stokes equation, using the method
from (Li et al., 2021), for training in two environments. Fur-
ther details on environments, benchmark scales, and data
resolution are in Appendix D.

Baselines. We evaluate DGODE against 13 notable models
across three benchmarks, dividing them into four categories:
▷ Visual Backbone Networks. like U-Net (Ronneberger
et al., 2015), Swin Transformer (Liu et al., 2021b), and
Earthfarseer (Wu et al., 2023b); ▷ Graph Neural Networks
for spatio-temporal modeling including CLCRN (Lin
et al., 2022), MGNT (Pfaff et al., 2021), EAGLE (Janny
et al., 2023), and DGCRN (Weng et al., 2023); ▷ Graph-
ODE series with MPNODE (Gupta et al., 2022), CG-
ODE (Huang et al., 2021) and SGODE (Chen et al., 2024a);
▷ Operator learning methods with FNO (Li et al., 2021),
F-FNO (Tran et al., 2023), and LSM (Wu et al., 2023a).
More details of baselines can be found in Appendix D.

Implementation & Evaluation Metrics. To ensure fair-
ness, all methods train on a single NVIDIA-A100 using the
ADAM optimizer for MSE loss over 500 epochs, with an
initial learning rate of 10−3. We set the batch size to 20. We
study Mean Squared Error (MSE) and Structural Similar-
ity Index Measure (SSIM) in our research. To adapt these
models for irregular grids, we incorporate geo-FNO (Li
et al., 2022b) for input/output transformation, facilitating
the conversion of irregular domains into regular grids.
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Table 2. In all benchmark tests, we compare the performance of our study with 12 baseline models and record the Mean Squared Error
(MSE) as a performance metric. It’s important to note that a lower MSE value indicates better model performance. Moreover, we define
improvement as the reduction in relative error compared to the second-best model in each benchmark test.

MODEL

BENCHMARKS

PROMETHEUS-T PROMETHEUS-P WEATHERBENCH-T WEATHERBENCH-W NAVIER–STOKES

w/o OOD w/ OOD w/o OOD w/ OOD w/o OOD w/ OOD w/o OOD w/ OOD w/o OOD w/ OOD

U-NET (2015) 0.0931 0.1067 0.0471 0.0534 0.1382 0.1577 0.1650 0.1862 0.1982 0.2243
SWINT (2021B) 0.0652 0.0729 0.0564 0.0647 0.1191 0.1361 0.1420 0.1618 0.2248 0.2554
EARTH (2023B) 0.0419 0.0470 0.0577 0.0654 0.0861 0.0952 0.1218 0.1374 0.1779 0.2013
CLCRN (2022) 0.0763 0.0851 0.1421 0.1587 0.1293 0.1471 0.1520 0.1710 0.3398 0.3873
MGNT (2021) 0.0967 0.1079 0.1672 0.1855 0.1331 0.1468 0.1591 0.1816 0.3561 0.3938
EAGLE (2023) 0.1128 0.1296 0.1981 0.2222 0.2781 0.3154 0.3300 0.3694 0.4731 0.5238
DGCRN (2023) 0.1027 0.1151 0.0961 0.1066 0.1587 0.1784 0.1845 0.2069 0.2198 0.2497
MPNODE (2022) 0.0652 0.0749 0.0897 0.0999 0.1665 0.1895 0.1941 0.2167 0.1991 0.2199
CG-ODE (2021) 0.0761 0.0843 0.0499 0.0565 0.0972 0.1107 0.1159 0.1320 0.2035 0.2243
SGODE (2024A) 0.0643 0.0723 0.0464 0.0537 0.0873 0.0931 0.1047 0.1301 0.1987 0.2109
FNO (2021) 0.0447 0.0506 0.0471 0.0522 0.1128 0.1290 0.1301 0.1466 0.1556 0.1712
F-FNO (2023) 0.0531 0.0608 0.1542 0.1728 0.1733 0.1934 0.2322 0.2556 0.2322 0.2664
LSM (2023A) 0.0414 0.0456 0.0489 0.0546 0.1298 0.1474 0.1549 0.1723 0.1535 0.1731

DGODE 0.0344 0.0359 0.0397 0.0413 0.0843 0.0883 0.0976 0.1087 0.0805 0.0925
PROMOTION 16.91% 21.27% 15.71% 20.88% 2.09% 7.25% 15.79% 17.65% 47.56% 46.56%

4.2. Performance Comparison under Environmental
Distribution Shifts

In this section, we focus on discussing and evaluating the
performance of DGODE and baseline models in predicting
dynamic systems across various environmental distributions.

Results. The performance of compared approaches in dif-
ferent settings are recorded in Table 2. From the results, we
can find that OOD shifts significantly impact model perfor-
mance. All models, including U-Net and DGODE, show
performance drops under distribution shifts. For example, in
the Prometheus-T test, U-Net’s MSE increased from 0.0931
to 0.1067, while DGODE’s rose from 0.0344 to 0.0359. This
pattern is consistent across models, underscoring challenges
in adapting to new data distributions. However, DGODE
remains robust against these shifts, maintaining lower MSE
scores than others, such as in the WeatherBench-T test
where DGODE’s MSE was 0.0883 (w/ OOD) compared
to the Earth model. DGODE’s performance consistency is
due to its generalization abilities.

Visualization Case Study. Figure 3 provides a clear com-
parison of different methods, highlighting DGODE’s effec-
tiveness in various fields like meteorological forecasting
and physical dynamics simulation. DGODE’s accuracy
is evident in flame flow field predictions, closely match-
ing ground truth for temperature and velocity, and in time
series prediction error figures. Its application to Navier-
Stokes equations, crucial for fluid motion, showcases its
capability to accurately replicate complex fluid dynamics.
Furthermore, DGODE demonstrates robustness in diverse
scenarios, including turbulence modeling and atmospheric

data assimilation, maintaining high precision across differ-
ent scales and conditions. This versatility underscores its
potential for broad application in scientific and engineering
problems. For additional results, refer to Appendix F.

4.3. Model Analysis

We analyze DGODE, focusing on how different environmen-
tal conditions and prediction lengths affect model perfor-
mance. We compare the Prometheus-P and WeatherBench-
W to assess performance across various settings, including
unseen environments {b21, b22} and {d3}. We explore envi-
ronmental embeddings learning, visualize Codebank vectors
using PCA, and conduct sensitivity analysis on key hyper-
parameters. Finally, we evaluate crucial model components
through ablation studies and discuss their performance in
transfer learning.

Effect of Different Environment and Prediction Lengths.
Our study focuses on the Prometheus-P and WeatherBench-
W cases, examining prediction performance in differ-
ent environments and over various forecast lengths.
We test our model in previously unseen environments
{b21, b22} and {d3}. For Prometheus-P, forecast lengths
of {20, 40, 60, 80, 100, 120} steps are analyzed, while for
WeatherBench-W, we use lengths of {2, 4, 6, 8, 10, 12}. As
illustrated in Figure 4, our DGODE model outperforms oth-
ers in all test scenarios. Particularly, DGODE maintains
high local fidelity even at 120 prediction steps, in contrast
to the LSM model, which becomes overly smooth. DGODE
also achieves higher SSIM scores, highlighting its strength
in OOD and long-term forecasts.
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Figure 3. TOP: Prometheus-P shows the visualization of temperature and velocity variables at the last timestamp (T=50). Navier-Stokes
equation prediction shows results at the last timestamp (T=10). Bottom: For WeatherBench-T and WeatherBench-W, we display the
prediction visualization at the last timestamp of the time series (T=12). To more clearly demonstrate the accuracy of the predictions, we
also created images of prediction errors (Error = Y − Ŷ ). More detailed case analyses and examples are available in Appendix F.
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Figure 4. Left shows a top view of the Prometheus-P dataset, comparing the DGODE model with the runner-up LSM model. It displays
the prediction results at 20 and 120 steps. Right, the changes in SSIM over time steps are shown for the DGODE, LSM, and FNO models
on both Prometheus-P and WeatherBench-W datasets.

Learning of Environmental Embeddings. In our study, we
employ Principal Component Analysis (PCA) as a dimen-
sionality reduction technique to visualize the environmental
Codebank vectors in the Prometheus-P dataset. The visu-
alization results are shown in Figure 5 (a). Our aim is to
explore the effectiveness of the environmental Codebank as
a potential feature representation. During this process, we
focus on 20 different colored environmental embeddings.
These embeddings represent unique environments in the
physical world. They start from the same initial point and
gradually disperse in multiple directions as the training cy-
cles progress. This phenomenon indicates that our model
effectively learns information-rich environmental represen-
tations.

Sensitivity Analysis. Our study examines the influence
of key Codebank hyperparameters, K (Codebank size)
and D (dimension of latent vectors), on DGODE’s perfor-
mance in Navier-Stokes simulations. We varied K among
{8, 16, 32, 64, 128} and D among {32, 64, 128}, with re-
sults in Figure 5 (b) showing that performance improves

with larger D, as smaller dimensions are insufficient for
learning the environment. Figure 5 (c) reveals that irrespec-
tive of initial differences, models with various D and K
values converge to similar performance. We also depict
the model’s learning progression in the best training sce-
nario, demonstrating its increasing proficiency in capturing
complex patterns in Navier-Stokes equations.

Transferability. Prometheus-P and Prometheus-T come
from FDS modeling, but they have different scenarios. As
shown in Table 3, to evaluate the DGODE model transfer-
ability, we fine-tune the model trained on Prometheus-P for
different scenes. This also demonstrates the model’s strong
ability to handle unknown data (OOD). It is important to
note that our proposed DGODE always shows good for-
ward transfer abilities, even with limited data. Moreover,
DGODE achieves the best performance, whether using pre-
trained models or starting from scratch. This indicates that
DGODE can extract key physical features from complex
dynamics system.
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Epoch = 180 Epoch = 240 Epoch = 320

Epoch = 0 Epoch = 60 Epoch = 120

(a) Visualization of Environment embeddings (b) Effects of K and D on Navier-Stokes (c) Training progress with different K and D

Figure 5. Figure (a) shows the visualization of environment embeddings at different training epochs. Figure (b) describes the impact of
hyperparameters on the model in Navier-Stokes equation (The viscosity coefficient is 10−5). Figure (c) visualizes the training process.

Table 3. Transfer the model pre-trained from full-data Prometheus-P to limited-data Prometheus-T. The results are presented in the
formalization of P → T , where P is the model performance when it is trained from scratch and T is the performance finetuned from the
Prometheus-P pre-trained model.

MSE×102 20% PROMETHEUS-T 40% PROMETHEUS-T 60% PROMETHEUS-T 80% PROMETHEUS-T 100% PROMETHEUS-T

EARTH 5.31→5.28 (+0.56%) 5.22→5.12 (+1.92%) 5.01→4.66 (+6.99%) 4.89→4.81 (+1.64%) 4.70→4.54 (+3.40%)
CG-ODE 10.12→10.97 (-8.40%) 9.98→9.63 (+3.51%) 9.15→9.01 (+1.53%) 8.92→8.19 (+8.18%) 8.43→8.97 (-6.41%)
LSM 8.02→7.97 (+0.62%) 7.98→6.33 (+20.68%) 6.42→6.07 (+5.45%) 5.12→5.09 (+0.59%) 4.56→4.47 (+1.97%)

DGODE 5.91→5.62 (+4.91%) 4.23→4.18 (+1.18%) 3.97→3.82 (+3.78%) 3.87→3.66 (+5.43%) 3.59→3.51 (+2.23%)

Table 4. Ablation Studies on two benchmark.

VARIANTS
BENCHMARKS

PROMETHEUS-T WEATHERBENCH-T

w/o OOD w/ OOD w/o OOD w/ OOD

DGODE W/O Lcod 0.0354 0.0367 0.0867 0.0901
DGODE W/O Lsta 0.0357 0.0418 0.0899 0.0957
DGODE W/O Lmi 0.0367 0.0421 0.0865 0.0973

DGODE 0.0344 0.0359 0.0843 0.0883

Ablation Study. We conduct extensive ablation experiments
to demonstrate the performance of the key components in
DGODE, as shown in Table 4. To thoroughly understand
the impact of each component, we introduce the following
model variants: (1) DGODE w/o Lcod removes the code-
book loss, which is designed to improve the representation
quality and efficiency; (2) DGODE w/o Lsta removes the
stability loss, which contributes to the stability of the model
by preventing overfitting and enhancing generalization; (3)
DGODE w/o Lmi removes the mutual information mini-
mization loss, aimed at reducing redundant information and
improving the robustness of the model. The experiment
shows that taking out any part lowers performance on all
benchmarks. For example, removing Lmi increases the
MSE by about 22% on the Prometheus-T dataset and by
about 15% on the Weatherbench-T dataset. This demon-
strates that mutual information minimization loss is crucial
for maintaining robustness and accuracy in OOD scenar-
ios. Moreover, our DGODE outperforms DGODE w/o Lsta,
which validates that minimizing the variance as a regular-
ization can improve the model performance.

5. Conclusion
In this paper, we study the problem of out-of-distribution
fluid dynamics modeling and propose a new large-scale
dataset Prometheus, which simulates tunnel and pool
fires across different environments. We also construct
an extensive benchmark with 12 baselines and propose
a new approach named DGODE for this problem. Our
DGODE learns disentangled node features and environ-
ment features from historical trajectories using mutual
information minimization. These features would be in-
corporated into an environment-aware graph ODE frame-
work, where the latent states of nodes and the envi-
ronment are modeled simultaneously. Extensive experi-
ments validate the superiority of the proposed DGODE
compared with a variety of competing baselines. Our
Prometheus dataset can be found at the following link:
https://huggingface.co/datasets/easylearning/Prometheus.

Impact Statement
This paper constructs a new large-scale dataset Prometheus
as well as an extensive benchmark for out-of-distribution
fluid dynamics modeling, which can benefit the research on
scientific machine learning. Moreover, we build an effective
data-driven approach DGODE for this problem, which can
be applied to understand complicated interacting dynamics
in fluid mechanics. In future works, we would extend our
proposed DGODE to different scientific scenarios such as
rigid dynamics and molecular dynamics.
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Lienen, M., Lüdke, D., Hansen-Palmus, J., and Günnemann,
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A. Proof of Theorem 3.1.
Proof of Theorem 3.1. We directly consider the case where the time points tend to infinity; that is

1

n

n∑
j=1

∥z̃(tj)− etjW1h∥22 →
∫ 1

0

∥z̃(t)− etW1h∥22dt ≡ L(W1).

Define E1 = (Ip,0p) ∈ Rp×(2p) be the extractor matrix such that E1A returns the first p rows of the matrix A. Similarly,
we define E1 = (0p, Ip). By Eqn. 14–Eqn. 15,

L(W1) = pσ2 +

∫ 1

0

∥E1e
tW ∗

Z(0)− etW1h∥22dt.

Define D(W , t) as the following p× p2-dimensional matrix function

Di,(ℓ−1)p+k(W , t) =
∂
(
etWh

)
i

∂Wkℓ
, i, ℓ, k = 1, . . . , p, (22)

where Wkℓ denotes the (k, ℓ)th entry of W . Note that the second order derivatives of L(W1) are

∂2L(W1)

∂Wkℓ∂Wk′ℓ′
=

∫ 1

0

p∑
i=1

∂
(
etW1h

)
i

∂Wkℓ

∂
(
etW1h

)
i

∂Wk′ℓ′
dt.

Thus, the Hessian matrix of L(W1) (after W1 being vectorized) is
∫ 1

0
{D(W1, t)}TD(W1, t)dt, which is a positive

semidefinite matrix. This implies that the global minimizer Ŵ1 of L(W1) must be the first-order stationary point; that is,

∇L(Ŵ1) = 2

∫ 1

0

{D(Ŵ1, t)}T (etŴ1h−E1e
tW ∗

Z(0))dt = 0.

By Lemma S6.3 in Wu et al. (2018), we have

D(W , t) = t

∫ 1

0

(hT etsW
T

)⊗ et(1−s)W ds,

which gives

∇L(Ŵ1) = 2

∫ 1

0

∫ 1

0

t(etsŴ1h)⊗ et(1−s)Ŵ
T
1
(
etŴ1h−E1e

tW ∗
Z(0)

)
dsdt = 0.

In general, it is difficult to obtain an explicit form of Ŵ1. But we can show that W ∗
1 is not a zero of ∇L(W1) when each

entry of W ∗ and Z(0) is strictly positive. To see this, first observe that for any matrix A,

etA = I +

∞∑
k=1

tk

k!
Ak,

and thus

etW
∗
1 h−E1e

tW ∗
Z(0) =

∞∑
k=1

tk

k!

(
W ∗k

1 h−E1e
tW ∗

ET
1 h−E1e

tW ∗
ET

2 he
)
.

Moreover, since W ∗ =

(
W ∗

1 ,W
∗
2

W ∗
3 ,W

∗
4

)
, by the positivity of entries of W ∗ we have that each entry of W ∗k

1 −E1W
∗kET

1 and

−E1W
∗kET

2 is strictly negative. It follows immediately from the positivity of components of Z(0) that each components
of etŴ1h−E1e

tW ∗
Z(0) is strictly negative. As the entries of t(etsŴ1h)⊗et(1−s)ŴT

1 are all strictly positive, we conclude
that each component of ∇L(W ∗

1 ) are strictly negative.
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B. Algorithm
We summarize the overall framework of DGODE in Algorithm 1.

Algorithm 1 DGODE Framework for OOD Fluid Dynamics Modeling
Require: Historical trajectories XH , Environment E
Ensure: Future trajectories XF

1: Initialize Temporal GNN and Frequency Network
2: Initialize Vector Quantization (VQ) Codebook with K environment vectors {e1, . . . , eK}

{Feature Extraction}
3: for each node i in the graph G do
4: Extract spatial node features ht,(l)i using Temporal GNN
5: Extract frequency-based node features h(f)

i using Frequency network
6: Concatenate spatial and frequency-based features to form final node features hi
7: end for
8: for each environment do
9: Extract environment features he using a separate backbone network

10: Summarize all node features in the environment to form environment representation
11: end for

{Representation Disentanglement}
12: Disentangle node and environment features using mutual information minimization:
13: Apply Vector Quantization (VQ) to each environment feature he
14: Minimize mutual information between node features hi and quantized environment representations

{Environment-aware Graph ODE}
15: Initialize node states z0

i and environment states z0
e from extracted features

16: Model the interacting dynamics using environment-awre graph ODEs:
17: Update node states zi over time using equation Eqn. 9
18: Update environment states ze over time using equation Eqn. 10

{Optimization}
19: Define loss functions:
20: Reconstruction loss Lerr for the prediction accuracy
21: Codebook loss Lcod for vector quantization
22: Stability loss Lsta for enhancing generalization robustness
23: Mutual information loss Lmi for representation disentanglement
24: Train the model by minimizing the total loss: L = Lerr + Lcod + Lsta + Lmi
25: Predict future trajectories XF using the trained model
26: Return XF

C. Related Work
C.1. Fluid Dynamics Modeling

Learning-based fluid dynamics modeling (Obiols-Sales et al., 2020; Lienen et al., 2024; Ma et al., 2023; Wu et al., 2023c;
Xiong et al., 2023) has received extensive attention in the field of scientific machine learning (Kostic et al., 2024; Chen
et al., 2024b; Wang et al., 2023b) with applications ranging from aerospace engineering (Le Clainche et al., 2023) to
biomedicine (Zhao et al., 2023). Early efforts focus on leveraging convolutional neural networks (Fang, 2021; Guo et al.,
2016) to learn from physical simulations with regular grids. Recent approaches (Pfaff et al., 2021; Shao et al., 2022;
Wang et al., 2024) attempt to leverage geometric graphs for finer-level simulation using GNNs, which follow the message
passing mechanism to update node representations iteratively. However, these approaches usually focus on next-time
prediction (Pfaff et al., 2021; Shao et al., 2022) or auto-regressive prediction (Han et al., 2022b), which is hard to capture
underlying continuous dynamics in fluid simulations (Lippe et al., 2023; Ma et al., 2023). Moreover, these approaches usually
assume that training and test datasets come from the same distribution. In contrast, this work focuses on out-of-distribution
fluid dynamics and proposes a new dataset as well as a benchmark to benefit research on this underexplored problem.
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C.2. Neural Ordinary Differential Equations

Neural Ordinary Differential Equations (ODEs) (Chen et al., 2018) incorporate ODE into learning-based neural networks,
which has received extensive interest in machine learning and computational mathematics. Neural ODEs have been widely
to depict continuous-time dynamical systems with the benefit of learning from irregularly sampled observations (Huang
et al., 2020; Zang & Wang, 2020). A range of approaches have been developed to enhance the capacity of neural ODEs such
as including regularization terms (Finlay et al., 2020) and dimension augmentation (Dupont et al., 2019). Recently, neural
ODEs have been combined with GNNs to solve overfitting issues (Xhonneux et al., 2020) and provide the explainability of
models (Zhang et al., 2022). Furthermore, neural ODEs combined with GNNs have solved dynamical system prediction
problems. For example, SGODE (Chen et al., 2024a) uses signed graph neural ordinary differential equations for continuous-
time dynamics modeling, while HOPE (Luo et al., 2023b) employs second-order graph ODE functions to capture long-term
dependencies in complex dynamic systems. In this work, we propose a neural ODE-based framework named DGODE to
solve OOD fluid dynamics modeling, which models the state evolution of both node representations and the environment
simultaneously.

C.3. Out-of-distribution Generalization

Out-of-distribution (OOD) generalization (Volpi et al., 2018; Wang et al., 2023a; Wu et al., 2022; Yang et al., 2022) aims
to enhance the model performance when training and test data come from different distributions. This problem has been
studied in various scenarios such as time-series forecasting (Zhang et al., 2024), image classification (Li et al., 2022a) and
graph data mining (Gui et al., 2023). A wide range of approaches adopt invariant learning for OOD generalization (Li et al.,
2020; Wang et al., 2021; Li et al., 2018), which generates domain-invariant features in the latent space. In this way, these
can delete the influence of spurious correlations resulting from the distribution shift. In addition, causal inference (Wang
et al., 2022; Wang et al.), model selection (Lu et al., 2022; Wenzel et al., 2022) and active learning (Zhan et al., 2023; Deng
et al., 2023) have also been adopted to enhance OOD performance in practical scenarios. In this work, we study a practical
yet underexplored problem of OOD fluid dynamics modeling and propose a new large-scale OOD dataset and an extensive
benchmark to facilitate researchers studying this topic.

D. Experimental setup detials
Baselines. We evaluate DGODE against 12 notable models across three benchmarks, dividing them into four categories:

• Vision backbone networks: (1). U-Net (Ronneberger et al., 2015) is a deep learning architecture for medical image
segmentation. It features a symmetric contracting path and an expansive path for precise localization of areas of interest
in images. (2). Swin Transformer (Liu et al., 2021b) is a Transformer-based network architecture mainly used for
computer vision tasks. It addresses the issue of varying image scales efficiently through a hierarchical Transformer
structure. Earthfarseer (Wu et al., 2023b) is a deep learning model designed for Earth observation data. Its specific
network structure enhances monitoring and prediction capabilities for environmental and meteorological phenomena.

• Graph Neural Networks for spatio-temporal modeling: (1). CLCRN (Lin et al., 2022) is a conditional graph
convolutional recurrent neural network for spatio-temporal data processing. It effectively captures spatio-temporal
dependencies, suitable for scenarios like traffic flow prediction. (2). MGNT (Pfaff et al., 2021) is a multi-graph
neural network focusing on learning complex relationships from multiple graph structures. It excels in areas like
physical system modeling. EAGLE (Janny et al., 2023) is a graph neural network for spatio-temporal data, emphasizing
effective learning in dynamic environments. It is suitable for fields like weather prediction. DGCRN (Weng et al.,
2023) is a decomposed graph convolutional recurrent network. Its decomposition approach enhances the processing of
spatio-temporal data, especially effective in traffic and network flow prediction.

• Graph-ODE series: (1). MPNODE (Gupta et al., 2022) is a model combining graph neural networks and ordinary
differential equations (ODE) for modeling dynamic graph data. It captures the temporal evolution characteristics
of graph-structured data. (2). CG-ODE (Huang et al., 2021) is a coupled graph ordinary differential equation
model. It processes graph structures and continuous time dynamics simultaneously, suitable for modeling complex
network systems. (3).SGODE (Chen et al., 2024a) is a method that integrates graph neural networks with ordinary
differential equations. It is especially effective for modeling complex system dynamics that involve positive and
negative relationships.

16



Prometheus: Out-of-distribution Fluid Dynamics Modeling with Disentangled Graph ODE

Table 5. Details for benchmarks. The input-output shapes are presented in the shape of (temporal, the numbers of nodes, the numbers of
features)

DESCRIPTIONS PROMETHEUS-T PROMETHEUS-P WEATHERBENCH-T WEATHERBENCH-W NAVIER-STOKES

TRAIN SET SIZE 30000 30000 6900 6900 14000
VALIDATION SET SIZE 2000 2000 1000 1000 1000
TEST SET SIZE 2000 2000 1000 1000 1000
INPUT TENSOR (50, 15360, 2) (15, 32768, 3) (12, 2048, 1) (12, 2048, 1) (10, 4096, 1)
OUTPUT TENSOR (50, 15360, 2) (15, 32768, 3) (12, 2048, 1) (12, 2048, 1) (10, 4096, 1)

• Operator learning methods: (1). FNO (Li et al., 2021) is an efficient deep learning framework for learning solutions to
partial differential equations. It operates in the frequency domain through Fourier transforms, enhancing computational
efficiency. (2). F-FNO (Tran et al., 2023) is a variant of FNO that further improves model efficiency and generalization
ability through factorization, suitable for a broader range of partial differential equation solutions. (3). LSM (Wu
et al., 2023a) combines deep learning with mathematical operator theory for solving complex scientific computation
problems, such as simulations in fluid dynamics and material science.

To adapt these models for irregular grids, we incorporate geo-FNO (Li et al., 2022b) for input/output transformation,
facilitating conversion of irregular domains into regular grids.

Implementation & Evaluation Metrics. To ensure fairness, all methods train on the NVIDIA-A100 using the ADAM
optimizer for MSE loss over 500 epochs, with an initial learning rate of 10−3. We set the batch size to 20. We study Mean
Squared Error (MSE) and Structural Similarity Index Measure (SSIM) in our research. The mathematical formulas for
evaluating the indicators in decibels are shown below.

Lerr =
1

N

∑
i

∑
t

∥∥xti − x̂ti
∥∥2 (23)

Here, Lerr represents the mean squared error, N is the total number of samples (i.e., all combinations of i and t), xti is the
true value of the ith sample at time t, and x̂ti is the corresponding predicted value. This formula calculates the overall mean
squared error by summing and averaging the squares of the prediction errors for all samples i at all time points t.

SSIM(x, x̂) =
(2µxµx̂ + C1)(2σxx̂ + C2)

(µ2
x + µ2

x̂ + C1)(σ2
x + σ2

x̂ + C2)
(24)

In the Structural Similarity Index (SSIM) formula, x and x̂ represent the original and reconstructed (or predicted) images,
respectively. The terms µx and µx̂ are the average luminance of the images x and x̂, while σ2

x and σ2
x̂ are the variances of

these two images. Additionally, σxx̂ denotes the covariance between the images x and x̂. To avoid division by zero, the
formula includes two small constants C1 and C2, typically related to the dynamic range of the image data. The SSIM value
ranges from -1 to 1, where 1 indicates perfect similarity between the two images. This metric is especially important in the
field of image processing, particularly for image quality assessment, compression, and transmission, as it closely aligns with
human visual perception of image quality. This is beneficial for visually analyzing the modeling of dynamical systems.

E. Benchmarks detials
In this section, the details of the benchmark configurations are succinctly summarized in Table 5. The data details of
Prometheus are shown in Figure 6. We used a sliding window approach to generate the dataset needed for training tests.

E.1. Prometheus

FDS relies on a complex set of physical and chemical equations to model fire combustion dynamics. These equations include
the Navier-Stokes equations, energy conservation equations, matter conservation equations, chemical reaction equations for
combustion, radiative heat transfer models, and solid combustion and pyrolysis models. With these equations, FDS is able to
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simulate fire scenarios under different conditions, including flame propagation, smoke behavior, heat release, and chemical
transformations.

Navier-Stokes Equations:
∂(ρu)

∂t
+∇ · (ρuu) = −∇p+∇ · µ(∇u+ (∇u)T ) + ρg (25)

Energy Conservation Equation:
∂(ρE)

∂t
+∇ · (u(ρE + p)) = ∇ · (κ∇T ) + Φ (26)

Mass Conservation Equation:
∂ρ

∂t
+∇ · (ρu) = 0 (27)

Combustion Chemistry Equations:
∂(ρYi)

∂t
+∇ · (ρYiu) = ∇ · (ρDi∇Yi) + ω̇i (28)

Radiative Heat Transfer Model:q̇radiation = σ · (T 4 − T 4
surroundings) (29)

Solid Combustion and Pyrolysis Models:
∂(ρsTs)

∂t
= ∇ · (ks∇Ts) + q̇pyrolysis + q̇combustion (30)

In the equations used in the FDS, ρ represents fluid density, typically referring to the density of air or combustion gases. u
is the fluid velocity vector, indicating the direction and speed of fluid movement in space. t stands for time. p is the fluid
pressure. µ denotes the dynamic viscosity of the fluid, related to internal friction. ∇ is the vector gradient operator, used for
calculating spatial changes in a field. E represents the total energy per unit mass, including both internal and kinetic energy.
κ is the thermal conductivity, reflecting the material’s ability to conduct heat. T signifies temperature. Φ represents other
forms of energy transfer, such as energy from chemical reactions. Yi is the mass fraction of the ith chemical component. Di

is the diffusion coefficient of that chemical component. ω̇i is the production or consumption rate of the component. σ is the
Stefan-Boltzmann constant, related to thermal radiation. Tsurroundings is the surrounding environmental temperature. ρs and
Ts represent the density and temperature of a solid, respectively. ks is the thermal conductivity of the solid. q̇pyrolysis and
q̇combustion represent the heat source terms for pyrolysis and combustion processes, respectively. These equations form the
foundation of the FDS for simulating fire dynamics, enabling precise modeling of fluid dynamics, heat transfer, chemical
reactions, and material transformations in fire scenarios. They also serve as the basis for this study.

Environmental Settings. In our study, we use the FDS to simulate tunnel scenarios. As shown in Table 6, 7 to explore
fire dynamics and their impact on the environment, we focus on two main conditions: Heat Release Rate (HRR) and
ventilation speed. These factors are key in influencing fire behavior and smoke movement. HRR, an important measure of
fire intensity, represents the heat released per unit time. We simulate fires at different HRR levels, such as 5MW, 10MW,
15MW, 20MW, and 25MW, to understand fire behavior from small to large scales. Ventilation speed plays a vital role in
the movement and distribution of smoke in closed or semi-closed tunnel environments. We simulate fire behaviors in tunnels
under various ventilation speeds, including 2m/s, 4m/s, 6m/s, 8m/s, and 10m/s. We also randomly choose five sets of
conditions, adding ventilation parameters, resulting in 30 different environmental settings for tunnel scenarios. For pool fire
scenarios, we set up 25 different environments. This in-depth approach to environmental settings allows us to thoroughly
assess changes in combustion dynamics under different conditions. This multi-environment simulation method is especially
important for the performance of deep learning models in Out-Of-Distribution situations.
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Table 6. Prometheus-T environment settings.

VELOCITY
HRR

5 MW 10 MW 15 MW 20 MW 25 MW

2 M/S a1 a2 a3 a4 a5

4 M/S a6 a7 a8 a9 a10

6 M/S a11 a12 a13 a14 a15

8 M/S a16 a17 a18 a19 a20

10 M/S a21 a22 a23 a24 a25

Table 7. Prometheus-P environment settings.

VELOCITY
HRR

5 MW 10 MW 15 MW 20 MW 25 MW

2 M/S b1 b2 b3 b4 b5
4 M/S b6 b7 b8 b9 b10
6 M/S b11 b12 b13 b14 b15
8 M/S b16 b17 b18 b19 b20
10 M/S b21 b22 b23 b24 b25
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Figure 6. Visualization of simulated physical variables, the upper half is the physical field of a pool fire scene in an industrial park, and the
lower half is the physical field of a tunnel fire scene.

E.2. Weatherbench

Basic Information Description. WeatherBench is a dataset for weather forecasting and climate model benchmarking. It
consists of meteorological variables that are extracted from the European Center for Medium-Range Weather Forecasts
(ECMWF) reanalysis data. This dataset is specifically designed for machine learning and artificial intelligence applications
in weather prediction.

Environmental Settings. In our study, we analyze four key variables (Lin et al., 2022): temperature, humidity, cloud
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Figure 7. Tunnel and pool geometries.

cover, and surface wind components. We focus on accurately predicting temperature and surface wind components, treating
the other variables as elements that constitute the predictive environment. Specifically, when predicting temperature, we
construct three different environmental variable combinations: humidity and cloud cover, humidity and wind component,
and cloud cover and wind component, represented as {c1, c2, c3}. Similarly, in predicting the surface wind component, we
consider combinations of temperature and humidity, temperature and cloud cover, and humidity and cloud cover, denoted as
{d1, d2, d3}. This approach allows us to better understand the interplay among the variables, thereby enhancing the accuracy
of our predictions.

E.3. Navier-Stokes Equation

Basic Information Description. The dataset is generated by employing a pseudospectral method to solve the 2D Navier-
Stokes equation for a viscous and incompressible flow. The equation, expressed in its vorticity form, is as follows (Li et al.,
2021):

∂tw(x, t) + u(x, t) · ∇w(x, t) = ν∆w(x, t) + f(x), x ∈ (0, 1)2, t ∈ (0, T ]

∇ · u(x, t) = 0, x ∈ (0, 1)2, t ∈ [0, T ]

w(x, 0) = w0(x), x ∈ (0, 1)2.

(31)

Here, the forcing term is set to f(x) = 0.1 (sin (2π (x1 + x2)) + cos (2π (x1 + x2))). To generate diverse so-
lutions for training in the Banach space mapping, the initial condition w0 is sampled from a distribution µ =
N
(
0, 73/2(−∆+ 49I)−2.5

)
. The boundary condition applied is periodic. The viscosity coefficient ν is set at

10−3, 10−4, 10−5, ensuring sufficient chaos in the solution evolution over time.

Environmental Settings. The Navier-Stokes equation demonstrates its versatility in three different settings, defined by
combinations of viscosity coefficients. Specifically, the combinations are {10−3, 10−4}, {10−3, 10−5}, and {10−4, 10−5},
each corresponding to a unique environmental setup. Thus, we represent these settings as the set {e1, e2, e3}, where each
element reflects a specific combination of viscosity coefficients.

F. More Showcases
Prometheus-T. The Prometheus dataset comprises two distinct scenarios, named Prometheus-T and Prometheus-P. Focusing
first on Prometheus-T, we have visualized two key physical fields: temperature and smoke concentration. Additionally,
we have selected the runner-up model, LSM, for comparison. This is illustrated in Figures 8. A clear observation from
these visualizations is that our model outperforms LSM, particularly in terms of detail and accuracy. In contrast, the results
produced by LSM appear notably smoother.

Prometheus-P. Next, we will show another set of fire simulation scenarios in benchmark Prometheus-P. We display these
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Figure 8. Visualization of temperature physical fields in Prometheus-T.

Figure 9. Overhead view visualization of the Prometheus-P.

scenarios in a top-down view Figure 9 and show the variables of speed and temperature. We can clearly see the v component
and u component of speed, as well as the temperature component. Notably, the DGODE model’s predictions match the real
situation (Ground-truth) very closely. Compared to other models, they often show overly smooth results, but DGODE shows
higher precision in handling details.

Weatherbench-T. As shown in the Figure 10, Weatherbench-T is a dataset benchmark for specifically evaluating the
prediction of the temperature variable, and for a clearer visualization, we added land information, and the corresponding
Error case, for highlighting the differences, and it is still noticeable that we achieved the best results with DGODE, and the
visualization of the prediction is consistent with Ground truth.

Weatherbench-W. As shown in the Figure 11, Weatherbench-W is a dataset benchmark for specifically evaluating the
prediction of the wind speed variable, which mainly contains two directions, x and y. In order to visualize more clearly, we
have included land information, as well as the corresponding Error cases, which are used to highlight the differences, and it
can still be found that we have achieved the best results for the DGODE effect, and the predicted visualization is consistent
with the Ground truth.
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Figure 10. Visualization of temperature variables in Weatherbench-T.

Figure 11. Visualization of wind (x) variables in Weatherbench-W.
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